JP3975874B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3975874B2
JP3975874B2 JP2002286787A JP2002286787A JP3975874B2 JP 3975874 B2 JP3975874 B2 JP 3975874B2 JP 2002286787 A JP2002286787 A JP 2002286787A JP 2002286787 A JP2002286787 A JP 2002286787A JP 3975874 B2 JP3975874 B2 JP 3975874B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002286787A
Other languages
Japanese (ja)
Other versions
JP2004125220A (en
Inventor
龍太 近藤
竹司 渡辺
昌宏 尾浜
啓次郎 國本
松本  聡
吉継 西山
浩二 岡
誠一 安木
立群 毛
春夫 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002286787A priority Critical patent/JP3975874B2/en
Publication of JP2004125220A publication Critical patent/JP2004125220A/en
Application granted granted Critical
Publication of JP3975874B2 publication Critical patent/JP3975874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ給湯装置としては、特許文献1に記載されているような給湯装置が提案されていた。このヒートポンプ給湯装置は図4に示すように、閉回路に構成される冷媒流路1で圧縮機2、放熱器3、減圧手段4、吸熱器5が接続された冷媒循環回路7と、放熱器3の冷媒流路a8と熱交換を行う水流路9を備えた熱交換器24と、この水流路9に水道水を供給する給水管11と、前記水流路9とシャワーや蛇口等の給湯端末12とを接続する給湯回路13と、給湯回路13に設け給湯温度を検出する温度センサ14と、圧縮機2の回転数を制御するインバータ15を備え、圧縮機2を温度センサ14の検出温度と設定温度との差に応じてインバータ15の出力周波数を変換するようにしていた。すなわち従来の給湯装置では設定温度に対して給湯温度が低い場合は圧縮機2の回転数を上げ、給湯温度が高い場合は回転数を下げるように制御するようにしていた。
【0003】
【特許文献1】
特開平2−223767号公報
【0004】
【発明が解決しようとする課題】
このような瞬間湯沸し型では給湯時における給湯負荷が一定ではない。特に流量は使用者が給湯目的によってさまざまに変化させるために給湯負荷は大きく変ってしまう。例えば家庭用の給湯の場合、シャワーや風呂への湯張りに給湯する場合は10〜20L/minの大流量となるが、台所で食器を洗う場合や洗面への給湯では3〜5L/minと少流量である。また、季節による給水温度の変化によっても給湯負荷は大きく変る。
【0005】
こうした流量や水温の変化により大きくかわる給湯負荷を、従来のヒートポンプ給湯装置のように単一の熱交換器や吸熱器に対して単一の圧縮機の回転数を変えるだけで給湯熱量を制御しようとした場合に、まずシャワー等の大流量の給湯負荷に対応するために大型の圧縮機に大型の熱交換器や吸熱器が必用になる。しかし、こうした大型の装置では温度や圧力の立ち上がりが遅く、さらに小さな給湯負荷に対して能力を低くしようとする場合に限界があり、こうした低負荷に対応しにくくなる不都合が生じてくる。
【0006】
このように、従来のヒートポンプ給湯装置では、大型の装置で単一の圧縮機の回転数を変えるだけの制御では能力変更幅に限界があり、例えば冬場のシャワーと風呂の湯張りの同時使用といった大能力から、夏場の食器洗いなどの微小能力までの幅広い給湯能力をカバーできなかった。そのためシャワー温度が低下したり、食器洗いで熱い湯がでたりするなどの不都合がでる可能性があった。
【0007】
こうした流量や水温の変化により大きくかわる給湯負荷を、従来のヒートポンプ給湯装置のように給湯温度と設定温度の差だけで圧縮機の回転数を変えて給湯熱量を制御しようとした場合に制御の応答性と安定性に不都合が生じてくる。例えば制御の安定性を良くするために給湯温度と設定温度との温度差と圧縮機の回転数の係数である制御ゲインを低くすると、温度差の変化量に対する回転数の変化量が少なくなるので給湯温度変化が緩やかになり、設定温度に達するのに時間がかかったり、オフセットにより流量や水温の違いによって給湯温度の安定値が設定温度にならず変化したりする。逆に制御ゲインを上げると給湯負荷の大きな大流量では、圧縮機の回転数の変化に対する給湯温度の変化が少ないので安定に制御できても、圧縮機の回転数の変化に対する給湯温度の変化が急峻になる小流量での給湯では、圧縮機の回転数の制御の変化が急峻になり給湯温度が安定しないばかりか、給湯温度と回転数の変化の位相のずれによりハンチングを起こして制御が発散する可能性もあった。
【0008】
さらに、従来のヒートポンプ給湯装置のように単一の圧縮機の回転数を変えるだけの制御では能力変更幅に限界があり、例えば冬場のシャワーと風呂の湯張りの同時使用といった大能力から、夏場の食器洗いなどの微小能力までの幅広い給湯能力をカバーできなかった。そのためシャワー温度が低下したり、食器洗いで熱い湯がでたりするなどの不都合がでる可能性があった。
【0009】
また、気温や水温や給湯負荷により冷媒循環回路の運転条件が変ると、運転効率も変化するが、従来のヒートポンプ給湯装置では給湯温度に応じて圧縮機の回転数を変えるだけなので、運転効率は成り行きとなり、加熱効率の悪い条件でもそのまま運転されていた。したがって条件によっては極端に効率が悪化し、能力が発揮できなくなるばかりでなく、ランニングコストも高いものなる可能性もあった。
【0010】
以上のように従来のヒートポンプ給湯装置では給湯負荷の大小に関わりなく一律に加熱制御を行うために幅広い給湯負荷への対応が困難であったり、制御の応答性と安定性を両立させることができなかったり、効率が悪化するなどの問題があった。
【0011】
本発明は、上記従来の課題を解決するもので、広い能力幅を有し、制御性と効率のよい給湯ができるヒートポンプ給湯装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記課題を解決するために、本発明のヒートポンプ給湯装置は、圧縮機と放熱器である熱交換器と減圧手段と吸熱器とを含む冷媒循環回路と、前記熱交換器の冷媒流路と熱交換を行う前記熱交換器内の水流路と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給水管と水流路と給湯回路とで構成される温水供給側経路と、前記給湯回路の水に熱量を加えるように設けた加温手段と、前記給水管から分岐して前記水流路と前記加温手段のどちらも通らずに給湯回路に繋がる混合用水管とを備え、前記加温手段は、前記熱交換器に並列に接続した蓄熱手段であり、前記水流路からの流水と前記蓄熱手段からの温水とを混合する混合手段を有し、前記熱交換器の加熱量が増加するに従い、前記蓄熱手段から出湯割合を減少させるよう前記混合手段を動作させることを特徴とするものである。
【0013】
上記発明によれば、水道水を熱交換器で加熱するのとは別に加温手段で熱量を加える、すなわち加熱するもので、熱交換器での加熱量が不足していても不足分を補って加熱できるので、熱交換器での加熱能力を大幅に大能力化しなくても良い。また、熱交換器による出湯温度制御に加温手段が直接影響しないので制御性が良く、冷媒と水の熱交換は加温手段と独立して熱交換器で行うため高効率な熱交換が可能である。さらに、急激な目標温度の変化や給湯端末での湯の使用状態の変化があっても、給湯回路の湯に水を混合することで制御応答遅れを相殺し、温度を下げる方向にも素早く制御することができる。
【0014】
また、蓄熱手段からの湯が給湯回路の水と所定の割合で混合加熱できるので、目標温度や給湯端末での使用状態の急変があっても素早く対応し、所定の出湯温度が直ちに得られる。
【0015】
【発明の実施の形態】
請求項1に記載の発明のヒートポンプ給湯装置は、圧縮機と放熱器である熱交換器と減圧手段と吸熱器とを含む冷媒循環回路と、前記熱交換器の冷媒流路と熱交換を行う前記熱交換器内の水流路と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給水管と水流路と給湯回路とで構成される温水供給側経路と、前記給湯回路の水に熱量を加えるように設けた加温手段と、前記給水管から分岐して前記水流路と前記加温手段のどちらも通らずに給湯回路に繋がる混合用水管とを備え、前記加温手段は、前記熱交換器に並列に接続した蓄熱手段であり、前記水流 路からの流水と前記蓄熱手段からの温水とを混合する混合手段を有し、前記熱交換器の加熱量が増加するに従い、前記蓄熱手段から出湯割合を減少させるよう前記混合手段を動作させることを特徴とするものである。
【0016】
この発明によれば、水道水を熱交換器で加熱するのとは別に加温手段で熱量を加える、すなわち加熱するもので、熱交換器での加熱量が不足していても不足分を補って加熱できるので、熱交換器での加熱能力を大幅に大能力化しなくても良い。また、熱交換器による出湯温度制御に加温手段が直接影響しないので制御性が良く、冷媒と水の熱交換は加温手段と独立して熱交換器で行うため高効率な熱交換が可能である。さらに、急激な目標温度の変化や給湯端末での湯の使用状態の変化があっても、給湯回路の湯に水を混合することで制御応答遅れを相殺し、温度を下げる方向にも素早く制御することができる。
【0017】
また、蓄熱手段の熱により給湯回路の水を加熱する熱量を、蓄熱手段側の流量を変えることにより自由に設定でき、蓄熱手段側の流量を小さくすることで蓄熱サイズを小さくすることもできる。また、蓄熱手段からの湯が給湯回路の水と所定の割合で混合加熱できるので、目標温度や給湯端末での使用状態の急変があっても素早く対応し、所定の出湯温度が直ちに得られる。
【0018】
請求項2に記載の発明のヒートポンプ給湯装置は、請求項1記載の蓄熱手段を、蓄熱温度を給湯温度より高温にしたものである。
【0019】
この発明によれば、蓄熱手段の湯温を給湯温度より高くすることにより、蓄熱密度を上げることで蓄熱サイズを小さくするもので、設置スペースや重量を少なくすることができる。
【0020】
請求項3に記載の発明のヒートポンプ給湯装置は、請求項1または2記載の蓄熱手段を水を貯留する貯留タンクとしたものである。
【0021】
この発明によれば、給湯に使用する水を蓄熱手段として用いることにより、流通時は水を抜けば軽量にできる。また、蓄熱材として比熱が大きく、しかも安全である。
【0022】
請求項4に記載の発明のヒートポンプ給湯装置は、熱交換器での所要加熱量を設定する負荷設定手段と、前記負荷設定手段の設定値に応じて前記熱交換器の加熱量を制御する加熱制御手段とを備えた請求項1〜3のいずれか1項記載のものである。
【0023】
この発明によれば、ここで、負荷設定手段で設定する所要加熱量は、給湯負荷に対応した熱交換器での必要な熱交換熱量である。そして加熱制御手段がこの所要熱量に応じて熱交換器の加熱量を制御するので、目標温度や給湯端末での使用状態の急変があっても素早く対応し、過不足のない給湯制御ができる。
【0024】
請求項5に記載の発明のヒートポンプ給湯装置は、給水管の給水温度を検出する水温検知手段と給湯回路の流量を検出する流量検知手段のうち少なくとも1つと、給湯の目標温度を設定する温度設定手段とを設け、負荷設定手段は前記水温検知手段と温度設定手段と流量検知手段の値から所要加熱量を算定する請求項4記載のものである。
【0025】
この発明によれば、給湯負荷は流量に比例するので、ここで推定する所要加熱量は、給湯負荷に相関がある。したがって流量変化によって給湯負荷が急変しても、給湯負荷の変化に応じて素早く対応する加熱制御が可能である。また、水温検知手段と温度設定手段と流量検知手段の値から所要加熱量を算定することにより、正確な給湯負荷が所要加熱量として設定できる。
【0026】
請求項6に記載の発明のヒートポンプ給湯装置は、請求項4または5記載の加熱制御手段は、圧縮機の回転数、減圧手段の冷媒流路抵抗、吸熱器の吸熱量のうち少なくとも1つを制御するものである。
【0027】
この発明によれば、予め、圧縮機の回転数、減圧手段の冷媒流路抵抗、大気熱から吸熱器に吸熱させる送風機風量のそれぞれと熱交換器での加熱量の関係を定め、設定された所要加熱量になるように圧縮機の回転数、減圧手段の減圧度、送風機の回転数を制御することで所要加熱量が得られる。
【0028】
請求項7に記載の発明のヒートポンプ給湯装置は、請求項1〜6のいずれか1項記載の混合用水管は、流れる水流量を調節する流量調節手段を備えたものである。
【0029】
この発明によれば、給湯回路の湯に水を流量調節して混合することで、目標温度や給湯端末での使用状態の急変があっても、素早くかつ精度良く対応することができる。
【0030】
請求項8に記載の発明のヒートポンプ給湯装置は、給湯回路に設けて湯の温度を検出する給湯温検知手段と、給湯の目標温度を設定する温度設定手段とを設け、前記給湯温検知手段の検出温度と前記目標温度との偏差によって流量調節手段を制御する請求項7記載のものである。
【0031】
この発明によれば、検出温度と目標温度との偏差によるフィードバック制御を用いて流量調節手段を制御することでより精度の高い温度制御を行うことが可能となる。また最終的に流量調節手段により温度制御を行うため、給湯負荷が冷媒循環回路の加熱能力を超える場合は特に、混合手段による温度制御の精度が粗くても問題が生じず、混合手段の制御が比較的容易になる。
【0032】
請求項9に記載の発明のヒートポンプ給湯装置は、熱交換器の水流路と蓄熱手段とを環状に接続する環状水路と、外力により環状水路に循環水流を生じさせその流量を調節できる水流手段とを備え、水流手段を駆動して熱交換器の水流路に通水し冷媒循環回路を運転して蓄熱手段の蓄熱温度を所定温度に保つ請求項1〜8のいずれか1項記載のものである。
【0033】
この発明によれば、水流手段により強制的に水流を生じさせるので流量を多くして保温時の加熱量を大きくでき、蓄熱手段が冷えたときでも短時間で所定温度に戻すことができる。また、流量調節も可能なので保温加熱時の温度制御性が良く、環状水路の熱が熱交換器を暖めるので冷媒循環回路の立ち上がりも早い。さらに、水循環路の保温をヒートポンプにより行うので、ヒータなどに比べ効率が良く、また保温時にヒートポンプが駆動するので、冷媒循環回路自体の立上りも一層早くなる。
【0034】
請求項10に記載の発明のヒートポンプ給湯装置は、請求項1〜9のいずれか1項記載の混合用水管は、水の流通を阻止する閉止手段を備えたものである。
【0035】
この発明によれば、混合用水管からの水道水がむやみに混合されて冷媒循環回路や加温手段の加熱量を消費することを防止し、熱交換器や加温手段での加熱能力や加熱容量を小さくすることができる。また、冷媒循環回路を運転して環状水路に繋がる蓄熱手段を保温する構成において、水流手段を運転すると一部または全部の水流が温水供給側経路を通らずに混合用水管へバイパスして蓄熱手段へと循環することを防ぐことができる。
【0036】
請求項11に記載の発明のヒートポンプ給湯装置は、給湯回路内の水の流量を検知する給湯流量検知手段と、温水供給側経路を流れる水の流量を検知する冷媒回路側流量検知手段と、加温手段により加熱される水の流量を検知する加温流量検知手段と、混合用水管の水の流量を検知する給湯流量検知手段と、給水管のいずれかの位置に設けた給水流量検知手段のうち少なくとも1つを備え、その検知値によって、混合手段と冷媒循環回路と流量調節手段のうち少なくとも1つを制御する請求項1〜10のいずれか1項記載のものである。
【0037】
この発明によれば、例えばシャワー室と台所とでお湯を使用している状態から、台所のみで使用するように流量が急に変化した場合でも、混合手段と冷媒循環回路と流量調節手段のうち少なくとも1つを制御することで素早い対応が可能となる。
【0038】
