JP3978427B2 - Film forming method and film forming apparatus - Google Patents

Film forming method and film forming apparatus Download PDF

Info

Publication number
JP3978427B2
JP3978427B2 JP2003522998A JP2003522998A JP3978427B2 JP 3978427 B2 JP3978427 B2 JP 3978427B2 JP 2003522998 A JP2003522998 A JP 2003522998A JP 2003522998 A JP2003522998 A JP 2003522998A JP 3978427 B2 JP3978427 B2 JP 3978427B2
Authority
JP
Japan
Prior art keywords
film forming
chamber
cyclic
gas
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003522998A
Other languages
Japanese (ja)
Other versions
JPWO2003019645A1 (en
Inventor
秀典 三好
正仁 杉浦
勇作 柏木
恵永 香川
与洋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of JPWO2003019645A1 publication Critical patent/JPWO2003019645A1/en
Application granted granted Critical
Publication of JP3978427B2 publication Critical patent/JP3978427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3148Silicon Carbide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31633Deposition of carbon doped silicon oxide, e.g. SiOC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

技術分野
本発明は、所定の誘電特性を有する膜を形成するための成膜方法および成膜装置に関する。
背景技術
近時、半導体装置の高速化、小型化の要請を背景として、半導体素子の多層化及び配線の微細化が進められている。例えば、0.15μm以下の設計ルールに対しては、多層構造を有する配線の信号伝播速度が遅延し、所望の高速化が図れないという問題がある。この微細化に伴う配線遅延の増大を防ぐためには、誘電率の低い層間絶縁膜を用いることが有効である。
このような観点から、従来、種々の絶縁膜形成材料が検討されている。なかでも、膜中に原子レベルの空孔を形成することにより、材料固有の誘電率よりも低い誘電率を実現する、多孔質膜が注目されている。
多孔質低誘電率膜を形成する方法として、環状構造を有する原料を出発物質として絶縁膜を形成する方法が開発されている。環状構造は、その内部に本質的に空孔を有するため、環状構造を維持した状態で原料分子を多数結合させることにより、多孔質膜を形成することができる。このような方法は、例えば、A.Grill et al,Mat.Res.Soc.Symp.Proc.Vol.565(107),1999に開示されている。
上記方法において、環状構造を有する原料は、例えば、ホットフィラメントにより、あるいは、平行平板型のプラズマとして直接励起され、膜形成反応を進行させる。
例えば、環状シロキサン分子を原料として用いる場合には、環状部分を構成するシリコン原子の側鎖部分を活性化させることにより、例えば、メチル基の炭素−水素結合を解離させることにより、互いに結合させる。メチル基の炭素−水素結合は、シリコン−炭素またはシリコン−酸素結合よりも解離エネルギーが低いため、環状構造の分解に優先して解離する。よって、環状構造を維持した状態での膜形成が可能となる。
しかし、上記のように、平行平板型のプラズマとして直接励起した場合には、原料に付与される励起エネルギーが比較的大きい。このため、原料の励起の際に、所望の活性サイトだけでなく、必要な環状構造が破壊されやすく、従って、形成される膜中の環状構造が減少する。環状構造が少ないほど、膜の空孔度は低く、所望の低さの誘電率が得られない。
このように、従来の、環状構造を有する出発原料を直接励起して膜形成を行う方法には、励起の際に環状構造が失われやすく、このため、所望の低さの誘電率が得られにくい、という問題があった。
発明の開示
上記事情を鑑みて、本発明は、誘電率の低い絶縁膜の形成が可能な、成膜方法および成膜装置を提供することを目的とする。
上記目的を達成するため、本発明の第1の観点にかかる成膜方法は、
チャンバ内に被処理基板を配置する工程と、
環状構造を有する物質を含む処理ガスを前記チャンバ内に導入する処理ガス導入工程と、
前記処理ガスを励起させるための励起用ガスを、励起状態で前記チャンバ内に導入する励起用ガス導入工程と、
を備える、ことを特徴とする。
前記励起用ガス導入工程では、前記励起用ガスのプラズマを導入してもよい。
さらに、前記被処理基板にバイアス電圧を印加する工程を備えてもよい。
上記目的を達成するため、本発明の第2の観点にかかる成膜装置は、
内部に被処理基板が配置されるチャンバと、
環状構造を有する物質を含む処理ガスを前記チャンバ内に導入するための処理ガス導入部と、
前記処理ガスを励起させるための励起用ガスを、励起状態で前記チャンバに導入するための励起用ガス導入部と、
を備える、ことを特徴とする。
さらに、前記チャンバの外部に設けられ、前記励起用ガスのプラズマを生成するプラズマ生成部を備えてもよい。
さらに、前記被処理基板にバイアス電圧を印加するための電圧印加部を備えてもよい。
前記処理ガスは、環状構造として、少なくとも環状シロキサン構造、環状シラザン構造または有機環状構造のいずれか1つを含む物質から構成してもよい。
前記励起用ガスは、アルゴン、ネオン、キセノン、水素、窒素、酸素およびメタンの少なくともいずれか1つを含んで構成してもよい。
発明を実施するための最良の形態
以下、本発明の実施の形態に係る成膜方法および製造装置について、図面を参照して説明する。
本実施の形態では、環状シリコン化合物から構成される出発物質を用いて、半導体基板等の被処理基板の上に、多孔質シリコン絶縁膜を形成する場合を例として説明する。
図1に、本実施の形態に係る成膜装置11の構成を示す。
図1に示すように、本実施の形態の成膜装置11は、チャンバ12と、排気部13と、処理ガス供給部14と、励起ガス供給部15と、システムコントローラ100と、を備える。
チャンバ12は、略円筒状に形成され、内部表面がアルマイト処理されたアルミニウム等から構成されている。
チャンバ12の略中央には、その底部から起立するように、略円筒状のステージ16が設けられている。
ステージ16の上部には、静電チャック17が配置されている。静電チャック17は、例えば、タングステン等の電極板17aが、酸化アルミニウム等の誘電体17bで被覆されて構成されている。
誘電体17b内部の電極板17aは、直流電源18に接続され、所定電圧の直流電圧が印加される。被処理基板19は、静電チャック17上に載置される。電極板17aに印加された電圧に応じて誘電体17bの表面には電荷が発生し、一方で、誘電体17b上の被処理基板19の裏面にはこれと反対極性の電荷が発生する。これにより、誘電体17bと被処理基板19との間に静電気力(クーロン力)が形成され、被処理基板19は誘電体17b上に吸着保持される。
電極板17aは、また、高周波電源20に接続され、所定周波数(例えば、2MHz)の高周波電圧が印加される。電極板17aには、所定のバイアス電圧、例えば、−300V〜−20V程度の電圧が印加される。ここで、バイアス電圧は、プロセス活性種を、効率的に被処理基板19に吸着させるため印加される。
ステージ16の内部には、抵抗体等からなるヒータ21が埋設されている。ヒータ21は、図示しないヒータ電源から電力の供給を受けて、ステージ16上の被処理基板19を所定温度に加熱する。
加熱温度は、被処理基板19の表面と、形成された膜と、の界面付近に生じる熱応力を抑制し、基板表面で生じる膜形成を促進するために必要な温度に設定される。加熱温度は、例えば、室温から400℃の温度範囲に設定される。なお、温度は、使用する材料、膜厚等に応じて、適宜変更してよい。
ここで、加熱温度が高すぎる場合には、膜中の環状構造が分解し、加熱温度が低すぎる場合には、熱応力により半導体基板の表面付近に形成された膜にクラック等が発生するおそれがある。
排気部13は、真空ポンプ22を備え、チャンバ12内を所定の真空度まで減圧する。真空ポンプ22は、チャンバ12の底部に設けられた排気ポート23に、流量調節弁24を介して接続されている。流量調節弁24は、APC等から構成され、その開度により、チャンバ12内の圧力を調節する。真空ポンプ22は、例えば、ロータリポンプ、油拡散ポンプ、ターボ分子ポンプ、分子ドラッグポンプ等から、所望の圧力範囲に応じて、いずれか一つを選択して、あるいはこれらを組み合わせて構成される。
また、真空ポンプ22は、除害装置25に接続されており、排気ガス中の有害物質は無害化されて排出される。
チャンバ12の天井部には、天井を貫通する処理ガス供給ポート26が設けられている。処理ガス供給ポート26は後述する処理ガス供給部14に接続され、処理ガス供給ポート26を介して、チャンバ12内に処理ガスが供給される。
処理ガス供給ポート26は、チャンバ12の天井部に設置されたシャワーヘッド27に接続されている。シャワーヘッド27は、中空部27aと、多数のガス孔27bと、を備える。
中空部27aは、シャワーヘッド27の内部に設けられ、処理ガス供給ポート26から処理ガスの供給を受ける。ガス孔27bは、中空部27aと連通し、ステージ16に向かうように設けられている。処理ガス供給ポート26から供給された処理ガスは、中空部27aにおいて拡散され、多数のガス孔27bから被処理基板19に向かって噴出される。
処理ガス供給部14は、原料供給源28と、供給制御部29と、気化室30と、を備える。
原料供給源28は、環状構造を有するシリコン化合物から構成される出発原料を供給する。使用可能なシリコン化合物として、例えば、シロキサン化合物、シラザン化合物、シランに有機シクロ基が結合して構成されるシラン化合物等が挙げられる。
環状シロキサン化合物は、シロキサン骨格を構成するシリコンが、側鎖としてメチル基やビニル基を有するものである。環状シロキサン化合物としては、例えば、ヘキサエチルシクロトリシロキサン、ヘキサメチルシクロトリシロキサン、オクタフェニルシクロテトラシロキサン、テトラエチルシクロテトラシロキサン、オクタメチルシクロテトラシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサンが挙げられる。
環状シラザン化合物は、シラザン骨格を構成するシリコンが、側鎖としてメチル基やビニル基を有するものである。環状シラザン化合物としては、例えば、1,1,3,3,5,5−ヘキサメチルシクロトリシラザン、1,2,3,4,5,6−ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、1,3,5,7−テトラエチル−2,4,6,8−テトラメチルシクロテトラシラザン、1,3,5,7−テトラビニル−2,4,6,8−テトラメチルシクロテトラシラザン、1,2,3−トリエチル−2,4,6−トリメチルシクロトリシラザン、1,2,3−トリビニル−1,3,5−トリメチルシクロトリシラザンが挙げられる。
シラン化合物は、有機シクロ基の他に、メチル基、ビニル基等を側鎖として揺するものである。シラン化合物としては、例えば、(シクロヘキセニロキシ)トリメチルシラン、シクロペンチルトリメトキシシラン、ジメチルシラ−11−クラウン−4、ジメチルシラ−14−クラウン−5、ジメチルシラ−17−クラウン−6、ジメチルシラ−20−クラウン−7、1,1−ジメチル−1−シラ−2−オキサシクロヘキサン、フェネチルトリメトキシシランが挙げられる。
これ以外の環状シリコン化合物としては、例えば、3−フェニルヘプタメチルトリシロキサン、ジビニルシロキサンベンゾシクロブテン(DVS−BCB)が挙げられる。
メチル基の炭素−水素結合、あるいは、ビニル基の炭素−炭素二重結合は、環状構造を構成するシリコン−酸素結合、シリコン−窒素結合、シリコン−炭素結合と比べて、解離エネルギーが低い。このため、比較的低い励起エネルギーを付与することにより、環状構造の分解を低減して、メチル基、ビニル基等を励起させることができる。励起したメチル基、ビニル基等を介して、原料が互いに結合することにより、環状構造が多く維持された多孔質低誘電率膜が形成される。
後述するように、本実施の形態では、原料(処理ガス)は、励起ガスのプラズマと接触することにより間接的に励起される。このため、上記材料からなる処理ガスを比較的低いエネルギーで励起して、環状構造含有率の高い多孔質膜の形成が可能である。
なお、形成される膜の空孔度は、原料の分子構造(特に、環状構造)により決定される。このため、原料を適当に選択することにより、所望の低誘電特性を有する絶縁膜を得ることができる。
供給制御部29は、原料供給源28からの原料物資の供給を制御する。上記した環状シリコン化合物は、通常、大気雰囲気で液体あるいは固体である。供給制御部29は、原料が固体の場合、所定形式の定量フィーダ等が、原料が液体の場合、ギヤポンプ等が使用可能である。供給制御部29は、単位時間当たり所定量の原料を、後述する気化室30に供給する。
気化室30は、ヒータ、加熱ランプ等の加熱機構を備え、内部を加熱可能な容器から構成される。気化室30の内部は、原料供給部から供給された固体または液体の原料が気化する温度(沸点または昇華温度)以上の温度に加熱される。気化室30はマスフローコントローラ(MFC)31を介して処理ガス供給ポート26に接続されている。気化室30において、原料(環状シリコン化合物)は気化され、MFC31によって所定の流量に制御されてチャンバ12内に供給される。
チャンバ12の側壁には、励起ガス供給ポート32が設けられている。励起ガス供給ポート32は、例えば、チャンバ12の側壁に対向するように2つ設けられている。なお、励起ガス供給ポート32は、3個以上設けてもよい。励起ガス供給ポート32は、それぞれ、後述する励起ガス供給部15に接続されている。
励起ガス供給部15は、励起ガス源33と、アクチベータ34と、を備える。
励起ガス源33は、チャンバ12内で、上記した出発物質ガスを励起(活性化)するための励起ガスを供給する。励起ガスとしては、使用する処理ガスに対して励起可能な物質であればよく、アルゴン(Ar)、ネオン(Ne)、キセノン(Xe)、水素(H)、窒素(N)、酸素(O)、メタン(CH)等から選択することができる。
アクチベータ34は、励起ガス源33にMFC35を介して接続されている。アクチベータ34は、図示しないプラズマ発生機構を備え、その内部で、通過する励起ガスを活性化し、プラズマを発生させる。アクチベータ34が備えるプラズマ生成機構は、例えば、マグネトロン型、ECR型、ICP型、TCP型、ヘリコン波型等のプラズマを生成する。
アクチベータ34の排気側は、励起ガス供給ポート32に接続され、生成した励起ガスプラズマは励起ガス供給ポート32を介してチャンバ12内に供給される。プラズマは、ラジカル、電離イオン等の高エネルギー活性種を含んで構成される。
成膜処理の際、チャンバ12内には処理ガスと、励起ガスプラズマと、が供給される。処理ガスである環状シリコン化合物は、励起ガスのプラズマに含まれるラジカル等の活性種によって励起され、以下で詳述するように、被処理基板19の表面において重合膜を形成する。
システムコントローラ100は、MPU(Micro Processing Unit)、メモリ等を備えるマイコン制御装置である。システムコントローラ100は、処理装置の動作を所定の処理シーケンスに従って制御するためのプログラムをメモリに記憶し、このプログラムにしたがって、処理装置の排気部13、処理ガス供給部14、励起ガス供給部15等の各部分に制御信号を送信する。
次に、上記構成の成膜装置11の動作について説明する。なお、以下に示す例では、化学式1に示すオクタメチルシクロテトラシロキサンを出発原料として使用して、シリコン絶縁膜を形成する場合について説明する。また、励起ガスとしてArを使用する場合について説明する。

Figure 0003978427
まず、ステージ16上に被処理基板19が載置され、静電チャック17により固定される。その後、システムコントローラ100は、排気部13により、チャンバ12内を所定の圧力、例えば、1.3Pa〜1.3kPa(10mTorr〜10Torr)程度に調整する。
一方で、システムコントローラ100は、ヒータ21により、被処理基板19を所定温度、例えば、100℃程度に加熱し、被処理基板19にバイアス電圧を印加する。
次いで、システムコントローラ100は、処理ガス供給部14および励起ガス供給部15からチャンバ12内への処理ガスおよび励起ガスの供給を開始する。各ガスは所定の流量でチャンバ12内に供給される。勿論、処理ガス供給源からは、オクタメチルシクロテトラシロキサンのガスがチャンバ12内に供給される。
次いで、システムコントローラ100は、アクチベータ34をオンとする。これにより、チャンバ12内には、励起ガス、すなわち、Arのプラズマが供給される。生成したプラズマには、Arラジカル、Arイオン等の高エネルギー活性種が含まれる。
これらの活性種は、チャンバ12内で処理ガス(オクタメチルシクロテトラシロキサン)と混合され、処理ガス分子と衝突等して、これを活性化(励起)する。励起ガスプラズマとの接触により、チャンバ12内には処理ガスのラジカル、イオン等が生成する。
処理の間、電極板17aによって、被処理基板19には、所定のバイアス電圧、例えば、−100V程度が印加されており、生成した処理ガスのイオン等の活性種は被処理基板19の表面に吸着される。被処理基板19の表面に吸着され、かつ、加熱されることにより、以下に示すような、被処理基板19の表面における膜形成反応が進行する。
まず、Arラジカル等の活性種との接触により、オクタメチルシクロテトラシロキサン分子の最も結合解離エネルギーの低い結合が主として励起される。すなわち、分子の側鎖メチル基の炭素−水素結合が最も励起されやすく(解離しやすく)、例えば、下記化学式2に示すような、オクタメチルシクロテトラシロキサンのラジカルが生成する。他にも、メチル基に水素正イオンが結合した正イオン等が生成される。
Figure 0003978427
生成したオクタメチルシクロテトラシロキサンのラジカル等の活性種は、バイアス電圧により被処理基板19の表面に吸着される。吸着された活性種は、主に、その励起された側鎖部分において結合し、例えば、化学式3に示すような重合体を形成する。
Figure 0003978427
側鎖同士が結合することにより、化学式3に示されるように、膜中に環状構造が保持された状態で膜が形成される。環状構造はその内部に空孔を有し、また、その立体障害の大きさにより、その周囲にも空孔を形成することから、形成される膜は空孔度の高い、多孔質低誘電率膜を構成する。
上記のように、環状シリコン化合物を励起させることにより、多孔質膜を形成することが可能である。ここで、処理ガスは、チャンバ12の外部で生成された励起用ガスのプラズマにより、「間接的に」励起される。
このため、処理ガスに付与される励起エネルギーは比較的低く、側鎖部分以外の励起は抑制される。すなわち、例えば、チャンバ12の内部で処理ガスのプラズマを生成して励起させる場合よりも、環状構造の分解、破壊は抑制され、形成される膜中にはより多くの環状構造が保持可能となる。よって、より誘電率の低い多孔質絶縁膜の形成が可能となる。
上記のように膜形成反応は進行し、被処理基板19の表面には所定厚さの膜が形成される。システムコントローラ100は、所望の膜厚、例えば、400nm(4000Å)程度を有する絶縁膜が形成される時間に成膜処理を終了する。システムコントローラ100は、アクチベータ34をオフとし、次いで、処理ガスのチャンバ12への供給を停止する。その後、所定時間、励起されていない励起ガスでチャンバ12内をパージし、バイアス電圧の印加とヒータ21による加熱を停止する。最後に、被処理基板19がチャンバ12より搬出される。以上で、成膜工程は終了する。
以上説明したように、本実施の形態では、環状化合物から構成される処理ガスを、チャンバ12外部で励起した励起用ガスと接触混合させることにより、間接的に励起させている。このように、処理ガスを間接的に励起させて、比較的低い励起エネルギーを用いて励起させることができる。
励起エネルギーが低いことから、環状構造の破壊を抑制しつつ膜形成反応を進行させることができる。これにより、膜中に環状構造が多く含まれる、いわゆる低誘電率多孔質膜を形成することが可能となる。
本発明は、上記実施の形態の説明に限定されず、その応用及び変形等は任意である。
上記実施の形態では、ステージ16にヒータ21を埋設し、被処理基板19を加熱させるものとした。しかし、加熱方法はこれに限られず、ホットウォール型、ランプ加熱型等どのような加熱方法であってもよい。
上記実施の形態では、励起ガスはプラズマとして励起させるものとした。しかし、励起ガスの励起方法はこれに限られず、例えば、ホットフィラメント等で励起した励起ガスをチャンバ12内に導入するようにしてもよい。
上記実施の形態では、環状シロキサン化合物、環状シラザン化合物または環状有機基が結合したシラン化合物を用いて、少なくともシリコンと炭素とを含む膜(SiC、SiCN、SiOC等)を形成するものとした。しかし、用いる物質および膜種は上記例に限られない。
例えば、上記シラン系化合物と、フッ素系ガス(例えば、CF、CClF、SiF等)と、を用い、酸素含有ガスのプラズマを用いて活性化することにより、環状構造を膜中に有するSiOF膜が形成される。さらに、本発明は、SiN、SiOCN、SiONまたはSiOx膜の成膜にも適用可能である。
産業上の利用の可能性
本発明は、半導体装置等の電子デバイスの製造に有用である。
本発明は、2001年8月30日に出願された日本国特願2001−261443号に基づき、その明細書、特許請求の範囲、図面および要約書を含む。上記出願における開示は、本明細書中にその全体が参照として含まれる。
【図面の簡単な説明】
図1は、本発明の実施の形態に係る成膜装置の構成を示す図である。TECHNICAL FIELD The present invention relates to a film forming method and a film forming apparatus for forming a film having predetermined dielectric characteristics.
BACKGROUND ART In recent years, against the backdrop of demands for high speed and downsizing of semiconductor devices, multilayering of semiconductor elements and miniaturization of wiring have been promoted. For example, for a design rule of 0.15 μm or less, there is a problem that the signal propagation speed of the wiring having a multilayer structure is delayed and the desired speed cannot be increased. In order to prevent an increase in wiring delay due to the miniaturization, it is effective to use an interlayer insulating film having a low dielectric constant.
From such a viewpoint, conventionally, various insulating film forming materials have been studied. Among these, a porous film that realizes a dielectric constant lower than that inherent to the material by forming vacancies at the atomic level in the film has attracted attention.
As a method of forming a porous low dielectric constant film, a method of forming an insulating film using a raw material having a cyclic structure as a starting material has been developed. Since the annular structure essentially has pores therein, a porous film can be formed by bonding a large number of raw material molecules while maintaining the annular structure. Such a method is described in, for example, A. Grill et al, Mat. Res. Soc. Symp. Proc. Vol. 565 (107), 1999.
In the above method, the raw material having a ring structure is excited directly by, for example, a hot filament or a parallel plate type plasma to advance a film forming reaction.
For example, when a cyclic siloxane molecule is used as a raw material, it is bonded to each other by activating a side chain portion of a silicon atom constituting the cyclic portion, for example, by dissociating a carbon-hydrogen bond of a methyl group. Since the carbon-hydrogen bond of the methyl group has lower dissociation energy than the silicon-carbon or silicon-oxygen bond, it dissociates in preference to the decomposition of the cyclic structure. Therefore, it is possible to form a film while maintaining the annular structure.
However, as described above, when excited directly as a parallel plate type plasma, the excitation energy imparted to the raw material is relatively large. For this reason, not only a desired active site but also a necessary cyclic structure is easily destroyed at the time of excitation of the raw material, and thus the cyclic structure in the formed film is reduced. The smaller the ring structure, the lower the porosity of the film and the desired low dielectric constant cannot be obtained.
Thus, in the conventional method of forming a film by directly exciting a starting material having a cyclic structure, the cyclic structure is easily lost upon excitation, and thus a desired low dielectric constant can be obtained. There was a problem that it was difficult.
DISCLOSURE OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a film forming method and a film forming apparatus capable of forming an insulating film having a low dielectric constant.
In order to achieve the above object, a film forming method according to the first aspect of the present invention includes:
Placing the substrate to be processed in the chamber;
A process gas introduction step for introducing a process gas containing a substance having an annular structure into the chamber;
An excitation gas introduction step for introducing an excitation gas for exciting the processing gas into the chamber in an excited state;
It is characterized by comprising.
In the excitation gas introduction step, plasma of the excitation gas may be introduced.
Furthermore, a step of applying a bias voltage to the substrate to be processed may be provided.
In order to achieve the above object, a film forming apparatus according to the second aspect of the present invention includes:
A chamber in which a substrate to be processed is disposed;
A processing gas introduction part for introducing a processing gas containing a substance having an annular structure into the chamber;
An excitation gas introduction unit for introducing an excitation gas for exciting the processing gas into the chamber in an excited state;
It is characterized by comprising.
Furthermore, a plasma generation unit that is provided outside the chamber and generates plasma of the excitation gas may be provided.
Furthermore, a voltage applying unit for applying a bias voltage to the substrate to be processed may be provided.
The processing gas may be composed of a substance containing at least one of a cyclic siloxane structure, a cyclic silazane structure, or an organic cyclic structure as a cyclic structure.
The excitation gas may include at least one of argon, neon, xenon, hydrogen, nitrogen, oxygen, and methane.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a film forming method and a manufacturing apparatus according to embodiments of the present invention will be described with reference to the drawings.
In this embodiment, a case where a porous silicon insulating film is formed over a substrate to be processed such as a semiconductor substrate using a starting material formed of a cyclic silicon compound will be described as an example.
In FIG. 1, the structure of the film-forming apparatus 11 which concerns on this Embodiment is shown.
As illustrated in FIG. 1, the film forming apparatus 11 according to the present embodiment includes a chamber 12, an exhaust unit 13, a processing gas supply unit 14, an excitation gas supply unit 15, and a system controller 100.
The chamber 12 is made of aluminum or the like that is formed in a substantially cylindrical shape and has an anodized inner surface.
A substantially cylindrical stage 16 is provided at substantially the center of the chamber 12 so as to stand up from its bottom.
An electrostatic chuck 17 is disposed on the stage 16. The electrostatic chuck 17 is configured, for example, by covering an electrode plate 17a such as tungsten with a dielectric 17b such as aluminum oxide.
The electrode plate 17a inside the dielectric 17b is connected to a DC power source 18, and a predetermined DC voltage is applied thereto. The substrate 19 to be processed is placed on the electrostatic chuck 17. In accordance with the voltage applied to the electrode plate 17a, charges are generated on the surface of the dielectric 17b, while charges of the opposite polarity are generated on the back surface of the substrate 19 to be processed on the dielectric 17b. Thereby, an electrostatic force (Coulomb force) is formed between the dielectric 17b and the substrate 19 to be processed, and the substrate 19 to be processed is attracted and held on the dielectric 17b.
The electrode plate 17a is also connected to a high frequency power source 20, and a high frequency voltage having a predetermined frequency (for example, 2 MHz) is applied thereto. A predetermined bias voltage, for example, a voltage of about −300V to −20V is applied to the electrode plate 17a. Here, the bias voltage is applied in order to efficiently adsorb the process active species to the substrate 19 to be processed.
A heater 21 made of a resistor or the like is embedded in the stage 16. The heater 21 receives power supplied from a heater power source (not shown) and heats the substrate 19 to be processed on the stage 16 to a predetermined temperature.
The heating temperature is set to a temperature necessary for suppressing thermal stress generated near the interface between the surface of the substrate 19 to be processed and the formed film and promoting film formation generated on the substrate surface. The heating temperature is set to a temperature range from room temperature to 400 ° C., for example. In addition, you may change temperature suitably according to the material to be used, a film thickness, etc.
Here, if the heating temperature is too high, the ring structure in the film is decomposed, and if the heating temperature is too low, cracks or the like may occur in the film formed near the surface of the semiconductor substrate due to thermal stress. There is.
The exhaust unit 13 includes a vacuum pump 22 and depressurizes the chamber 12 to a predetermined degree of vacuum. The vacuum pump 22 is connected to an exhaust port 23 provided at the bottom of the chamber 12 via a flow rate control valve 24. The flow rate adjustment valve 24 is composed of APC or the like, and adjusts the pressure in the chamber 12 according to its opening. The vacuum pump 22 is configured, for example, by selecting any one from a rotary pump, an oil diffusion pump, a turbo molecular pump, a molecular drag pump, or the like, or combining them.
Moreover, the vacuum pump 22 is connected to the abatement device 25, and harmful substances in the exhaust gas are rendered harmless and discharged.
A processing gas supply port 26 penetrating the ceiling is provided at the ceiling of the chamber 12. The processing gas supply port 26 is connected to a processing gas supply unit 14 described later, and the processing gas is supplied into the chamber 12 through the processing gas supply port 26.
The processing gas supply port 26 is connected to a shower head 27 installed on the ceiling of the chamber 12. The shower head 27 includes a hollow portion 27a and a large number of gas holes 27b.
The hollow portion 27 a is provided inside the shower head 27 and receives supply of processing gas from the processing gas supply port 26. The gas hole 27 b communicates with the hollow portion 27 a and is provided to face the stage 16. The processing gas supplied from the processing gas supply port 26 is diffused in the hollow portion 27 a and is ejected from the large number of gas holes 27 b toward the substrate 19 to be processed.
The processing gas supply unit 14 includes a raw material supply source 28, a supply control unit 29, and a vaporization chamber 30.
The raw material supply source 28 supplies a starting raw material composed of a silicon compound having a ring structure. Examples of silicon compounds that can be used include siloxane compounds, silazane compounds, and silane compounds formed by bonding an organic cyclo group to silane.
In the cyclic siloxane compound, silicon constituting the siloxane skeleton has a methyl group or a vinyl group as a side chain. Examples of the cyclic siloxane compound include hexaethylcyclotrisiloxane, hexamethylcyclotrisiloxane, octaphenylcyclotetrasiloxane, tetraethylcyclotetrasiloxane, octamethylcyclotetrasiloxane, 1,3,5-trimethyl-1,3,5. -Trivinylcyclotrisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane.
In the cyclic silazane compound, silicon constituting the silazane skeleton has a methyl group or a vinyl group as a side chain. Examples of the cyclic silazane compound include 1,1,3,3,5,5-hexamethylcyclotrisilazane, 1,2,3,4,5,6-hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, 1,3,5,7-tetraethyl-2,4,6,8-tetramethylcyclotetrasilazane, 1,3,5,7-tetravinyl-2,4,6,8-tetramethylcyclotetrasilazane, 1 2,3-triethyl-2,4,6-trimethylcyclotrisilazane, 1,2,3-trivinyl-1,3,5-trimethylcyclotrisilazane.
The silane compound swings with a methyl group, a vinyl group or the like as a side chain in addition to the organic cyclo group. Examples of the silane compound include (cyclohexenyloxy) trimethylsilane, cyclopentyltrimethoxysilane, dimethylsila-11-crown-4, dimethylsila-14-crown-5, dimethylsila-17-crown-6, dimethylsila-20-crown- 7,1,1-dimethyl-1-sila-2-oxacyclohexane, and phenethyltrimethoxysilane.
Examples of other cyclic silicon compounds include 3-phenylheptamethyltrisiloxane and divinylsiloxane benzocyclobutene (DVS-BCB).
The carbon-hydrogen bond of the methyl group or the carbon-carbon double bond of the vinyl group has a lower dissociation energy than the silicon-oxygen bond, silicon-nitrogen bond, and silicon-carbon bond constituting the cyclic structure. For this reason, by applying relatively low excitation energy, it is possible to reduce decomposition of the cyclic structure and excite a methyl group, a vinyl group, or the like. The raw materials are bonded to each other through excited methyl groups, vinyl groups, etc., thereby forming a porous low dielectric constant film in which many cyclic structures are maintained.
As will be described later, in the present embodiment, the raw material (processing gas) is indirectly excited by being in contact with the plasma of the excitation gas. Therefore, it is possible to form a porous film having a high cyclic structure content by exciting a processing gas made of the above material with relatively low energy.
Note that the porosity of the formed film is determined by the molecular structure (particularly, the ring structure) of the raw material. For this reason, the insulating film which has a desired low dielectric property can be obtained by selecting a raw material suitably.
The supply control unit 29 controls the supply of raw material supplies from the raw material supply source 28. The above-mentioned cyclic silicon compound is usually a liquid or a solid in an air atmosphere. The supply control unit 29 can use a predetermined type of quantitative feeder or the like when the raw material is solid, and a gear pump or the like when the raw material is liquid. The supply control unit 29 supplies a predetermined amount of raw material per unit time to the vaporization chamber 30 described later.
The vaporizing chamber 30 includes a heating mechanism such as a heater and a heating lamp, and is configured from a container capable of heating the inside. The inside of the vaporizing chamber 30 is heated to a temperature equal to or higher than the temperature (boiling point or sublimation temperature) at which the solid or liquid raw material supplied from the raw material supply unit vaporizes. The vaporization chamber 30 is connected to the processing gas supply port 26 via a mass flow controller (MFC) 31. In the vaporization chamber 30, the raw material (cyclic silicon compound) is vaporized, controlled to a predetermined flow rate by the MFC 31, and supplied into the chamber 12.
An excitation gas supply port 32 is provided on the side wall of the chamber 12. For example, two excitation gas supply ports 32 are provided to face the side wall of the chamber 12. Three or more excitation gas supply ports 32 may be provided. Each of the excitation gas supply ports 32 is connected to an excitation gas supply unit 15 described later.
The excitation gas supply unit 15 includes an excitation gas source 33 and an activator 34.
The excitation gas source 33 supplies an excitation gas for exciting (activating) the above-described starting material gas in the chamber 12. The excitation gas may be any substance that can be excited with respect to the processing gas to be used. Argon (Ar), neon (Ne), xenon (Xe), hydrogen (H 2 ), nitrogen (N 2 ), oxygen ( O 2 ), methane (CH 4 ) and the like.
The activator 34 is connected to the excitation gas source 33 via the MFC 35. The activator 34 includes a plasma generation mechanism (not shown), and activates the excitation gas passing therethrough to generate plasma. The plasma generation mechanism provided in the activator 34 generates, for example, magnetron type, ECR type, ICP type, TCP type, helicon wave type plasma, and the like.
The exhaust side of the activator 34 is connected to the excitation gas supply port 32, and the generated excitation gas plasma is supplied into the chamber 12 through the excitation gas supply port 32. The plasma includes high-energy active species such as radicals and ionized ions.
During the film forming process, a processing gas and excitation gas plasma are supplied into the chamber 12. The cyclic silicon compound as the processing gas is excited by active species such as radicals contained in the plasma of the excitation gas, and forms a polymer film on the surface of the substrate 19 to be processed, as will be described in detail below.
The system controller 100 is a microcomputer control device that includes an MPU (Micro Processing Unit), a memory, and the like. The system controller 100 stores a program for controlling the operation of the processing apparatus according to a predetermined processing sequence in a memory, and in accordance with this program, the exhaust unit 13, the processing gas supply unit 14, the excitation gas supply unit 15 and the like of the processing apparatus A control signal is transmitted to each part of.
Next, the operation of the film forming apparatus 11 having the above configuration will be described. Note that, in the following example, a case where a silicon insulating film is formed using octamethylcyclotetrasiloxane represented by Chemical Formula 1 as a starting material will be described. A case where Ar is used as the excitation gas will be described.
Figure 0003978427
First, the substrate 19 to be processed is placed on the stage 16 and fixed by the electrostatic chuck 17. Thereafter, the system controller 100 adjusts the inside of the chamber 12 to a predetermined pressure, for example, about 1.3 Pa to 1.3 kPa (10 mTorr to 10 Torr) by the exhaust unit 13.
On the other hand, the system controller 100 heats the substrate to be processed 19 to a predetermined temperature, for example, about 100 ° C., by the heater 21 and applies a bias voltage to the substrate to be processed 19.
Next, the system controller 100 starts supplying the processing gas and the excitation gas from the processing gas supply unit 14 and the excitation gas supply unit 15 into the chamber 12. Each gas is supplied into the chamber 12 at a predetermined flow rate. Of course, the gas of octamethylcyclotetrasiloxane is supplied into the chamber 12 from the processing gas supply source.
Next, the system controller 100 turns on the activator 34. As a result, an excitation gas, that is, Ar plasma is supplied into the chamber 12. The generated plasma contains high energy active species such as Ar radicals and Ar ions.
These active species are mixed with the processing gas (octamethylcyclotetrasiloxane) in the chamber 12 and collide with the processing gas molecules to activate (excite) it. By contact with the excitation gas plasma, radicals, ions, etc. of the processing gas are generated in the chamber 12.
During the processing, a predetermined bias voltage, for example, about −100 V is applied to the substrate 19 by the electrode plate 17 a, and active species such as ions of the generated processing gas are applied to the surface of the substrate 19. Adsorbed. By being adsorbed on the surface of the substrate to be processed 19 and being heated, a film formation reaction on the surface of the substrate to be processed 19 proceeds as described below.
First, the bond with the lowest bond dissociation energy of the octamethylcyclotetrasiloxane molecule is mainly excited by contact with an active species such as an Ar radical. That is, the carbon-hydrogen bond of the side chain methyl group of the molecule is most easily excited (dissociated), and for example, an octamethylcyclotetrasiloxane radical as shown in the following chemical formula 2 is generated. In addition, positive ions in which hydrogen positive ions are bonded to methyl groups are generated.
Figure 0003978427
Active species such as radicals of the generated octamethylcyclotetrasiloxane are adsorbed on the surface of the substrate 19 to be processed by a bias voltage. The adsorbed active species are mainly bonded in the excited side chain portion to form, for example, a polymer as shown in Chemical Formula 3.
Figure 0003978427
When the side chains are bonded to each other, as shown in Chemical Formula 3, a film is formed in a state where a cyclic structure is held in the film. The ring structure has pores inside, and pores are also formed around it due to the size of the steric hindrance. Therefore, the formed film has a high porosity and a porous low dielectric constant. Construct a membrane.
As described above, the porous film can be formed by exciting the cyclic silicon compound. Here, the process gas is excited “indirectly” by the plasma of the excitation gas generated outside the chamber 12.
For this reason, the excitation energy given to the process gas is relatively low, and excitation other than the side chain portion is suppressed. That is, for example, decomposition and destruction of the annular structure are suppressed, and more annular structures can be retained in the formed film than when plasma of the processing gas is generated and excited inside the chamber 12. . Therefore, it is possible to form a porous insulating film having a lower dielectric constant.
As described above, the film formation reaction proceeds, and a film having a predetermined thickness is formed on the surface of the substrate 19 to be processed. The system controller 100 ends the film formation process at a time when an insulating film having a desired film thickness, for example, about 400 nm (4000 mm) is formed. The system controller 100 turns off the activator 34 and then stops supplying process gas to the chamber 12. Thereafter, the inside of the chamber 12 is purged with an excitation gas that is not excited for a predetermined time, and application of a bias voltage and heating by the heater 21 are stopped. Finally, the substrate 19 to be processed is unloaded from the chamber 12. With the above, the film forming process is completed.
As described above, in the present embodiment, the processing gas composed of the cyclic compound is indirectly excited by contact mixing with the excitation gas excited outside the chamber 12. In this way, the process gas can be indirectly excited and excited using relatively low excitation energy.
Since the excitation energy is low, the film formation reaction can proceed while suppressing the destruction of the cyclic structure. As a result, it is possible to form a so-called low dielectric constant porous film in which a lot of cyclic structures are contained in the film.
The present invention is not limited to the description of the above embodiment, and its application and modification are arbitrary.
In the above embodiment, the heater 21 is embedded in the stage 16 to heat the substrate 19 to be processed. However, the heating method is not limited to this, and any heating method such as a hot wall type or a lamp heating type may be used.
In the above embodiment, the excitation gas is excited as plasma. However, the excitation method of the excitation gas is not limited to this, and for example, the excitation gas excited by a hot filament or the like may be introduced into the chamber 12.
In the above embodiment, a film (SiC, SiCN, SiOC, etc.) containing at least silicon and carbon is formed using a cyclic siloxane compound, a cyclic silazane compound, or a silane compound to which a cyclic organic group is bonded. However, the substances and film types used are not limited to the above examples.
For example, by using the silane compound and a fluorine-based gas (for example, CF 4 , CClF 3 , SiF 4, etc.) and activating the plasma using an oxygen-containing gas, the film has a ring structure. A SiOF film is formed. Furthermore, the present invention can also be applied to the formation of a SiN, SiOCN, SiON or SiOx film.
INDUSTRIAL APPLICABILITY The present invention is useful for manufacturing electronic devices such as semiconductor devices.
The present invention is based on Japanese Patent Application No. 2001-261443 filed on August 30, 2001, and includes the specification, claims, drawings, and abstract. The disclosure in the above application is hereby incorporated by reference in its entirety.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a film forming apparatus according to an embodiment of the present invention.

Claims (16)

チャンバ(12)内に被処理基板(19)を配置する工程と、
環状構造を有する物質を含む処理ガスを前記チャンバ(12)内に導入する処理ガス導入工程と、
前記処理ガスを励起するための励起用ガスを、前記チャンバ(12)から離間した位置で励起し、該励起状態の励起用ガスを前記チャンバ(12)内に導入する励起用ガス導入工程と、
前記チャンバ(12)内で、前記処理ガスを前記励起用ガスにより間接的に励起する間接励起工程と、
を備えることを特徴とする成膜方法。
Placing the substrate to be processed (19) in the chamber (12);
A process gas introduction step of introducing a process gas containing a substance having an annular structure into the chamber (12);
An excitation gas introduction step for exciting an excitation gas for exciting the processing gas at a position away from the chamber (12) and introducing the excited excitation gas into the chamber (12);
An indirect excitation step of indirectly exciting the processing gas with the excitation gas in the chamber (12);
A film forming method comprising:
前記励起用ガス導入工程では、前記励起用ガスのプラズマを導入する、ことを特徴とする請求項1に記載の成膜方法。  The film forming method according to claim 1, wherein in the excitation gas introduction step, plasma of the excitation gas is introduced. さらに、前記被処理基板(19)にバイアス電圧を印加する工程を備える、ことを特徴とする請求項1に記載の成膜方法。  The film forming method according to claim 1, further comprising a step of applying a bias voltage to the substrate to be processed (19). さらに、前記被処理基板(19)にバイアス電圧を印加する工程を備える、ことを特徴とする請求項2に記載の成膜方法。  The film forming method according to claim 2, further comprising a step of applying a bias voltage to the substrate to be processed (19). 内部に被処理基板(19)が配置されるチャンバ(12)と、
環状構造を有する物質を含む処理ガスを前記チャンバ(12)内に導入するための処理ガス導入部(26)と、
前記処理ガスを励起するための励起用ガスを所定の励起状態に励起する前記チャンバ(12)から離間して配置されたアクチベータ(34)と、
前記アクチベータ(34)にて励起された前記励起用ガスを、前記処理ガスを間接的に励起可能な励起状態で前記チャンバ(12)内に導入するための励起用ガス導入部(32)と、
を備えることを特徴とする成膜装置。
A chamber (12) in which a substrate to be processed (19) is disposed;
A processing gas introduction part (26) for introducing a processing gas containing a substance having an annular structure into the chamber (12);
An activator (34) disposed away from the chamber (12) for exciting an excitation gas for exciting the processing gas to a predetermined excited state;
An excitation gas introduction section (32) for introducing the excitation gas excited by the activator (34) into the chamber (12) in an excited state capable of indirectly exciting the processing gas;
A film forming apparatus comprising:
前記アクチベータ(34)は、プラズマ発生機構を備え、該プラズマ発生機構により前記励起用ガスを励起する、ことを特徴とする請求項5に記載の成膜装置。The film forming apparatus according to claim 5, wherein the activator (34) includes a plasma generation mechanism, and excites the excitation gas by the plasma generation mechanism. さらに、前記被処理基板(19)にバイアス電圧を印加するための電圧印加部(20)を備える、ことを特徴とする請求項5に記載の成膜装置。  The film forming apparatus according to claim 5, further comprising a voltage applying unit (20) for applying a bias voltage to the substrate to be processed (19). さらに、前記被処理基板(19)にバイアス電圧を印加するための電圧印加部(20)を備える、ことを特徴とする請求項6に記載の成膜装置。  The film forming apparatus according to claim 6, further comprising a voltage applying unit (20) for applying a bias voltage to the substrate to be processed (19). 前記処理ガスは、環状構造として、少なくとも環状シロキサン構造、環状シラザン構造または有機環状構造のいずれか1つを含む物質から構成される、ことを特徴とする請求項5に記載の成膜装置。  The film forming apparatus according to claim 5, wherein the processing gas is made of a material including at least one of a cyclic siloxane structure, a cyclic silazane structure, and an organic cyclic structure as a cyclic structure. 前記処理ガスは、環状構造として、少なくとも環状シロキサン構造、環状シラザン構造または有機環状構造のいずれか1つを含む物質から構成される、ことを特徴とする請求項6に記載の成膜装置。The film forming apparatus according to claim 6, wherein the processing gas is made of a material including at least one of a cyclic siloxane structure, a cyclic silazane structure, and an organic cyclic structure as a cyclic structure. 前記処理ガスは、環状構造として、少なくとも環状シロキサン構造、環状シラザン構造または有機環状構造のいずれか1つを含む物質から構成される、ことを特徴とする請求項7に記載の成膜装置。The film forming apparatus according to claim 7, wherein the processing gas is made of a substance including at least one of a cyclic siloxane structure, a cyclic silazane structure, and an organic cyclic structure as a cyclic structure. 前記処理ガスは、環状構造として、少なくとも環状シロキサン構造、環状シラザン構造または有機環状構造のいずれか1つを含む物質から構成される、ことを特徴とする請求項8に記載の成膜装置。The film forming apparatus according to claim 8, wherein the processing gas is made of a material including at least one of a cyclic siloxane structure, a cyclic silazane structure, and an organic cyclic structure as a cyclic structure. 前記励起用ガスは、アルゴン、ネオン、キセノン、水素、窒素、酸素およびメタンの少なくともいずれか1つを含んで構成される、ことを特徴とする請求項5に記載の成膜装置。The film forming apparatus according to claim 5, wherein the excitation gas includes at least one of argon, neon, xenon, hydrogen, nitrogen, oxygen, and methane. 前記励起用ガスは、アルゴン、ネオン、キセノン、水素、窒素、酸素およびメタンの少なくともいずれか1つを含んで構成される、ことを特徴とする請求項6に記載の成膜装置。The film forming apparatus according to claim 6, wherein the excitation gas includes at least one of argon, neon, xenon, hydrogen, nitrogen, oxygen, and methane. 前記励起用ガスは、アルゴン、ネオン、キセノン、水素、窒素、酸素およびメタンの少なくともいずれか1つを含んで構成される、ことを特徴とする請求項7に記載の成膜装置。The film forming apparatus according to claim 7, wherein the excitation gas includes at least one of argon, neon, xenon, hydrogen, nitrogen, oxygen, and methane. 前記励起用ガスは、アルゴン、ネオン、キセノン、水素、窒素、酸素およびメタンの少なくともいずれか1つを含んで構成される、ことを特徴とする請求項8に記載の成膜装置。The film forming apparatus according to claim 8, wherein the excitation gas includes at least one of argon, neon, xenon, hydrogen, nitrogen, oxygen, and methane.
JP2003522998A 2001-08-30 2002-08-30 Film forming method and film forming apparatus Expired - Fee Related JP3978427B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001261443 2001-08-30
JP2001261443 2001-08-30
PCT/JP2002/008819 WO2003019645A1 (en) 2001-08-30 2002-08-30 Method and apparatus for forming film

Publications (2)

Publication Number Publication Date
JPWO2003019645A1 JPWO2003019645A1 (en) 2004-12-16
JP3978427B2 true JP3978427B2 (en) 2007-09-19

Family

ID=19088491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003522998A Expired - Fee Related JP3978427B2 (en) 2001-08-30 2002-08-30 Film forming method and film forming apparatus

Country Status (5)

Country Link
US (1) US20040253777A1 (en)
JP (1) JP3978427B2 (en)
KR (2) KR20060097768A (en)
CN (1) CN1305119C (en)
WO (1) WO2003019645A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI282124B (en) * 2002-11-28 2007-06-01 Tosoh Corp Insulating film material containing an organic silane compound, its production method and semiconductor device
WO2005053009A1 (en) * 2003-11-28 2005-06-09 Nec Corporation Porous insulating film, method for producing same, and semiconductor device using porous insulating film
CN100446193C (en) 2004-02-13 2008-12-24 松下电器产业株式会社 Method for forming organic/inorganic hybrid insulation
US7129187B2 (en) * 2004-07-14 2006-10-31 Tokyo Electron Limited Low-temperature plasma-enhanced chemical vapor deposition of silicon-nitrogen-containing films
WO2006080205A1 (en) 2005-01-31 2006-08-03 Tosoh Corporation CYCLIC SILOXANE COMPOUND, Si-CONTAINING FILM-FORMING MATERIAL, AND USE THEREOF
US8513448B2 (en) 2005-01-31 2013-08-20 Tosoh Corporation Cyclic siloxane compound, a material for forming Si-containing film, and its use
FR2887891B1 (en) * 2005-07-01 2007-09-21 Commissariat Energie Atomique POLYSILOXANE - BASED MATERIAL WITH LOW HYSTERESIS AND METHOD OF DEPOSITING SUCH MATERIAL.
JP2007165717A (en) * 2005-12-15 2007-06-28 Tokyo Electron Ltd Filming method and filming device
CN101310370A (en) * 2006-01-13 2008-11-19 东京毅力科创株式会社 Method of forming porous film and computer-readable recording medium
WO2008010591A1 (en) * 2006-07-21 2008-01-24 Nec Corporation Method for forming porous insulating film
JP4743229B2 (en) * 2008-05-29 2011-08-10 国立大学法人東北大学 Method for forming semiconductor device using neutral particles
TW201131651A (en) * 2009-10-05 2011-09-16 Univ Tohoku Low dielectric constant insulating film
JP5164079B2 (en) * 2009-10-21 2013-03-13 国立大学法人東北大学 Method for forming low dielectric constant insulating film
JP5164078B2 (en) * 2009-10-05 2013-03-13 国立大学法人東北大学 Low dielectric constant insulating film
US10832904B2 (en) 2012-06-12 2020-11-10 Lam Research Corporation Remote plasma based deposition of oxygen doped silicon carbide films
US10325773B2 (en) 2012-06-12 2019-06-18 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US9234276B2 (en) 2013-05-31 2016-01-12 Novellus Systems, Inc. Method to obtain SiC class of films of desired composition and film properties
US9371579B2 (en) * 2013-10-24 2016-06-21 Lam Research Corporation Ground state hydrogen radical sources for chemical vapor deposition of silicon-carbon-containing films
JP6345010B2 (en) * 2014-07-10 2018-06-20 キヤノン株式会社 Manufacturing method of substrate for ink jet recording head
US20160314964A1 (en) 2015-04-21 2016-10-27 Lam Research Corporation Gap fill using carbon-based films
US10840087B2 (en) 2018-07-20 2020-11-17 Lam Research Corporation Remote plasma based deposition of boron nitride, boron carbide, and boron carbonitride films
JP7487189B2 (en) 2018-10-19 2024-05-20 ラム リサーチ コーポレーション Doped and undoped silicon carbide for gap filling and remote hydrogen plasma exposure.

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863755A (en) * 1987-10-16 1989-09-05 The Regents Of The University Of California Plasma enhanced chemical vapor deposition of thin films of silicon nitride from cyclic organosilicon nitrogen precursors
US4883686A (en) * 1988-05-26 1989-11-28 Energy Conversion Devices, Inc. Method for the high rate plasma deposition of high quality material
WO2004089046A1 (en) * 1991-11-05 2004-10-14 Nobumasa Suzuki Microwave introducing apparatus having endless ring-like waveguide, and plasma processing equipment provided with the same
KR0168699B1 (en) * 1993-09-27 1999-02-01 사토 후미오 Method for producing and supplying of excited oxygen or excited gas
JPH07115091A (en) * 1993-10-18 1995-05-02 Sony Corp Formation of insulating film in semiconductor device and cvd device
JP2899600B2 (en) * 1994-01-25 1999-06-02 キヤノン販売 株式会社 Film formation method
US5888593A (en) * 1994-03-03 1999-03-30 Monsanto Company Ion beam process for deposition of highly wear-resistant optical coatings
US5846649A (en) * 1994-03-03 1998-12-08 Monsanto Company Highly durable and abrasion-resistant dielectric coatings for lenses
WO1995026571A1 (en) * 1994-03-25 1995-10-05 Amoco/Enron Solar Stabilized amorphous silicon and devices containing same
KR100207444B1 (en) * 1995-03-14 1999-07-15 윤종용 Capacitor fabrication method and its device having high dielectronic layer and electrode
JP3440714B2 (en) * 1995-12-11 2003-08-25 ソニー株式会社 Method for forming silicon compound based insulating film
CN1164125A (en) * 1996-02-20 1997-11-05 株式会社日立制作所 Plasma processing method and apparatus
US6143081A (en) * 1996-07-12 2000-11-07 Tokyo Electron Limited Film forming apparatus and method, and film modifying apparatus and method
US6028012A (en) * 1996-12-04 2000-02-22 Yale University Process for forming a gate-quality insulating layer on a silicon carbide substrate
US6660656B2 (en) * 1998-02-11 2003-12-09 Applied Materials Inc. Plasma processes for depositing low dielectric constant films
US6413583B1 (en) * 1998-02-11 2002-07-02 Applied Materials, Inc. Formation of a liquid-like silica layer by reaction of an organosilicon compound and a hydroxyl forming compound
US6303523B2 (en) * 1998-02-11 2001-10-16 Applied Materials, Inc. Plasma processes for depositing low dielectric constant films
US6583048B2 (en) * 2001-01-17 2003-06-24 Air Products And Chemicals, Inc. Organosilicon precursors for interlayer dielectric films with low dielectric constants
US6936551B2 (en) * 2002-05-08 2005-08-30 Applied Materials Inc. Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
US7867923B2 (en) * 2007-10-22 2011-01-11 Applied Materials, Inc. High quality silicon oxide films by remote plasma CVD from disilane precursors

Also Published As

Publication number Publication date
US20040253777A1 (en) 2004-12-16
CN1545724A (en) 2004-11-10
KR20060097768A (en) 2006-09-15
WO2003019645A1 (en) 2003-03-06
KR100778947B1 (en) 2007-11-22
CN1305119C (en) 2007-03-14
KR20040029108A (en) 2004-04-03
JPWO2003019645A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP3978427B2 (en) Film forming method and film forming apparatus
KR102138158B1 (en) Low-k dielectric damage repair by vapor-phase chemical exposure
JP4842251B2 (en) Techniques to promote adhesion of porous low dielectric constant films to underlying barrier layers
US9404178B2 (en) Surface treatment and deposition for reduced outgassing
TWI507560B (en) Oxygen-doping for non-carbon radical-component cvd films
US20110034039A1 (en) Formation of silicon oxide using non-carbon flowable cvd processes
JP2015521375A (en) Improved densification for flowable membranes
JP4049214B2 (en) Insulating film forming method and insulating film forming apparatus
WO2013062756A1 (en) Treatments for decreasing etch rates after flowable deposition of silicon-carbon-and-nitrogen-containing layers
WO2012166618A2 (en) Capping layer for reduced outgassing
SG189151A1 (en) Amine curing silicon-nitride-hydride films
TW200532848A (en) Deposition of low dielectric constant films by N2O addition
JP2004193622A (en) Cvd method of porous dielectric material
US9850574B2 (en) Forming a low-k dielectric layer with reduced dielectric constant and strengthened mechanical properties
JP2003530481A (en) Systems and methods for depositing inorganic / organic dielectric films
CN109559974B (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP3967253B2 (en) Porous insulating film forming method and porous insulating film forming apparatus
JPH09260371A (en) Method and apparatus for improving interface quality of plasma excitation cvd film
JP4758938B2 (en) Insulating film forming method and insulating film forming apparatus
JP2005303074A (en) Thin film deposition equipment, and thin film forming method
JP2007027792A (en) Method and apparatus for forming insulating film
JP2004158793A (en) Method and device for forming insulating film
JP2004152794A (en) Method and apparatus for forming insulating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees