JP3975603B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP3975603B2
JP3975603B2 JP05493999A JP5493999A JP3975603B2 JP 3975603 B2 JP3975603 B2 JP 3975603B2 JP 05493999 A JP05493999 A JP 05493999A JP 5493999 A JP5493999 A JP 5493999A JP 3975603 B2 JP3975603 B2 JP 3975603B2
Authority
JP
Japan
Prior art keywords
ppm
sol
steel sheet
steel
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05493999A
Other languages
Japanese (ja)
Other versions
JP2000248344A (en
Inventor
義彦 小野
昭 日裏
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP05493999A priority Critical patent/JP3975603B2/en
Publication of JP2000248344A publication Critical patent/JP2000248344A/en
Application granted granted Critical
Publication of JP3975603B2 publication Critical patent/JP3975603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、磁気特性に優れた無方向性電磁鋼板に関する。
【0002】
【従来の技術】
近年、電気機器の高効率化に対するニーズが急速に高まりつつあり、このためモータやトランスの鉄芯材料である電磁鋼板について、さらなる低鉄損・高磁束密度化を図る必要が生じている。
【0003】
しかし、このように電磁鋼板の高特性化が指向される一方で、鉄鋼製造においてはコスト低減の観点から各種の新製錬プロセスが導入され、この結果、近年、鋼板中の不純物レベルは増加する傾向にある。例えば、製銑プロセスでは低品位鉱石の活用、製鋼プロセスでは吹錬時間の短縮化やスクラップの積極利用が進められ、この結果、鋼板中へのCr、V、Nb、Ti等の微量元素の混入量は増加する傾向にある。これらの不純物元素は電磁鋼板の粒成長性を阻害するため、磁束密度と鉄損の双方を劣化させる。
【0004】
このような背景の下、特開平9−195011号には、VとNの含有量をlogV(%)・N(%)≦5.29として、VNの微細析出を防止する技術が開示されている。しかし、Vを低減するためには原料鉱石の分別や、製鋼での酸素吹き込み量の増加を行う必要があり、コストアップは避けられない。
【0005】
一方、特開昭54−163720号、特開昭58−117828号等には、B添加による窒化物形態制御に関する技術が開示されている。この技術は、NをBで固定して粒成長性を向上させるものであり、Bは数十ppm、Alは脱酸目的で数百ppm添加される。しかし、このような従来のB添加鋼では、BをNと等量添加した際には低鉄損が得られるものの、BやNが過剰に鋼中に残存すると磁気特性が劣化するため、これらの含有量を厳密に管理する必要がある。さらに、従来のB添加鋼は巻取り温度依存性が強いために特性のばらつきが大きいことや、本質的に磁束密度が低いという欠点を有している。
【0006】
この他に、Alの多量添加により窒化物をAlNとして固定する方法も古くから知られているが、NをAlNとして十分固定するためにはsol.Alを0.2wt%以上添加しなければならず、コストアップの問題が生じる。さらに、Alの多量添加は、製鋼段階でスラグ中に浮上分離しているTi系酸化物や耐火物中に存在しているZr系酸化物の還元反応を促進するため、TiやZr等の不純物の混入量の増加を招く。このため、Alの多量添加は粒成長性を向上させる反面、特性のばらつきを増大させる欠点を有している。
【0007】
窒化物以外の析出物については、REM添加を基本とする硫化物形態制御に関する技術が、特開昭51−62115号、特開平8−325678号等に開示されている。しかし、この技術はREMとSの含有量を厳密に管理する必要がある、REM添加によりコスト上昇を招く等の問題を有している。
【0008】
また、特開昭61−67753号、特開昭62−180014号にはSn、Cu等の特殊元素を利用した磁束密度の改善技術が開示されているが、これらの技術はいずれも熱延板の自己焼鈍や熱延板焼鈍を施さない状態では特性の改善効果は小さい。
【0009】
【発明が解決しようとする課題】
したがって本発明の目的は、高磁束密度と低鉄損を兼備するとともに低コストで製造可能であり、しかも、磁気特性がCr、V、Ti、Zr等の不純物元素の影響を受けにくい電磁鋼板を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、電磁鋼板の磁気特性に及ぼすB、sol.Al、Sb並びにCr、V、Ti、Zr等の炭窒化物形成元素の影響について鋭意研究を重ねた結果、適量のsol.AlとBを複合添加すること、具体的には、sol.Alを0.05〜0.20wt%添加して熱間圧延中にAlNを微量析出させるとともに、Bを適量添加して仕上熱延時にBNを析出させることにより低鉄損と高磁束密度を兼備した鋼板が得られること、また、Sb及び/又はSnの適量添加により鉄損と磁束密度のさらなる向上が図られること、不純物として有害なVは数百ppmまで無害化可能であることを見い出した。さらに、このような本発明の成分系では、TiやZrの混入量が大幅に低減できる利点も享受できる。
【0011】
本発明はこのような知見に基づきなされたものであり、その特徴とする構成は以下の通りである。
[1] C:0.005wt%以下、Si:1.8wt%以下、Mn:0.05〜1.5wt%、sol.Al:0.05〜0.20wt%、S:0.0010〜0.020wt%、P:0.2wt%以下、N:0.0010〜0.005wt%、B:2〜30ppmを含有し、且つsol.AlとBの含有量の積が下記(1)式を満足し、さらに、Ti:15ppm以下、Nb:15ppm以下、Zr:15ppm以下とし、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする無方向性電磁鋼板。
0.3×10−4<[%sol.Al]×[%B]<2.2×10−4 …(1)
【0012】
[2] 上記[1]の無方向性電磁鋼板において、sol.AlとBの含有量の積が下記(2)式を満足することを特徴とする無方向性電磁鋼板。
0.6×10−4<[%sol.Al]×[%B]<1.4×10−4 …(2)
[3] 上記[1]または[2]の無方向性電磁鋼板において、Sn及びSbの1種または2種をSb+Sn/2として0.002〜0.2wt%含有することを特徴とする無方向性電磁鋼板。
【0013】
[4] 上記[1]〜[3]のいずれかの無方向性電磁鋼板において、V:0.05wt%以下を含有することを特徴とする無方向性電磁鋼板。
【0014】
【発明の実施の形態】
以下、本発明に至った経由と本発明の限定理由について詳細に説明する。
まず、磁気特性に及ぼすsol.Al、Bの影響について調査するために、成分組成をC:0.002wt%、Si+Al:0.8wt%、Si:0.55〜0.79wt%、Mn:0.3wt%、P:0.10wt%、S:0.003wt%、Cr:0.05wt%、V:20ppm、sol.Al:0.01〜0.25wt%、N:0.0025wt%、B:2〜57ppmに調整した鋼を50kgの真空溶解炉にて溶製した。得られたインゴットは、熱間圧延を施した後に680℃×1時間の巻取り相当処理を施した。続いて0.5mmまで冷間圧延を施し、さらに820℃で30秒の仕上焼鈍を施した後に磁気測定を施した。その後、750℃で2時間の歪取焼鈍を施し、同様に磁気測定を行った。なお、磁気測定は25cmエプスタイン試験法により行った。
【0015】
まず、sol.Al量を300ppmに固定して磁気特性に及ぼすBの影響を調査した。その結果を図1に示す。図1によれば、sol.Alを脱酸目的で300ppm程度添加した鋼では、従来から報告されているとおり、仕上焼鈍後及び歪取焼鈍後ともに、B:25ppm付近、即ち重量比でB/N=1付近で鉄損は極小となることが判る。一方、磁束密度は、B:10〜15ppmまではB量の増加によりわずかに増加するものの、Bをそれ以上添加すると逆に劣化する。このように、従来のB添加鋼では高磁束密度と低鉄損を同時に得ることは困難であった。
【0016】
そこで本発明者らは、かかる問題を解決するために抽出残渣および電子顕微鏡(以下、TEMという)による解析を利用して磁気特性に及ぼすBとsol.Alの影響について詳細に検討した。その結果、Bは熱間圧延の後段にMnSを核として200〜300nmの粗大なBNを形成して粒成長性を向上させるが、B/N<1では微細なAlNが、またB/N>1では固溶Bが、それぞれ巻取時と歪取焼鈍時の粒成長を阻害するために磁束密度と鉄損の劣化が生じることが判明した。さらに、B添加による磁束密度の低下原因としては、上記以外に、変態点の低下や固溶Bによる集合組織の劣化も考えられる。
【0017】
いずれにせよ、Bの過剰添加は磁気特性を劣化させるため、Bの添加量は極力低減することが望ましい。そこで、Bの添加量を極力低減しながら粒成長性を改善することを試みた。すなわち、Bの添加量が5〜15ppm付近では仕上焼鈍後の磁束密度はむしろ改善される傾向にあるため、この低B添加領域での粒成長性の改善を目的に、sol.Alの添加量を増加させることを試みた。
【0018】
sol.Al量を800ppmに固定して、磁気特性に及ぼすBの影響について調査した結果を図2に示す。図2によれば、sol.Al量が300ppmの従来鋼と比較して、sol.Al量を800ppm添加した鋼では鉄損が極小となるB量の適正値は低B側にシフトしており、B:10〜15ppm付近にあることが判る。抽出残渣の解析結果から、これは熱間圧延中にNの一部がAlNとして析出したためであることが判明した。また、sol.Al量が300ppmの従来鋼ではB/N=1以外では鉄損が急峻に増加するのに対して、sol.Al量を800ppmとした鋼では、鉄損が低減する範囲のピークはブロードになる。さらに特筆すべきことは、sol.Alを800ppm添加した鋼の磁束密度はsol.Al量を300ppmとした鋼に較べて格段に向上し、B:15ppm付近では高磁束密度と低鉄損を兼備していることである。
【0019】
そこで次に、B量をtr.と13ppmに固定してsol.Al量を0.01wt%から0.25wt%まで変化させ、B添加鋼の磁気特性に及ぼすsol.Al量の影響について検討した。その結果を図3(歪取焼鈍後の磁気特性)に示す。図3によれば、Bを添加しない鋼ではsol.Al量が0.05wt%から0.15wt%の範囲内で磁束密度が増加する領域が現れる。しかし、鉄損を十分に低減(W15/50<4.2W/kg)するためには0.20wt%を超えるsol.Alを添加する必要があり、単にAlの単独添加のみでは低鉄損と高磁束密度を同時に得ることはできないことが判る。
【0020】
一方、Bを13ppm添加した鋼ではBを添加しない鋼に較べて磁束密度はやや低下するものの、鉄損はsol.Al量が0.05wt%から0.17wt%の範囲でBを添加しない鋼よりも大幅に低減される。
このように、BとAlの複合添加により従来の材料を凌ぐ高磁束密度且つ低鉄損材料が得られることが判明した。そこで、Bとsol.Alの種々の含有量における仕上焼鈍後と歪取焼鈍後の磁気特性について調査を行った。歪取焼鈍後の結果を図4にまとめて示す。
【0021】
図4より明らかなように、sol.Al量に拘りなく、B量が30ppmを超えると磁束密度は劣化し、一方、B量が2ppm未満では十分な鉄損の低減効果が得られない。このため本発明ではB量は2〜30ppmとする。また、sol.Al量が0.05wt%未満では磁束密度と鉄損の双方に優れた特性を得ることはできない。一方、sol.Al量が0.20wt%を超えると、Al添加による本質的な磁束密度の劣化を招くと同時に、Bの添加による粒成長性向上の効果も喪失する。さらに、コストアップの問題や、上述したようにTi、Zr混入により磁気特性が不安定になる弊害も生じる。このため本発明ではsol.Al量は0.05〜0.20wt%とする。
【0022】
さらに、良好な磁気特性を得るためには、熱間圧延終了時の固溶Bおよび固溶Nの残存量を極力少なくする必要がある。その範囲は図4中の枠で囲まれた領域であり、この領域はBとsol.Alの含有量の積として、
0.3×10−4<[%sol.Al]×[%B]<2.2×10−4
で表される。このためBとsol.Alの含有量はこの範囲に限定する。
【0023】
また、図中斜線を施した領域内ではさらに優れた磁気特性が得られ、この領域はBとsol.Alの含有量の積として、
0.6×10−4<[%sol.Al]×[%B]<1.4×10−4
で表される。したがって、特に優れた磁気特性を得る場合には、Bとsol.Alの含有量はこの範囲とすることが望ましい。
【0024】
一方、Si添加量が0.5wt%以下の比較的低グレード鋼種に上記の成分を適用した場合は、仕上焼鈍後および歪取焼鈍後の鋼板の表層に細粒組織が発生するため、磁気特性の改善効果が少ない。細粒組織が発生した鋼板の表層を約20μm研磨して、抽出レプリカにてTEM観察を行うと、約100nm程度のAlNが極めて緻密に析出しているのが観察された。これは、Nとの親和力の強いAlとBを複合添加することにより表層窒化が生じて細粒組織が形成されたものと考えられる。
【0025】
そこで、このような表層窒化を防止する観点から、C:0.002wt%、Si:0.7wt%及び0.1wt%、Mn:0.3wt%、P:0.10wt%、S:0.003wt%、Cr:0.05wt%、V:0.002wt%、sol.Al:0.08wt%、N:0.0025wt%、B:12ppmを含有する鋼を溶製し、歪取焼鈍後の鉄損に及ぼすSi、Sb、Snの影響を調査した。なお、熱延条件、仕上焼鈍条件等は先に述べた試験と同様とした。その結果を図5に示す。
【0026】
図5によれば、Si添加量によって効果の程度は異なるものの、Siを0.7wt%添加した鋼及びSiを0.1wt%添加した鋼ともに、Sbを0.002wt%以上添加することにより歪取焼鈍後の鉄損は改善される。このとき、表層の細粒組織も鉄損の低下に対応して消滅していくことが確認された。一方、Sbを0.2wt%を超えて添加すると、いずれの鋼においても過剰のSbにより鉄損は劣化する。また、同様の効果がSnの添加によっても得られるが、Sbと同等の効果を得るためには2倍の添加量が必要となることが確認された。このため、より優れた磁気特性を得るためにはSb及びSnの1種または2種をSb+Sn/2として0.002〜0.2wt%添加することが好ましい。
【0027】
次に、磁気特性に及ぼすVの影響について調査した。Vが鋼の粒成長性を劣化させる元素であることは古くから知られており、従来では特開平9−195011号に示されるようなVの低減化や、Alの多量添加によるVの無害化が図られてきた。しかし、上述したようにVの低減化やAlの多量添加には、コストアップ、製造上の制約、不純物の増加等の種々の問題が伴うため、安価にVを無害化する方法の開発が切望されていた。この点、本発明の成分系ではNを基本的にAlとBで固定するため、Vは十分無害化できる可能性がある。
【0028】
そこで、C:0.002wt%、Si:0.6wt%、Mn:0.3wt%、P:0.10wt%、S:0.003wt%、Cr:0.07wt%、V:tr.〜0.06wt%、sol.Al:0.1wt%、N:0.0025wt%、B:10ppmを含有する鋼を溶製し、仕上焼鈍後および歪取焼鈍後の磁気特性に及ぼすVの影響を調査した。
【0029】
その結果を図6に示す。通常、Si脱酸鋼では30〜100ppmのVの混入により鉄損と磁束密度はともに著しく劣化するが、図6に示されるように適量のsol.AlとBが複合添加された本発明の成分系では、Vが数百ppm混入しても磁気特性の劣化は生じないことが判明した。抽出残渣により析出物の分析を行ったが、Vが0.05wt%以下であればV系の析出物は検出されなかった。しかし、Vが0.06wt%以上になるとわずかにV系の析出物が検出され、磁気特性は劣化する。このためVは0.05wt%以下(但し、0wt%の場合を含む)とすることが好ましい。
【0030】
Cr、V以外の不純物としてTi、Nb、Zrが磁気特性を劣化させることが知られている。これらの元素は窒化物のみならず炭窒化物を形成するため、無害化が困難な元素である。そのため、これらの元素の混入を防止するために特殊耐火物の使用や製鋼段階での特別な運用形態を強いられている。
【0031】
B添加電磁鋼板の磁気特性に及ぼすTi、Nb、Zrの影響を明らかにするために、C:0.002wt%、Si:0.8wt%、Mn:0.3wt%、P:0.10wt%、S:0.003wt%、Cr:0.03wt%、V:20ppm、sol.Al:0.1wt%、N:0.0025wt%、B:12ppm、Ti:0〜50ppm、Nb:0〜50ppm、Zr:0〜50ppmを含有する鋼を溶製し、先に述べた試験と同じ熱延条件及び仕上焼鈍条件によりサンプルを作製した。Ti、Nb、Zrの各含有量と仕上焼鈍後および歪取焼鈍後の磁気特性との関係を図7〜図9に示す。
【0032】
図7〜図9によればTi、Nb、Zrはいずれも15ppmを超えると磁気特性は著しく劣化することが判る。このためこれら各元素の含有量は15ppm以下(但し、0ppmの場合を含む)とする。しかしながら、本発明の成分系ではsol.Alの含有量が0.20wt%以下であるため、TiとZrの混入量は自ずと15ppm程度以下に低減される利点がある。
【0033】
以下、その他の成分の限定理由について説明する。
C:Cは磁気時効を回避するために0.005wt%以下(但し、0wt%の場合を含む)とする。
Si:Siは鋼板の固有抵抗を上げて鉄損を低減するのに有効な元素であるが、1.8wt%を超えて添加されるとリジングの問題が生じる。このためSiは1.8wt%以下(但し、0wt%の場合を含む)とする。
【0034】
Mn:Mnは通常、熱間圧延時の赤熱脆性の防止、粒成長性向上の目的で添加されるが、B添加鋼ではBNの析出サイトとして不可欠なMnSを鋼板中に析出させる元素として不可欠である。MnSの析出には0.05wt%以上のMnが必要であるが、1.5wt%を超えると磁束密度を低下させるので、Mnは0.05〜1.5wt%とする。
S:SはMnと同様にMnS形成のための必須元素である。MnSの析出には0.0010wt%以上のSが必要であるが、0.020wt%を超えると粒成長性が低下するため、Sは0.0010〜0.020wt%とする。
【0035】
P:Pは鋼板の打ち抜き性を改善するために必要な元素であるが、0.2wt%を超えて添加すると鋼板が脆化するため0.2wt%以下(但し、0wt%の場合を含む)とする。
N:Nは熱間圧延時にAlNを析出させるために必須な元素である。NはAlNの析出に0.0010wt%以上必要であるが、0.005wt%を超えるとAlNの析出量が増加して粒成長性が低下するので、0.0010〜0.005wt%とする。
【0036】
本発明の無方向性電磁鋼板は、その成分組成が上述した範囲内であればその製造方法に特別な制約はなく、以下に示すような通常の製造方法で製造することができる。すなわち、転炉で吹錬した溶鋼を脱ガス処理して所定の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間圧延時の仕上焼鈍温度、巻取り温度は特に規定する必要はなく、通常の方法に従ってよい。また、熱間圧延後の熱延板焼鈍は行ってもよいが必須ではない。次いで、酸洗した後、一回の冷間圧延若しくは中間焼鈍を挟む2回以上の冷間圧延により所定の板厚とし、しかる後、仕上焼鈍を行い、さらに必要に応じて歪取焼鈍を行う。通常、この歪取焼鈍は鋼板のユーザ側で行われる。
【0037】
【実施例】
転炉で吹錬した後に脱ガス処理を行うことにより所定の成分に調整した表1及び表2に示す鋼をスラブに鋳造し、このスラブを1200℃で加熱した後、板厚2.0mmまで熱間圧延した。この際、熱延仕上げ温度は800℃、巻取り温度は690℃とした。酸洗後、板厚0.5mmまで冷間圧延し、表3及び表4に示す仕上焼鈍条件で焼鈍を施し、その後、DXガス雰囲気にて750℃×2時間の歪取焼鈍を施した。
【0038】
磁気測定は25cmエプスタイン試験片を用いて行った。各鋼板の磁気特性を表3及び表4に併せて示す。
表1〜表4によれば、本発明の成分条件を満足する鋼板のみが、仕上焼鈍後及び歪取焼鈍後のいずれにおいても、高磁束密度と低鉄損を兼備した優れた磁気特性を有していることが判る。
【0039】
【表1】

Figure 0003975603
【0040】
【表2】
Figure 0003975603
【0041】
【表3】
Figure 0003975603
【0042】
【表4】
Figure 0003975603
【0043】
【発明の効果】
以上述べたように、本発明の無方向性電磁鋼板は高磁束密度と低鉄損を兼ね備た優れた磁気特性を有し、しかも不純物元素の影響を受けにくいため、従来技術に較べて低コストで製造可能であるという利点を有する。
【図面の簡単な説明】
【図1】sol.Alを300ppm含有する鋼板のB含有量と仕上焼鈍後及び歪取焼鈍後の鉄損並びに磁束密度との関係を示すグラフ
【図2】sol.Alを800ppm含有する鋼板のB含有量と仕上焼鈍後及び歪取焼鈍後の鉄損並びに磁束密度との関係を示すグラフ
【図3】Bを含有しない鋼板とBを13ppm含有する鋼板のsol.Al含有量と歪取焼鈍後の鉄損及び磁束密度との関係を示すグラフ
【図4】本発明が規定するB量とsol.Al量の範囲を示すグラフ
【図5】Siを0.1wt%及び0.7wt%含有する鋼板のSb含有量と歪取焼鈍後の鉄損との関係を示すグラフ
【図6】本発明鋼板のV含有量と仕上焼鈍後及び歪取焼鈍後の鉄損並びに磁束密度との関係を示すグラフ
【図7】本発明鋼板のTi含有量と仕上焼鈍後及び歪取焼鈍後の鉄損との関係を示すグラフ
【図8】本発明鋼板のNb含有量と仕上焼鈍後及び歪取焼鈍後の鉄損との関係を示すグラフ
【図9】本発明鋼板のZr含有量と仕上焼鈍後及び歪取焼鈍後の鉄損との関係を示すグラフ[0001]
[Technical field to which the invention belongs]
The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties.
[0002]
[Prior art]
In recent years, there has been a rapid increase in the need for higher efficiency of electrical equipment, and there is a need to further reduce iron loss and magnetic flux density for electromagnetic steel sheets, which are iron core materials for motors and transformers.
[0003]
However, while increasing the characteristics of electrical steel sheets in this way, various new smelting processes have been introduced from the viewpoint of cost reduction in steel production. As a result, the level of impurities in steel sheets has increased in recent years. There is a tendency. For example, the use of low-grade ores in the ironmaking process and the shortening of the blowing time and the active use of scrap in the steelmaking process are promoted. As a result, the inclusion of trace elements such as Cr, V, Nb, and Ti in the steel sheet The amount tends to increase. Since these impurity elements inhibit the grain growth of the electrical steel sheet, both the magnetic flux density and the iron loss are deteriorated.
[0004]
Against this background, JP-A-9-195011 discloses a technique for preventing VN fine precipitation by setting the contents of V and N to log V (%) · N (%) ≦ 5.29. Yes. However, in order to reduce V, it is necessary to separate the raw ore and increase the amount of oxygen blown in the steel making, and an increase in cost is inevitable.
[0005]
On the other hand, Japanese Patent Application Laid-Open Nos. 54-163720, 58-117828, etc. disclose techniques relating to nitride form control by addition of B. In this technique, N is fixed with B to improve grain growth, and B is added in several tens ppm and Al is added in several hundred ppm for the purpose of deoxidation. However, in such a conventional B-added steel, a low iron loss is obtained when an equivalent amount of B is added to N. However, if B or N is excessively left in the steel, the magnetic properties deteriorate. It is necessary to strictly control the content of. Furthermore, the conventional B-added steel has a drawback that it has a large variation in characteristics due to its strong dependency on the coiling temperature and that the magnetic flux density is essentially low.
[0006]
In addition, a method for fixing nitrides as AlN by adding a large amount of Al has been known for a long time, but in order to sufficiently fix N as AlN, sol. Al must be added in an amount of 0.2 wt% or more, which causes a problem of cost increase. Furthermore, the addition of a large amount of Al promotes the reduction reaction of Ti-based oxides floating in the slag at the steelmaking stage and Zr-based oxides present in the refractory, so that impurities such as Ti and Zr This increases the amount of contamination. For this reason, the addition of a large amount of Al improves the grain growth, but has the disadvantage of increasing the variation in characteristics.
[0007]
For precipitates other than nitrides, technologies relating to sulfide morphology control based on REM addition are disclosed in JP-A-51-62115, JP-A-8-325678, and the like. However, this technique has problems that it is necessary to strictly control the contents of REM and S, and that the addition of REM causes an increase in cost.
[0008]
In addition, Japanese Patent Application Laid-Open Nos. 61-67753 and 62-180014 disclose techniques for improving magnetic flux density using special elements such as Sn and Cu. Both of these techniques are hot-rolled sheets. In the state where the self-annealing and the hot-rolled sheet annealing are not performed, the effect of improving the characteristics is small.
[0009]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an electrical steel sheet that has both high magnetic flux density and low iron loss, can be manufactured at low cost, and has magnetic properties that are not easily affected by impurity elements such as Cr, V, Ti, and Zr. It is to provide.
[0010]
[Means for Solving the Problems]
The present inventors have described B, sol. As a result of extensive research on the effects of carbonitride-forming elements such as Al, Sb and Cr, V, Ti, and Zr, an appropriate amount of sol. Compound addition of Al and B, specifically, sol. Add 0.05 to 0.20 wt% of Al to deposit a small amount of AlN during hot rolling, and add an appropriate amount of B to precipitate BN during hot rolling to combine low iron loss and high magnetic flux density It was found that the obtained steel sheet was obtained, that iron loss and magnetic flux density were further improved by adding appropriate amounts of Sb and / or Sn, and that harmful V as an impurity could be detoxified to several hundred ppm. . Furthermore, such a component system of the present invention can also enjoy the advantage that the amount of Ti and Zr mixed can be greatly reduced.
[0011]
The present invention has been made on the basis of such findings, and the characteristic features thereof are as follows.
[1] C: 0.005 wt% or less, Si: 1.8 wt% or less, Mn: 0.05 to 1.5 wt%, sol. Al: 0.05-0.20 wt%, S: 0.0010-0.020 wt%, P: 0.2 wt% or less, N: 0.0010-0.005 wt%, B: 2-30 ppm, And sol. The product of the contents of Al and B satisfies the following formula (1), and further, Ti: 15 ppm or less, Nb: 15 ppm or less, Zr: 15 ppm or less, and the balance has a component composition consisting of Fe and inevitable impurities non-oriented electrical steel sheet characterized.
0.3 × 10 −4 <[% sol. Al] × [% B] <2.2 × 10 −4 (1)
[0012]
[2] In the non-oriented electrical steel sheet according to [1], the sol. Non-oriented electrical steel sheet product of the content of Al and B you satisfies the following expression (2).
0.6 × 10 −4 <[% sol. Al] × [% B] <1.4 × 10 −4 (2)
[3] above [1] or in the non-oriented electrical steel sheet [2], characterized in that it contains 0.002~0.2Wt% one or two of Sn and Sb as Sb + Sn / 2 No Oriented electrical steel sheet.
[0013]
[4] In any of the non-oriented electrical steel sheet of the [1] ~ [3], V: non-oriented electrical steel sheet characterized in that it contains less 0.05 wt%.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the route leading to the present invention and the reasons for limitation of the present invention will be described in detail.
First, the sol. In order to investigate the influence of Al and B, the component composition was C: 0.002 wt%, Si + Al: 0.8 wt%, Si: 0.55 to 0.79 wt%, Mn: 0.3 wt%, P: 0.00. 10 wt%, S: 0.003 wt%, Cr: 0.05 wt%, V: 20 ppm, sol. Steel adjusted to Al: 0.01 to 0.25 wt%, N: 0.0025 wt%, and B: 2 to 57 ppm was melted in a 50 kg vacuum melting furnace. The obtained ingot was subjected to a rolling equivalent treatment at 680 ° C. for 1 hour after hot rolling. Then, it cold-rolled to 0.5 mm, and also magnetically measured after giving final annealing for 30 seconds at 820 degreeC. Then, the stress relief annealing for 2 hours was performed at 750 degreeC, and the magnetic measurement was similarly performed. Magnetic measurements were performed by the 25 cm Epstein test method.
[0015]
First, sol. The effect of B on the magnetic properties was investigated with the Al content fixed at 300 ppm. The result is shown in FIG. According to FIG. In steel to which about 300 ppm is added for the purpose of deoxidizing Al, iron loss is about B: 25 ppm, that is, B / N = 1 by weight ratio, both after finishing annealing and after stress relief annealing. It turns out that it becomes the minimum. On the other hand, the magnetic flux density slightly increases with an increase in the amount of B up to B: 10 to 15 ppm, but deteriorates conversely when more B is added. Thus, it has been difficult to obtain high magnetic flux density and low iron loss at the same time with the conventional B-added steel.
[0016]
In order to solve such problems, the present inventors have used B and sol., Which have an influence on magnetic properties, using extraction residue and analysis by an electron microscope (hereinafter referred to as TEM). The influence of Al was examined in detail. As a result, B forms coarse BN of 200 to 300 nm with MnS as the core after hot rolling to improve grain growth. However, when B / N <1, fine AlN and B / N> In No. 1, it was found that solute B deteriorates the magnetic flux density and iron loss because it inhibits the grain growth during winding and strain annealing. In addition to the above, the cause of the decrease in the magnetic flux density due to the addition of B may be a decrease in the transformation point and a deterioration of the texture due to the solid solution B.
[0017]
In any case, since excessive addition of B deteriorates magnetic properties, it is desirable to reduce the addition amount of B as much as possible. Therefore, an attempt was made to improve grain growth while reducing the addition amount of B as much as possible. That is, since the magnetic flux density after finish annealing tends to be improved when the addition amount of B is in the vicinity of 5 to 15 ppm, the sol. An attempt was made to increase the amount of Al added.
[0018]
sol. FIG. 2 shows the result of investigating the influence of B on the magnetic properties with the Al content fixed at 800 ppm. According to FIG. Compared with the conventional steel having an Al content of 300 ppm, sol. In steel to which 800 ppm of Al is added, it can be seen that the appropriate value of the B amount at which the iron loss is minimized is shifted to the low B side, and B is in the vicinity of 10 to 15 ppm. From the analysis results of the extraction residue, it was found that this was because a part of N was precipitated as AlN during hot rolling. Also, sol. In the conventional steel having an Al content of 300 ppm, the iron loss increases sharply except for B / N = 1, whereas sol. In steel with an Al content of 800 ppm, the peak in the range where iron loss is reduced is broad. Further noteworthy is sol. The magnetic flux density of steel added with 800 ppm of Al is sol. This is a significant improvement over steel with an Al content of 300 ppm. B: It has a high magnetic flux density and low iron loss in the vicinity of 15 ppm.
[0019]
Then, next, the B amount is set to tr. Fixed at 13 ppm and sol. By changing the Al content from 0.01 wt% to 0.25 wt%, the sol. The effect of Al content was examined. The results are shown in FIG. 3 (magnetic properties after strain relief annealing). According to FIG. 3, sol. A region where the magnetic flux density increases when the Al content is in the range of 0.05 wt% to 0.15 wt% appears. However, in order to sufficiently reduce the iron loss (W 15/50 <4.2 W / kg), the sol. It is necessary to add Al, and it can be seen that low iron loss and high magnetic flux density cannot be obtained simultaneously by simply adding Al alone.
[0020]
On the other hand, in the steel added with 13 ppm of B, the magnetic flux density is slightly lower than in the steel not added with B, but the iron loss is sol. When the Al content is in the range of 0.05 wt% to 0.17 wt%, the amount is significantly reduced as compared with steel not containing B.
As described above, it was found that a material having a high magnetic flux density and a low iron loss exceeding the conventional material can be obtained by the combined addition of B and Al. Therefore, B and sol. The magnetic properties after finish annealing and after strain relief annealing at various contents of Al were investigated. The results after strain relief annealing are summarized in FIG.
[0021]
As is clear from FIG. Regardless of the amount of Al, if the amount of B exceeds 30 ppm, the magnetic flux density deteriorates. On the other hand, if the amount of B is less than 2 ppm, a sufficient iron loss reduction effect cannot be obtained. Therefore, in the present invention, the amount of B is set to 2 to 30 ppm. Also, sol. If the Al content is less than 0.05 wt%, it is not possible to obtain characteristics excellent in both magnetic flux density and iron loss. On the other hand, sol. When the amount of Al exceeds 0.20 wt%, the magnetic flux density is essentially deteriorated by addition of Al, and at the same time, the effect of improving grain growth by addition of B is lost. Furthermore, the problem of cost increase and the detrimental effect that the magnetic characteristics become unstable due to the mixture of Ti and Zr as described above. Therefore, in the present invention, sol. The amount of Al is 0.05 to 0.20 wt%.
[0022]
Furthermore, in order to obtain good magnetic properties, it is necessary to reduce the residual amount of solute B and solute N at the end of hot rolling as much as possible. The range is an area surrounded by a frame in FIG. As the product of Al content,
0.3 × 10 −4 <[% sol. Al] × [% B] <2.2 × 10 −4
It is represented by For this reason, B and sol. The Al content is limited to this range.
[0023]
Further, even better magnetic characteristics are obtained in the hatched region in the figure. As the product of Al content,
0.6 × 10 −4 <[% sol. Al] × [% B] <1.4 × 10 −4
It is represented by Therefore, in order to obtain particularly excellent magnetic characteristics, B and sol. The Al content is preferably within this range.
[0024]
On the other hand, when the above components are applied to a relatively low grade steel type with an Si addition amount of 0.5 wt% or less, a fine grain structure is generated in the surface layer of the steel sheet after finish annealing and strain relief annealing, so that the magnetic properties There is little improvement effect. When the surface layer of the steel sheet having a fine grain structure was polished by about 20 μm and observed by TEM with an extracted replica, it was observed that about 100 nm of AlN was deposited very densely. This is presumably because the surface layer nitridation occurred due to the composite addition of Al and B having a strong affinity with N, and a fine grain structure was formed.
[0025]
Therefore, from the viewpoint of preventing such surface nitridation, C: 0.002 wt%, Si: 0.7 wt% and 0.1 wt%, Mn: 0.3 wt%, P: 0.10 wt%, S: 0.00. 003 wt%, Cr: 0.05 wt%, V: 0.002 wt%, sol. A steel containing Al: 0.08 wt%, N: 0.0025 wt%, and B: 12 ppm was melted, and the effects of Si, Sb, and Sn on the iron loss after strain relief annealing were investigated. The hot rolling conditions, finish annealing conditions, and the like were the same as in the test described above. The result is shown in FIG.
[0026]
According to FIG. 5, although the degree of effect varies depending on the amount of Si added, both steel added with 0.7 wt% Si and steel added with 0.1 wt% Si are strained by adding 0.002 wt% or more of Sb. Iron loss after annealing is improved. At this time, it was confirmed that the fine grain structure of the surface layer also disappeared in response to the decrease in iron loss. On the other hand, when Sb is added in excess of 0.2 wt%, the iron loss is deteriorated by excess Sb in any steel. Moreover, although the same effect is acquired by addition of Sn, in order to acquire an effect equivalent to Sb, it was confirmed that the addition amount of 2 times is required. For this reason, in order to obtain more excellent magnetic characteristics, it is preferable to add 0.002 to 0.2 wt% of Sb and Sn as Sb + Sn / 2.
[0027]
Next, the influence of V on the magnetic characteristics was investigated. It has been known for a long time that V is an element that deteriorates the grain growth property of steel. Conventionally, the reduction of V as disclosed in JP-A-9-195011 and the detoxification of V by the addition of a large amount of Al. Has been planned. However, as described above, the reduction of V and the addition of a large amount of Al are accompanied by various problems such as an increase in cost, restrictions on manufacturing, and an increase in impurities. Therefore, development of a method for detoxifying V at low cost is eagerly desired. It had been. In this respect, in the component system of the present invention, since N is basically fixed with Al and B, V may be sufficiently harmless.
[0028]
Therefore, C: 0.002 wt%, Si: 0.6 wt%, Mn: 0.3 wt%, P: 0.10 wt%, S: 0.003 wt%, Cr: 0.07 wt%, V: tr. -0.06 wt%, sol. A steel containing Al: 0.1 wt%, N: 0.0025 wt%, and B: 10 ppm was melted, and the influence of V on the magnetic properties after finish annealing and strain relief annealing was investigated.
[0029]
The result is shown in FIG. Usually, in Si-deoxidized steel, both iron loss and magnetic flux density are remarkably deteriorated by mixing 30 to 100 ppm of V. However, as shown in FIG. In the component system of the present invention in which Al and B are added in combination, it has been found that the magnetic properties do not deteriorate even when V is mixed in several hundred ppm. The precipitate was analyzed based on the extraction residue, but no V-based precipitate was detected if V was 0.05 wt% or less. However, when V is 0.06 wt% or more, V-based precipitates are slightly detected, and the magnetic characteristics deteriorate. For this reason, V is preferably 0.05 wt% or less (including the case of 0 wt%).
[0030]
It is known that Ti, Nb, and Zr as impurities other than Cr and V deteriorate the magnetic properties. Since these elements form not only nitrides but also carbonitrides, they are elements that are difficult to detoxify. For this reason, in order to prevent the mixing of these elements, the use of special refractories and a special operation form at the steel making stage are forced.
[0031]
In order to clarify the influence of Ti, Nb, and Zr on the magnetic properties of the B-added electrical steel sheet, C: 0.002 wt%, Si: 0.8 wt%, Mn: 0.3 wt%, P: 0.10 wt% , S: 0.003 wt%, Cr: 0.03 wt%, V: 20 ppm, sol. Steel containing Al: 0.1 wt%, N: 0.0025 wt%, B: 12 ppm, Ti: 0-50 ppm, Nb: 0-50 ppm, Zr: 0-50 ppm, and the test described above Samples were produced under the same hot rolling conditions and finish annealing conditions. The relationship between each content of Ti, Nb, and Zr and the magnetic characteristics after finish annealing and after strain relief annealing is shown in FIGS.
[0032]
7 to 9, it can be seen that when Ti, Nb, and Zr all exceed 15 ppm, the magnetic characteristics are remarkably deteriorated. Therefore, the content of each of these elements is 15 ppm or less (including the case of 0 ppm) . However, the sol. Since the Al content is 0.20 wt% or less, the amount of Ti and Zr mixed is naturally reduced to about 15 ppm or less.
[0033]
Hereinafter, the reasons for limiting other components will be described.
C: C is 0.005 wt% or less (including the case of 0 wt%) in order to avoid magnetic aging.
Si: Si is an element effective for increasing the specific resistance of a steel sheet and reducing iron loss. However, if it is added in excess of 1.8 wt%, a problem of ridging occurs. For this reason, Si shall be 1.8 wt% or less (however, including the case of 0 wt%).
[0034]
Mn: Mn is usually added for the purpose of preventing red heat embrittlement during hot rolling and improving grain growth, but in B-added steel, it is indispensable as an element for precipitating MnS as a BN precipitation site in the steel sheet. is there. For precipitation of MnS, 0.05 wt% or more of Mn is required, but if it exceeds 1.5 wt%, the magnetic flux density is lowered, so that Mn is 0.05 to 1.5 wt%.
S: S is an essential element for forming MnS, similar to Mn. For precipitation of MnS, 0.0010 wt% or more of S is required. However, if it exceeds 0.020 wt%, the grain growth property decreases, so S is made 0.0010 to 0.020 wt%.
[0035]
P: P is an element necessary for improving the punchability of the steel sheet, but if added over 0.2 wt%, the steel sheet becomes brittle, so 0.2 wt% or less (including the case of 0 wt%). And
N: N is an essential element for precipitating AlN during hot rolling. N needs to be 0.0010 wt% or more for precipitation of AlN, but if it exceeds 0.005 wt%, the precipitation amount of AlN increases and the grain growth property decreases, so 0.0010 to 0.005 wt% is set.
[0036]
The non-oriented electrical steel sheet of the present invention is not particularly limited in its production method as long as its component composition is within the above-described range, and can be produced by a normal production method as described below. That is, the molten steel blown in the converter is degassed to adjust to a predetermined component, followed by casting and hot rolling. The finish annealing temperature and the coiling temperature during hot rolling need not be specified, and may be according to ordinary methods. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential. Next, after pickling, a predetermined sheet thickness is obtained by two or more cold rollings with one cold rolling or intermediate annealing, and then finish annealing is performed, and strain relief annealing is performed as necessary. . Usually, this strain relief annealing is performed on the user side of the steel sheet.
[0037]
【Example】
The steel shown in Table 1 and Table 2 adjusted to a predetermined component by performing degassing treatment after blowing in a converter is cast into a slab, and after heating the slab at 1200 ° C., the plate thickness reaches 2.0 mm. Hot rolled. At this time, the hot rolling finishing temperature was 800 ° C., and the winding temperature was 690 ° C. After pickling, it was cold-rolled to a sheet thickness of 0.5 mm, annealed under the finish annealing conditions shown in Table 3 and Table 4, and then subjected to strain relief annealing at 750 ° C. for 2 hours in a DX gas atmosphere.
[0038]
Magnetic measurements were made using 25 cm Epstein specimens. Tables 3 and 4 show the magnetic properties of each steel sheet.
According to Tables 1 to 4, only steel sheets that satisfy the component conditions of the present invention have excellent magnetic properties that combine high magnetic flux density and low iron loss both after finish annealing and after stress relief annealing. You can see that
[0039]
[Table 1]
Figure 0003975603
[0040]
[Table 2]
Figure 0003975603
[0041]
[Table 3]
Figure 0003975603
[0042]
[Table 4]
Figure 0003975603
[0043]
【The invention's effect】
As described above, the non-oriented electrical steel sheet of the present invention has excellent magnetic properties that have both high magnetic flux density and low iron loss, and is less susceptible to impurity elements, so it is lower than the prior art. It has the advantage that it can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 sol. FIG. 2 is a graph showing the relationship between the B content of a steel sheet containing 300 ppm of Al, iron loss after finish annealing and after stress relief annealing, and magnetic flux density. FIG. 3 is a graph showing the relationship between the B content of a steel plate containing 800 ppm of Al and the iron loss and magnetic flux density after finish annealing and after strain annealing. FIG. FIG. 4 is a graph showing the relationship between the Al content and the iron loss and magnetic flux density after strain relief annealing. FIG. 5 is a graph showing the range of Al content. FIG. 5 is a graph showing the relationship between the Sb content of steel sheets containing 0.1 wt% and 0.7 wt% of Si and the iron loss after strain relief annealing. FIG. 7 is a graph showing the relationship between the V content of iron, the iron loss after finish annealing and after stress relief annealing, and the magnetic flux density. FIG. 7 shows the Ti content of the steel sheet of the present invention and the iron loss after finish annealing and after stress relief annealing. FIG. 8 is a graph showing the relationship between the Nb content of the steel sheet of the present invention and the iron loss after finish annealing and after strain relief annealing. FIG. 9 is the Zr content of the steel sheet of the present invention after finishing annealing and strain. Graph showing the relationship with iron loss after annealing

Claims (4)

C:0.005wt%以下、Si:1.8wt%以下、Mn:0.05〜1.5wt%、sol.Al:0.05〜0.20wt%、S:0.0010〜0.020wt%、P:0.2wt%以下、N:0.0010〜0.005wt%、B:2〜30ppmを含有し、且つsol.AlとBの含有量の積が下記(1)式を満足し、さらに、Ti:15ppm以下、Nb:15ppm以下、Zr:15ppm以下とし、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする無方向性電磁鋼板。
0.3×10−4<[%sol.Al]×[%B]<2.2×10−4 …(1)
C: 0.005 wt% or less, Si: 1.8 wt% or less, Mn: 0.05 to 1.5 wt%, sol. Al: 0.05-0.20 wt%, S: 0.0010-0.020 wt%, P: 0.2 wt% or less, N: 0.0010-0.005 wt%, B: 2-30 ppm, And sol. The product of the content of Al and B satisfies the following formula (1), and further, Ti: 15 ppm or less, Nb: 15 ppm or less, Zr: 15 ppm or less, and the balance has a component composition consisting of Fe and inevitable impurities non-oriented electrical steel sheet characterized.
0.3 × 10 −4 <[% sol. Al] × [% B] <2.2 × 10 −4 (1)
sol.AlとBの含有量の積が下記(2)式を満足することを特徴とする請求項1に記載の無方向性電磁鋼板。
0.6×10−4<[%sol.Al]×[%B]<1.4×10−4 …(2)
sol. The non- oriented electrical steel sheet according to claim 1, wherein the product of the contents of Al and B satisfies the following formula (2).
0.6 × 10 −4 <[% sol. Al] × [% B] <1.4 × 10 −4 (2)
Sn及びSbの1種または2種をSb+Sn/2として0.002〜0.2wt%含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。 The non- oriented electrical steel sheet according to claim 1, wherein 0.002 to 0.2 wt% of one or two of Sn and Sb is contained as Sb + Sn / 2. V:0.05wt%以下を含有することを特徴とする請求項1〜3のいずれかに記載の無方向性電磁鋼板。V: 0.05 wt% or less is contained , The non- oriented electrical steel sheet according to any one of claims 1 to 3 .
JP05493999A 1999-03-03 1999-03-03 Non-oriented electrical steel sheet Expired - Fee Related JP3975603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05493999A JP3975603B2 (en) 1999-03-03 1999-03-03 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05493999A JP3975603B2 (en) 1999-03-03 1999-03-03 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2000248344A JP2000248344A (en) 2000-09-12
JP3975603B2 true JP3975603B2 (en) 2007-09-12

Family

ID=12984621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05493999A Expired - Fee Related JP3975603B2 (en) 1999-03-03 1999-03-03 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3975603B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240098493A (en) 2022-12-21 2024-06-28 주식회사 포스코 Non grain oriented electrical steel sheet and method for menufacturing the same

Also Published As

Publication number Publication date
JP2000248344A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
KR102530719B1 (en) Non-oriented electrical steel sheet and its manufacturing method
KR20170141252A (en) Oriented electromagnetic steel sheet and method for producing same
JPH10259424A (en) Production of silicon-chromium grain-oriented silicon steel
JP3852419B2 (en) Non-oriented electrical steel sheet
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JPH05140649A (en) Manufacture of now-oriented silicon steel sheet excellent in magnetic property
JP3975603B2 (en) Non-oriented electrical steel sheet
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP4062833B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP4288801B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH05186828A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
EP3859036A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
EP4407051A1 (en) Method for producing hot-rolled steel sheet for non-oriented electromagnetic steel sheet and method for producing non-oriented electromagnetic steel sheet
JP3952762B2 (en) Non-oriented electrical steel sheet with excellent iron loss and caulking properties
CN114867873B (en) Oriented electrical steel sheet and method for manufacturing same
JP3608383B2 (en) Ferritic stainless steel with excellent surface properties and press formability
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP2001348652A (en) Nonoriented silicon steel sheet and its production method
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees