JP3979210B2 - Magnetic core member for RFID antenna - Google Patents

Magnetic core member for RFID antenna Download PDF

Info

Publication number
JP3979210B2
JP3979210B2 JP2002215321A JP2002215321A JP3979210B2 JP 3979210 B2 JP3979210 B2 JP 3979210B2 JP 2002215321 A JP2002215321 A JP 2002215321A JP 2002215321 A JP2002215321 A JP 2002215321A JP 3979210 B2 JP3979210 B2 JP 3979210B2
Authority
JP
Japan
Prior art keywords
iron
core member
magnetic core
less
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215321A
Other languages
Japanese (ja)
Other versions
JP2004052095A (en
Inventor
貴則 遠藤
隆 土田
誠朗 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002215321A priority Critical patent/JP3979210B2/en
Publication of JP2004052095A publication Critical patent/JP2004052095A/en
Application granted granted Critical
Publication of JP3979210B2 publication Critical patent/JP3979210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、RFID(無線周波数識別:Radio Frequency Identification)技術を用いたタグ及びリーダ/ライタ、リーダないしライタの複合材から成るRFIDのアンテナ用磁芯部材に関するものである。
なお、本明細書において、「粉末」又は「フレーク」は微視的な単一の粉末粒子又はフレーク粒子を意味せず、これらの粒子の集合体をいう。
【0002】
【従来の技術】
従来、螺旋状に巻回されたコイル本体からなるアンテナコイルと、このアンテナコイルのコイル本体に電気的に接続され管理対象の物品に関する情報が記憶されたICチップとを備えたタグが知られている。例えば製造工程においてこのタグを使用する例を挙げると、このタグが製造ラインの当初流される部品に予め取付けられ、その部品が製造ラインにおいて組み立て又は加工が行われるたびにその履歴をICチップに記憶させ、その物品における製造状況の管理を行う管理手段が知られている。
しかし、上述した従来のタグでは、管理対象の物品が金属により形成されている場合、金属製の物品の影響を受けるのを回避するため、タグと物品との間に厚さが5〜10mmであって電気絶縁性を有するスペーサを挿入した状態で、タグを物品に固定する必要があり、金属製の物品とアンテナコイルとの間隔が比較的大きいため、アンテナコイルが管理対象の物品から大きく突出する不具合があった。このため、物品の搬送中にアンテナコイルが周囲の物に接触するおそれがあった。
【0003】
この点を解消するために、磁性粉末又は磁性フレークとプラスチックからなる複合材により磁芯部材を構成し、この磁芯部材とこの磁芯部材の軸線を中心として螺旋状に巻回されたコイル本体とによりアンテナコイルを構成することが考えられる。この複合材から成る磁芯部材にあっては、磁性粉末又は磁性フレークがプラスチックにより相互に絶縁され、磁芯部材の全体を流れるマクロの渦電流は流れずに、周波数が低い場合の損失は少ないという特徴を有する。このため、アンテナコイルの感受性は高められて、タグと物品との間に挿入されるスペーサの厚さを薄くして管理対象の物品からアンテナコイルが突出する突出量を低減することが期待される。
【0004】
【発明が解決しようとする課題】
しかし、例えば、13.56MHzで作動するRFIDに用いられるアンテナのように、周波数が高い場合には粒状粉末又はフレークの内部に流れるミクロの渦電流の影響によりアンテナにおける損失が大きくなる。これを防止する方法の1つにソフトフェライトの粉末を用いる方法があるが、ソフトフェライトは飽和磁束が低く特性の良い材料が得られず、また硬いため複合材の製造に用いる設備を摩耗させる欠点がある。また他の解決法として粉末又はフレークを細かくする方法もある。細かい磁性粉としてカーボニル鉄粉や低温で還元した鉄粉があるが、これらは高価で取り扱い時十分な配慮をして自然発火を防止しなければならないという不具合がある。また、細かい鉄粉を用いて複合材を得たとしても、その後の時間の経過により徐々にそれらの鉄粉が酸化して磁芯としての特性が劣化するおそれもある。
【0005】
更に、生産性が良く原価の比較的安価な水アトマイズ粉又は水アトマイズ粉をアトライターやボールミル等を用いて機械的に扁平化したフレークを用いる方法も考えられるが、水アトマイズ法の場合には粉末の微細化には限界があり、平均粒径10ミクロン以下の粉末を得ることができない。また、平均粒径10ミクロン以下の粉末が製造できたとしても、それが自然発火する可能性を回避することはできない。また、平均粒径10ミクロンの粉末を通常の軟磁性材料として用いられる組成の材料で製造しても、粒子内ミクロの渦電流のよる損失を十分に抑制することができない問題点が残存する。
本発明の目的は、渦電流の発生に起因する損失を低減し得るRFIDのアンテナ用磁芯部材を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図1及び図2に示すように、鉄基合金粒状粉末とプラスチック又はゴムとの複合材から成るからなるRFIDのアンテナ用磁芯部材の改良である。
その特徴ある構成は、鉄基合金粒状粉末はその90重量%以上が30μm以下の粒径を有する粉末粒子により構成されかつ粉末が80×18 -8 Ωm以上の固有抵抗を有し、鉄基合金粒状粉末の含有量が27体積%以上70体積%以下であり、鉄基合金が6重量%以上15重量%以下のシリコンを含むところにある。
【0007】
この請求項1に係る発明では、図3に示すように、粒状粉末がプラスチック又はゴムに分散され、相互に絶縁されているため、磁芯部材12a全体としては導電性を有することはなく、粒状粉末における固有抵抗を比較的高い80×10 -8 Ωm以上にすることにより、粒状粉末の内部に流れるミクロの渦電流の発生を抑制して、その影響によるアンテナの損失を低減させることができる。
また、粉末を27体積%以上含有することにより十分な透磁率を得ることができ、70体積%以下の含有量とすることにより複合材の成形を可能にする。
【0008】
請求項2に係る発明は、鉄基合金フレークとプラスチック又はゴムとの複合材から成るからなるRFIDのアンテナ用磁芯部材の改良である。
その特徴ある構成は、鉄基合金フレークはその90重量%以上が15μm以下の厚さを有するフレーク粒子により構成されかつフレークが80×18 -8 Ωm以上の固有抵抗を有し、鉄基合金フレークの含有量が20体積%以上48体積%以下であり、鉄基合金が6重量%以上15重量%以下のシリコンを含むところにある。
【0011】
この請求項2に係る発明では、図4に示すように、フレークがプラスチック又はゴムに分散され、相互に絶縁されているため、磁芯部材12a全体としては導電性を有することはなく、フレークにおける固有抵抗を比較的高い80×10-8Ωm以上にすることにより、フレークの内部に流れるミクロの渦電流の発生を抑制して、その影響によるアンテナの損失を低減させることができる。鉄基合金のフレークは、フレーク粒子の長径をa、厚さをbとするときa/bが5以上であることが好ましい。
【0013】
また、フレークを20体積%を超えて含有することにより十分な透磁率を得ることができ、48体積%以下の含有量とすることにより複合材の成形を可能にする。なお、(長径/厚さ)が5以上の扁平なフレーク粒子をその面が複合材の厚さ方向に垂直、即ちフレーク粒子の面がアンテナの磁化方向に平行に並べることにより、粉末より少ない含有量により粉末より高い透磁率の複合材とすることができる。
【0014】
この請求項1及び請求項2に係る発明では、シリコンの量を6%以上にするので含有する粒状粉末又はフレークの固有抵抗を80×10-8Ωm以上にすることができる。一方、シリコンの量を15%以下にするので、磁芯部材における飽和磁束密度の減少を抑制できる。
【0016】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1及び図2に示すように、RFID用タグ11は物品16に取付けられて使用されるものであり、物品16毎に異なる固有の情報が記憶されたICチップ13と、ICチップ13に電気的に接続されたアンテナコイル12とを備える。アンテナコイル12は磁芯部材12aと、この磁芯部材12aに巻回されたコイル本体12bとを備える。本発明はRFIDタグのアンテナ用磁芯部材12aに関するものであり、この磁芯部材12aは、鉄基合金粒状粉末又は鉄基合金フレークと、プラスチック又はゴムとの複合材により形成されたものである。
【0017】
磁芯部材12aに含有される鉄基合金粒状粉末は、粉末の90重量%以上が30μm以下の粒径を有する粉末粒子により構成されかつ粉末が80×18-8Ωm以上の固有抵抗を有するものである。好ましいのは粉末の90重量%以上が20μm以下の粒径を有する粉末粒子により構成されかつ粉末が95×10-8Ωm以上の固有抵抗を有するものである。磁芯部材12aに含有される鉄基合金フレークは、フレークの90重量%以上が15μm以下の厚さを有するフレーク粒子により構成されかつフレークが80×18-8Ωm以上の固有抵抗を有するものである。好ましいのは、フレークの90重量%以上が10μm以下の厚さを有するフレーク粒子により構成されかつフレークが95×10-8Ωm以上の固有抵抗を有するものである。この鉄基合金粒状粉末又は鉄基合金フレークは、6重量%以上15重量%以下のシリコンが含有される鉄基合金を水アトマイズ法により微細な粉末にすることにより得られる。
【0018】
一般的に、珪素鋼のシリコンは5%以下でこれ以上のシリコンを増すと固有抵抗は増すが、鋳造の偏析、鍛造の割れ、硬すぎて圧延できない等の問題が生じるため、通常の軟磁性材料では使用されていない。しかし、水アトマイズ法では溶湯粒は微細で急冷されるため偏析の問題はなく、この粉末を複合材として用いる場合は鍛造、圧延の必要はないのでシリコンの量を6%以上にすることにより得られた粒状粉末又はフレークの固有抵抗を80×10-8Ωm以上にすることができる。しかし、シリコンの量が15%を超えても固有抵抗の増加は少なく、飽和磁束密度の減少があるため、15%以上のシリコンは好ましくない。シリコンの増加は固有抵抗の増加のほか湯流れを良くして水アトマイズ時の粉末の微細化を容易にし、この粉末を含む複合材から成る磁芯部材12aのヒステリシス損を減少させ、酸化特に高温酸化の防止にも役立つ。なお、シリコンの更に好ましい範囲は10重量%以上15重量%以下である。
【0019】
また、この鉄基合金粒状粉末は、1重量%以下のアルミニウム、3重量%以下の銅、3重量%以下のニッケル、5重量%以下のクロム及び10重量%以下のコバルトを少なくとも一種含むようなものであっても良い。アルミを添加するとシリコン以上に固有抵抗の増加があるがアルミは溶湯に流れを悪くし粒子の微細化に悪い影響を及ぼすので添加するとしても1%以下に限る必要がある。3%以下のニッケル又は銅を添加するとヒステリシス損を減少させることができ、コバルトを添加すると飽和磁束を増すことができる。更に、クロムを添加すれば、耐食性を向上させることができる。ここで、銅を3重量%を超えて添加するか、或いはニッケルを3重量%を超えて添加すると飽和磁束が低下する不具合があり、クロムを5重量%を超えて添加すると得られた磁芯部材12aがもろくなる不具合がある。更に、コバルトを10重量%を超えて添加しても飽和磁束の増加の効果はない。
【0020】
また、水アトマイズ法により製造した粉末を機械的に扁平化するには塑性加工法が必要であるが、試験によれば6%〜15%のシリコンを含む粉末でもアトライタで扁平化が可能であった。これは水アトマイズ分は鋳造法に比較して偏析がなく組織が微細であるためである。フレークの場合には、図4に示すように、フレーク粒子の長径をa、フレークの厚さをbとするときa/bが5以上であることが好ましい。このa/bが5未満であると透磁率が低くなる不具合が考えられるからである。なお、このa/bにおける更に好ましい範囲は7以上20以下である。
【0021】
本発明の磁芯部材12aは、図3及び図4に示すように、上述した鉄基合金粒状粉末又は鉄基合金フレークと、プラスチック又はゴムとの複合材により形成されたものである。ここで、プラスチックとしては、ポリイミド、エポキシ、合成高分子ポリアミド(商標名;ナイロン(以下「ナイロン」という))又はポリフェニールスルフォイドが好ましい。又熱硬化性樹脂であるフェノールであっても良い。ゴムとしては天然ゴム、SBR、プチルゴム等が挙げられる。この複合材により磁芯部材12aを形成する場合、複合材を射出成形又は圧縮成形することが好ましい。図3に示すように、プラスチック又はゴムに鉄基合金粒状粉末を含ませる場合には、その含有量が27体積%以上70体積%以下であることが好ましい。複合材の粉末としての含有量は27体積%を超えなければ十分な透磁率とならず、70体積%を超えて含有すると複合材を成形することが不可能になる。ここで、鉄基合金粒状粉末の更に好ましい含有量は65体積%以上68体積%以下である。
【0022】
一方、図4に示すように、プラスチック又はゴムに鉄基合金フレークを含ませる場合には、そのフレークの複合材における含有量は20体積%以上48体積%以下であることが好ましい。十分な透磁率とするためには20体積%を超える含有量が必要だからである。試験によれば、フレークの成形可能な含有量は48体積%である。ここで、フレークを用いた場合には、そのフレーク粒子の面が得られた磁芯部材の厚さ方向に垂直であることが好ましい。これは複合材を圧延することによりフレーク粒子を複合材の厚さ方向に垂直とすることができ、このようにすれば、アンテナにした場合の磁束はフレーク粒子の面に平行となり、含有量が少なくても高い透磁率とすることができる、ここで圧延時に磁場を印可すればフレーク粒子の整列をさらに良くすることができる。なお、フレークの複合材における更に好ましい含有量は40体積%以上46体積%以下である。
【0023】
このように形成された磁芯部材12aは、粒状粉末又はフレークがプラスチック又はゴムに分散され、相互に絶縁されているため、磁芯部材12a全体としては導電性を有することはなく、高周波の電波を受けても渦電流は発生しない。即ち、複合材に用いられる通常軟磁性材料として使用される金属材料の固有抵抗は75×10-8Ωm以下である。例えば、純鉄や低炭素鋼は10〜12×10-8Ωmであり、珪素鋼にあっては23〜67×10-8Ωmである。またパーマロイであっても16〜75×10-8Ωmであり、純鉄、低炭素鋼、パーマロイの場合組成を変更してもこれ以上の固有抵抗の向上を図ることはできない。しかし、水アトマイズ法を用いる場合は溶湯粒は微細で急冷されるため偏析の問題はなく、本発明ではシリコンの量を6%以上にすることにより固有抵抗を比較的高い80×10-8Ωm以上にすることができる。これにより90%以上の粉末が30μm以下の粒径であっても、又は90%以上のフレークが15μm以下の厚さを有していても、粒状粉末又はフレークの内部に流れるミクロの渦電流の発生は抑制され、その影響によるアンテナの損失を低減させることができる。
【0024】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
シリコンを6重量%含有させた鉄基合金から90重量%以上が20μm以下の粒径を有する粒状粉末を得た。この鉄基合金粒状粉末の固有抵抗値は80×10-8Ωmであった。この鉄基合金粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例1とした。
【0025】
<実施例2>
シリコンを10重量%含有させた鉄基合金から90重量%以上が20μm以下の粒径を有する粒状粉末を得た。この鉄基合金粒状粉末の固有抵抗値は99×10-8Ωmであった。この鉄基合金粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例2とした。
<実施例3>
シリコンを15重量%含有させた鉄基合金から90重量%以上が20μm以下の粒径を有する粒状粉末を得た。この鉄基合金粒状粉末の固有抵抗値は110×10-8Ωmであった。この鉄基合金粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例3とした。
【0026】
<実施例4>
シリコンを10重量%含有させた鉄基合金から90重量%以上が30μm以下の粒径を有する粒状粉末を得た。この鉄基合金粒状粉末の固有抵抗値は99×10-8Ωmであった。この鉄基合金粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例4とした。
<実施例5>
実施例2と同一の鉄基合金粒状粉末をプラスチックであるナイロンに27体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例5とした。
【0027】
<実施例6>
実施例2と同一の鉄基合金粒状粉末をプラスチックであるウレタンに68体積%含有させて塗布乾燥させることにより縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例6とした。
<実施例7>
シリコンを6重量%含有させた鉄基合金から90重量%以上が10μm以下の厚さを有するフレークを得た。この鉄基合金フレークの固有抵抗値は80×10-8Ωmであった。この鉄基合金フレークをプラスチックである塩素化ポリエチレンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例7とした。
【0028】
<実施例8>
シリコンを10重量%含有させた鉄基合金から90重量%以上が10μm以下の厚さを有するフレークを得た。この鉄基合金フレークの固有抵抗値は99×10-8Ωmであった。この鉄基合金フレークをプラスチックであるナイロンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例8とした。
<実施例9>
シリコンを15重量%含有させた鉄基合金から90重量%以上が10μm以下の厚さを有するフレークを得た。この鉄基合金フレークの固有抵抗値は110×10-8Ωmであった。この鉄基合金フレークをプラスチックである塩素化ポリエチレンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例9とした。
【0029】
<実施例10>
シリコンを10重量%含有させた鉄基合金から90重量%以上が13μm以下の厚さを有するフレークを得た。この鉄基合金粒状粉末の固有抵抗値は99×10-8Ωmであった。この鉄基合金フレークをプラスチックである塩素化ポリエチレンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例10とした。
<実施例11>
実施例10と同一の鉄基合金フレークをプラスチックである塩素化ポリエチレンに25体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例11とした。
【0030】
<実施例12>
実施例11と同一の鉄基合金フレークをプラスチックであるウレタンに45体積%含有させて塗布乾燥させることにより縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例12とした。
<実施例13>
実施例11と同一の鉄基合金フレークをプラスチックであるウレタンに45体積%含有させて塗布し、塗布時に24000Aの磁場を印可した。その後磁場を印可した状態で乾燥させることにより縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を実施例13とした。
【0031】
<比較例1>
シリコンを含有させていない純鉄から90重量%以上が20μm以下の粒径を有する粒状粉末を得た。この粒状粉末の固有抵抗値は11×10-8Ωmであった。この粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例1とした。
<比較例2>
シリコンを5重量%含有させた鉄基合金から90重量%以上が20μm以下の粒径を有する粒状粉末を得た。この鉄基合金粒状粉末の固有抵抗値は67×10-8Ωmであった。この鉄基合金粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例2とした。
【0032】
<比較例3>
シリコンを16重量%含有させた鉄基合金から90重量%以上が20μm以下の粒径を有する粒状粉末を得た。この鉄基合金粒状粉末の固有抵抗値は112×10-8Ωmであった。この鉄基合金粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例3とした。
<比較例4>
シリコンを10重量%含有させた鉄基合金から90重量%以上が35μm以下の粒径を有する粒状粉末を得た。この鉄基合金粒状粉末の固有抵抗値は99×10-8Ωmであった。この鉄基合金粒状粉末をプラスチックであるナイロンに68体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例4とした。
【0033】
<比較例5>
実施例2と同一の鉄基合金粒状粉末をプラスチックであるナイロンに22体積%含有させて射出成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例5とした。
<比較例6>
シリコンを含有させていない純鉄から90重量%以上が10μm以下の厚さを有するフレークを得た。このフレークの固有抵抗値は11×10-8Ωmであった。このフレークをプラスチックである塩素化ポリエチレンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例6とした。
【0034】
<比較例7>
シリコンを5重量%含有させた鉄基合金から90重量%以上が10μm以下の厚さを有するフレークを得た。この鉄基合金フレークの固有抵抗値は67×10-8Ωmであった。この鉄基合金フレークをプラスチックである塩素化ポリエチレンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例7とした。
<比較例8>
シリコンを16重量%含有させた鉄基合金から90重量%以上が10μm以下の厚さを有するフレークを得た。この鉄基合金フレークの固有抵抗値は112×10-8Ωmであった。この鉄基合金フレークをプラスチックである塩素化ポリエチレンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例8とした。
【0035】
<比較例9>
シリコンを10重量%含有させた鉄基合金から90重量%以上が17μm以下の厚さを有するフレークを得た。この鉄基合金フレークの固有抵抗値は99×10-8Ωmであった。この鉄基合金フレークをプラスチックである塩素化ポリエチレンに45体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例9とした。
<比較例10>
実施例10と同一の鉄基合金フレークをプラスチックである塩素化ポリエチレンに18体積%含有させて圧延成形により縦が80mm、横が20mmであって厚さが1mmの磁芯部材を得た。この磁芯部材を比較例10とした。
【0036】
<比較試験及び評価>
実施例1〜13及び比較例1〜10のそれぞれにおける磁芯部材に、その磁芯部材の縦方向が磁化方向になるように、直径が0.2mmの被覆銅線を20回巻いてコイル本体を作製した。このコイル本体のL値並びにQ値を測定した。これらの結果を表1に示す。
【0037】
【表1】

Figure 0003979210
【0038】
表1から明らかなように、比較例1〜10におけるQ値は30に達することはないけれども、実施例1〜13ではRFIDタグのアンテナとして必要な30に満たないQ値はない。これは、固有抵抗を比較的高い80×10-8Ωm以上の鉄基合金粒状粉又はフレークを用いることにより、粒状粉末又はフレークの内部に流れるミクロの渦電流の発生を十分に抑制できたことに起因するものと考えられる。
【0039】
【発明の効果】
以上述べたように、本発明によれば、粉末の90重量%以上が30μm以下の粒径を有する粉末粒子により構成されるか、或いはフレークの90重量%以上が15μm以下の厚さを有するフレーク粒子により構成され、かつ粉末又はフレークが80×18-8Ωm以上の固有抵抗を有するので、この鉄基合金粒状粉末及び鉄基合金フレークでは、90%以上の粉末粒子が30μm以下の粒径であっても、又は90%以上のフレーク粒子が15μm以下の厚さを有していても、粒状粉末又はフレークの内部に流れるミクロの渦電流の発生を十分に抑制することができる。この場合、6重量%以上のシリコンを含有すれば、その鉄基合金粒状粉末及び鉄基合金フレークは、その固有抵抗を80×10-8Ωm以上にすることができ、シリコンの量を15%以下にすることにより、得られた磁芯部材における飽和磁束密度の減少を抑制できる。
【0040】
また、この粒状粉末又はフレークを含む複合材から成る磁芯部材は、この粒状粉末又はフレークがプラスチック又はゴムに分散され、相互に絶縁されているため、磁芯部材全体としては導電性を有することはなく、粒状粉末又はフレークにおける固有抵抗を比較的高い80×10-8Ωm以上にすることにより、粒状粉末又はフレークの内部に流れるミクロの渦電流の発生を抑制して、その影響によるアンテナの損失を低減させることができる。粉末の場合、鉄基合金粒状粉末の含有量が27体積%以上であれば十分な透磁率を得ることができ、70体積%以下の含有量とすることにより複合材の成形が可能になる。一方、フレークの場合、フレークを20体積%を超えて含有することにより十分な透磁率を得ることができ、48体積%以下の含有量とすることにより複合材の成形が可能になる。
【図面の簡単な説明】
【図1】本発明の磁芯部材を含むRFID用タグを示す図2のA−A線断面図。
【図2】図1のB方向から見たアンテナの平面図。
【図3】本発明の粒状粉末を含む磁芯部材の断面図。
【図4】本発明のフレークを含む磁芯部材の断面図。
【符号の説明】
11 RFIDタグ
12 アンテナ
12a 磁芯部材[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a tag and a reader / writer using RFID (Radio Frequency Identification) technology, and a reader / writer composite material.RFIDThe present invention relates to an antenna magnetic core member.
  In the present specification, “powder” or “flakes” does not mean microscopic single powder particles or flake particles, but refers to an aggregate of these particles.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is known a tag including an antenna coil including a coil body wound in a spiral shape and an IC chip that is electrically connected to the coil body of the antenna coil and stores information related to articles to be managed. Yes. For example, in the case of using this tag in the manufacturing process, this tag is attached in advance to a part that is initially flown in the manufacturing line, and the history is stored in the IC chip every time the part is assembled or processed in the manufacturing line. A management means for managing the manufacturing status of the article is known.
However, in the conventional tag described above, when the article to be managed is made of metal, the thickness between the tag and the article is 5 to 10 mm in order to avoid being affected by the metal article. It is necessary to fix the tag to the article with an electrically insulating spacer inserted, and since the distance between the metal article and the antenna coil is relatively large, the antenna coil protrudes greatly from the article to be managed. There was a bug to do. For this reason, there is a possibility that the antenna coil may come into contact with surrounding objects during the conveyance of the article.
[0003]
In order to solve this problem, a magnetic core member is constituted by a composite material made of magnetic powder or magnetic flakes and plastic, and the coil body is wound spirally around the magnetic core member and the axis of the magnetic core member. It is conceivable that an antenna coil is configured as described above. In the magnetic core member made of this composite material, the magnetic powder or the magnetic flakes are insulated from each other by plastic, the macro eddy current flowing through the entire magnetic core member does not flow, and the loss is low when the frequency is low. It has the characteristics. For this reason, the sensitivity of the antenna coil is enhanced, and it is expected that the thickness of the spacer inserted between the tag and the article is reduced to reduce the amount of projection of the antenna coil from the article to be managed. .
[0004]
[Problems to be solved by the invention]
However, when the frequency is high, such as an antenna used for RFID operating at 13.56 MHz, the loss in the antenna increases due to the influence of micro eddy currents flowing inside granular powder or flakes. One way to prevent this is to use soft ferrite powder, but soft ferrite has a low saturation magnetic flux and does not provide a material with good characteristics, and because it is hard, it has the disadvantage of wearing equipment used to manufacture composite materials. There is. Another solution is to refine the powder or flakes. As fine magnetic powders, there are carbonyl iron powder and iron powder reduced at low temperature, but these are expensive and have a disadvantage that spontaneous ignition must be prevented by careful consideration during handling. Further, even when a composite material is obtained using fine iron powder, the iron powder may gradually be oxidized with the passage of time thereafter, and the characteristics as a magnetic core may be deteriorated.
[0005]
  Furthermore, it is possible to use water atomized powder with high productivity and relatively low cost, or a method using flakes obtained by mechanically flattening water atomized powder using an attritor or a ball mill. There is a limit to the refinement of the powder, and a powder having an average particle size of 10 microns or less cannot be obtained. Moreover, even if a powder having an average particle size of 10 microns or less can be produced, the possibility of spontaneous ignition cannot be avoided. Further, even when a powder having an average particle size of 10 microns is manufactured from a material having a composition used as a normal soft magnetic material, there remains a problem that a loss due to an intra-particle micro eddy current cannot be sufficiently suppressed.
  The present inventionAn object of the present invention is to provide an RFID antenna magnetic core member that can reduce loss due to generation of eddy currents.
[0006]
[Means for Solving the Problems]
  As shown in FIG. 1 and FIG.This is an improvement of an RFID antenna magnetic core member made of a composite material of iron-based alloy granular powder and plastic or rubber.
The characteristic structure is that 90% by weight or more of the iron-based alloy granular powder is composed of powder particles having a particle size of 30 μm or less, and the powder is 80 × 18. -8 The specific resistance is Ωm or more, the content of the iron-based alloy granular powder is 27% by volume or more and 70% by volume or less, and the iron-based alloy contains 6% by weight or more and 15% by weight or less of silicon.
[0007]
  In the invention according to claim 1, as shown in FIG. 3, since the granular powder is dispersed in plastic or rubber and insulated from each other, the magnetic core member 12 a as a whole does not have conductivity and is granular. The specific resistance in the powder is relatively high 80 × 10 -8 By setting it to Ωm or more, generation of micro eddy currents flowing inside the granular powder can be suppressed, and antenna loss due to the influence can be reduced.
  Moreover, sufficient magnetic permeability can be obtained by containing 27 volume% or more of powders, and the composite material can be molded by setting the content to 70 volume% or less.
[0008]
  The invention according to claim 2This is an improvement of an RFID antenna magnetic core member made of a composite material of iron-based alloy flakes and plastic or rubber.
The characteristic structure is that 90% by weight or more of the iron-based alloy flakes are composed of flake particles having a thickness of 15 μm or less and the flakes are 80 × 18 -8 The specific resistance is Ωm or more, the content of the iron-based alloy flake is 20% by volume or more and 48% by volume or less, and the iron-based alloy contains 6% by weight or more and 15% by weight or less of silicon.
[0011]
  thisClaim 2In the invention according toFIG.As shown inFlakesSince it is dispersed in plastic or rubber and insulated from each other, the magnetic core member 12a as a whole has no conductivity,flakeResistivity at 80 × 10 is relatively high-8By making it Ωm or more,flakeThe generation of micro eddy currents flowing inside can be suppressed, and the loss of the antenna due to the influence can be reduced. Iron-based alloyNo flakesWhen the major axis of the flake particles is a and the thickness is b, a / b is preferably 5 or more.
[0013]
Also,Sufficient magnetic permeability can be obtained by containing more than 20% by volume of flakes, and molding of the composite material is made possible by setting the content to 48% by volume or less. It should be noted that flat flake particles having a (major axis / thickness) of 5 or more are contained in a smaller amount than the powder by arranging the surfaces perpendicular to the thickness direction of the composite material, that is, the flake particle surfaces parallel to the magnetization direction of the antenna. Depending on the amount, a composite material having higher permeability than the powder can be obtained.
[0014]
Claims 1 and 2In the invention according to the present invention, since the amount of silicon is 6% or more, the specific resistance of the contained granular powder or flakes is 80 × 10-8It can be made Ωm or more. On the other hand, since the amount of silicon is 15% or less, a decrease in the saturation magnetic flux density in the magnetic core member can be suppressed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the RFID tag 11 is used by being attached to an article 16, and an IC chip 13 in which unique information different for each article 16 is stored, and the IC chip 13 is electrically connected. And an antenna coil 12 connected to each other. The antenna coil 12 includes a magnetic core member 12a and a coil body 12b wound around the magnetic core member 12a. The present invention relates to an RFID tag antenna magnetic core member 12a, and the magnetic core member 12a is formed of a composite material of iron-based alloy granular powder or iron-based alloy flakes and plastic or rubber. .
[0017]
The iron-based alloy granular powder contained in the magnetic core member 12a is composed of powder particles having a particle size of 90% by weight or more and 30 μm or less, and the powder is 80 × 18.-8It has a specific resistance of Ωm or more. Preferably, 90% by weight or more of the powder is composed of powder particles having a particle size of 20 μm or less, and the powder is 95 × 10 5.-8It has a specific resistance of Ωm or more. The iron-based alloy flakes contained in the magnetic core member 12a are composed of flake particles having a thickness of 15 μm or less and 90% by weight or more of the flakes and the flakes are 80 × 18-8It has a specific resistance of Ωm or more. Preferably, 90% by weight or more of the flakes are composed of flake particles having a thickness of 10 μm or less, and the flakes are 95 × 10 5.-8It has a specific resistance of Ωm or more. This iron-base alloy granular powder or iron-base alloy flake is obtained by making an iron-base alloy containing 6 wt% or more and 15 wt% or less of silicon into a fine powder by a water atomization method.
[0018]
Generally, silicon of silicon steel is 5% or less, and if more silicon is added, the specific resistance increases, but problems such as casting segregation, cracking of forging, and too hard to roll can cause problems. Not used in materials. However, in the water atomization method, the molten particles are fine and rapidly cooled, so there is no problem of segregation. When this powder is used as a composite material, there is no need for forging and rolling, so it is obtained by making the amount of silicon 6% or more. The specific resistance of the powdered granular powder or flakes is 80 × 10-8It can be made Ωm or more. However, even if the amount of silicon exceeds 15%, the increase in specific resistance is small and there is a decrease in saturation magnetic flux density. In addition to an increase in resistivity, the increase in silicon facilitates refinement of the powder during water atomization by improving the hot water flow, reduces the hysteresis loss of the magnetic core member 12a made of a composite material containing this powder, and oxidizes, particularly at high temperatures. It also helps prevent oxidation. A more preferable range of silicon is 10% by weight or more and 15% by weight or less.
[0019]
Further, the iron-based alloy granular powder contains at least one kind of aluminum of 1 wt% or less, 3 wt% or less of copper, 3 wt% or less of nickel, 5 wt% or less of chromium and 10 wt% or less of cobalt. It may be a thing. When aluminum is added, there is an increase in specific resistance over silicon. However, aluminum makes it difficult to flow into the molten metal and adversely affects the refinement of particles, so even if it is added, it must be limited to 1% or less. Hysteresis loss can be reduced by adding 3% or less of nickel or copper, and saturation flux can be increased by adding cobalt. Furthermore, if chromium is added, corrosion resistance can be improved. Here, when adding more than 3% by weight of copper, or adding more than 3% by weight of nickel, there is a problem that the saturation magnetic flux is lowered, and the magnetic core obtained when adding more than 5% by weight of chromium There is a problem that the member 12a becomes brittle. Furthermore, even if cobalt is added exceeding 10% by weight, there is no effect of increasing the saturation magnetic flux.
[0020]
In addition, a plastic working method is required to mechanically flatten the powder produced by the water atomization method. However, according to the test, it is possible to flatten the powder containing 6% to 15% silicon with an attritor. It was. This is because the water atomized portion has no segregation and has a fine structure as compared with the casting method. In the case of flakes, as shown in FIG. 4, a / b is preferably 5 or more, where a is the major axis of the flake particles and b is the flake thickness. This is because if this a / b is less than 5, there may be a problem that the magnetic permeability is lowered. A more preferable range for this a / b is 7 or more and 20 or less.
[0021]
As shown in FIGS. 3 and 4, the magnetic core member 12 a of the present invention is formed of a composite material of the above-described iron-base alloy granular powder or iron-base alloy flake and plastic or rubber. Here, as the plastic, polyimide, epoxy, synthetic polymer polyamide (trade name; nylon (hereinafter referred to as “nylon”)) or polyphenylsulfide is preferable. Further, phenol which is a thermosetting resin may be used. Examples of rubber include natural rubber, SBR, and butyl rubber. When the magnetic core member 12a is formed from this composite material, the composite material is preferably injection-molded or compression-molded. As shown in FIG. 3, when iron-based alloy granular powder is contained in plastic or rubber, the content is preferably 27% by volume or more and 70% by volume or less. If the content of the composite material as a powder does not exceed 27% by volume, the magnetic permeability is not sufficient. If the content exceeds 70% by volume, it becomes impossible to mold the composite material. Here, the more preferable content of the iron-based alloy granular powder is 65 volume% or more and 68 volume% or less.
[0022]
On the other hand, as shown in FIG. 4, when iron-based alloy flakes are contained in plastic or rubber, the content of the flakes in the composite material is preferably 20% by volume or more and 48% by volume or less. This is because a content exceeding 20% by volume is necessary to obtain sufficient magnetic permeability. According to tests, the moldable content of flakes is 48% by volume. Here, when using flakes, it is preferable that the surface of the flake particles is perpendicular to the thickness direction of the obtained magnetic core member. By rolling the composite material, the flake particles can be made perpendicular to the thickness direction of the composite material. In this way, the magnetic flux in the case of an antenna is parallel to the surface of the flake particles, and the content is At least, high magnetic permeability can be obtained. If a magnetic field is applied during rolling, flake particle alignment can be further improved. In addition, the more preferable content in the composite material of flakes is 40 volume% or more and 46 volume% or less.
[0023]
Since the magnetic core member 12a formed in this manner has granular powder or flakes dispersed in plastic or rubber and insulated from each other, the magnetic core member 12a as a whole has no electrical conductivity, and high frequency radio waves. Does not generate eddy current. That is, the specific resistance of a metal material usually used as a soft magnetic material used in a composite material is 75 × 10.-8Ωm or less. For example, pure iron and low carbon steel are 10-12 × 10-8Ωm, 23-67 × 10 for silicon steel-8Ωm. Permalloy is 16 to 75 x 10-8In the case of pure iron, low carbon steel, and permalloy, even if the composition is changed, the specific resistance cannot be further improved. However, when the water atomization method is used, the molten particles are fine and rapidly cooled, so there is no problem of segregation. In the present invention, the specific resistance is relatively high by increasing the amount of silicon to 6% or more.-8It can be made Ωm or more. Thus, even if 90% or more of the powder has a particle size of 30 μm or less, or 90% or more of the flakes have a thickness of 15 μm or less, the micro eddy current flowing inside the granular powder or flakes Generation | occurrence | production is suppressed and the loss of the antenna by the influence can be reduced.
[0024]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
From an iron-based alloy containing 6% by weight of silicon, a granular powder having a particle size of 90% by weight or more and 20 μm or less was obtained. The specific resistance of this iron-base alloy granular powder is 80 × 10-8It was Ωm. The iron-base alloy granular powder was contained in 68% by volume in plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was referred to as Example 1.
[0025]
<Example 2>
A granular powder having a particle size of 90% by weight or more and 20 μm or less was obtained from an iron-based alloy containing 10% by weight of silicon. The specific resistance of this iron-based alloy granular powder is 99 × 10-8It was Ωm. The iron-base alloy granular powder was contained in 68% by volume in plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was referred to as Example 2.
<Example 3>
A granular powder having a particle size of 90% by weight or more and 20 μm or less was obtained from an iron-based alloy containing 15% by weight of silicon. The specific resistance of this iron-based alloy granular powder is 110 × 10-8It was Ωm. The iron-base alloy granular powder was contained in 68% by volume in plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was referred to as Example 3.
[0026]
<Example 4>
A granular powder having a particle size of 90% by weight or more and 30 μm or less was obtained from an iron-based alloy containing 10% by weight of silicon. The specific resistance of this iron-based alloy granular powder is 99 × 10-8It was Ωm. The iron-base alloy granular powder was contained in 68% by volume in plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was referred to as Example 4.
<Example 5>
The same iron-base alloy granular powder as in Example 2 was contained in 27% by volume of plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was referred to as Example 5.
[0027]
<Example 6>
The same iron-base alloy granular powder as in Example 2 was contained in 68% by volume of urethane, which is plastic, and dried by coating to obtain a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm. This magnetic core member was referred to as Example 6.
<Example 7>
From the iron-based alloy containing 6% by weight of silicon, 90% by weight or more of flakes having a thickness of 10 μm or less was obtained. The specific resistance value of this iron-based alloy flake is 80 × 10-8It was Ωm. The iron-based alloy flakes were contained in 45% by volume in plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was referred to as Example 7.
[0028]
<Example 8>
From the iron-base alloy containing 10% by weight of silicon, 90% by weight or more of flakes having a thickness of 10 μm or less was obtained. The iron-based alloy flake has a specific resistance value of 99 × 10-8It was Ωm. This iron-based alloy flake was contained in 45% by volume of plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was referred to as Example 8.
<Example 9>
From the iron-based alloy containing 15% by weight of silicon, 90% by weight or more of flakes having a thickness of 10 μm or less was obtained. The specific resistance value of this iron-based alloy flake is 110 × 10-8It was Ωm. The iron-based alloy flakes were contained in 45% by volume in plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was referred to as Example 9.
[0029]
<Example 10>
A flake having a thickness of not less than 90% by weight of 13 μm or less was obtained from an iron-based alloy containing 10% by weight of silicon. The specific resistance of this iron-based alloy granular powder is 99 × 10-8It was Ωm. The iron-based alloy flakes were contained in 45% by volume in plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was referred to as Example 10.
<Example 11>
The same iron-base alloy flakes as in Example 10 were contained in 25% by volume in plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was referred to as Example 11.
[0030]
<Example 12>
The same iron-base alloy flakes as in Example 11 were contained in 45% by volume of plastic urethane and dried by coating to obtain a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm. This magnetic core member was referred to as Example 12.
<Example 13>
The same iron-base alloy flakes as in Example 11 were applied in a volume of 45% by volume in urethane, which is plastic, and a magnetic field of 24000 A was applied during the application. Thereafter, drying was performed with a magnetic field applied to obtain a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm. This magnetic core member was designated as Example 13.
[0031]
<Comparative Example 1>
90% by weight or more of granular iron having a particle size of 20 μm or less was obtained from pure iron not containing silicon. The specific resistance of this granular powder is 11 × 10-8It was Ωm. This granular powder was contained in 68% by volume of plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was designated as Comparative Example 1.
<Comparative example 2>
From an iron-based alloy containing 5% by weight of silicon, a granular powder having a particle size of 90% by weight or more and 20 μm or less was obtained. The specific resistance of this iron-based alloy granular powder is 67 × 10-8It was Ωm. The iron-base alloy granular powder was contained in 68% by volume in plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was designated as Comparative Example 2.
[0032]
<Comparative Example 3>
From an iron-base alloy containing 16% by weight of silicon, a granular powder having a particle size of 90% by weight or more and 20 μm or less was obtained. The specific resistance value of this iron-based alloy granular powder is 112 × 10-8It was Ωm. The iron-base alloy granular powder was contained in 68% by volume in plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was designated as Comparative Example 3.
<Comparative example 4>
A granular powder having a particle size of 90% by weight or more and 35 μm or less was obtained from an iron-based alloy containing 10% by weight of silicon. The specific resistance of this iron-based alloy granular powder is 99 × 10-8It was Ωm. The iron-base alloy granular powder was contained in 68% by volume in plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was designated as Comparative Example 4.
[0033]
<Comparative Example 5>
The same iron-base alloy granular powder as in Example 2 was contained in 22% by volume of plastic nylon, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by injection molding. This magnetic core member was designated as Comparative Example 5.
<Comparative Example 6>
90% by weight or more of flakes having a thickness of 10 μm or less was obtained from pure iron not containing silicon. The specific resistance of this flake is 11 × 10-8It was Ωm. The flakes were contained in 45% by volume in a chlorinated polyethylene plastic, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was designated as Comparative Example 6.
[0034]
<Comparative Example 7>
From the iron-based alloy containing 5% by weight of silicon, 90% by weight or more of flakes having a thickness of 10 μm or less was obtained. The specific resistance of this iron-based alloy flake is 67 × 10-8It was Ωm. The iron-based alloy flakes were contained in 45% by volume in plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was designated as Comparative Example 7.
<Comparative Example 8>
From the iron-based alloy containing 16% by weight of silicon, 90% by weight or more of flakes having a thickness of 10 μm or less was obtained. The specific resistance of this iron-based alloy flake is 112 × 10-8It was Ωm. The iron-based alloy flakes were contained in 45% by volume in plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was designated as Comparative Example 8.
[0035]
<Comparative Example 9>
From the iron-base alloy containing 10% by weight of silicon, 90% by weight or more of flakes having a thickness of 17 μm or less was obtained. The iron-based alloy flake has a specific resistance value of 99 × 10-8It was Ωm. The iron-based alloy flakes were contained in 45% by volume in plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was designated as Comparative Example 9.
<Comparative Example 10>
The same iron-based alloy flakes as in Example 10 were contained in 18% by volume of plastic chlorinated polyethylene, and a magnetic core member having a length of 80 mm, a width of 20 mm, and a thickness of 1 mm was obtained by rolling. This magnetic core member was designated as Comparative Example 10.
[0036]
<Comparison test and evaluation>
A coil body is formed by winding 20 turns of a coated copper wire having a diameter of 0.2 mm on each of the magnetic core members in Examples 1 to 13 and Comparative Examples 1 to 10 so that the longitudinal direction of the magnetic core member becomes the magnetization direction. Was made. The L value and Q value of this coil body were measured. These results are shown in Table 1.
[0037]
[Table 1]
Figure 0003979210
[0038]
As is apparent from Table 1, the Q value in Comparative Examples 1 to 10 does not reach 30, but in Examples 1 to 13, there is no Q value less than 30 necessary as an antenna for the RFID tag. This has a relatively high resistivity of 80 × 10-8It is considered that the use of iron-base alloy granular powder or flakes of Ωm or more can sufficiently suppress the generation of micro eddy currents flowing inside the granular powder or flakes.
[0039]
【The invention's effect】
As described above, according to the present invention, 90% by weight or more of the powder is composed of powder particles having a particle size of 30 μm or less, or 90% by weight or more of the flakes has a thickness of 15 μm or less. Composed of particles and powder or flakes 80 × 18-8Since it has a specific resistance of Ωm or more, in this iron-based alloy granular powder and iron-based alloy flakes, even if 90% or more of the powder particles have a particle size of 30 μm or less, or 90% or more of the flake particles have a particle size of 15 μm or less. Even if it has thickness, generation | occurrence | production of the micro eddy current which flows into the inside of granular powder or flakes can fully be suppressed. In this case, if 6% by weight or more of silicon is contained, the iron-base alloy granular powder and the iron-base alloy flakes have a specific resistance of 80 × 10-8By reducing the amount of silicon to 15% or less, it is possible to suppress a decrease in saturation magnetic flux density in the obtained magnetic core member.
[0040]
In addition, the magnetic core member made of a composite material including the granular powder or flakes is electrically conductive as a whole because the granular powder or flakes are dispersed in plastic or rubber and insulated from each other. Relative resistivity of granular powder or flake is relatively high 80 × 10-8By setting it to Ωm or more, generation of micro eddy currents flowing inside the granular powder or flakes can be suppressed, and antenna loss due to the influence can be reduced. In the case of powder, if the content of the iron-based alloy granular powder is 27% by volume or more, sufficient magnetic permeability can be obtained, and by setting the content to 70% by volume or less, the composite material can be molded. On the other hand, in the case of flakes, sufficient permeability can be obtained by containing more than 20% by volume of flakes, and composite materials can be formed by setting the content to 48% by volume or less.
[Brief description of the drawings]
1 is a cross-sectional view taken along line AA of FIG. 2 showing an RFID tag including a magnetic core member of the present invention.
FIG. 2 is a plan view of the antenna viewed from the direction B in FIG.
FIG. 3 is a cross-sectional view of a magnetic core member containing the granular powder of the present invention.
FIG. 4 is a cross-sectional view of a magnetic core member including flakes of the present invention.
[Explanation of symbols]
11 RFID tags
12 Antenna
12a Magnetic core member

Claims (4)

鉄基合金粒状粉末とプラスチック又はゴムとの複合材から成るからなるRFIDのアンテナ用磁芯部材において、
前記鉄基合金粒状粉末はその90重量%以上が30μm以下の粒径を有する粉末粒子により構成されかつ前記粉末が80×18-8Ωm以上の固有抵抗を有し、
前記鉄基合金粒状粉末の含有量が27体積%以上70体積%以下であり、
前記鉄基合金が6重量%以上15重量%以下のシリコンを含む
ことを特徴とするRFIDのアンテナ用磁芯部材。
In an RFID antenna magnetic core member made of a composite material of iron-based alloy granular powder and plastic or rubber,
90% by weight or more of the iron-based alloy granular powder is composed of powder particles having a particle size of 30 μm or less, and the powder has a specific resistance of 80 × 18 −8 Ωm or more ,
The content of the iron-based alloy granular powder is 27 vol% or more and 70 vol% or less,
An RFID antenna magnetic core member, wherein the iron-based alloy contains 6 wt% or more and 15 wt% or less of silicon .
鉄基合金フレークとプラスチック又はゴムとの複合材から成るからなるRFIDのアンテナ用磁芯部材において、
前記鉄基合金フレークはその90重量%以上が15μm以下の厚さを有するフレーク粒子により構成されかつ前記フレークが80×18-8Ωm以上の固有抵抗を有し、
前記鉄基合金フレークの含有量が20体積%以上48体積%以下であり、
前記鉄基合金が6重量%以上15重量%以下のシリコンを含む
ことを特徴とするRFIDのアンテナ用磁芯部材。
In an RFID antenna core member made of a composite material of iron-based alloy flakes and plastic or rubber,
90% by weight or more of the iron-based alloy flakes are composed of flake particles having a thickness of 15 μm or less, and the flakes have a specific resistance of 80 × 18 −8 Ωm or more ,
The content of the iron-based alloy flake is 20 volume% or more and 48 volume% or less,
An RFID antenna magnetic core member, wherein the iron-based alloy contains 6 wt% or more and 15 wt% or less of silicon .
フレーク粒子は長径をa、厚さをbとするときa/bが5以上である請求項2記載のRFIDのアンテナ用磁芯部材。The magnetic core member for an RFID antenna according to claim 2 , wherein the flake particles have a major axis of a and a thickness of b, and a / b is 5 or more. フレーク粒子の面が複合材の厚さ方向に垂直である請求項2又は3記載のRFIDのアンテナ用磁芯部材。 4. The RFID antenna core member according to claim 2 , wherein the surface of the flake particle is perpendicular to the thickness direction of the composite material.
JP2002215321A 2002-07-24 2002-07-24 Magnetic core member for RFID antenna Expired - Fee Related JP3979210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215321A JP3979210B2 (en) 2002-07-24 2002-07-24 Magnetic core member for RFID antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215321A JP3979210B2 (en) 2002-07-24 2002-07-24 Magnetic core member for RFID antenna

Publications (2)

Publication Number Publication Date
JP2004052095A JP2004052095A (en) 2004-02-19
JP3979210B2 true JP3979210B2 (en) 2007-09-19

Family

ID=31937383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215321A Expired - Fee Related JP3979210B2 (en) 2002-07-24 2002-07-24 Magnetic core member for RFID antenna

Country Status (1)

Country Link
JP (1) JP3979210B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031748B3 (en) * 2005-07-07 2006-08-03 Rheinmetall Waffe Munition Gmbh Receiver coil for a tempered non-lethal projectile containing paint, chemical irritant or mist comprises a metal-powder blank having magnetic properties
CN1317542C (en) * 2005-09-19 2007-05-23 西安理工大学 Anticorrosion and high temperature resistance electric eddy-current gap sensor and producing method thereof
JP4420235B2 (en) 2006-03-27 2010-02-24 Tdk株式会社 Flat soft magnetic metal powder and RFID antenna core member
JP2009176974A (en) * 2008-01-25 2009-08-06 Daido Steel Co Ltd Injection molding soft-magnetic material, and soft-magnetic kneading material
CN103632795A (en) * 2012-08-29 2014-03-12 比亚迪股份有限公司 Sizing agent for NFC magnetic sheet, preparing method of sizing agent and NFC magnetic sheet
JP6790531B2 (en) * 2016-07-12 2020-11-25 Tdk株式会社 Soft magnetic metal powder and powder magnetic core

Also Published As

Publication number Publication date
JP2004052095A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP5288405B2 (en) Inductor and method of manufacturing inductor
JP3896965B2 (en) Reader / writer antenna and reader / writer equipped with the antenna
CN107799260B (en) Magnetic powder and inductor containing the same
JP6339474B2 (en) Inductance element and electronic device
JP5924480B2 (en) Magnetic powder material, low-loss composite magnetic material including the magnetic powder material, and magnetic element including the low-loss composite magnetic material
WO2006112197A1 (en) Soft magnetic material and dust core
JP2006295981A (en) Antenna for reader/writer and reader/writer equipped with antenna
CN108063038A (en) Coil component
JP2002057039A (en) Composite magnetic core
US20160343486A1 (en) Coil electronic component and method of manufacturing the same
JP2008135674A (en) Soft magnetic alloy powder, compact, and inductance element
EP3300089A1 (en) Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
EP3249664A1 (en) Powder core, method for producing same, electric/electronic component provided with same, and electric/electronic device having said electric/electronic component mounted thereon
WO2005072894A1 (en) Soft magnetic material and dust core
JP2005228908A (en) High-frequency magnetic core, antenna therewith and its manufacturing method
CN109754972A (en) A kind of high-frequency molding inductance soft magnetism powder and preparation method thereof
JP2013145866A (en) Soft magnetic alloy powder, powder compact, powder-compact magnetic core, and magnetic device
Sharma et al. Magnetic and dielectric property studies in Fe-and NiFe-based polymer nanocomposites
JP3979210B2 (en) Magnetic core member for RFID antenna
JP6422569B2 (en) Soft magnetic powder, molded member, dust core, electric / electronic component, electric / electronic device, magnetic sheet, communication component, communication device, and electromagnetic interference suppression member
JP4692859B2 (en) Reactor
JP2008172099A (en) Core for antenna, and antenna
JP5158163B2 (en) Powder magnetic core and magnetic element
JP2009054709A (en) Dust core and manufacturing method therefor
JP2005006263A (en) Core member and antenna for rfid using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees