JP3980457B2 - Scattered light measurement device - Google Patents

Scattered light measurement device Download PDF

Info

Publication number
JP3980457B2
JP3980457B2 JP2002273845A JP2002273845A JP3980457B2 JP 3980457 B2 JP3980457 B2 JP 3980457B2 JP 2002273845 A JP2002273845 A JP 2002273845A JP 2002273845 A JP2002273845 A JP 2002273845A JP 3980457 B2 JP3980457 B2 JP 3980457B2
Authority
JP
Japan
Prior art keywords
light
lens
scattered
optical axis
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002273845A
Other languages
Japanese (ja)
Other versions
JP2004109011A (en
Inventor
三直 関和
和典 筒井
且廣 森沢
尚司 藤本
篤 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP2002273845A priority Critical patent/JP3980457B2/en
Publication of JP2004109011A publication Critical patent/JP2004109011A/en
Application granted granted Critical
Publication of JP3980457B2 publication Critical patent/JP3980457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶液に光を照射し、散乱体積内から散乱される光を検出することにより散乱光測定を行う散乱光測定装置に関するものである。
【0002】
【従来の技術】
散乱光測定装置は、流体中に存在する粒子の動き(ブラウン運動)による散乱光の経時変化を測定する装置である。
従来の散乱光測定装置では、溶液の入った直方体のセルに対してレンズで絞ったレーザ光を照射し、その散乱光をフォトマルチプライヤ等の受光素子で測定していた。
【0003】
溶液の濃度が濃い場合、粒子に当たって散乱された光がまた他の粒子に当たって測定されるという多重散乱の問題が起こる。
濃厚溶液では、この多重散乱の影響を避けることが、正確な測定のために重要である。
そのために、測定する散乱角度を180度近くに設定することが有効である。そこで従来では、照射光を集光する集光レンズと、散乱光を集める対物レンズとを同じレンズで共用する構成の光学系を採用している。
【0004】
【特許文献1】
特開平11-51843号公報
【0005】
【発明が解決しようとする課題】
この場合、測定する散乱角度をできるだけ大きくする(限りなく180度に近くする)ためには、集光レンズの焦点距離を長くするか、投光軸と受光軸との間隔を小さくすることが重要である。
集光レンズの焦点距離を長くすると焦点の像が大きくなる(散乱ビーム径が大きくなる)ので、投光軸と受光軸との間隔を小さくすることが好ましい。
【0006】
このためには、光源の光を平行光束にして集光レンズに入れる投光レンズと、同じ集光レンズで集められた試料溶液からの散乱光を受光器に照射する受光レンズとを近づける必要があるが、投光レンズと受光レンズとを近づけるには、投光レンズと受光レンズとの口径の制限がある。
投光レンズの口径を小さくすると光源の光量が不足するし、受光レンズの口径を小さくすると検出する散乱光の検出感度が不足してしまう。
【0007】
そこで、本発明は、散乱ビーム径を大きくせず、散乱光量を低下させることなく、投光軸と受光軸との間隔を小さくして、できるだけ大きな散乱角度を確保することができる散乱光測定装置を実現することを目的とする。
【0008】
【課題を解決するための手段及び発明の効果】
本発明の散乱光測定装置は、光源と、試料溶液を収容する容器と、光源の光を平行光束にする投光レンズと、当該平行光束を集めて試料溶液に照射する集光レンズと、同じ集光レンズで集められた試料溶液からの散乱光を受光器に入射させる受光レンズと、受光器とを備え、両面が平行平面状の光軸調整板を、投光レンズと集光レンズとの間の投光軸上、又は受光レンズと集光レンズとの間の受光軸上の平行光束の部分に傾けて設置したものである(請求項1)。
【0009】
前記の構成によれば、光軸調整板を投光レンズと受光レンズとの間の平行光束の部分に、傾けて設置したことにより、平行光束同士の間隔を、平行関係を保ったまま近づけることができる。したがって、投光光量、受光光量を減らさないで散乱角を180度に近づけることができる。
前記光軸調整板は、投光軸上及び受光軸上の両方に設置することもできる(請求項2)。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図1(a)は本発明の実施形態にかかる散乱光測定装置を示す平面図、図1(b)は側面図である。
光源2の光は、アパーチャ3を通過し、投光レンズ4によって平行光束にされる。当該平行光束は、集光レンズ5で集められてセル中の試料溶液Sに照射される。た試料溶液Sからの散乱光は、集光レンズ5で集められ、受光レンズ6、アパーチャ7を通して受光器8によって検出される。
【0011】
前記光源2は、白色光源とモノクロメータの組み合わせで構成してもよく、レーザ発振装置などで構成してもよい。前記受光器8は、CCDなどの半導体素子で構成されたものでもよく、光電子増倍管などでもよい。
試料溶液Sは、セルに収容されているが、図では、セル壁の一部をなす、光透過窓9のみを描いている。
この実施形態では、平行な平面により両面が構成された光軸調整板T,Jを、投光軸上の投光レンズ4と集光レンズ5との間、及び受光軸上の集光レンズ5と受光レンズ6との間に設置している。
【0012】
光軸調整板T,Jの材質は、光を透過させるものなら何でもよく、ガラス、セラミック、合成樹脂などを用いることができる。ただし、屈折率は、空気の屈折率とは異なるものでなければならない。
ここで、図2を用いて試料溶液S中の散乱部分の説明をする。投光軸に沿って照射された光は、散乱体積(図4の斜線部分)から散乱され、その一部が受光軸に沿って射出し、測定される。
【0013】
投光ビームの径と、受光ビームの径とが重なる部分の長さを重なり長L、重なる部分の直径を散乱ビーム径Dで示している。また、投光軸と受光軸とがなす角度を散乱角φで示している。
図1に戻り、光軸調整板T,Jと、光軸とのなす角度は、固定されていてもよく、可変であってもよい。この傾き角度をα1と書く。
傾ける場合の回転軸の方向は、図1のY軸の方向とする。また、傾ける方向は、光軸調整板T,Jの屈折率が空気の屈折率よりも高い場合は、図1に示したように、光軸調整板Tと光軸調整板Jとが、互いに試料溶液S中の焦点位置を向く方向にする。
【0014】
傾き角度α1を変化させる場合、可変方法はどんな方法を用いてもよいが、例えば、図3に示すように、光軸調整板T,Jを一軸回りに回転可能に取り付けて、プーリ11、ベルト12を介してモータ13で回転駆動する方法があげられる。
光軸調整板と、入射光軸とのなす角度α1を0°からずらすと出射光軸が移動する原理を、図4を用いて説明する。光軸調整板の屈折率をn、厚さをtとする。
【0015】
図4に示すように、光軸調整板の入射面21に立てられた法線と入射光軸A1との傾き角をα1とする。入射光は、光軸調整板の入射面21で屈折する。その屈折角をα2で表している。屈折された光は、光軸調整板の出射面22でさらに屈折する。その屈折角はα1となる。光軸調整板の入射面21上の入射点と、出射面22上の出射点との位置ずれを、光軸に垂直に測定すると、Δdとなる。Δdは、幾何光学的考察から、
Δd=tsin(α1−α2)/cosα2
=t sinα1[1− cosα1/√(n2- sin2α1)]
で表される。このように、光軸の位置ずれΔdは、光軸調整板と入射光軸との傾き角α1の関数で表される。
【0016】
したがって、光軸調整板を傾けることにより、光軸をずらすことができる。
投光軸上の光軸調整板Tを、投光軸が受光軸に近づくように傾け、受光軸上の光軸調整板Jを、受光軸が投光軸に近づくように傾けると、投光軸、受光軸間の間隔d(図1参照)は、
d―2Δd
となる。
【0017】
このように光軸調整板T,Jを設置して投光軸、受光軸間の間隔dを狭くすることができるので、投光レンズ4、受光レンズ6はそのままで、散乱角φを180度に近づけることができる。
なお、図1の実施形態では、光軸調整板T,Jを、投光軸上の投光レンズ4と集光レンズ5との間、及び受光軸上の集光レンズ5と受光レンズ6との間にそれぞれ設置しているが、光軸調整板Tだけ、又は光軸調整板Jだけを設置してもよい。この場合は、投光軸、受光軸間の間隔dは、
d―Δd
となる。
【0018】
【実施例】
図1に示した光学系で、光軸調整板T,Jを設置しない場合と設置した場合とをシミュレーションしてみた。
【0019】
【表1】

Figure 0003980457
【0020】
各レンズ4〜6のパラメータを適当に設定して、ある光学系Aを構成した。散乱角φ、散乱ビーム径D、重なり長Lは、表1に掲げたように、それぞれ172.6度,12.3μm,170μmであった。
屈折率1.5、厚さ3mmの光軸調整板Tを、傾斜角α1=30度で投光軸上に設置し、屈折率1.5、厚さ3mmの光軸調整板J、傾斜角α1=−30度で受光軸上に設置したところ、散乱角φは、表1に掲げたように、2.9度増加して175.5度になり、散乱ビーム径Dは変わらず、重なり長Lは396μm増加して566μmとなった。
【0021】
希薄な溶液を想定すれば、散乱光量は、散乱体積に比例する。散乱体積は、3.3倍になるので、散乱光量も3.3倍になる。
したがって、散乱ビーム径Dはそのままで、散乱角φを180度に近づけることができ、かつ、より明るい散乱光を測定できる。
【0022】
【表2】
Figure 0003980457
【0023】
各レンズ4〜6のパラメータを適当に設定して、他の光学系Bを構成した。散乱角φ、散乱ビーム径D、重なり長Lは、表2に掲げたように、それぞれ173.9度,14.7μm,240μmであった。
屈折率1.5、厚さ4mmの光軸調整板Tを、傾斜角α1=30度で投光軸上に設置し、屈折率1.5、厚さ4mmの光軸調整板J、傾斜角α1=−30度で受光軸上に設置したところ、散乱角φは、表1に掲げたように、3.2度増加して177.1度になり、散乱ビーム径Dは変わらず、重なり長Lは4376μm増加して4619μmとなった。
【0024】
散乱光量は18.5倍になった。
したがって、散乱ビーム径Dはそのままで、散乱角φを180度に近づけることができ、かつ、より明るい散乱光を測定できる。
【0025】
【発明の効果】
以上のように本発明によれば、投光レンズや受光レンズの口径や焦点距離、集光レンズの焦点距離は特に変えなくても、光軸調整板を平行光束の部分に傾けた状態で設置するだけで、散乱角φを180度に近づけることができる。この結果、投受光の重なり長を長くすることができ、散乱光量を多くできる。したがって、散乱光量の少ない希薄溶液から、散乱光量の多い濃厚溶液まで、正確に散乱光の測定を行える、という優れた効果が得られる。
【図面の簡単な説明】
【図1】 (a)は本発明の実施形態にかかる散乱光測定装置を示す平面図、(b)は側面図である。
【図2】試料溶液S中の散乱部分の重なり長L、散乱ビーム径D、散乱角φを示す説明図である。
【図3】光軸調整板を回転させる方法を例示した斜視図である。
【図4】光軸調整板を傾けて光軸を移動させる原理を説明するための光路図である。
【符号の説明】
2 光源
3 アパーチャ
4 投光レンズ
5 集光レンズ
6 受光レンズ
7 アパーチャ
8 受光器
9 光透過窓
11 プーリ
12 ベルト
13 モータ
21 入射面
22 出射面
D 散乱ビーム径
L 重なり長
S 試料溶液
T,J 光軸調整板
φ 散乱角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scattered light measurement apparatus that measures scattered light by irradiating a solution with light and detecting light scattered from within a scattering volume.
[0002]
[Prior art]
The scattered light measurement device is a device that measures the change with time of scattered light due to the movement of particles (Brownian motion) existing in a fluid.
In a conventional scattered light measurement apparatus, a rectangular cell containing a solution is irradiated with laser light focused by a lens, and the scattered light is measured by a light receiving element such as a photomultiplier.
[0003]
When the concentration of the solution is high, the problem of multiple scattering occurs where light scattered upon the particles is also measured against other particles.
In concentrated solutions, avoiding this multiple scattering effect is important for accurate measurements.
Therefore, it is effective to set the scattering angle to be measured to be close to 180 degrees. Therefore, conventionally, an optical system having a configuration in which a condensing lens that collects irradiation light and an objective lens that collects scattered light are shared by the same lens is employed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-51843
[Problems to be solved by the invention]
In this case, in order to increase the scattering angle to be measured as much as possible (as close to 180 degrees as possible), it is important to increase the focal length of the condenser lens or to reduce the distance between the light projecting axis and the light receiving axis. It is.
If the focal length of the condensing lens is increased, the focal image becomes larger (the scattered beam diameter becomes larger), so it is preferable to reduce the distance between the light projecting axis and the light receiving axis.
[0006]
For this purpose, it is necessary to bring the light projection lens that converts the light from the light source into a condensing lens into a condensing lens and the light receiving lens that irradiates the light receiver with scattered light from the sample solution collected by the same condensing lens. However, in order to bring the light projecting lens and the light receiving lens closer, there is a limitation on the aperture diameter of the light projecting lens and the light receiving lens.
If the aperture of the light projecting lens is reduced, the light amount of the light source is insufficient, and if the aperture of the light receiving lens is reduced, the detection sensitivity of the scattered light to be detected is insufficient.
[0007]
Accordingly, the present invention provides a scattered light measuring apparatus that can ensure a large scattering angle by reducing the distance between the light projecting axis and the light receiving axis without increasing the scattered beam diameter and reducing the amount of scattered light. It aims at realizing.
[0008]
[Means for Solving the Problems and Effects of the Invention]
The scattered light measurement apparatus of the present invention is the same as a light source, a container for storing a sample solution, a light projecting lens that converts the light from the light source into a parallel light beam, and a condenser lens that collects the parallel light beam and irradiates the sample solution. A light receiving lens for allowing scattered light from the sample solution collected by the light collecting lens to enter the light receiver, and a light receiver, and an optical axis adjusting plate having parallel planes on both sides are provided between the light projecting lens and the light collecting lens. The light beam is installed at a tilted position on the light projecting axis between them or on the portion of the parallel light beam on the light receiving axis between the light receiving lens and the condenser lens.
[0009]
According to the above configuration, the optical axis adjusting plate is installed at an angle to the portion of the parallel light beam between the light projecting lens and the light receiving lens so that the distance between the parallel light beams is reduced while maintaining the parallel relationship. Can do. Therefore, the scattering angle can be brought close to 180 degrees without reducing the light projection amount and the light reception amount.
The optical axis adjusting plate can be installed on both the light projecting axis and the light receiving axis.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 (a) is a plan view showing a scattered light measurement apparatus according to an embodiment of the present invention, and FIG. 1 (b) is a side view.
The light from the light source 2 passes through the aperture 3 and is converted into a parallel light flux by the light projecting lens 4. The parallel light flux is collected by the condenser lens 5 and irradiated onto the sample solution S in the cell. The scattered light from the sample solution S is collected by the condenser lens 5 and detected by the light receiver 8 through the light receiving lens 6 and the aperture 7.
[0011]
The light source 2 may be a combination of a white light source and a monochromator, or a laser oscillation device. The light receiver 8 may be composed of a semiconductor element such as a CCD, or may be a photomultiplier tube.
Although the sample solution S is accommodated in the cell, only the light transmission window 9 forming a part of the cell wall is illustrated in the figure.
In this embodiment, the optical axis adjusting plates T and J having both surfaces constituted by parallel planes are arranged between the light projecting lens 4 and the light collecting lens 5 on the light projecting axis and the light collecting lens 5 on the light receiving axis. And the light receiving lens 6.
[0012]
The material of the optical axis adjusting plates T and J may be anything as long as it transmits light, and glass, ceramic, synthetic resin, or the like can be used. However, the refractive index must be different from the refractive index of air.
Here, the scattering portion in the sample solution S will be described with reference to FIG. The light irradiated along the light projecting axis is scattered from the scattering volume (the hatched portion in FIG. 4), and a part of the light is emitted along the light receiving axis and measured.
[0013]
The length of the overlapping portion of the diameter of the light projecting beam and the diameter of the light receiving beam is indicated by an overlap length L, and the diameter of the overlapping portion is indicated by a scattered beam diameter D. Further, the angle formed by the light projecting axis and the light receiving axis is indicated by a scattering angle φ.
Returning to FIG. 1, the angle formed between the optical axis adjusting plates T and J and the optical axis may be fixed or variable. This inclination angle is written as α1.
The direction of the rotation axis when tilting is the direction of the Y axis in FIG. In addition, when the refractive index of the optical axis adjusting plates T and J is higher than the refractive index of air, the optical axis adjusting plate T and the optical axis adjusting plate J are mutually connected as shown in FIG. The direction in the sample solution S is directed to the focal position.
[0014]
When changing the inclination angle α1, any variable method may be used. For example, as shown in FIG. 3, the optical axis adjusting plates T and J are attached so as to be rotatable about one axis, and the pulley 11 and the belt For example, the motor 13 may be rotationally driven via the motor 12.
The principle that the outgoing optical axis moves when the angle α1 formed between the optical axis adjusting plate and the incident optical axis is shifted from 0 ° will be described with reference to FIG. The refractive index of the optical axis adjusting plate is n, and the thickness is t.
[0015]
As shown in FIG. 4, the inclination angle between the normal line standing on the incident surface 21 of the optical axis adjusting plate and the incident optical axis A1 is α1. Incident light is refracted by the incident surface 21 of the optical axis adjusting plate. The refraction angle is represented by α2. The refracted light is further refracted by the exit surface 22 of the optical axis adjusting plate. The refraction angle is α1. When the positional deviation between the incident point on the incident surface 21 of the optical axis adjusting plate and the outgoing point on the outgoing surface 22 is measured perpendicularly to the optical axis, Δd is obtained. Δd is determined from geometrical optical considerations.
Δd = tsin (α1−α2) / cosα2
= T sinα1 [1-cosα1 / √ (n 2 -sin 2 α1)]
It is represented by Thus, the optical axis positional deviation Δd is expressed as a function of the inclination angle α1 between the optical axis adjusting plate and the incident optical axis.
[0016]
Therefore, the optical axis can be shifted by tilting the optical axis adjusting plate.
When the optical axis adjustment plate T on the light projecting axis is tilted so that the light projecting axis approaches the light receiving axis, and the optical axis adjusting plate J on the light receiving axis is tilted so that the light receiving axis approaches the light projecting axis, The distance d between the shaft and the light receiving shaft (see FIG. 1) is
d-2Δd
It becomes.
[0017]
Since the optical axis adjusting plates T and J are thus installed so that the distance d between the light projecting axis and the light receiving axis can be reduced, the light projecting lens 4 and the light receiving lens 6 are left as they are, and the scattering angle φ is 180 degrees. Can be approached.
In the embodiment of FIG. 1, the optical axis adjusting plates T and J are arranged between the light projecting lens 4 and the light collecting lens 5 on the light projecting axis, and between the light collecting lens 5 and the light receiving lens 6 on the light receiving axis. However, only the optical axis adjustment plate T or only the optical axis adjustment plate J may be installed. In this case, the distance d between the light projecting axis and the light receiving axis is
d-Δd
It becomes.
[0018]
【Example】
In the optical system shown in FIG. 1, the simulation was performed with and without the optical axis adjusting plates T and J being installed.
[0019]
[Table 1]
Figure 0003980457
[0020]
An optical system A was configured by appropriately setting the parameters of the lenses 4 to 6. As shown in Table 1, the scattering angle φ, scattered beam diameter D, and overlap length L were 172.6 degrees, 12.3 μm, and 170 μm, respectively.
An optical axis adjusting plate T having a refractive index of 1.5 and a thickness of 3 mm is installed on the light projection axis at an inclination angle α1 = 30 degrees, an optical axis adjusting plate J having a refractive index of 1.5 and a thickness of 3 mm, and an inclination angle. When installed on the light receiving axis at α1 = −30 degrees, the scattering angle φ increases to 2.9 degrees to 175.5 degrees as shown in Table 1, the scattered beam diameter D does not change, and the overlap length L is 396 μm. It increased to 566μm.
[0021]
Assuming a dilute solution, the amount of scattered light is proportional to the scattering volume. Since the scattering volume is 3.3 times, the amount of scattered light is also 3.3 times.
Therefore, the scattered beam diameter D remains unchanged, the scattering angle φ can be brought close to 180 degrees, and brighter scattered light can be measured.
[0022]
[Table 2]
Figure 0003980457
[0023]
The other optical system B was configured by appropriately setting the parameters of the lenses 4 to 6. As shown in Table 2, the scattering angle φ, the scattered beam diameter D, and the overlap length L were 173.9 degrees, 14.7 μm, and 240 μm, respectively.
An optical axis adjusting plate T having a refractive index of 1.5 and a thickness of 4 mm is installed on the light projection axis at an inclination angle α1 = 30 degrees, an optical axis adjusting plate J having a refractive index of 1.5 and a thickness of 4 mm, and an inclination angle. When installed on the light receiving axis at α1 = −30 degrees, the scattering angle φ increases by 3.2 degrees to 177.1 degrees as shown in Table 1, the scattered beam diameter D does not change, and the overlap length L is 4376 μm. It increased to 4619μm.
[0024]
The amount of scattered light increased 18.5 times.
Therefore, the scattered beam diameter D remains unchanged, the scattering angle φ can be brought close to 180 degrees, and brighter scattered light can be measured.
[0025]
【The invention's effect】
As described above, according to the present invention, the aperture and focal length of the light projecting lens and the light receiving lens, and the focal length of the condensing lens are not particularly changed, and the optical axis adjusting plate is installed in a state where it is tilted to the parallel light flux portion. By simply doing this, the scattering angle φ can be brought close to 180 degrees. As a result, the overlap length of light projection and reception can be increased, and the amount of scattered light can be increased. Therefore, it is possible to obtain an excellent effect that the scattered light can be accurately measured from a dilute solution having a small amount of scattered light to a concentrated solution having a large amount of scattered light.
[Brief description of the drawings]
FIG. 1A is a plan view showing a scattered light measurement apparatus according to an embodiment of the present invention, and FIG.
FIG. 2 is an explanatory diagram showing an overlap length L, a scattered beam diameter D, and a scattering angle φ of a scattering portion in a sample solution S.
FIG. 3 is a perspective view illustrating a method of rotating an optical axis adjustment plate.
FIG. 4 is an optical path diagram for explaining the principle of moving the optical axis by tilting the optical axis adjusting plate.
[Explanation of symbols]
2 Light source 3 Aperture 4 Projection lens 5 Condensing lens 6 Aperture lens 7 Aperture 8 Light receiver 9 Light transmission window 11 Pulley 12 Belt 13 Motor 21 Entrance surface 22 Exit surface D Scattered beam diameter L Overlapping length S Sample solution T, J Light Axis adjusting plate φ Scattering angle

Claims (2)

光源と、試料溶液を収容する容器と、光源の光を平行光束にする投光レンズと、当該平行光束を集めて試料溶液に照射する集光レンズと、同じ集光レンズで集められた試料溶液からの散乱光を受光器に入射させる受光レンズと、受光器とを備える散乱光測定装置において、
両面が平行平面状の光軸調整板を、投光レンズと集光レンズとの間の投光軸上、又は受光レンズと集光レンズとの間の受光軸上の平行光束の部分に傾けて設置したことを特徴とする散乱光測定装置。
Sample solution collected by the same condenser lens, a light source, a container for storing the sample solution, a light projecting lens that converts the light from the light source into a parallel luminous flux, a condenser lens that collects the parallel luminous flux and irradiates the sample solution In a scattered light measurement device comprising a light receiving lens that makes light scattered from the light incident on the light receiver, and a light receiver,
Tilt the optical axis adjustment plate with both parallel planes on the light projecting axis between the light projecting lens and the condensing lens or on the part of the parallel light beam on the light receiving axis between the light receiving lens and the condensing lens. A scattered light measuring device characterized by being installed.
前記光軸調整板を投光軸上及び受光軸上にそれぞれ設置している請求項1記載の散乱光測定装置。The scattered light measuring apparatus according to claim 1, wherein the optical axis adjusting plate is installed on a light projecting axis and a light receiving axis.
JP2002273845A 2002-09-19 2002-09-19 Scattered light measurement device Expired - Lifetime JP3980457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273845A JP3980457B2 (en) 2002-09-19 2002-09-19 Scattered light measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273845A JP3980457B2 (en) 2002-09-19 2002-09-19 Scattered light measurement device

Publications (2)

Publication Number Publication Date
JP2004109011A JP2004109011A (en) 2004-04-08
JP3980457B2 true JP3980457B2 (en) 2007-09-26

Family

ID=32270501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273845A Expired - Lifetime JP3980457B2 (en) 2002-09-19 2002-09-19 Scattered light measurement device

Country Status (1)

Country Link
JP (1) JP3980457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272110B (en) * 2020-03-04 2021-08-10 上海交通大学 Multiple scattering transmitted light angle distribution measuring device based on thin plate medium

Also Published As

Publication number Publication date
JP2004109011A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4817442B2 (en) Optical system for particle analyzer and particle analyzer using the same
US4732479A (en) Particle analyzing apparatus
KR20170133113A (en) Method and apparatus of detecting particles on upper surface of glass, and method of irradiating incident light
JPH0743110A (en) Two-stage detecting type non-contact positioning device
CN109454324B (en) Laser beam analyzer unit and laser processing device
WO2016185623A1 (en) Fine particle detection device
JP6714427B2 (en) Particle detecting device and method for inspecting particle detecting device
JP3980457B2 (en) Scattered light measurement device
JPH061241B2 (en) Particle analyzer
JP2006058224A (en) Measuring instrument
KR102298103B1 (en) Apparatus for inspecting surface
JP5052318B2 (en) Fluorescence detection device
JP5300249B2 (en) Liquid analyzer
JP3234183B2 (en) Light scattering intensity measuring device
JPH0418618B2 (en)
JP2004109010A (en) Scattered light measuring device
JP2000111317A (en) Measuring device/method for glass material thickness
JP6722040B2 (en) Particle detecting device and method for inspecting particle detecting device
JPH11271231A (en) Device for inspecting foreign matter on surface
US20030179374A1 (en) Method for illuminating particles contained in a medium for optical analysis, and optical particle analyser
JP2000266661A (en) Flow cell and particle-measuring apparatus using the same
JP3982039B2 (en) Shape measuring device
JP4016328B2 (en) Viscosity measuring method and measuring apparatus
JPS61294334A (en) Particle analyzer
JPH0552896B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3