請求項12に記載の発明のヒートポンプ給湯装置は、請求項1〜11のいずれか1項に記載の冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱するものである。
【0039】
この発明によれば、そして、熱交換器の冷媒流路を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、熱交換器の水流路の流水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0040】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。
【0041】
(実施例1)
図1は本発明の実施例1におけるヒートポンプ式給湯装置の構成図である。図1において、冷媒配管21により圧縮機22、放熱器23、放熱器23と同様に放熱器として機能する熱交換器24、減圧手段25、吸熱器26が閉回路に接続されて冷媒循環回路27が構成されている。この冷媒循環回路27は、例えば炭酸ガスを冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機22は、内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力を超える圧力まで圧縮して吐出する。また、熱交換器24には冷媒流路28と熱交換を行う水流路29を備えている。この水流路29に水道を直結して水道水を直接供給する給水管30と、水流路29から出湯される湯をシャワー31や蛇口32等より成る給湯端末33の通水させるための給湯回路34が接続されている。
【0042】
そして35は給水管30と水流路29と給湯回路34の上流部の給湯回路a36とで構成され、冷媒循環回路27を流れる冷媒が直接加熱するのみの温水供給側経路である。
【0043】
37は給湯回路34の水を加熱する加温手段で、給湯回路34の上流部の給湯回路a36に並列に接続した蓄熱手段38から成っている。この蓄熱手段38は、給湯回路34の流水を溜める貯留タンク39と、給湯回路a36と蓄熱手段38とを切り換えて通水する切換手段40より構成している。
【0044】
貯留タンク39は、下端に入口管41と、上端に出口管42と、下部に放熱器23を内蔵して、断熱材43で覆って構成している。この放熱器23は貯留タンク39内の蓄熱温度(以下貯留温度と呼ぶ)を所定温度に保つための保温手段を兼ねている。給湯回路34は、分岐部44より給湯回路a36と入口管41に分岐し、集合部45で給湯回路a36と出口管42が集合する。この集合部45に切換手段40が設けられている。
【0045】
なお、貯留タンク39の大きさは、使用者の給湯使用量の最大値である最大負荷を想定し、熱交換器24での最大加熱能力と貯留タンク39での蓄熱量を併用して最大負荷に不足無く対応できるだけの蓄熱量としたものである。
【0046】
46は制御手段であり、この制御手段46の中には熱交換器24での所要加熱量を設定する負荷設定手段47と、負荷設定手段47の設定値に応じて熱交換器24の加熱量を制御する加熱制御手段48が設けられている。給水管30には、給湯回路34の流量を検出する流量検知手段49と、熱交換器24への給水温度を検出する水温検知手段50が設けられている。そして給湯回路34には出湯温度を検出する給湯温検知手段51が設けられている。
【0047】
また貯留タンク39の上部には貯留タンク39内の湯温を検出する貯留温度検知手段52が設けられている。53は気温を検出する気温検知手段である。加熱制御手段48は、気温検知手段53の検出値に応じてヒートポンプサイクルの運転条件である圧縮機22の回転数を変更して熱交換器24での加熱量を制御する。熱交換器24での加熱量は、気温が定まれば圧縮機22の回転数に比例的に可変できる。そこで、加熱制御手段48は予め各気温毎の熱交換器24の加熱量と圧縮機22の回転数の関係を記憶しておき、気温に応じて負荷設定手段47および優先選択手段47により設定された所要加熱量と熱交換器24の加熱量が一致するように回転数を設定制御する。このことで、気温が変動しても精度よい給湯制御が可能になる。
【0048】
54は給湯の目標温度を設定する温度設定手段で、使用者が任意に温度を設定する。55は水流路29の下流に設けられて熱交換器24のみで加熱された水の温度を検出する出口温度検知手段である。また、給湯回路34にある集合部45の下流には混合手段56が設けられ、給水管30の流量検知手段49下流から分岐して水流路29と加温手段37のどちらも通らない混合用水管57と、給湯回路34の流水を混合できるようになっており、混合手段56での混合割合を制御し出湯温度を目標温度に近付ける。
【0049】
熱交換器24は、冷媒流路28の流れ方向と水流路29の流れ方向を対向流とし、各流路間を熱移動が容易になるように密着して構成している。この構成により冷媒流路28と水流路29の伝熱が均一化し、熱交換効率がよくなる。また、高温の出湯も可能になる。
【0050】
以上の構成において、その動作、作用について説明する。図1に示す実施例において、蛇口32が開かれると給水管30から水道水が流れ込み始める。これを流量検知手段49が検知し制御手段46に信号が送られ、圧縮機22の運転が開始される。このとき冷媒循環回路27が冷え切った状態の場合、圧縮機22が運転されてもサイクル全体の圧力および温度が定常状態に達していないために、水流路29からは給水温度に近い水が出てしまう。制御手段46は給湯開始後は出口温度検知手段55で検知される水流路29からの水温が所定温度(例えば40℃)になるまで、切替手段40を貯留タンク39側に設定し、混合手段56の混合割合を例えば1:1として設定している。
【0051】
ここで、給水温度5℃、貯留温度80℃として、水流路29からの出口温度がまだ5℃とすると、混合手段39の出口温度は(80℃+5℃)/2で、42.5℃の出湯温度となる。給湯中の制御手段46では、負荷設定手段47において所要加熱量が算定され、この算定値に基づいて加熱制御手段48が圧縮機22の回転数を制御している。そして、圧縮機22から吐出され放熱器23および熱交換器24へ流入する高温高圧の冷媒ガスは、貯留タンク39の水を加熱しつつ、水流路29を流れる水を加熱する。そして、加熱された水は給湯回路a36、給湯回路34を経て給湯端末33から出湯する。
【0052】
一方、放熱器23と熱交換器24で冷却された冷媒は減圧手段25で減圧されて吸熱器26に流入し、ここで大気熱、太陽熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機22に戻る。そして、水流路29の出口温度は上昇し、出口温度検知手段55が所定温度(40℃)を検出すると制御手段46は切替手段40を温水供給側経路35側に設定し、混合手段56で混合用水管57からの通水を止めるように設定する。
【0053】
給湯中の負荷設定手段47では、給湯温検知手段51と温度設定手段54とのそれぞれが出力する出湯温度と目標温度との偏差から第1の所要加熱量を算定し、水温検知手段50と温度設定手段54と流量検知手段49の各値から第2の所要加熱量を算定して、第1の所要加熱量と第2の所要加熱量を加算し最終の所要加熱量と設定する。負荷設定手段47では、目標温度と給水温度との差に、流量検知手段49の検知する流量を乗じて給湯負荷を求め、これを第2の所要加熱量としている。これは、いわゆるフィードフォワードの制御量となるものである。
【0054】
負荷設定手段47で算出した給湯負荷を基に、制御手段46は切替手段40を制御する。給湯負荷が熱交換器24での最大加熱能力以下の場合は、切替手段40を温水供給側経路35側に設定し、加熱制御手段48で出湯温度が給湯の目標温度となるよう制御するように指令する。具体的な温度制御方法は、負荷設定手段47で第1の所要加熱量を、出湯温度と目標温度との偏差から公知のPID制御を用いて算定する。すなわち、出湯温度のフィードバック制御がおこなわれる。ここでの制御定数である比例ゲインや積分係数や微分係数は、制御の応答性と安定性を両立するための最適な値を予め設定しておく必要がある。
【0055】
なおフィードバック制御は、PI制御でもP制御でもファジーやニューロ制御でもよい。また、出湯温度と目標温度との偏差の変化速度から、第1の所要加熱量を判定してもよい。これは、給湯における流量や給水温度で給湯負荷が変ると、出湯温度と目標温度との偏差の変化速度に違いが表れる。たとえば、同じ加熱量の場合に流量が多ければ出湯温度の上昇は緩やかになり、流量が少なければ速やかになる。この速度変化と所要加熱量の相関を予め記憶させておき、出湯温度と目標温度との偏差の変化速度から所要加熱量を設定するもので、単に温度偏差だけで加熱量を制御する場合よりも安定に所要加熱量に制御する時間を短縮できる。
【0056】
さらに、前述の第2の所要加熱量も用いて、第1の所要加熱量と第2の所要加熱量を加算して所要加熱量を求めている。この所要加熱量と熱交換器24の加熱量が一致するように加熱制御手段48は圧縮機22の回転数を設定制御する。
【0057】
このように、所要加熱量フィードバック制御を加味することによって、出湯温度を目標温度に正確に制御することができる。とくにPIDやPI制御のように積分要素を用いることにより、出湯温度をより目標温度にあわせることができる。また、比例制御要素を用いることで給湯開始直後などの出湯温度が低い場合に大能力で加熱制御するので応答性がよくなる。
【0058】
一方、フィードフォワード制御は、給湯の温度安定時における所要熱量であるので、熱量の過不足が少なく制御の安定性に優れている。また、給湯流量や給水温度が急変したり目標温度が変更された場合には直ちに応答して加熱量を変更制御できるので、この点はフィードバック制御より応答性がよくしかも安定性がよい。そして、このフィードバック制御とフィードフォワード制御を加算して制御するので、それぞれの特徴が活かされ応答性がよくしかも安定性のよい制御が可能になる。
【0059】
一方、給湯負荷が熱交換器24での最大加熱能力を超える場合は、制御手段46が加熱制御手段48で制御する所要加熱量を熱交換器24での最大加熱能力に設定するとともに、切替手段40を貯留タンク39側に設定し、出湯温度が給湯の目標温度となるように、その偏差からフィードバック制御を用いて混合手段56を操作する。このとき、操作量と混合割合の相関を予め記憶させておき、貯留タンク39の貯留温度と給水温度から算出される混合割合に操作を行うフィードフォワード制御を加えても良い。このように混合手段56を制御して貯留タンク39の湯と混合用水管57の水とを混合して目標の出湯温度を得るのである。
【0060】
このように、熱交換器24での加熱量が不足していても不足分を補って貯留タンク39の湯で熱量を加えることができるので、熱交換器での加熱能力を大幅に大能力化しなくても良い。また、混合手段56を用いて給湯回路34の湯に水を流量調節して混合する際に、検出温度と目標温度との偏差によるフィードバック制御を用いて混合手段56を制御することでより精度の高い温度制御を行うことが可能となる。このとき、熱交換器24における加熱での出湯温度制御に、加温手段が直接影響しないので制御性が良く、冷媒と水の熱交換は加温手段と独立して熱交換器24で行うため高効率な熱交換が可能である。
【0061】
さらに、例えばシャワー室と台所とでお湯を使用している状態から、台所のみで使用するように流量が急に変化した場合でも、流量検知手段49が変化を検出し加熱制御手段48が冷媒循環回路27の圧縮機22を制御したり制御手段46で混合手段56制御することで素早い対応が可能となる。そして、急激な目標温度の変化や給湯端末での湯の使用状態の変化があっても、給湯回路34の湯に水を混合することで、特に給湯負荷が比較的小さく切換手段40が温水供給側経路35単独出湯にしていても加熱制御手段48での制御応答遅れを相殺し、温度を下げる方向にも素早く制御することができる。
【0062】
次に給湯停止中の動作について説明する。貯留タンク39の大きさは、使用者の給湯使用量の最大値である最大負荷を想定し対応できる容量になっており、例えば最大の負荷が給水温度5℃で給湯温度45℃とし、10L/minで30分間連続給湯するものとして、貯留タンク39の大きさが今100Lに設定されている。上記最大負荷に必要な瞬時加熱量は
((45℃−5℃)×10L/min×60÷860)
で約28kWである。熱交換器24での最大加熱能力が20kWあるとすると、これを負荷が超えているので、切換手段40は貯留タンク39側に設定されている。したがって、貯留温度80℃の湯が消費されて給湯され、その消費流量は、
((45℃−5℃)×10L/min÷(80℃−5℃))
で約5.3L/minであるから、100Lあった湯は約18分でなくなることになる。
【0063】
しかし、この18分の間にも放熱器23と熱交換器24で20kWの加熱が行われるので、貯留タンク内の100Lの水は加熱されて
((20kW×18min÷60×860÷100)+5℃)
で56.6℃に昇温している。(30−18)の残り12分の出湯は、貯留タンク39から56.6℃の湯が消費流量
((45℃−5℃)×10L/min÷(56.6℃−5℃))
約7.8L/minで出湯され、100Lあれば12分間は連続給湯可能であることが分かる。このように、100L以上の容量があれば最大負荷に対応可能であり、蓄熱サイズを比較的小さくできる。そして、給湯に使用する水を蓄熱手段として貯留タンク39に溜めて用いることにより、流通時は水を抜けば軽量にできる。また、蓄熱材として比熱が大きく、しかも安全なものとなるのである。
【0064】
一方、貯留タンク39は断熱材42で覆われているが、貯留温度は放熱により徐々に低下する。これを貯留温度検知手段52より検知し、貯留温度が下限温度(例えば75℃)より下がれば圧縮機22を低速で回転制御して、放熱器23により加熱して貯留タンク39内の温度を上昇させる。このとき、熱交換器24も加熱されるが、水流路29に流れがないので、熱交換器24が温まれば、それ以上熱を奪われなくなる。そして貯留温度が所定温度(例えば80℃)を超えたら圧縮機22の運転を停止する。このように貯留タンク39の温度を所定温度近くに保つように保温運転する。この保温の所定温度を給湯の目標温度(例えば45℃)より充分に高くすることにより、蓄熱密度を上げることができ、貯留タンク25の大きさを小さくすることができる。
【0065】
なお実施例1では放熱器23を貯留タンク39内部に設けたが、貯留タンク39の外周に放熱器を巻きつける等の外周に密着させて構成してもよい。また、貯留タンク39の保温を放熱器23ではなく、一般のヒータによって行っても良い。
【0066】
またここでは、加算部において第1の所要加熱量と第2の所要加熱量を加算して所要加熱量を求めているが、第1の所要加熱量をそのまま所要加熱量としてもよいし、逆に第2の所要加熱量をそのまま所要加熱量としてもよい。
【0067】
また、これらを加算せずに給湯時間経過や出湯温度に応じて切換えても良いし、第1の所要加熱量と第2の所要加熱量にそれぞれ係数を乗じて加算するようにしてもよい。
【0068】
さらに、第1の所要加熱量と第2の所要加熱量を単独で用いる場合と加算する場合を切換えてもよい。上記のように第1の所要加熱量と第2の所要加熱量の加算の組合わせや加算条件を変えることで給湯条件によっては、より制御の安定性や応答性が向上する場合がある。
【0069】
また、実施例1では第2の所要加熱量として演算する給湯負荷を、目標温度と給水温度との偏差に流量を乗じて求めていたが、概略の給湯負荷設定をするだけならば給湯負荷は流量に比例するので、流量に所定の定数を乗じた推定値を用いてもよい。この場合、給湯負荷の変化に応じて素早く対応する加熱制御が可能であり、給湯負荷の計算精度は悪くなるが水温検知手段と温度設定手段が不要になるので低コスト化できる。
【0070】
さらに、第2算定部における給湯負荷の演算を、給水温度と仮の目標温度の差に所定の定数を乗じた推定値を用いてもよい。この場合も、給湯負荷の計算精度は悪くなるが、流量検知手段と温度設定手段が不要になるので低コスト化できる。ただし、給湯開始を検知するための流量スイッチは必要になる。
【0071】
実施例1ではヒートポンプサイクルを、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。これは以下に述べる各実施例においても同様である。
【0072】
(実施例2)
図2は本発明の実施例2におけるヒートポンプ給湯装置の構成図である。なお、実施例1の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0073】
図2において、実施例1の構成と異なるところは、加温手段61を、水流路29を含んで形成した水循環路62と、この水循環路62上に配置した蓄熱手段63とより構成した点にある。また、加熱制御手段48が圧縮機22を制御するだけでなく、減圧手段25の冷媒流路抵抗と、吸熱器26の吸熱量を制御するようにした点も異なる。そして、この水循環路62および蓄熱手段63の循環水の温度保つために、冷媒循環回路27を駆動して熱交換器24の水流路29の加熱により、水循環路62に自然対流を発生させ加熱保温するようにしている。蓄熱手段63は、上下に入口管41と出口管42を配した貯留タンク64と、出口管42からの流水と水流路29からの流水を混合し給湯端末33に流出させる混合手段65とから成っている。水循環路62は、水流路29と混合手段65と貯留タンク64とをループ状に連通して構成している。また、混合用水管57には閉止機能を有する流量調節手段66が設けられ、熱交換器24の直近上流には混合用水管57に分岐した後の熱交換器24に流れる流量を検出する熱交換器流量検知手段67が設けられている。
【0074】
以上の構成で、熱交換器24が冷え切った状態から給湯が開始されると、流量調節手段66は閉止状態に設定され、給水管30から冷水が水流路29と貯留タンク64に流入し、水流路29の出口から冷水と、貯留タンク64からの温水が混合手段65で混合され給湯回路34に出湯される。このとき給湯温検知手段51の検知温度によって混合手段65の混合割合を決定するので、給湯回路34に出湯される温度は目標温度に制御できる。そして、熱交換器24の加熱量が増加してきた場合は、給湯温検知手段51の検出温度によって貯留タンク64からの出湯割合が減少し、その後混合手段65を制御することによって、給湯負荷が熱交換器24での最大加熱能力以下の場合は貯留タンク64からの出湯を停止し、負荷設定手段47で設定された所要加熱量になるように加熱制御手段48が制御する。
【0075】
加熱制御手段48による加熱量の制御は例えば以下のように行う。減圧手段25は絞り弁(図示せず)と、この絞り弁を駆動するステッピングモータ(図示せず)によりなり、絞り弁の駆動によって冷媒流路抵抗を変更することができる。そして、加熱制御手段48は、予め減圧手段25の冷媒流路抵抗と熱交換器24での加熱量の関係を定め、負荷設定手段47で設定された所要加熱量になるように冷媒流路抵抗を制御するもので、高温の出湯が必要であったり、外気温度が低いなどで加熱量が不足した場合など、冷媒流路抵抗を大きくすることで熱交換器の加熱量を所要加熱量が確保するように作用する。
【0076】
一方、給湯負荷が熱交換器24での最大加熱能力を超える場合は加熱制御手段48が熱交換器24で最大加熱能力となるよう制御するとともに、その最大加熱能力で熱交換器出口の温度が目標温度になる熱交換器の流量を制御手段46で算出し、熱交換器流量検知手段67の出力信号を基に目標流量になるように混合手段65を制御する。すると、混合手段65を出る湯温は貯留タンク64からの湯が混合されているので目標温度よりも高温になっており、給湯温検知手段51の検出温度と目標温度との偏差によるフィードバック制御を用いて流量調節手段66を制御することで混合用水管57からの水を混合し、給湯回路34に出湯される温度は目標温度に制御できる。このとき、流量調節手段66を制御することでより精度の高い温度制御を行うことが可能となる。また最終的に流量調節手段66により温度制御を行うため、混合手段65による温度制御の精度が粗くても問題が生じず、混合手段65の制御が比較的容易になる。さらに、急激な目標温度の変化や給湯端末での湯の使用状態の変化があっても、給湯回路34の湯に水を混合することで、加熱制御手段48での制御や混合手段65の制御に応答遅れが生じても、これを相殺し、温度を下げる方向にも素早く制御することができる。
【0077】
そして、蓄熱手段から加える熱量を、混合手段65で貯留タンク64側の混合流量を変えることにより自由に設定でき、貯留タンク64側の流量を小さくすることで蓄熱サイズを小さくすることもできる。
【0078】
なお、通常の給湯使用状態において、冷媒流路28と水流路29との温度差が小さくなるほどヒートポンプサイクルの効率が良くなるので、水温検知手段50の検知する給水温度に応じて、熱交換器24での所要加熱量を確保して、最も冷媒流路28と水流路29との温度差が小さくなるように減圧手段25の冷媒流路抵抗を制御すると、効率のよい運転が可能となる。
【0079】
吸熱器26の吸熱量は、ファン68のモータ69の回転数を変更して、吸熱器26への送風量を変更することにより制御する。加熱制御手段48は、予めファン68の風量と熱交換器24での加熱量の関係を定め、設定された所要加熱量になるようにファン68の風量を制御するもので、給湯負荷が極端に小さく熱交換器24の所要加熱量が小さすぎて圧縮機22の回転数制御などでは絞りきれない場合などにファン68の風量を減少させることにより熱交換器24の加熱量を減少させて所要加熱量に制御することが可能である。また、圧縮機22の最大回転数でも加熱量が不足する場合には、ファン68の風量を上げて熱交換器24の加熱量を増加させて所要加熱量に制御することも可能である。 このようにして、ヒートポンプサイクルの効率も良く、熱交換器24で最大加熱能力を十分に発生することができるので、さらに蓄熱サイズの小型化を図ることができる。
【0080】
そして、流量調節手段66には閉止機能を備えているので、混合用水管57からの水道水がむやみに混合されて冷媒循環回路57や加温手段61の加熱量を消費することを防止し、熱交換器24や加温手段61での加熱能力や加熱容量を小さく設計することができる。
【0081】
実施例2では蓄熱手段63を保温するために、冷媒循環回路27を駆動して熱交換器24の水流路29の加熱により、水循環路62に自然対流を発生させ加熱保温するようにしたが、水循環路62を直接ヒータで加熱しても良い。
【0082】
(実施例3)
図3は本発明の実施例3におけるヒートポンプ給湯装置の構成図である。なお、実施例1および実施例2の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。
【0083】
図3において、実施例1および実施例2の構成と異なるところは、給水管30から分岐する給水分岐間71を設けて水流路29と並列に配した蓄熱手段72を通るように構成し、また蓄熱手段72と熱交換器24の水流路29とを結ぶ循環路を形成するように循環水路73を設けた点にある。そして、循環水路73には外力により循環水流を生じさせその流量を調節可能な水流手段である循環ポンプ74を設け、冷媒循環回路27を駆動して熱交換器24の水流路29の加熱を行い、この循環水路73および蓄熱手段72の循環水の温度を保って、蓄熱手段72を加熱保温するようにしている。また、給水分岐間71には開閉弁75が設けられている。ここで蓄熱手段72は、上下に入口管41と出口管42を配した貯留タンク76と、出口管42からの流水と水流路29からの流水を混合し給湯回路34に流出させる混合手段39とから成っている。循環水路73は、水流路29と混合手段39と貯留タンク76とをループ状に連通して構成している。
【0084】
以上の構成による給湯中に、給湯負荷が熱交換器24での最大加熱能力を超える場合は加熱制御手段48が熱交換器24で最大加熱能力となるよう制御するとともに、その最大加熱能力で熱交換器出口の温度が目標温度になるように、水流路29の下流に設けられた出口温度検知手段55の検知信号に基づき、混合手段65を制御する。すると、混合手段65を出る湯温は貯留タンク64からの湯が混合されているので目標温度よりも高温になっており、給湯温検知手段51の検出温度と目標温度との偏差によるフィードバック制御を用いて流量調節手段66を制御することで混合用水管57からの水を混合し、給湯回路34に出湯される温度は目標温度に制御できる。このとき、流量調節手段66を制御することでより精度の高い温度制御を行うことが可能となる。また最終的に流量調節手段66により温度制御を行うため、混合手段65による温度制御の精度が粗くても問題が生じず、混合手段65の制御が比較的容易になる。さらに、急激な目標温度の変化や給湯端末での湯の使用状態の変化があっても、給湯回路34の湯に水を混合することで、加熱制御手段48での制御や混合手段65の制御に応答遅れが生じても、これを相殺し、温度を下げる方向にも素早く制御することができる。そして、蓄熱手段から加える熱量を、混合手段65で貯留タンク64側の混合流量を変えることにより自由に設定でき、貯留タンク64側の流量を小さくすることで蓄熱サイズを小さくすることもできる。
【0085】
給湯が停止した場合は、貯留タンク76内は出湯により蓄熱量は下がっている。ここで、制御手段46は、まず混合手段65を混合状態に戻し流量調節手段66を閉止し、貯留温度検知手段52により貯留温度の低下(例えば75℃以下)を検知したら、冷媒循環回路27を駆動し、圧縮機22を所定の回転数で運転し、循環ポンプ74を駆動する。これにより高温高圧の冷媒が冷媒流路28に流れ、水流路29を加熱し、強制的に生じさせた水流で循環水路74を流れてきた水がここで加熱される。そして、貯留タンク76内の温度が上昇して、貯留温度検知手段52の検知温度が所定温度(例えば80℃)を超えれば冷媒循環回路27の運転を停止する。この運転停止の繰り返しで蓄熱手段72と循環水路73の循環水は保温される。
【0086】
以上の実施例3の構成によれば、循環ポンプ74により循環水路73で強制的に水流を生じさせるので流量を多くして保温時の加熱量を大きくでき、貯留タンク76が冷えたときでも短時間で所定温度に戻すことができる。また、流量調節も可能なので保温加熱時の温度制御性が良く、循環水路73の熱が熱交換器を暖めるので冷媒循環回路27の立ち上がりも早い。さらに、循環水路73の保温をヒートポンプにより行うので、ヒータなどに比べ効率が良く、また保温時に冷媒循環回路27が駆動するので、冷媒循環回路自体の立上りも一層早くなる。
【0087】
また、流量調節手段66には閉止機能を備えているので、循環ポンプ74を運転すると一部または全部の水流が温水供給側経路35を通らずに混合用水管57へバイパスして貯留タンク76へと循環することを防ぐことができる。
【0088】
なお実施例3では蓄熱手段72を保温するために、冷媒循環回路27を駆動して熱交換器24の水流路29の加熱するようにしたが、循環水路73を直接ヒータで加熱してもよいし、貯留タンク76を潜熱蓄熱材等の蓄熱材を満たした容器とし給水分岐間71と循環水路73とをそれぞれ通すような構成の蓄熱手段にしても良い。
【0089】
【発明の効果】
以上のように、本発明によれば、ヒートポンプサイクルの大きさを抑えても十分な給湯能力があり、蓄熱手段の利用を最小限にとどめて蓄熱サイズを小さくでき、制御性が良く、急激な目標温度の変化や給湯端末での湯の使用状態の変化があっても素早く制御することができるヒートポンプ給湯装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ給湯装置の構成図
【図2】 本発明の実施例2におけるヒートポンプ給湯装置の構成図
【図3】 本発明の実施例3におけるヒートポンプ給湯装置の構成図
【図4】 従来のヒートポンプ給湯装置の構成図
【符号の説明】
22 圧縮機
24 熱交換器
25 減圧手段
26 吸熱器
27 冷媒循環回路
28 冷媒流路
29 水流路
30 給水管
33 給湯端末
34 給湯回路
35 温水供給側経路
37、61 加温手段
38、63、72 蓄熱手段
39、64、76 貯留タンク
47 負荷設定手段
48 加熱制御手段
49 流量検知手段
50 水温検知手段
51 給湯温検知手段
53 気温検知手段
54 温度設定手段
57 混合用水管
65 混合手段
66 流量調節手段
67 熱交換器流量検知手段
73 循環水路
74 循環ポンプ(水流手段)
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heat pump water heater.
[0002]
[Prior art]
  As a conventional heat pump hot water supply apparatus, a hot water supply apparatus as described in Patent Document 1 has been proposed. As shown in FIG. 4, this heat pump hot water supply apparatus includes a refrigerant circulation circuit 7 in which a compressor 2, a radiator 3, a decompression means 4, and a heat absorber 5 are connected in a refrigerant flow path 1 configured in a closed circuit, and a radiator. A heat exchanger 24 having a water passage 9 for exchanging heat with the three refrigerant passages a8, a water supply pipe 11 for supplying tap water to the water passage 9, and the hot water supply terminal such as the water passage 9 and a shower or a faucet. 12 is provided with a hot water supply circuit 13 for connecting the electric power supply 12, a temperature sensor 14 provided in the hot water supply circuit 13 for detecting the hot water supply temperature, and an inverter 15 for controlling the rotational speed of the compressor 2. The output frequency of the inverter 15 is converted according to the difference from the set temperature. That is, in the conventional hot water supply apparatus, the control is performed such that the rotation speed of the compressor 2 is increased when the hot water supply temperature is lower than the set temperature, and the rotation speed is decreased when the hot water supply temperature is high.
[0003]
[Patent Document 1]
  JP-A-2-223767
[0004]
[Problems to be solved by the invention]
  In such an instantaneous water heater type, the hot water supply load during hot water supply is not constant. In particular, since the flow rate is varied by the user depending on the purpose of hot water supply, the hot water supply load changes greatly. For example, in the case of hot water supply for home use, a large flow rate of 10 to 20 L / min is used when supplying hot water to a shower or bath, but 3 to 5 L / min for washing dishes in the kitchen or hot water supply to the wash surface. Small flow rate. Also, the hot water supply load varies greatly depending on the seasonal change in the temperature of the water supply.
[0005]
  Control the amount of hot water supply by simply changing the rotation speed of a single compressor with respect to a single heat exchanger or heat absorber as in conventional heat pump water heaters, with a hot water supply load that varies greatly with changes in flow rate and water temperature. In such a case, a large heat exchanger or a heat absorber is required for a large compressor in order to cope with a large flow rate of hot water supply load such as a shower. However, in such a large apparatus, the rise of temperature and pressure is slow, and there is a limit when trying to lower the capacity for a small hot water supply load, and there is a disadvantage that it becomes difficult to cope with such a low load.
[0006]
  As described above, in the conventional heat pump hot water supply apparatus, there is a limit to the capacity change width in the control only by changing the rotation speed of a single compressor in a large apparatus, for example, simultaneous use of a shower in a winter season and a hot water bath in a bath It was not possible to cover a wide range of hot water supply capacity, from high capacity to small capacity such as dishwashing in summer. For this reason, there may be inconveniences such as a drop in shower temperature and hot water coming out of the dishes.
[0007]
  Control response when the hot water supply load, which varies greatly depending on changes in flow rate and water temperature, is controlled by changing the rotation speed of the compressor only by the difference between the hot water supply temperature and the set temperature, as in the conventional heat pump water heater. Inconvenience arises in stability and stability. For example, if the control gain, which is the coefficient of the temperature difference between the hot water supply temperature and the set temperature and the rotation speed of the compressor, is lowered in order to improve the stability of the control, the change amount of the rotation speed with respect to the change amount of the temperature difference decreases. The hot water temperature change becomes gradual and it takes time to reach the set temperature, or the offset value of the hot water temperature does not change to the set temperature due to the difference in flow rate and water temperature due to the offset. On the other hand, if the control gain is increased, the change in hot water temperature with respect to the change in the compressor rotation speed is stable even if stable control is possible because the change in the hot water temperature with respect to the change in the compressor rotation speed is small at large flow rates with a large hot water supply load. With hot water supply at a small flow rate that becomes steep, the change in the control of the compressor rotation speed becomes steep and the hot water supply temperature is not stable, and hunting occurs due to the phase difference between the hot water supply temperature and the rotation speed, resulting in divergent control. There was also a possibility to do.
[0008]
  In addition, there is a limit to the ability change range in the control that only changes the rotation speed of a single compressor as in the case of a conventional heat pump hot water supply device. For example, due to the large capacity of simultaneous use of a shower in the winter and hot water bathing, It could not cover a wide range of hot water supply capabilities up to the micro-capacity such as dishwashing. For this reason, there may be inconveniences such as a drop in shower temperature and hot water coming out of the dishes.
[0009]
  In addition, if the operating conditions of the refrigerant circulation circuit change depending on the temperature, water temperature, and hot water supply load, the operating efficiency also changes.However, the conventional heat pump hot water supply device only changes the rotation speed of the compressor according to the hot water supply temperature, so the operating efficiency is As a result, it was operated as it was even under conditions of poor heating efficiency. Therefore, depending on the conditions, the efficiency is extremely deteriorated and not only the ability cannot be exhibited, but also the running cost may be high.
[0010]
  As described above, conventional heat pump water heaters perform uniform heating control regardless of the size of the hot water supply load, making it difficult to accommodate a wide range of hot water supply loads, or achieving both control response and stability. There were problems such as lack of efficiency.
[0011]
  The present invention solves the above-described conventional problems, and an object thereof is to provide a heat pump hot water supply device that has a wide capacity range and can perform hot water supply with high controllability and efficiency.
[0012]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a heat pump water heater of the present invention,A refrigerant circuit including a compressor, a heat exchanger as a radiator, a decompression unit, and a heat absorber; a water flow path in the heat exchanger that exchanges heat with a refrigerant flow path of the heat exchanger; and the water flow path A hot water supply side path configured by the water supply pipe, the water flow path, and the hot water supply circuit, and a hot water supply circuit that connects the water supply pipe to supply tap water to the hot water supply terminal. Heating means provided so as to add heat to water in the hot water supply circuit, and a mixing water pipe branched from the water supply pipe and connected to the hot water supply circuit without passing through either the water flow path or the heating means, The heating means is a heat storage means connected in parallel to the heat exchanger, and has a mixing means for mixing running water from the water flow path and hot water from the heat storage means, and the heating amount of the heat exchanger is The mixing means so as to reduce the proportion of hot water discharged from the heat storage means as it increases. And wherein the operatingIs.
[0013]
  According to the above invention, in addition to heating the tap water with the heat exchanger, the heating means adds heat, that is, heats, so that even if the heating amount in the heat exchanger is insufficient, the shortage is compensated. Therefore, it is not necessary to greatly increase the heating capacity of the heat exchanger. In addition, the heating means does not directly affect the tapping temperature control by the heat exchanger, so the controllability is good, and the heat exchange of the refrigerant and water is performed by the heat exchanger independently of the heating means, so highly efficient heat exchange is possible It is. In addition, even if there is a sudden change in the target temperature or a change in hot water usage at the hot water supply terminal, mixing the water with the hot water in the hot water supply circuit cancels out the control response delay and quickly controls the temperature to decrease. can do.
[0014]
  Moreover, since the hot water from the heat storage means can be mixed and heated with the water in the hot water supply circuit at a predetermined ratio, even if there is a sudden change in the target temperature or the state of use at the hot water supply terminal, the predetermined hot water temperature can be obtained immediately.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
  The heat pump hot water supply apparatus according to the first aspect of the present invention performs heat exchange with a refrigerant circuit including a compressor, a heat exchanger that is a radiator, a decompression unit, and a heat absorber, and a refrigerant channel of the heat exchanger. A water flow path in the heat exchanger, a water supply pipe for supplying tap water to the water flow path, a hot water supply circuit connected to pass water from the water flow path to a hot water supply terminal, the water supply pipe, the water flow path, and the hot water supply A hot water supply side path composed of a circuit andThe hot water supply circuitHeating means provided so as to add heat to the water, and a mixing water pipe branched from the water supply pipe and connected to the hot water supply circuit without passing through either the water flow path or the heating means.The heating means is heat storage means connected in parallel to the heat exchanger, and the water flow Having mixing means for mixing running water from the passage and warm water from the heat storage means, and operating the mixing means to reduce the rate of hot water discharged from the heat storage means as the heating amount of the heat exchanger increases. Characterized byIs.
[0016]
  According to this invention, in addition to heating tap water with a heat exchanger, the amount of heat is added by a heating means, that is, heated, and even if the amount of heating in the heat exchanger is insufficient, the shortage is compensated. Therefore, it is not necessary to greatly increase the heating capacity of the heat exchanger. In addition, the heating means does not directly affect the tapping temperature control by the heat exchanger, so the controllability is good, and the heat exchange of the refrigerant and water is performed by the heat exchanger independently of the heating means, so highly efficient heat exchange is possible It is. In addition, even if there is a sudden change in the target temperature or a change in hot water usage at the hot water supply terminal, mixing the water with the hot water in the hot water supply circuit cancels out the control response delay and quickly controls the temperature to decrease. To doit can.
[0017]
  In addition, the heat of the heat storage meansThe amount of heat for heating water can be freely set by changing the flow rate on the heat storage means side, and the heat storage size can be reduced by reducing the flow rate on the heat storage means side. Also, the hot water from the heat storage meansHot water supply circuitSince it can be mixed and heated with water at a predetermined ratio, it can quickly respond even if there is a sudden change in the target temperature or the state of use at the hot water supply terminal, and a predetermined hot water temperature can be obtained immediately.
[0018]
  Claim 2The heat pump water heater of the invention described inClaim 1In the described heat storage means, the heat storage temperature is higher than the hot water supply temperature.
[0019]
  According to the present invention, by setting the hot water temperature of the heat storage means higher than the hot water supply temperature, the heat storage size is reduced by increasing the heat storage density, and the installation space and weight can be reduced.
[0020]
  Claim 3The heat pump water heater of the invention described inClaim 1 or 2The described heat storage means is a storage tank for storing water.
[0021]
  According to this invention, by using the water used for hot water supply as the heat storage means, the weight can be reduced by removing the water during distribution. Moreover, it has a large specific heat as a heat storage material and is safe.
[0022]
  Claim 4The heat pump hot-water supply apparatus of the invention described in (2), load setting means for setting a required heating amount in the heat exchanger, and heating control means for controlling the heating amount of the heat exchanger according to a set value of the load setting means, WithClaims 1-3It is a thing of any one of these.
[0023]
  According to the present invention, the required heating amount set by the load setting means is a necessary heat exchange heat amount in the heat exchanger corresponding to the hot water supply load. And since a heating control means controls the heating amount of a heat exchanger according to this required heat amount, even if there is a sudden change in the target temperature or the state of use at the hot water supply terminal, hot water supply control without excess or deficiency can be performed.
[0024]
  Claim 5The heat pump hot-water supply device of the invention described in the above item includes at least one of a water temperature detection means for detecting the water supply temperature of the water supply pipe, a flow rate detection means for detecting the flow rate of the hot water supply circuit, and a temperature setting means for setting a target temperature of the hot water supply. The load setting means calculates the required heating amount from the values of the water temperature detection means, temperature setting means and flow rate detection means.Claim 4As described.
[0025]
  According to this invention, since the hot water supply load is proportional to the flow rate, the required heating amount estimated here is correlated with the hot water supply load. Therefore, even when the hot water supply load changes suddenly due to a change in flow rate, it is possible to perform heating control that quickly responds to changes in the hot water supply load. Further, by calculating the required heating amount from the values of the water temperature detecting means, the temperature setting means, and the flow rate detecting means, an accurate hot water supply load can be set as the required heating amount.
[0026]
  Claim 6The heat pump water heater of the invention described inClaim 4 or 5The described heating control means controls at least one of the rotational speed of the compressor, the refrigerant flow path resistance of the pressure reducing means, and the heat absorption amount of the heat absorber.
[0027]
  According to this invention, the relationship between the number of rotations of the compressor, the refrigerant flow resistance of the decompression means, the amount of air blower that absorbs heat from the atmospheric heat to the heat absorber and the amount of heating in the heat exchanger is determined and set in advance. The required heating amount can be obtained by controlling the number of rotations of the compressor, the degree of pressure reduction of the pressure reducing means, and the number of rotations of the blower so as to obtain the required heating amount.
[0028]
  Claim 7The heat pump water heater of the invention described inClaims 1-6The mixing water pipe according to any one of the above is provided with a flow rate adjusting means for adjusting a flowing water flow rate.
[0029]
  According to the present invention, by adjusting the flow rate of water to the hot water in the hot water supply circuit and mixing it, even if there is a sudden change in the target temperature or the state of use at the hot water supply terminal, it can be handled quickly and accurately.
[0030]
  Claim 8The heat pump hot water supply apparatus of the invention described in the above is provided with a hot water temperature detection means for detecting the temperature of hot water provided in a hot water supply circuit, and a temperature setting means for setting a target temperature of the hot water supply, and the detected temperature of the hot water temperature detection means The flow rate adjusting means is controlled by deviation from the target temperature.Claim 7As described.
[0031]
  According to the present invention, it is possible to perform temperature control with higher accuracy by controlling the flow rate adjusting means using feedback control based on a deviation between the detected temperature and the target temperature. In addition, since the temperature is finally controlled by the flow rate adjusting means, there is no problem even if the temperature control accuracy by the mixing means is rough, especially when the hot water supply load exceeds the heating capacity of the refrigerant circulation circuit, and the mixing means can be controlled. It becomes relatively easy.
[0032]
  Claim 9The heat pump hot-water supply device of the invention described in (1) includes an annular water passage that connects the water flow path of the heat exchanger and the heat storage means in a ring shape, and a water flow means that can adjust the flow rate by generating a circulating water flow in the annular water path by external force, The water flow means is driven to pass water through the water flow path of the heat exchanger and the refrigerant circulation circuit is operated to keep the heat storage temperature of the heat storage means at a predetermined temperature.Claims 1-8It is a thing of any one of these.
[0033]
  According to the present invention, since the water flow is forcibly generated by the water flow means, the flow rate can be increased to increase the heating amount during the heat retention, and the temperature can be returned to the predetermined temperature in a short time even when the heat storage means is cooled. Further, since the flow rate can be adjusted, the temperature controllability during the heat insulation heating is good, and the heat of the annular water passage warms the heat exchanger, so that the refrigerant circulation circuit rises quickly. Furthermore, since the water circulation path is kept warm by a heat pump, the efficiency is higher than that of a heater and the heat pump is driven at the time of warming, so that the rise of the refrigerant circulation circuit itself is further accelerated.
[0034]
  Claim 10The heat pump water heater of the invention described inClaims 1-9The mixing water pipe according to any one of the above is provided with a closing means for preventing the flow of water.
[0035]
  According to this invention, it is prevented that tap water from the mixing water pipe is mixed unnecessarily and consumes the heating amount of the refrigerant circulation circuit and the heating means, and the heating capacity and heating in the heat exchanger and the heating means are prevented. The capacity can be reduced. Further, in the configuration in which the heat storage means connected to the annular channel is kept warm by operating the refrigerant circulation circuit, when the water flow means is operated, a part or all of the water flow is bypassed to the mixing water pipe without passing through the hot water supply side path. It is possible to prevent circulation.
[0036]
  Claim 11The heat pump hot-water supply apparatus of the invention described in (1) includes a hot water supply flow rate detection means for detecting the flow rate of water in the hot water supply circuit, a refrigerant circuit side flow rate detection means for detecting the flow rate of water flowing through the hot water supply side path, and a heating means. At least one of heating flow rate detection means for detecting the flow rate of heated water, hot water supply flow rate detection means for detecting the flow rate of water in the mixing water pipe, and feed water flow rate detection means provided at any position of the water supply pipe And at least one of the mixing means, the refrigerant circulation circuit, and the flow rate adjusting means is controlled by the detected value.Claims 1-10It is a thing of any one of these.
[0037]
  According to the present invention, for example, even when hot water is used in a shower room and a kitchen, even when the flow rate suddenly changes so as to be used only in the kitchen, the mixing means, the refrigerant circulation circuit, and the flow rate adjusting means Controlling at least one enables quick response.
[0038]
  Claim 12The heat pump water heater of the invention described inClaims 1-11The refrigerant circulation circuit according to any one of the above is a supercritical heat pump cycle in which the pressure of the refrigerant becomes equal to or higher than the critical pressure, and the flowing water in the water flow path of the heat exchanger is heated by the refrigerant whose pressure is increased to the critical pressure or higher. Is.
[0039]
  According to the present invention, since the refrigerant flowing through the refrigerant flow path of the heat exchanger is pressurized to a critical pressure or higher by the compressor, the heat is deprived by the flowing water in the water flow path of the heat exchanger and the temperature drops. Even if it does not condense. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire heat exchanger, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.
[0040]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings. In the conventional example and each example, parts having the same configuration and the same operation are denoted by the same reference numerals, and detailed description thereof is omitted.
[0041]
  Example 1
  FIG. 1 is a configuration diagram of a heat pump type hot water supply apparatus in Embodiment 1 of the present invention. In FIG. 1, a refrigerant pipe 21 connects a heat exchanger 24, a decompression means 25, and a heat absorber 26 that function as a radiator in the same manner as the compressor 22, the radiator 23, and the radiator 23, and is connected to a refrigerant circuit 27. Is configured. The refrigerant circulation circuit 27 uses, for example, carbon dioxide as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 22 is driven by a built-in electric motor (not shown), and compresses and discharges the sucked refrigerant to a pressure exceeding the critical pressure. Further, the heat exchanger 24 is provided with a water channel 29 for exchanging heat with the refrigerant channel 28. A water supply pipe 30 that directly connects the water channel 29 to the water flow channel 29 and directly supplies the tap water, and a hot water supply circuit 34 for passing hot water discharged from the water flow channel 29 through a hot water supply terminal 33 including a shower 31 and a faucet 32. Is connected.
[0042]
  Reference numeral 35 denotes a hot water supply side path which is composed of the water supply pipe 30, the water flow path 29, and the hot water supply circuit a 36 upstream of the hot water supply circuit 34, and the refrigerant flowing through the refrigerant circulation circuit 27 is only directly heated.
[0043]
  Reference numeral 37 denotes a heating means for heating the water in the hot water supply circuit 34, and comprises a heat storage means 38 connected in parallel to the hot water supply circuit a36 upstream of the hot water supply circuit 34. The heat storage means 38 includes a storage tank 39 that stores flowing water of the hot water supply circuit 34, and a switching means 40 that switches between the hot water supply circuit a36 and the heat storage means 38 and passes the water.
[0044]
  The storage tank 39 includes an inlet pipe 41 at the lower end, an outlet pipe 42 at the upper end, and a radiator 23 at the lower part, and is covered with a heat insulating material 43. The radiator 23 also serves as a heat retaining means for keeping the heat storage temperature in the storage tank 39 (hereinafter referred to as the storage temperature) at a predetermined temperature. The hot water supply circuit 34 branches from the branch portion 44 to the hot water supply circuit a 36 and the inlet pipe 41, and the hot water supply circuit a 36 and the outlet pipe 42 are gathered at the collecting portion 45. Switching means 40 is provided in the gathering portion 45.
[0045]
  The size of the storage tank 39 is assumed to be the maximum load that is the maximum amount of hot water used by the user, and the maximum load is obtained by combining the maximum heating capacity in the heat exchanger 24 and the heat storage amount in the storage tank 39. This is the amount of heat storage that can be handled without any shortage.
[0046]
  46 is a control means, and in this control means 46, a load setting means 47 for setting a required heating amount in the heat exchanger 24, and a heating amount of the heat exchanger 24 according to a set value of the load setting means 47 A heating control means 48 is provided for controlling the above. The water supply pipe 30 is provided with a flow rate detecting means 49 for detecting the flow rate of the hot water supply circuit 34 and a water temperature detecting means 50 for detecting the temperature of the water supplied to the heat exchanger 24. The hot water supply circuit 34 is provided with a hot water supply temperature detecting means 51 for detecting the hot water temperature.
[0047]
  A storage temperature detecting means 52 for detecting the temperature of hot water in the storage tank 39 is provided above the storage tank 39. 53 is an air temperature detecting means for detecting the air temperature. The heating control means 48 controls the amount of heat in the heat exchanger 24 by changing the number of revolutions of the compressor 22 which is the operating condition of the heat pump cycle according to the detection value of the air temperature detection means 53. The amount of heat in the heat exchanger 24 can be varied in proportion to the rotational speed of the compressor 22 if the air temperature is determined. Therefore, the heating control means 48 stores in advance the relationship between the heating amount of the heat exchanger 24 and the rotation speed of the compressor 22 for each temperature, and is set by the load setting means 47 and the priority selection means 47 according to the temperature. The rotational speed is set and controlled so that the required heating amount matches the heating amount of the heat exchanger 24. This enables accurate hot water supply control even if the temperature fluctuates.
[0048]
  Reference numeral 54 denotes temperature setting means for setting a target temperature for hot water supply, and the user arbitrarily sets the temperature. Reference numeral 55 denotes an outlet temperature detection means that is provided downstream of the water flow path 29 and detects the temperature of water heated only by the heat exchanger 24. Further, a mixing means 56 is provided downstream of the collecting portion 45 in the hot water supply circuit 34 and branches from the downstream of the flow rate detecting means 49 of the water supply pipe 30 so that neither the water flow path 29 nor the heating means 37 passes through. 57 and the flowing water of the hot water supply circuit 34 can be mixed, and the mixing ratio in the mixing means 56 is controlled to bring the tapping temperature close to the target temperature.
[0049]
  The heat exchanger 24 is configured so that the flow direction of the refrigerant flow path 28 and the flow direction of the water flow path 29 are opposed to each other and are in close contact with each other so that heat transfer is easy. With this configuration, heat transfer between the refrigerant flow path 28 and the water flow path 29 is made uniform, and heat exchange efficiency is improved. In addition, hot water can be discharged.
[0050]
  The operation and action of the above configuration will be described. In the embodiment shown in FIG. 1, tap water starts to flow from the water supply pipe 30 when the faucet 32 is opened. This is detected by the flow rate detection means 49, a signal is sent to the control means 46, and the operation of the compressor 22 is started. At this time, when the refrigerant circulation circuit 27 is in a cold state, even if the compressor 22 is operated, the pressure and temperature of the entire cycle have not reached the steady state, so that water close to the feed water temperature is discharged from the water channel 29. End up. The control means 46 sets the switching means 40 to the storage tank 39 side until the water temperature from the water flow path 29 detected by the outlet temperature detection means 55 reaches a predetermined temperature (for example, 40 ° C.) after the start of hot water supply, and the mixing means 56. Is set to 1: 1, for example.
[0051]
  Here, if the feed water temperature is 5 ° C. and the storage temperature is 80 ° C., and the outlet temperature from the water flow path 29 is still 5 ° C., the outlet temperature of the mixing means 39 is (80 ° C. + 5 ° C.) / 2, which is 42.5 ° C. It becomes the hot water temperature. In the control means 46 during hot water supply, the required heating amount is calculated in the load setting means 47, and the heating control means 48 controls the rotation speed of the compressor 22 based on this calculated value. The high-temperature and high-pressure refrigerant gas discharged from the compressor 22 and flowing into the radiator 23 and the heat exchanger 24 heats the water flowing in the water flow path 29 while heating the water in the storage tank 39. The heated water is discharged from the hot water supply terminal 33 via the hot water supply circuit a36 and the hot water supply circuit 34.
[0052]
  On the other hand, the refrigerant cooled by the radiator 23 and the heat exchanger 24 is depressurized by the decompression means 25 and flows into the heat absorber 26, where it absorbs natural energy such as atmospheric heat and solar heat to evaporate and form the gas. Return to. When the outlet temperature of the water flow path 29 rises and the outlet temperature detection means 55 detects a predetermined temperature (40 ° C.), the control means 46 sets the switching means 40 to the hot water supply side path 35 side and mixes by the mixing means 56. It sets so that the water flow from the water pipe 57 may be stopped.
[0053]
  The load setting means 47 during hot water supply calculates the first required heating amount from the deviation between the hot water temperature output from the hot water supply temperature detection means 51 and the temperature setting means 54 and the target temperature, and the water temperature detection means 50 and the temperature. The second required heating amount is calculated from the values of the setting means 54 and the flow rate detecting means 49, and the first required heating amount and the second required heating amount are added to set the final required heating amount. The load setting means 47 multiplies the difference between the target temperature and the feed water temperature by the flow rate detected by the flow rate detection means 49 to obtain a hot water supply load, which is used as the second required heating amount. This is a so-called feedforward control amount.
[0054]
  Based on the hot water supply load calculated by the load setting means 47, the control means 46 controls the switching means 40. When the hot water supply load is less than or equal to the maximum heating capacity of the heat exchanger 24, the switching means 40 is set on the hot water supply side path 35 side, and the heating control means 48 is controlled so that the hot water temperature becomes the target temperature of hot water supply. Command. As a specific temperature control method, the load setting means 47 calculates the first required heating amount from the deviation between the tapping temperature and the target temperature using known PID control. That is, feedback control of the tapping temperature is performed. The proportional constant, integral coefficient, and differential coefficient, which are control constants here, need to be set in advance to optimum values for achieving both control response and stability.
[0055]
  The feedback control may be PI control, P control, fuzzy or neuro control. Further, the first required heating amount may be determined from the change rate of the deviation between the tapping temperature and the target temperature. When the hot water supply load changes depending on the flow rate or the supply water temperature in the hot water supply, a difference appears in the change rate of the deviation between the hot water temperature and the target temperature. For example, in the case of the same heating amount, if the flow rate is large, the rise of the hot water temperature becomes gradual, and if the flow rate is small, the rise becomes quick. The correlation between this speed change and the required heating amount is stored in advance, and the required heating amount is set from the rate of change of the deviation between the tapping temperature and the target temperature. Compared to the case where the heating amount is controlled only by the temperature deviation. The time required to stably control the required heating amount can be shortened.
[0056]
  Further, the required heating amount is obtained by adding the first required heating amount and the second required heating amount using the above-described second required heating amount. The heating control means 48 sets and controls the rotational speed of the compressor 22 so that the required heating amount and the heating amount of the heat exchanger 24 coincide.
[0057]
  Thus, by taking into account the required heating amount feedback control, the tapping temperature can be accurately controlled to the target temperature. In particular, by using an integral element such as PID or PI control, the tapping temperature can be more matched to the target temperature. In addition, by using a proportional control element, the responsiveness is improved because the heating control is performed with a large capacity when the temperature of the discharged hot water is low, such as immediately after the start of hot water supply.
[0058]
  On the other hand, since the feedforward control is a required amount of heat when the temperature of the hot water supply is stable, there is little excess or deficiency in the amount of heat, and the control stability is excellent. Further, when the hot water supply flow rate or the supply water temperature changes suddenly or the target temperature is changed, the heating amount can be changed and controlled immediately, so that this point has better responsiveness and better stability than feedback control. Since the feedback control and the feedforward control are added and controlled, each feature is utilized and control with good response and stability is possible.
[0059]
  On the other hand, when the hot water supply load exceeds the maximum heating capacity in the heat exchanger 24, the required heating amount controlled by the control means 46 with the heating control means 48 is set to the maximum heating capacity in the heat exchanger 24 and the switching means. 40 is set to the storage tank 39 side, and the mixing means 56 is operated using feedback control from the deviation so that the hot water temperature becomes the target temperature of hot water supply. At this time, the correlation between the operation amount and the mixing ratio may be stored in advance, and feedforward control for performing an operation on the mixing ratio calculated from the storage temperature of the storage tank 39 and the feed water temperature may be added. In this way, the mixing means 56 is controlled to mix the hot water in the storage tank 39 and the water in the mixing water pipe 57 to obtain the target hot water temperature.
[0060]
  In this way, even if the amount of heat in the heat exchanger 24 is insufficient, the amount of heat can be added with hot water in the storage tank 39 by compensating for the shortage, so the heating capacity in the heat exchanger is greatly increased. It is not necessary. Further, when the mixing means 56 is used to adjust the flow rate of water to the hot water in the hot water supply circuit 34 and mix, the mixing means 56 is controlled by using feedback control based on the deviation between the detected temperature and the target temperature, so that the accuracy can be improved. High temperature control can be performed. At this time, since the heating means does not directly affect the tapping temperature control by heating in the heat exchanger 24, controllability is good, and heat exchange of the refrigerant and water is performed by the heat exchanger 24 independently of the heating means. Highly efficient heat exchange is possible.
[0061]
  Further, for example, even when hot water is used in the shower room and kitchen, even when the flow rate suddenly changes so that it is used only in the kitchen, the flow rate detecting means 49 detects the change and the heating control means 48 circulates the refrigerant. By controlling the compressor 22 of the circuit 27 and controlling the mixing means 56 with the control means 46, a quick response can be realized. Even if there is a sudden change in the target temperature or a change in the hot water usage at the hot water supply terminal, the switching means 40 supplies hot water in particular because the hot water supply load is relatively small by mixing the water with the hot water in the hot water supply circuit 34. Even if the side path 35 is used as a single hot water outlet, the control response delay in the heating control means 48 can be offset and the temperature can be quickly controlled in the direction of lowering the temperature.
[0062]
  Next, the operation while hot water supply is stopped will be described. The size of the storage tank 39 is a capacity that can be handled assuming the maximum load, which is the maximum amount of hot water used by the user. For example, the maximum load is 5 ° C. and the hot water temperature is 45 ° C. The size of the storage tank 39 is now set to 100 L, assuming that hot water is continuously supplied for 30 minutes at min. The amount of instantaneous heating required for the above maximum load is
  ((45 ° C.-5 ° C.) × 10 L / min × 60 ÷ 860)
It is about 28kW. If the maximum heating capacity in the heat exchanger 24 is 20 kW, the load exceeds this, so the switching means 40 is set on the storage tank 39 side. Therefore, hot water with a storage temperature of 80 ° C. is consumed and hot water is supplied,
  ((45 ° C.-5 ° C.) × 10 L / min ÷ (80 ° C.-5 ° C.))
Therefore, about 100 L of hot water disappears in about 18 minutes.
[0063]
  However, since 20 kW is heated by the radiator 23 and the heat exchanger 24 during this 18 minutes, 100 L of water in the storage tank is heated.
  ((20kW × 18min ÷ 60 × 860 ÷ 100) + 5 ° C)
The temperature is raised to 56.6 ° C. For the remaining 12 minutes of (30-18), 56.6 ° C hot water is consumed from the storage tank 39.
  ((45 ° C.-5 ° C.) × 10 L / min ÷ (56.6 ° C.-5 ° C.))
It can be seen that the hot water is discharged at about 7.8 L / min, and if it is 100 L, the hot water can be continuously supplied for 12 minutes. Thus, if there exists a capacity | capacitance of 100L or more, it can respond to a maximum load and can make heat storage size comparatively small. And by storing the water used for hot water supply in the storage tank 39 as a heat storage means, the water can be reduced by removing the water during distribution. In addition, the heat storage material has a large specific heat and is also safe.
[0064]
  On the other hand, although the storage tank 39 is covered with the heat insulating material 42, the storage temperature gradually decreases due to heat dissipation. This is detected by the storage temperature detection means 52, and if the storage temperature falls below the lower limit temperature (for example, 75 ° C.), the compressor 22 is rotationally controlled at a low speed and heated by the radiator 23 to increase the temperature in the storage tank 39. Let At this time, the heat exchanger 24 is also heated, but since there is no flow in the water flow path 29, if the heat exchanger 24 is warmed, no more heat is taken away. When the storage temperature exceeds a predetermined temperature (for example, 80 ° C.), the operation of the compressor 22 is stopped. In this way, the temperature keeping operation is performed so as to keep the temperature of the storage tank 39 close to a predetermined temperature. By making this predetermined temperature for heat insulation sufficiently higher than the target temperature of hot water supply (for example, 45 ° C.), the heat storage density can be increased and the size of the storage tank 25 can be reduced.
[0065]
  In the first embodiment, the radiator 23 is provided inside the storage tank 39. However, the radiator 23 may be configured to be in close contact with the outer periphery of the storage tank 39, such as wrapping the radiator. Further, the temperature of the storage tank 39 may be maintained by a general heater instead of the radiator 23.
[0066]
  Here, the addition unit calculates the required heating amount by adding the first required heating amount and the second required heating amount, but the first required heating amount may be used as the required heating amount as it is. The second required heating amount may be used as the required heating amount as it is.
[0067]
  Further, these may not be added, but may be switched according to the elapsed time of hot water supply and the temperature of the hot water, or may be added by multiplying the first required heating amount and the second required heating amount by a coefficient.
[0068]
  Furthermore, the case where the first required heating amount and the second required heating amount are used alone and the case where they are added may be switched. As described above, the stability and responsiveness of the control may be further improved depending on the hot water supply conditions by changing the combination of addition of the first required heating amount and the second required heating amount and the addition conditions.
[0069]
  In the first embodiment, the hot water supply load calculated as the second required heating amount is obtained by multiplying the deviation between the target temperature and the water supply temperature by the flow rate. However, if only the approximate hot water supply load is set, the hot water supply load is Since it is proportional to the flow rate, an estimated value obtained by multiplying the flow rate by a predetermined constant may be used. In this case, it is possible to perform heating control that responds quickly according to changes in the hot water supply load, and although the calculation accuracy of the hot water supply load is deteriorated, the water temperature detecting means and the temperature setting means are not required, so that the cost can be reduced.
[0070]
  Furthermore, an estimated value obtained by multiplying the difference between the water supply temperature and the temporary target temperature by a predetermined constant may be used for the calculation of the hot water supply load in the second calculation unit. In this case as well, the calculation accuracy of the hot water supply load is deteriorated, but the flow rate detecting means and the temperature setting means are not required, so that the cost can be reduced. However, a flow rate switch for detecting the start of hot water supply is necessary.
[0071]
  In the first embodiment, the heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, but may be a heat pump cycle of a general critical pressure or lower. The same applies to each embodiment described below.
[0072]
  (Example 2)
  FIG. 2 is a configuration diagram of a heat pump hot water supply apparatus in Embodiment 2 of the present invention. In addition, the thing of the same structure as the hot water supply apparatus of Example 1 gives the same code | symbol, and abbreviate | omits description.
[0073]
  In FIG. 2, the difference from the configuration of the first embodiment is that the heating means 61 is constituted by a water circulation path 62 formed including the water flow path 29 and a heat storage means 63 arranged on the water circulation path 62. is there. Further, the heating control means 48 is not only for controlling the compressor 22 but also for controlling the refrigerant flow path resistance of the decompression means 25 and the heat absorption amount of the heat absorber 26. And in order to keep the temperature of the circulating water of this water circulation path 62 and the heat storage means 63, the refrigerant circulation circuit 27 is driven and the water flow path 29 of the heat exchanger 24 is heated, so that natural convection is generated in the water circulation path 62 and the heat insulation is maintained. Like to do. The heat storage means 63 includes a storage tank 64 in which an inlet pipe 41 and an outlet pipe 42 are arranged on the upper and lower sides, and a mixing means 65 that mixes the flowing water from the outlet pipe 42 and the flowing water from the water flow path 29 to flow out to the hot water supply terminal 33. ing. The water circulation path 62 is configured by communicating the water flow path 29, the mixing means 65, and the storage tank 64 in a loop shape. Further, the mixing water pipe 57 is provided with a flow rate adjusting means 66 having a closing function, and heat exchange for detecting the flow rate flowing through the heat exchanger 24 after branching to the mixing water pipe 57 immediately upstream of the heat exchanger 24. A flow rate detector 67 is provided.
[0074]
  With the above configuration, when the hot water supply is started from the state where the heat exchanger 24 is completely cooled, the flow rate adjusting means 66 is set to the closed state, and the cold water flows from the water supply pipe 30 into the water flow path 29 and the storage tank 64, Cold water and hot water from the storage tank 64 are mixed by the mixing means 65 from the outlet of the water flow path 29 and discharged to the hot water supply circuit 34. At this time, since the mixing ratio of the mixing means 65 is determined by the detected temperature of the hot water supply temperature detecting means 51, the temperature discharged to the hot water supply circuit 34 can be controlled to the target temperature. When the heating amount of the heat exchanger 24 has increased, the ratio of the hot water discharged from the storage tank 64 is reduced by the temperature detected by the hot water supply temperature detection means 51, and then the mixing means 65 is controlled so that the hot water supply load is heated. When the maximum heating capacity in the exchanger 24 is less than the maximum heating capacity, the hot water from the storage tank 64 is stopped, and the heating control means 48 controls the required heating amount set by the load setting means 47.
[0075]
  The control of the heating amount by the heating control means 48 is performed as follows, for example. The decompression means 25 includes a throttle valve (not shown) and a stepping motor (not shown) that drives the throttle valve, and the refrigerant flow resistance can be changed by driving the throttle valve. Then, the heating control means 48 determines the relationship between the refrigerant flow path resistance of the decompression means 25 and the heating amount in the heat exchanger 24 in advance, and the refrigerant flow path resistance so that the required heating amount set by the load setting means 47 is reached. If the hot water supply is necessary or the heating amount is insufficient due to low outside air temperature, etc., the required heating amount can be secured by increasing the refrigerant flow resistance. Acts like
[0076]
  On the other hand, when the hot water supply load exceeds the maximum heating capacity in the heat exchanger 24, the heating control means 48 controls the heat exchanger 24 so as to reach the maximum heating capacity, and the maximum heating capacity allows the temperature of the heat exchanger outlet to be increased. The flow rate of the heat exchanger that reaches the target temperature is calculated by the control means 46, and the mixing means 65 is controlled so as to reach the target flow rate based on the output signal of the heat exchanger flow rate detection means 67. Then, the hot water temperature coming out of the mixing means 65 is higher than the target temperature because the hot water from the storage tank 64 is mixed, and feedback control based on the deviation between the detected temperature of the hot water temperature detecting means 51 and the target temperature is performed. The flow rate adjusting means 66 is used to mix the water from the mixing water pipe 57, and the temperature discharged to the hot water supply circuit 34 can be controlled to the target temperature. At this time, it is possible to perform more accurate temperature control by controlling the flow rate adjusting means 66. In addition, since the temperature control is finally performed by the flow rate adjusting unit 66, no problem occurs even if the accuracy of the temperature control by the mixing unit 65 is rough, and the control of the mixing unit 65 becomes relatively easy. Furthermore, even if there is a sudden change in the target temperature or a change in the state of use of hot water at the hot water supply terminal, the water is mixed with the hot water in the hot water supply circuit 34 to control the heating control means 48 or the mixing means 65. Even if a response delay occurs in the system, this can be offset and the temperature can be quickly controlled in the direction of lowering the temperature.
[0077]
  The amount of heat applied from the heat storage means can be freely set by changing the mixing flow rate on the storage tank 64 side by the mixing means 65, and the heat storage size can be reduced by reducing the flow rate on the storage tank 64 side.
[0078]
  Note that, in a normal hot water supply usage state, the efficiency of the heat pump cycle is improved as the temperature difference between the refrigerant flow path 28 and the water flow path 29 becomes smaller. Therefore, the heat exchanger 24 depends on the feed water temperature detected by the water temperature detection means 50. When the required heating amount is secured and the refrigerant flow resistance of the decompression means 25 is controlled so that the temperature difference between the refrigerant flow path 28 and the water flow path 29 becomes the smallest, efficient operation becomes possible.
[0079]
  The amount of heat absorbed by the heat absorber 26 is controlled by changing the rotational speed of the motor 69 of the fan 68 and changing the amount of air blown to the heat absorber 26. The heating control means 48 determines the relationship between the air flow rate of the fan 68 and the heating amount in the heat exchanger 24 in advance, and controls the air flow rate of the fan 68 so that the required heating amount is set. If the required heating amount of the heat exchanger 24 is too small and cannot be reduced by controlling the rotational speed of the compressor 22 or the like, the heating amount of the heat exchanger 24 is reduced by reducing the air volume of the fan 68 to reduce the required heating. It is possible to control the amount. If the amount of heating is insufficient even at the maximum number of revolutions of the compressor 22, it is possible to increase the air amount of the fan 68 and increase the amount of heating of the heat exchanger 24 to control the required amount of heating. In this way, the efficiency of the heat pump cycle is good, and the maximum heating capacity can be sufficiently generated by the heat exchanger 24. Therefore, the heat storage size can be further reduced.
[0080]
  Since the flow rate adjusting means 66 has a closing function, it is prevented that tap water from the mixing water pipe 57 is mixed unnecessarily and consumes the heating amount of the refrigerant circulation circuit 57 and the heating means 61. The heating capacity and heating capacity of the heat exchanger 24 and the heating means 61 can be designed to be small.
[0081]
  In the second embodiment, in order to keep the heat storage means 63 warm, the refrigerant circulation circuit 27 is driven and the water passage 29 of the heat exchanger 24 is heated, so that natural convection is generated in the water circulation passage 62 and the heat is kept warm. The water circulation path 62 may be directly heated by a heater.
[0082]
  (Example 3)
  FIG. 3 is a configuration diagram of a heat pump hot water supply apparatus according to Embodiment 3 of the present invention. In addition, the thing of the same structure as the hot-water supply apparatus of Example 1 and Example 2 gives the same code | symbol, and abbreviate | omits description.
[0083]
  In FIG. 3, the difference from the configurations of the first and second embodiments is that a water supply branch 71 branching from the water supply pipe 30 is provided so as to pass through the heat storage means 72 arranged in parallel with the water flow path 29. The circulation water path 73 is provided so as to form a circulation path connecting the heat storage means 72 and the water flow path 29 of the heat exchanger 24. A circulation pump 74 which is a water flow means capable of generating a circulation water flow by an external force and adjusting the flow rate is provided in the circulation water channel 73, and the coolant circulation circuit 27 is driven to heat the water flow channel 29 of the heat exchanger 24. The temperature of the circulating water in the circulating water path 73 and the heat storage means 72 is maintained, and the heat storage means 72 is heated and kept warm. An opening / closing valve 75 is provided between the water supply branches 71. Here, the heat storage means 72 includes a storage tank 76 in which an inlet pipe 41 and an outlet pipe 42 are arranged above and below, a mixing means 39 that mixes the flowing water from the outlet pipe 42 and the flowing water from the water flow path 29 and flows them out to the hot water supply circuit 34. Consists of. The circulating water path 73 is configured by communicating the water flow path 29, the mixing means 39, and the storage tank 76 in a loop shape.
[0084]
  When the hot water supply load exceeds the maximum heating capacity in the heat exchanger 24 during the hot water supply having the above configuration, the heating control means 48 controls the heat exchanger 24 to have the maximum heating capacity, and the maximum heating capacity is used for heat. The mixing means 65 is controlled based on the detection signal of the outlet temperature detection means 55 provided downstream of the water flow path 29 so that the temperature at the outlet of the exchanger becomes the target temperature. Then, the hot water temperature coming out of the mixing means 65 is higher than the target temperature because the hot water from the storage tank 64 is mixed, and feedback control based on the deviation between the detected temperature of the hot water temperature detecting means 51 and the target temperature is performed. The flow rate adjusting means 66 is used to mix the water from the mixing water pipe 57, and the temperature discharged to the hot water supply circuit 34 can be controlled to the target temperature. At this time, it is possible to perform more accurate temperature control by controlling the flow rate adjusting means 66. In addition, since the temperature control is finally performed by the flow rate adjusting unit 66, no problem occurs even if the accuracy of the temperature control by the mixing unit 65 is rough, and the control of the mixing unit 65 becomes relatively easy. Furthermore, even if there is a sudden change in the target temperature or a change in the state of use of hot water at the hot water supply terminal, the water is mixed with the hot water in the hot water supply circuit 34 to control the heating control means 48 or the mixing means 65. Even if a response delay occurs in the system, this can be offset and the temperature can be quickly controlled in the direction of lowering the temperature. The amount of heat applied from the heat storage means can be freely set by changing the mixing flow rate on the storage tank 64 side by the mixing means 65, and the heat storage size can be reduced by reducing the flow rate on the storage tank 64 side.
[0085]
  When the hot water supply is stopped, the amount of heat stored in the storage tank 76 is lowered due to the hot water. Here, the control unit 46 first returns the mixing unit 65 to the mixed state, closes the flow rate adjusting unit 66, and when the storage temperature detecting unit 52 detects a decrease in storage temperature (for example, 75 ° C. or less), the refrigerant circulation circuit 27 is turned on. The compressor 22 is driven, the compressor 22 is operated at a predetermined rotational speed, and the circulation pump 74 is driven. As a result, the high-temperature and high-pressure refrigerant flows into the refrigerant flow path 28, heats the water flow path 29, and the water that has flowed through the circulation water path 74 with the forced water flow is heated here. And if the temperature in the storage tank 76 rises and the detection temperature of the storage temperature detection means 52 exceeds predetermined temperature (for example, 80 degreeC), the driving | operation of the refrigerant circuit 27 will be stopped. By repeating this operation stop, the circulating water in the heat storage means 72 and the circulating water channel 73 is kept warm.
[0086]
  According to the configuration of the third embodiment described above, since the water flow is forcibly generated in the circulation water channel 73 by the circulation pump 74, the flow rate can be increased to increase the heating amount at the time of heat retention, and even when the storage tank 76 is cooled, the flow is short. The temperature can be returned to a predetermined temperature over time. Further, since the flow rate can be adjusted, the temperature controllability during the heat insulation heating is good, and the heat of the circulating water path 73 warms the heat exchanger, so that the refrigerant circulation circuit 27 rises quickly. Further, since the heat of the circulating water path 73 is performed by a heat pump, the efficiency is higher than that of a heater and the refrigerant circulation circuit 27 is driven during the heat insulation, and the rise of the refrigerant circulation circuit itself is further accelerated.
[0087]
  In addition, since the flow rate adjusting means 66 has a closing function, when the circulation pump 74 is operated, a part or all of the water flow is bypassed to the mixing water pipe 57 without passing through the hot water supply side path 35 and to the storage tank 76. And prevent circulation.
[0088]
  In the third embodiment, the refrigerant circulation circuit 27 is driven to heat the water flow path 29 of the heat exchanger 24 in order to keep the heat storage means 72 warm, but the circulation water path 73 may be directly heated by a heater. The storage tank 76 may be a container filled with a heat storage material such as a latent heat storage material, and may be a heat storage unit configured to pass through the water supply branch 71 and the circulation water channel 73.
[0089]
【The invention's effect】
  As described above, according to the present invention, even if the size of the heat pump cycle is suppressed, there is sufficient hot water supply capacity, the use of the heat storage means can be minimized, the heat storage size can be reduced, controllability is good, and abrupt It is possible to provide a heat pump hot water supply apparatus that can be quickly controlled even if there is a change in target temperature or a change in hot water usage at a hot water supply terminal.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of a heat pump water heater in Embodiment 2 of the present invention.
FIG. 3 is a configuration diagram of a heat pump water heater in Embodiment 3 of the present invention.
FIG. 4 is a block diagram of a conventional heat pump water heater
[Explanation of symbols]
  22 Compressor
  24 heat exchanger
  25 Pressure reducing means
  26 Heat absorber
  27 Refrigerant circuit
  28 Refrigerant flow path
  29 Water channel
  30 Water supply pipe
  33 Hot water supply terminal
  34 Hot water supply circuit
  35 Hot water supply path
  37, 61 Heating means
  38, 63, 72 Thermal storage means
  39, 64, 76 Storage tank
  47 Load setting means
  48 Heating control means
  49 Flow rate detection means
  50 Water temperature detection means
  51 Hot water temperature detection means
  53 Temperature detection means
  54 Temperature setting means
  57 Water tube for mixing
  65 Mixing means
  66 Flow rate adjusting means
  67 Heat exchanger flow rate detection means
  73 Circulating waterway
  74 Circulation pump (water flow means)

Claims (12)

圧縮機と放熱器である熱交換器と減圧手段と吸熱器とを含む冷媒循環回路と、前記熱交換器の冷媒流路と熱交換を行う前記熱交換器内の水流路と、前記水流路に水道水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記給水管と水流路と給湯回路とで構成される温水供給側経路と、前記給湯回路の水に熱量を加えるように設けた加温手段と、前記給水管から分岐して前記水流路と前記加温手段のどちらも通らずに給湯回路に繋がる混合用水管とを備え、前記加温手段は、前記熱交換器に並列に接続した蓄熱手段であり、前記水流路からの流水と前記蓄熱手段からの温水とを混合する混合手段を有し、前記熱交換器の加熱量が増加するに従い、前記蓄熱手段から出湯割合を減少させるよう前記混合手段を動作させることを特徴とするヒートポンプ給湯装置。A refrigerant circuit including a compressor, a heat exchanger as a radiator, a decompression unit, and a heat absorber; a water flow path in the heat exchanger that exchanges heat with a refrigerant flow path of the heat exchanger; and the water flow path to a water supply pipe for supplying tap water, a hot water supply circuit connected to water flow to the hot water supply terminal from the water flow path, and hot water supply path formed between the water supply pipe and water flow paths and hot water supply circuit, wherein Heating means provided so as to add heat to water in the hot water supply circuit, and a mixing water pipe branched from the water supply pipe and connected to the hot water supply circuit without passing through either the water flow path or the heating means , The heating means is a heat storage means connected in parallel to the heat exchanger, and has a mixing means for mixing running water from the water flow path and hot water from the heat storage means, and the heating amount of the heat exchanger is The mixing means so as to reduce the proportion of hot water discharged from the heat storage means as it increases. The heat pump water heater, characterized in that to operate. 蓄熱手段は、蓄熱温度を給湯温度より高温にした請求項1記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to claim 1 , wherein the heat storage means sets the heat storage temperature to be higher than the hot water supply temperature. 蓄熱手段は、水を貯留する貯留タンクとした請求項1または2記載のヒートポンプ給湯装置。The heat pump water heater according to claim 1 or 2 , wherein the heat storage means is a storage tank for storing water. 熱交換器での所要加熱量を設定する負荷設定手段と、前記負荷設定手段の設定値に応じて前記熱交換器の加熱量を制御する加熱制御手段とを備えた請求項1〜3のいずれか1項に記載のヒートポンプ給湯装置。A load setting means for setting a required amount of heat in the heat exchanger, either in accordance with the set value of the load setting means of claim 1 to 3 and a heating control means for controlling the heating amount of the heat exchanger The heat pump hot-water supply apparatus of Claim 1. 給水管の給水温度を検出する水温検知手段と給湯回路の流量を検出する流量検知手段のうち少なくとも1つと、給湯の目標温度を設定する温度設定手段とを設け、負荷設定手段は前記水温検知手段と温度設定手段と流量検知手段の値から所要加熱量を算定する請求項4記載のヒートポンプ給湯装置。At least one of a water temperature detecting means for detecting a water temperature of the water supply pipe and a flow rate detecting means for detecting a flow rate of the hot water supply circuit, and a temperature setting means for setting a target temperature of the hot water supply are provided, and the load setting means is the water temperature detecting means. The heat pump hot water supply apparatus according to claim 4, wherein the required heating amount is calculated from the values of the temperature setting means and the flow rate detection means. 加熱制御手段は、圧縮機の回転数、減圧手段の冷媒流路抵抗、吸熱器の吸熱量のうち少なくとも1つを制御する請求項4または5記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to claim 4 or 5 , wherein the heating control means controls at least one of a rotation speed of the compressor, a refrigerant flow path resistance of the decompression means, and a heat absorption amount of the heat absorber. 混合用水管は、流れる水流量を調節する流量調節手段を備えた請求項1〜6のいずれか1項記載のヒートポンプ給湯装置。The heat pump water heater according to any one of claims 1 to 6 , wherein the mixing water pipe includes a flow rate adjusting means for adjusting a flow rate of flowing water. 給湯回路に設けて湯の温度を検出する給湯温検知手段と、給湯の目標温度を設定する温度設定手段とを設け、前記給湯温検知手段の検出温度と前記目標温度との偏差によって流量調節手段を制御する請求項7記載のヒートポンプ給湯装置。A hot water supply temperature detecting means provided in the hot water supply circuit for detecting the temperature of the hot water and a temperature setting means for setting a target temperature of the hot water supply are provided, and a flow rate adjusting means according to a deviation between the detected temperature of the hot water supply temperature detecting means and the target temperature The heat pump hot-water supply apparatus of Claim 7 which controls. 熱交換器の水流路と蓄熱手段とを環状に接続する環状水路と、外力により環状水路に循環水流を生じさせその流量を調節できる水流手段とを備え、水流手段を駆動して熱交換器の水流路に通水し冷媒循環回路を運転して蓄熱手段の蓄熱温度を所定温度に保つ請求項1〜8のいずれか1項に記載のヒートポンプ給湯装置。An annular water passage that connects the water flow path of the heat exchanger and the heat storage means in a ring shape, and a water flow means that can adjust the flow rate by generating a circulating water flow in the annular water passage by an external force, and driving the water flow means to The heat pump hot water supply device according to any one of claims 1 to 8 , wherein water is passed through the water flow path and the refrigerant circulation circuit is operated to keep the heat storage temperature of the heat storage means at a predetermined temperature. 混合用水管は、水の流通を阻止する閉止手段を備えた請求項1〜9のいずれか1項記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to any one of claims 1 to 9 , wherein the mixing water pipe is provided with a closing means for preventing water from flowing. 給湯回路内の水の流量を検知する給湯流量検知手段と、温水供給側経路を流れる水の流量を検知する冷媒回路側流量検知手段と、加温手段により熱量を加えられる水の流量を検知する加温流量検知手段と、混合用水管の水の流量を検知する給湯流量検知手段と、給水管のいずれかの位置に設けた給水流量検知手段のうち少なくとも1つを備え、その検知値によって、混合手段と冷媒循環回路と流量調節手段のうち少なくとも1つを制御する請求項1〜10のいずれか1項記載のヒートポンプ給湯装置。A hot water flow rate detecting means for detecting the flow rate of water in the hot water supply circuit, a refrigerant circuit side flow rate detecting means for detecting the flow rate of water flowing through the hot water supply side path, and a flow rate of water to which heat is added by the heating means are detected. At least one of the heating flow rate detection means, the hot water supply flow rate detection means for detecting the flow rate of the water in the mixing water pipe, and the feed water flow rate detection means provided at any position of the water supply pipe, The heat pump hot-water supply apparatus of any one of Claims 1-10 which controls at least 1 among a mixing means, a refrigerant circulation circuit, and a flow volume adjustment means. 冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱する請求項1〜11のいずれか1項に記載のヒートポンプ給湯装置。Refrigerant circuit is a supercritical heat pump cycle in which the pressure of the refrigerant becomes critical pressure or higher, one of claims 1 to 11 for heating the flowing water of the water flow path of the heat exchanger by the refrigerant that is boosted over the critical pressure The heat pump hot-water supply apparatus of 1 item | term.
JP2002286787A 2002-09-30 2002-09-30 Heat pump water heater Expired - Fee Related JP3975874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286787A JP3975874B2 (en) 2002-09-30 2002-09-30 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286787A JP3975874B2 (en) 2002-09-30 2002-09-30 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2004125220A JP2004125220A (en) 2004-04-22
JP3975874B2 true JP3975874B2 (en) 2007-09-12

Family

ID=32279766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286787A Expired - Fee Related JP3975874B2 (en) 2002-09-30 2002-09-30 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3975874B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398221B2 (en) * 2008-10-21 2014-01-29 パーパス株式会社 Shower equipment
JP5987647B2 (en) * 2012-11-08 2016-09-07 株式会社デンソー Water heater and hot water system
KR101475154B1 (en) * 2013-09-16 2014-12-22 최진민 Warm water system

Also Published As

Publication number Publication date
JP2004125220A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
KR100567491B1 (en) Heat pump water heater
JP4215699B2 (en) Heat pump water heater / heater
JP2004218912A (en) Heat pump type hot water heating device
JP3887781B2 (en) Heat pump water heater
JP3975874B2 (en) Heat pump water heater
JP3778102B2 (en) Heat pump water heater
JP3945361B2 (en) Heat pump water heater
JP2004340535A (en) Heat pump water heater
JP5513178B2 (en) Bath bathing equipment
JP3743375B2 (en) Heat pump water heater
JP4016870B2 (en) Heat pump water heater
JP5667856B2 (en) Water heater
JP3869801B2 (en) Heat pump water heater / heater
JP2004232912A (en) Heat pump water heater
JP2004069195A (en) Heat pump type water heater
JP2004340532A (en) Heat pump water heater
JP4515883B2 (en) Hot water storage water heater
JP2003343914A (en) Heat pump type water heater
JP3801122B2 (en) Heat pump water heater
JP2004125306A (en) Hot water storage type water heater
JP2005009859A (en) Multifunctional water heater
JP3811688B2 (en) Heat pump water heater
JP2004232914A (en) Water heater
JP2004177117A (en) Heat pump water heater
JP2004150796A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees