JP3975290B2 - Method and apparatus for separating excavated soil and sludge - Google Patents

Method and apparatus for separating excavated soil and sludge Download PDF

Info

Publication number
JP3975290B2
JP3975290B2 JP05431196A JP5431196A JP3975290B2 JP 3975290 B2 JP3975290 B2 JP 3975290B2 JP 05431196 A JP05431196 A JP 05431196A JP 5431196 A JP5431196 A JP 5431196A JP 3975290 B2 JP3975290 B2 JP 3975290B2
Authority
JP
Japan
Prior art keywords
sludge
water
wire mesh
soil
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05431196A
Other languages
Japanese (ja)
Other versions
JPH09239288A (en
Inventor
一之 深澤
Original Assignee
有限会社深澤建材
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社深澤建材 filed Critical 有限会社深澤建材
Priority to JP05431196A priority Critical patent/JP3975290B2/en
Publication of JPH09239288A publication Critical patent/JPH09239288A/en
Application granted granted Critical
Publication of JP3975290B2 publication Critical patent/JP3975290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建設現場等から排出される掘削残土や汚泥を土質別に分離処理するための方法及び装置に関するものであり、特に、掘削残土や汚泥を礫,粗砂,細砂とシルト,粘土に高精度で且つ効率良く分別処理できるものである。
【0002】
【従来の技術】
従来、建設現場等から排出される掘削残土や汚泥を土質別に分離処理するための方法やその装置として、例えば、特開平7−51698号公報や特開平7−178723号公報,登録実用新案公報第3015843号等が提供されている。
【0003】
上記特開平7−51698号公報は、トロンメルや分級機で掘削残土や汚泥を水洗いしながら粗砂,細砂を分離除去する。そして、残った泥水をシックナーにより一定の脱水を行なった後、フイルタプレスに掛けて、水と固形粘土とに分離する。得られた固形粘土に砂利及び砂を同等の割合で添加して混合装置で混合し再生土を得るものである。
【0004】
また、特開平7−178723号公報は、粘性土から大きな石やゴミを容易に分別・排除できる粘性土分別装置と粘性土の泥水を連続的に造れる泥水製造装置である。上記粘性土分別装置は、粘性土供給ホッパと丸棒材を横に並設した固定スクリーンと両側の無端チエーン間に移動板を架設した粘性土移動装置と検量圧力水噴射装置と泥水排出ホツパとを含む。また、泥水製造装置は、網状固定スクリーンと粘性土分別装置と多軸ミキサとの組合せである。
【0005】
そして、登録実用新案公報第3015843号は、建設現場で排出される土、砂,石等の混った土石から細かい土砂と大きな石とを確実に速く選別できる土砂選別装置である。その構造は、円筒形状の金網を有する回転金網と、その回転金網の内部にあって、回転金網と逆方向に回転する回転板とを有するものである。
【0006】
【発明が解決しようとする課題】
上記特開平7−51698号公報の水洗い方法によると、礫,砂と粘土分が混在した粘土塊は、泥水として除去できず、粗骨材(砂利)と一緒に排出されてしまい、粗砂,細砂とシルト,粘土に高精度で且つ効率良く分別処理できず、品質上問題のあるものである。また、上記特開平7−178723号公報による網状固定スクリーンでは、粘性土から砂だけを除去できず、また、固定スクリーン上を移動する土塊や石に付いた土を落す検量圧力水噴射装置からの水圧だけでは、粘性土と砂等を完全に分離できない。更に、登録実用新案公報第3015843号は、土、砂,石等の混った土石から細かい土砂と大きな石との土砂選別装置であるから、土塊や石に付いた粘土を落す能力が発揮されない、という問題があるものである。
【0007】
本発明は上記各問題点に鑑み、特に、掘削残土や汚泥を礫,粗砂,細砂とシルト,粘土に高精度で且つ効率良く分別処理するための方法及び装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するべく本発明の請求項1の掘削残土・汚泥の分離処理方法は、回転金網体を傾斜姿勢に配置するとともにその底部の一部又は全部を沈殿槽の水面に浸漬させるように配置し、これを回転することにより内部に投入される掘削残土・汚泥を移送し、高圧ジェットノズルを回転金網体の内面の水面浮上位置に向けて設けておき、高圧ジェット水を噴射することにより掘削残土・汚泥中の粘土塊を破砕し且つ強制ろ過させるようにしたことを特徴とするものである。
【0009】
上記掘削残土・汚泥の分離処理方法によると、掘削残土・汚泥は水中で洗浄されながら傾斜する回転金網体の排出側へ移送され、回転金網体の内面の水面浮上位置に向けて高圧ジェット水が噴射されて、その表面に付着する粘土や残土中の粘土塊を破砕して分離させ、更に強制的なろ過作用が行なわれ、且つ金網の目詰まりが防止される。これにより、粘土塊中のシルト、粘土分と砂成分とを高精度に且つ効率良く分離する。
【0010】
又、本発明の請求項2の掘削残土・汚泥の分離処理方法は、請求項1記載の掘削残土・汚泥の分離処理方法において、回転金網体に投入する前に、掘削残土・汚泥を水に分散する残土前処理工程を設けたことを特徴とするものである。
【0011】
上記掘削残土・汚泥の分離処理方法によると、粘土塊を多く含む掘削残土・汚泥をろ過するに当り、残土前処理工程にて掘削残土・汚泥を水に分散する。これにより、回転金網体内での高圧ジェット水の噴射による掘削残土・汚泥中の粘土塊の破砕と強制ろ過が一層円滑になり、より高精度で高能率に分離処理が実行される。
【0012】
又、本発明の請求項3の掘削残土・汚泥の分離処理装置は、回転金網体を傾斜姿勢に配置するとともにその底部の一部又は全部を沈殿槽の水面に浸漬させるように配置し、これを回転することにより内部に投入される掘削残土・汚泥を移送するろ過手段と、高圧ジェットノズルを回転金網体の内面の水面浮上位置に向けて設け、高圧ジェット水を噴射することにより掘削残土・汚泥中の粘土塊を破砕し且つ強制ろ過させる高圧ジェット水の供給手段とを具備したことを特徴とするものである。
【0013】
上記掘削残土・汚泥の分離処理装置によると、掘削残土・汚泥は水中で洗浄されながら傾斜する回転金網体の排出側へ移送され、回転金網体の内面の水面浮上位置に向けて高圧ジェット水が噴射され、その表面に付着する粘土や残土中の粘土塊を破砕して分離する。更に、回転金網体を目詰まりさせることなく強制的なろ過作用が連続して行なわれる。これにより、粘土塊中のシルト、粘土分と砂成分とを高精度に且つ効率良く分離させられる。
【0014】
又、本発明の請求項4の掘削残土・汚泥の分離処理装置は、請求項3記載の掘削残土・汚泥の分離処理装置において、ろ過手段の前に、掘削残土や汚泥を水槽にて水に分散する残土前処理手段を設けたことを特徴とするものである。
【0015】
本発明の請求項4によると、粘土塊を多く含む掘削残土・汚泥をろ過するに当り、残土前処理手段にて粘土塊を多く含む掘削残土・汚泥を水槽にて水に分散する。これにより、回転金網体内での高圧ジェット水の噴射による掘削残土・汚泥中の粘土塊の破砕と強制ろ過が一層円滑に行なわれ、より高精度で高能率に分離処理を実行する。
【0016】
【発明の実施の形態】
以下、図1〜5を参照して本発明の第1実施形態を説明する。図1は掘削残土・汚泥の分離処理装置100を示す正面図である。建設現場等から排出される掘削残土1や汚泥3の分離処理装置100は、この前に、掘削残土1や汚泥3を水に分散する残土前処理手段10を備えている。上記残土前処理手段10は、粘土塊を多く含む掘削残土1をろ過するに当り、そのままではろ過が難しいために、粘土塊をある大きさまでに分解するものである。この残土前処理手段10は、そのためのものであり、粘土類が少ない場合は必ずしもこの残土前処理手段を必要としない。
【0017】
上記残土前処理手段10は、水槽5内に攪拌羽根13を設け、これをモータMにて低速回転するものである。水槽5内に清水W及び掘削残土1や汚泥3を投入し、一日程度の時間をかけて攪拌羽根13で攪拌させ、粘土塊を多く含む掘削残土1を水に分散させる。この分散を促進するために、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、ヘキサメタリン酸ナトリウム、などの分散剤を使用することもある。この残土前処理手段10では、残土以外の異物である「木屑、紙屑」などの水より比重の小さいものを浮上させ、除去することもできる。尚、上記残土前処理手段10は、水槽5内の攪拌羽根13に替えて噴射ノズルを設け、これで粘土塊に水をかけても良い。又、単に水槽5だけとしこの中に粘土塊を投入して水に分散させるものでも良い。
【0018】
上記水槽5内に配置した配管15には、吐出ポンプPを備え、この吐出ポンプPにより、水槽5内で分散した掘削残土1や汚泥3の混濁水を次の分離処理装置100に送り込む。勿論、上記残土前処理手段10を省略する場合は、掘削残土1や汚泥3を分離処理装置100に直接投入する。
【0019】
上記分離処理装置100は、回転ドラム21のろ過手段22と、高圧ジェット水W1の供給手段40と、砂60の搬出部材50と、「シルト70、粘土粒子80」を沈殿させる複数の沈殿槽20,20A,20Bからなる。上記沈殿槽20は、上面が開口した箱型をなし、この上部に円筒状の回転ドラム21を横向きに配置している。上記回転ドラム21は、多少の傾斜姿勢(投入側を高くした傾斜角が5〜20度前後)にして支持ローラ23,25に回転可能に支持されている。上記支持ローラ25が回転力を伝達する駆動源(図示なし)に接続され、ゆっくりした回転数で上記回転ドラム21を時計方向Aに回転する。尚、上記回転ドラム21の回転速度及び傾斜角(勾配)は、掘削残土1や汚泥3の種類や供給量により任意に変更される。
【0020】
上記回転ドラム21は、その外周面に金網ろ過部材となる金網フイルタ27を筒状に張設しており、全体で回転金網体30を構成している。そして、回転金網体30は、底部の一部又は全部を沈殿槽20の水面W2に浸かるように配置されている。尚、図3に示すように、上記金網ろ過部材となる金網フイルタ27は、20μm以上で200μm以下の空間を有する1種類または数種類の構造体である。勿論、出来る限り掘削残土1や汚泥3を再生土として有効利用するには、空間が小さいものが望ましいが、目詰まりを考慮すると、75μmを基準として50μm以上で100μm以下が望ましい。そして、上記金網フイルタ27の内側面に破損防止用の例えば、150メッシュ以下の保護金網体29を設けるのが望ましい。上記金網フイルタ27の空間を50μm以上で100μm以下とし、保護金網体29の空間を150メッシュ以下とする理由は、図4に示すように、礫から粗砂が「2mm」、細砂が「0.2mm〜0.02mm」、シルトが「0.02mm」、粘土が「0.002mm」の粒体径を持つことから決定される。
【0021】
上記回転ドラム21である回転金網体30の内部には、高圧ジェット水W1の供給手段40を備えている。配管43を回転金網体30の軸心方向「O」へ向けて固定し、この配管43上に複数の高圧ジェットノズル41が取付けられている。そして、高圧ジェットノズル41から噴射する高圧ジェット水W1の噴射方向Lを回転金網体30の左斜め下方としている。上記高圧ジェットノズル41は、高圧ポンプHPを備え、水Wを10kgf/cm2 程度の高圧ジェット水W1にして供給している。尚、上記水圧は10kgf/cm2 に限定されず、金網フイルタ27の空間の大きさにより任意に調節される。
【0022】
上記高圧ジェット水W1の噴射方向Lを回転金網体30の左斜め下方で外径方向とした理由は、上記回転金網体30の底部が沈殿槽20の水面W2に浸かり、この時計方向Aへの回転に対して水面W2から浮上したばかりの回転金網体30の内面に向けて噴射し、効率良く掘削残土・汚泥中の粘土塊を破砕し且つ強制ろ過させるとともに、金網フイルタ27の目詰まりを防止するためである。特に、回転金網体30の底部は、水面W2内にあるように設けられる。こうすると、掘削残土1は水中で洗浄されながら傾斜する回転金網体30の排出側へと移送されることになる。
【0023】
上記回転金網体30に投入された掘削残土1や汚泥3は、回転金網体30の回転で粘土塊を破砕・ろ過されつつ排出側の内周に設けた回収部材33へと転動しながら移送される。上記回収部材33は、回転金網体30の回転によりシルトや粘土成分を除去した砂60を上方へ持ち上げ、この砂60を排出側に挿入配置した搬出部材50上に落下させる。そして、搬出部材50は砂60を外部へ搬出する。
【0024】
又、上記回転金網体30の下方に設置した沈殿槽20は、回転金網体30の金網フイルタ27を通過した泥水W3(シルト70,粘土粒子80を含む)を回収し、ここで自然沈殿させる。又、水面W2からオーバーフローした泥水W3は、次の沈殿槽20Aへ流出し、ここでオーバーフローした泥水W3´は、次の沈殿槽20Bへ流出してシルト70,粘土粒子80を完全に除去され清水Wとされる。この清水Wは、高圧ジェット水W1や水槽5へポンプP1や高圧ポンプHPにより供給されて再利用される。
【0025】
以下、上記掘削残土・汚泥の分離処理装置の構成を基に分離処理方法を説明する。図1及び図5に示す掘削残土・汚泥の分離処理方法のフローチャートにより説明する。先ず、掘削残土1・汚泥3を「残土前処理工程」(a)の残土前処理手段10へ投入して掘削残土・汚泥を水槽5にて攪拌して水に分散する。又、粘土塊の少ない掘削残土1のときは、直接に回転金網体30へ「残土投入」(b)する。回転金網体30へ投入した掘削残土1・汚泥3は、高圧ジェットノズル41からの「ジェット水噴射」(c)と回転金網体30の回転による転動により、「粘土塊の破砕・ろ過」(d)を強制的に効率良く行なう。
【0026】
即ち、掘削残土・汚泥中に高圧ジェット水W1が噴射され、その表面に付着する粘土や残土中の粘土塊を破砕分離し、金網ろ過部材である回転金網体30の金網フイルタ27に対しても高圧ジェット水W1が噴射され、目詰まりを生じることなく強制的にろ過作用を維持し、粘土塊中のシルト、粘土分と砂成分とを高精度に且つ効率良く分離する。これで、回転金網体30を強制的に通過した泥水W3を沈殿槽20にて沈殿させ泥水中に含む「シルト・粘土」(e)を回収する。又、回転金網体30の排出側に備える搬出部材50から「礫,粗砂,細砂」(f)を回収する。尚、上記礫,粗砂,細砂は、例えば破砕機等により粒度調節されて、再利用される。
【0027】
上記沈殿槽20,20A,20Bにて泥水W3を沈殿させて「シルト・粘土」(e)を沈殿回収するとともに、清水Wも回収される。この清水Wは、前処理手段10の水槽5や回転金網体30への高圧ジェット水W1として再利用される。又、シルト・粘土は、別工程であるフイルタ・プレス等で脱水処理した後、本願出願人の技術である掘削残土(シルト・粘土)を熱風乾燥させた後に粉砕し、これをプラスチック材と混練、溶融させて溶融体とし、これを冷却固化させて残土とプラスチック成形体とする方法により再利用することができる。又、別の処理方法としてセメントで固化させ、再生土として利用する方法等がある。
【0028】
上記第1実施形態によると、以下のような効果を奏することができる。先ず、回転金網体30内に投入された掘削残土1や汚泥3に高圧ジェット水W1を噴射し、残土中の粘土塊を破砕し且つ金網ろ過部材で強制ろ過させるから、掘削残土・汚泥中やその表面に付着する粘土塊を破砕して分離させ、更に金網ろ過部材に対しても高圧ジェット水W1の一部が噴射されて、強制的なろ過作用を行ない、且つ金網の目詰まりを防止し、粘土塊中のシルト70、粘土分80と砂成分60とを高精度に且つ効率良く分離できる。
【0029】
また、回転金網体30を通過した泥水を沈殿槽5にて沈殿させるから、高圧ジェット水W1により強制的に通過させられた泥水W3を沈殿槽20,20A,20Bにて沈殿させて効率良くシルト70,粘土80を回収することができる。
【0030】
また、回転金網体30に投入する前に、掘削残土・汚泥を水槽5にて水に分散する残土前処理工程を設けたから、この残土前処理工程にて掘削残土1・汚泥3中の粘土塊を分解して水に分散し、回転金網体30内での高圧ジェット水W1の噴射による掘削残土・汚泥中の粘土塊の破砕と強制ろ過とが一層円滑に行なわれ、より高精度で高能率に分離処理が行なえる効果がある。
【0031】
また、ろ過手段22の金網フイルタ27を通過した泥水W3を沈殿させる沈殿槽20を具備したから、高圧ジェット水W1により強制的に通過させられた泥水W3を沈殿槽20にて沈殿させて効率良くシルト70,粘土80を回収することができる効果がある。
【0032】
また、残土前処理手段10を設けたから、粘土塊を多く含む掘削残土1・汚泥3に対して粘土塊を多く含む掘削残土1・汚泥3を水槽5にて攪拌して水に分散し、金網ろ過部材である回転金網体30内での高圧ジェット水W1の噴射による掘削残土・汚泥中の粘土塊の破砕と強制ろ過が一層円滑になり、より高精度で高能率に分離処理が行なえる効果がある。
【0033】
本発明は、上記第1実施形態に限定されることなく発明の要旨内において、設計変更をなし得ること勿論である。尚、図6に示す実施の形態は参考例であり、回転金網体30への掘削残土1・汚泥3の供給を間欠にしたバッチ式としたものである。この場合は回転金網体30は、水平姿勢に沈殿槽20上に設置し、開閉部35,開閉部37の少なくとも一方を設け、2点鎖線35´,37´のように開口して投入・排出を行なう。その他の構成は上記第1実施形態と同一であり、同一符号を付して説明を省略する。
【0034】
上記バツチ式の掘削残土・汚泥の分離処理装置100´によると、上記図1,5に示す第1実施形態と同様の分離処理作用が行なえる。又、バツチ式により掘削残土・汚泥の分離処理を行なうと、少量の掘削残土1・汚泥3を間欠供給でき分離処理が効率良く行なえる。従って、少量の掘削残土・汚泥の分離処理に適した装置が得られる。
【0035】
更に、図7に示す実施の形態は参考例であり、回転金網体30を金網コンベア30´とし、これに掘削残土1・汚泥3を連続供給する方式としたものである。この場合は金網コンベア30´を沈殿槽20上に長く設置する。従って、高圧ジェットノズル41も金網コンベア30´の横幅方向や前後方向に多数設置する。その他の構成は上記第1実施形態と同一であり、同一符号を付して説明を省略する。
【0036】
上記金網コンベア式の掘削残土・汚泥の分離処理装置100〃によると、上記図1,5に示す第1実施形態と同様の分離処理作用が行なえる。又、金網コンベア式としたので掘削残土1・汚泥3を連続供給でき、多量の掘削残土・汚泥の分離処理に適した装置が得られる。
【0037】
その他、ろ過した泥水は沈殿槽20にて処理せず、ホッパにて集めて別途処理又は再利用することもできる。
【0038】
【効果】
以上のように、本発明の請求項1の掘削残土・汚泥の分離処理方法によると、掘削残土・汚泥は水中で洗浄されながら傾斜する回転金網体の排出側へ移送され、回転金網体の内面の水面浮上位置に向けて高圧ジェット水が噴射されて、その表面に付着する粘土や残土中の粘土塊を破砕して分離させ、更に強制的なろ過作用が行なわれ、且つ金網の目詰まりが防止される。これにより、粘土塊中のシルト、粘土分と砂成分とを高精度に且つ効率良く分離できる効果がある。
【0039】
又、本発明の請求項2によると、回転金網体に投入する前に、掘削残土・汚泥を水に分散する残土前処理工程を設けたから、この残土前処理工程にて掘削残土・汚泥中の粘土塊を分解して水に分散し、回転金網体内での高圧ジェット水の噴射による掘削残土・汚泥中の粘土塊の破砕と強制ろ過とが一層円滑に行なわれ、より高精度で高能率に分離処理が行なえる効果がある。
【0040】
又、本発明の請求項3によると、掘削残土・汚泥は水中で洗浄されながら傾斜する回転金網体の排出側へ移送され、回転金網体の内面の水面浮上位置に向けて高圧ジェット水が噴射され、その表面に付着する粘土や残土中の粘土塊を破砕して分離する。更に、回転金網体を目詰まりさせることなく強制的なろ過作用が連続して行なわれる。これにより、粘土塊中のシルト、粘土分と砂成分とを高精度に且つ効率良く分離させられる効果がある。
【0041】
又、本発明の請求項4によると、掘削残土や汚泥を水槽にて分散する残土前処理手段を設けたから、粘土塊を多く含む掘削残土・汚泥に対して残土前処理手段にて掘削残土・汚泥を水槽にて水に分散し、回転金網体内での高圧ジェット水の噴射による掘削残土・汚泥中の粘土塊の破砕と強制ろ過が円滑になり、より高精度で高能率に分離処理が行なえる効果がある。
【図面の簡単な説明】
【図1】 本発明の第1実施形態を示す図で分離処理装置の正面図である。
【図2】 本発明の第1実施形態を示す図で分離処理装置の断面図である。
【図3】 本発明の第1実施形態を示す図で回転金網体の一部断面図である。
【図4】 掘削残土・汚泥中の砂成分とその粗さを示す分布図である。
【図5】 本発明の第1実施形態を示す図で分離処理方法のフローチャート図である。
【図6】 本発明の参考例を示す図で分離処理装置の正面図である。
【図7】 本発明の参考例を示す図で分離処理装置の正面図である。
【符号の説明】
1掘削残土
3汚泥
5水槽
10残土前処理手段
13攪拌羽根
20,20A,20B沈殿槽
21回転ドラム
22ろ過手段
23,25支持ローラ
27金網フイルタ
29保護金網体
30,30´回転金網体
33回収部材
40供給手段
41高圧ジェットノズル
43配管
50搬出部材
60砂
70シルト
80粘土粒子
HP高圧ポンプ
P1ポンプ
W清水
W1高圧ジェット水
W2水面
W3,W3´泥水
100,100´,100〃分離処理装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a device for separating and processing excavation residue and sludge discharged from a construction site and the like according to soil properties, and in particular, excavation residue and sludge into gravel, coarse sand, fine sand and silt, and clay. The separation process can be performed with high accuracy and efficiency.
[0002]
[Prior art]
Conventionally, as a method and an apparatus for separating excavation residue and sludge discharged from a construction site or the like according to soil properties, for example, JP-A-7-51698, JP-A-7-178723, registered utility model publication No. 3015843 etc. are provided.
[0003]
JP-A-7-51698 discloses separating and removing coarse sand and fine sand while washing the excavated residual soil and sludge with a trommel or a classifier. Then, the remaining muddy water is dehydrated by a thickener and then subjected to a filter press to be separated into water and solid clay. Gravel and sand are added to the obtained solid clay at an equal ratio and mixed with a mixing device to obtain reclaimed soil.
[0004]
Japanese Patent Application Laid-Open No. 7-178723 is a mud water producing apparatus that can easily produce mud water of a viscous soil and a viscous soil sorting apparatus that can easily separate and eliminate large stones and dust from the viscous soil. The viscous soil separation device includes a viscous soil moving device, a calibration pressure water injection device, a muddy water discharge hopper, and a fixed screen in which a viscous soil supply hopper and a round bar are arranged side by side, and a movable plate installed between endless chains on both sides. including. The muddy water production apparatus is a combination of a mesh-like fixed screen, a viscous soil sorting apparatus, and a multi-axis mixer.
[0005]
The registered utility model publication No. 3015843 is a sediment sorting device that can reliably and quickly sort fine sediments and large stones from soil mixed with soil, sand, stones, etc. discharged at a construction site. The structure includes a rotating wire mesh having a cylindrical wire mesh, and a rotating plate inside the rotating wire mesh and rotating in the opposite direction to the rotating wire mesh.
[0006]
[Problems to be solved by the invention]
According to the water washing method of the above Japanese Patent Laid-Open No. 7-51698, the lump of clay mixed with gravel, sand and clay cannot be removed as muddy water, and is discharged together with coarse aggregate (gravel). Fine sand, silt, and clay cannot be separated with high precision and efficiency, and there is a problem in quality. Further, in the mesh-like fixed screen according to the above-mentioned JP-A-7-178723, it is not possible to remove only sand from the viscous soil, and also from a calibration pressure water injection device that drops soil attached to a lump or stone moving on the fixed screen. Cohesive soil and sand cannot be completely separated by water pressure alone. Furthermore, the registered utility model publication No. 3015843 is an earth and sand sorting device for fine earth and large stones from earth, sand, stones and other mixed earth and stones, so that it does not demonstrate the ability to drop clay on the earth or stones. There is a problem that.
[0007]
In view of the above-mentioned problems, the present invention has an object to provide a method and apparatus for separating excavation residue and sludge into gravel, coarse sand, fine sand and silt, and clay with high accuracy and efficiency. To do.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for separating excavation residual soil and sludge according to claim 1 of the present invention is arranged such that the rotating wire mesh body is disposed in an inclined posture and part or all of the bottom thereof is immersed in the water surface of the settling tank. By placing and rotating this, the excavation residual soil and sludge that is thrown into the inside is transferred, and the high-pressure jet nozzle is provided toward the surface of the surface of the rotating wire mesh body and the high-pressure jet water is injected. The clay lump in excavated soil and sludge is crushed and forced to be filtered.
[0009]
According to the method for separating excavation residue / sludge , the excavation residue / sludge is transferred to the discharge side of the rotating rotating wire mesh body while being washed in water, and high-pressure jet water is moved toward the surface floating surface on the inner surface of the rotating wire mesh member. When sprayed, the clay adhering to the surface and the clay lump in the remaining soil are crushed and separated, and a forced filtration action is performed, and clogging of the wire mesh is prevented. As a result, silt, clay and sand components in the clay mass are separated with high accuracy and efficiency.
[0010]
According to a second aspect of the present invention, there is provided a method for separating excavation residue / sludge according to claim 1, wherein the excavation residue / sludge is put into water before being put into the rotating wire mesh body. The present invention is characterized in that a remaining soil pretreatment step for dispersing is provided.
[0011]
According to the method for separating excavation residue / sludge, when filtering the excavation residue / sludge containing a large amount of clay mass, the excavation residue / sludge is dispersed in water in the residual soil pretreatment process. Accordingly, crushing and forcing filtration becomes more smoothly the clay mass while drilling surplus soil and sludge due to the injection of high pressure jet water in a rotating wire mesh body, separation with high efficiency is performed with higher accuracy.
[0012]
Moreover, the excavation residual soil / sludge separation apparatus according to claim 3 of the present invention is arranged such that the rotating wire mesh body is arranged in an inclined posture and part or all of the bottom thereof is immersed in the water surface of the settling tank. By installing a high-pressure jet nozzle toward the water surface floating position on the inner surface of the rotating wire mesh body, and by excavating high-pressure jet water , It has a high-pressure jet water supply means for crushing and forcibly filtering clay in the sludge.
[0013]
According to the apparatus for separating excavation residue / sludge , the excavation residue / sludge is transferred to the discharge side of the rotating rotating wire mesh body while being washed in water, and high-pressure jet water is directed toward the surface floating surface on the inner surface of the rotating wire mesh member. The clay that is sprayed and adheres to the surface of the clay and the clay mass in the remaining soil is crushed and separated. Further, a forced filtration action is continuously performed without clogging the rotating wire mesh body. Thereby, the silt in the clay lump, the clay component, and the sand component can be separated with high accuracy and efficiency.
[0014]
According to a fourth aspect of the present invention, there is provided a separation processing apparatus for excavation residue / sludge according to claim 3, wherein the excavation residue / sludge is converted into water in a water tank before the filtering means. The present invention is characterized in that there is provided residual soil pretreatment means for dispersion.
[0015]
According to claim 4 of the present invention, when filtering the excavated residual soil / sludge containing a large amount of clay mass, the excavated residual soil / sludge containing a large amount of clay mass is dispersed in water in a water tank by the residual soil pretreatment means. Thus, forced filtration and crushing of clay mass excavation surplus soil-sludge due to the injection of high pressure jet water in a rotating wire mesh body is performed more smoothly executes separation processing with high efficiency with higher accuracy.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a front view showing an excavation residue / sludge separation apparatus 100. Prior to this, the separation processing apparatus 100 for the excavated residual soil 1 and sludge 3 discharged from the construction site or the like includes the residual soil pretreatment means 10 for dispersing the excavated residual soil 1 and the sludge 3 in water. The residual soil pretreatment means 10 decomposes the clay mass to a certain size because it is difficult to filter the excavated residual soil 1 containing a large amount of clay mass as it is. This residual soil pretreatment means 10 is for that purpose, and when there are few clays, this residual soil pretreatment means is not necessarily required.
[0017]
The residual soil pretreatment means 10 is provided with a stirring blade 13 in the water tank 5 and rotated at a low speed by a motor M. The fresh water W, the excavation residue 1 and the sludge 3 are put into the water tank 5, and the agitation blade 13 is used for stirring for about one day to disperse the excavation residue 1 containing a large amount of clay mass in water. In order to promote this dispersion, a dispersing agent such as sodium hydroxide, sodium carbonate, sodium silicate, sodium hexametaphosphate, or the like may be used. The remaining soil pretreatment means 10 can float and remove materials having a specific gravity smaller than water, such as “wood waste, paper waste”, which is a foreign matter other than the remaining soil. The residual soil pretreatment means 10 may be provided with an injection nozzle in place of the stirring blade 13 in the water tank 5, and water may be applied to the clay block. Alternatively, only the water tank 5 may be used, and a clay lump may be put into this and dispersed in water.
[0018]
The piping 15 arranged in the water tank 5 is provided with a discharge pump P, and the discharge pump P feeds the turbid water of the excavated residual soil 1 and sludge 3 dispersed in the water tank 5 to the next separation treatment apparatus 100. Of course, when the residual soil pretreatment means 10 is omitted, the excavated residual soil 1 and the sludge 3 are directly put into the separation treatment apparatus 100.
[0019]
The separation processing apparatus 100 includes a plurality of settling tanks 20 for precipitating the filtration means 22 of the rotary drum 21, the supply means 40 of the high-pressure jet water W1, the unloading member 50 of the sand 60, and the “silt 70, clay particles 80”. , 20A, 20B. The sedimentation tank 20 has a box shape with an open upper surface, and a cylindrical rotating drum 21 is disposed laterally on the top. The rotary drum 21 is supported by the support rollers 23 and 25 in a slightly inclined posture (an inclination angle of about 5 to 20 degrees with a high input side). The support roller 25 is connected to a drive source (not shown) that transmits rotational force, and rotates the rotating drum 21 in the clockwise direction A at a slow rotational speed. The rotational speed and the inclination angle (gradient) of the rotary drum 21 are arbitrarily changed according to the type and supply amount of the excavated residual soil 1 and sludge 3.
[0020]
The rotating drum 21 has a wire mesh filter 27 as a wire mesh filtering member extending in a cylindrical shape on the outer peripheral surface thereof, and constitutes a rotating wire mesh body 30 as a whole. The rotating wire mesh 30 is arranged so that a part or all of the bottom is immersed in the water surface W2 of the settling tank 20. As shown in FIG. 3, the wire mesh filter 27 serving as the wire mesh filtration member is one or several types of structures having a space of 20 μm or more and 200 μm or less. Of course, in order to effectively use the excavated residual soil 1 and sludge 3 as reclaimed soil as much as possible, it is desirable that the space is small, but considering clogging, it is preferably 50 μm or more and 100 μm or less based on 75 μm. It is desirable to provide, for example, a protective mesh net 29 of 150 mesh or less on the inner surface of the metal mesh filter 27 for preventing damage. The reason why the space of the wire mesh filter 27 is 50 μm or more and 100 μm or less and the space of the protective wire mesh 29 is 150 mesh or less is that, as shown in FIG. 4, coarse sand is “2 mm” and fine sand is “0”. .2 mm to 0.02 mm ", silt is" 0.02 mm ", and clay has a particle diameter of" 0.002 mm ".
[0021]
A supply means 40 for high-pressure jet water W <b> 1 is provided inside the rotating wire mesh body 30 that is the rotating drum 21. The pipe 43 is fixed toward the axial center direction “O” of the rotating wire mesh body 30, and a plurality of high-pressure jet nozzles 41 are attached on the pipe 43. The injection direction L of the high-pressure jet water W <b> 1 injected from the high-pressure jet nozzle 41 is an obliquely lower left side of the rotating wire mesh body 30. The high-pressure jet nozzle 41 includes a high-pressure pump HP, and supplies water W as high-pressure jet water W1 of about 10 kgf / cm 2. The water pressure is not limited to 10 kgf / cm @ 2, but can be arbitrarily adjusted according to the size of the space of the wire mesh filter 27.
[0022]
The reason why the jet direction L of the high-pressure jet water W1 is set to the outer diameter direction diagonally to the left of the rotating wire mesh 30 is that the bottom of the rotating wire mesh 30 is immersed in the water surface W2 of the settling tank 20 and the clockwise direction A Sprayed toward the inner surface of the rotating wire mesh body 30 that has just floated from the water surface W2 in response to the rotation, efficiently crushes and crushes the clay lump in the excavated residual soil and sludge, and prevents clogging of the wire mesh filter 27 It is to do. In particular, the bottom of the rotating wire mesh body 30 is provided so as to be in the water surface W2. If it carries out like this, the excavation residual soil 1 will be transferred to the discharge | emission side of the rotating metal-mesh body 30 which inclines while washing | cleaning in water.
[0023]
The excavation residual soil 1 and sludge 3 thrown into the rotating wire mesh body 30 are transferred while rolling to a recovery member 33 provided on the inner periphery on the discharge side while the clay lump is being crushed and filtered by the rotation of the rotating wire mesh body 30. Is done. The collection member 33 lifts the sand 60 from which silt and clay components have been removed by the rotation of the rotating wire mesh body 30 upward, and drops the sand 60 onto the carry-out member 50 inserted and arranged on the discharge side. The unloading member 50 unloads the sand 60 to the outside.
[0024]
The sedimentation tank 20 installed below the rotating wire mesh body 30 collects the muddy water W3 (including the silt 70 and the clay particles 80) that has passed through the wire mesh filter 27 of the rotating wire mesh body 30, and spontaneously precipitates it here. Further, the muddy water W3 overflowed from the water surface W2 flows out to the next settling tank 20A, and the muddy water W3 'overflowed here flows out to the next settling tank 20B, and the silt 70 and the clay particles 80 are completely removed and the fresh water is removed. W. The fresh water W is supplied to the high-pressure jet water W1 and the water tank 5 by the pump P1 and the high-pressure pump HP and reused.
[0025]
Hereinafter, a separation processing method will be described based on the configuration of the separation processing apparatus for excavated soil and sludge. This will be described with reference to the flowchart of the excavation residual soil / sludge separation method shown in FIGS. First, the excavated residual soil 1 and sludge 3 are put into the residual soil pretreatment means 10 in the “residual soil pretreatment step” (a), and the excavated residual soil and sludge are stirred in the water tank 5 and dispersed in water. Further, when the excavated residual soil 1 has a small amount of clay lump, the “remaining soil is input” (b) directly to the rotating wire mesh 30. The excavated residual soil 1 and sludge 3 charged into the rotating wire mesh body 30 are “crushing and filtering the clay lump” by “jet water injection” (c) from the high pressure jet nozzle 41 and rolling by rotation of the rotating wire mesh body 30 ( d) is forcibly and efficiently performed.
[0026]
That is, the high pressure jet water W1 is injected into the excavated residual soil / sludge, and the clay adhering to the surface and the clay lump in the residual soil are crushed and separated, and also to the wire mesh filter 27 of the rotating wire mesh body 30 which is a wire mesh filtration member. The high-pressure jet water W1 is jetted to forcibly maintain the filtering action without causing clogging, and the silt, clay component and sand component in the clay mass are separated with high accuracy and efficiency. As a result, the muddy water W3 that has forcibly passed through the rotating wire mesh body 30 is precipitated in the settling tank 20, and the “silt / clay” (e) contained in the muddy water is recovered. Further, “gravel, coarse sand, fine sand” (f) is recovered from the carry-out member 50 provided on the discharge side of the rotating wire mesh body 30. The gravel, coarse sand, and fine sand are reused after the particle size is adjusted by a crusher, for example.
[0027]
The muddy water W3 is precipitated in the settling tanks 20, 20A, 20B to precipitate and collect “silt / clay” (e), and fresh water W is also collected. This fresh water W is reused as high-pressure jet water W1 to the water tank 5 and the rotating wire mesh body 30 of the pretreatment means 10. Silt / clay is dewatered with a filter press, etc., which is a separate process, and then the excavated residual soil (silt / clay), which is the technique of the applicant of the present application, is dried with hot air and then crushed, and this is kneaded with plastic material. It can be reused by melting it into a melt, cooling it and solidifying it into a residual soil and a plastic molded body. Further, as another treatment method, there is a method of solidifying with cement and using it as recycled soil.
[0028]
According to the first embodiment, the following effects can be obtained. First, since the high pressure jet water W1 is sprayed on the excavated residual soil 1 and sludge 3 introduced into the rotating wire mesh body 30 , the clay lump in the residual soil is crushed and forcedly filtered by the metal mesh filtration member. The clay lump adhering to the surface is crushed and separated, and a part of the high-pressure jet water W1 is also sprayed on the wire mesh filtering member to perform a forced filtration action and prevent clogging of the wire mesh. The silt 70, clay component 80 and sand component 60 in the clay mass can be separated with high accuracy and efficiency.
[0029]
Further, since the muddy water that has passed through the rotating wire mesh body 30 is precipitated in the settling tank 5, the muddy water W3 that is forcibly passed by the high-pressure jet water W1 is precipitated in the settling tanks 20, 20A, 20B, and is efficiently silted. 70, clay 80 can be recovered.
[0030]
In addition, since the remaining soil pretreatment process for dispersing the excavated residual soil / sludge in the water tank 5 is provided in the water tank 5 before being put into the rotating wire mesh body 30 , the clay lump in the excavated residual soil 1 / sludge 3 in this residual soil pretreatment process. Is broken down and dispersed in water, and the clay lump in the excavated residual soil and sludge and forced filtration are more smoothly performed by jetting the high-pressure jet water W1 in the rotating wire mesh body 30 , resulting in higher accuracy and higher efficiency. There is an effect that separation processing can be performed.
[0031]
In addition, since the sedimentation tank 20 that precipitates the muddy water W3 that has passed through the wire mesh filter 27 of the filtering means 22 is provided, the muddy water W3 that is forcibly passed by the high-pressure jet water W1 is precipitated in the precipitation tank 20 efficiently. There is an effect that the silt 70 and the clay 80 can be recovered.
[0032]
Moreover, since the residual soil pretreatment means 10 is provided, the excavated residual soil 1 / sludge 3 containing a large amount of clay lumps with respect to the excavated residual soil 1 / sludge 3 including a large amount of clay lumps is stirred in a water tank 5 and dispersed in water, Crushing and forced filtration of clay lump in excavated soil and sludge by injection of high-pressure jet water W1 in the rotating wire mesh body 30 that is a filtration member makes the separation process more precise and efficient. There is.
[0033]
Needless to say, the present invention is not limited to the first embodiment but can be modified within the scope of the invention. The embodiments shown in FIG. 6 is a reference example, it is a supply of drilling surplus soil 1 and sludge 3 to rotate net member 30 which has an intermittent on the batch. In this case, the rotating wire mesh body 30 is installed on the settling tank 20 in a horizontal posture, provided with at least one of an opening / closing part 35 and an opening / closing part 37, and opened and discharged as indicated by two-dot chain lines 35 'and 37'. To do. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted by assigning the same reference numerals.
[0034]
According to the batch-type excavation residue / sludge separation treatment apparatus 100 ', the same separation treatment action as in the first embodiment shown in FIGS. Further, when the excavation residue / sludge is separated by the batch method, a small amount of the excavation residue 1 / sludge 3 can be intermittently supplied and the separation treatment can be performed efficiently. Therefore, an apparatus suitable for separating a small amount of excavated soil and sludge can be obtained.
[0035]
Furthermore, the embodiment shown in FIG. 7 is a reference example, a rotary net member 30 as a wire mesh conveyor 30 'is this that excavation surplus soil 1-sludge 3 was continuously supplied system. In this case, the wire mesh conveyor 30 ′ is long installed on the settling tank 20. Therefore, a large number of high-pressure jet nozzles 41 are also installed in the lateral width direction and the front-rear direction of the metal mesh conveyor 30 '. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted by assigning the same reference numerals.
[0036]
According to the metal mesh conveyor type excavation residue / sludge separation treatment apparatus 100〃, the same separation treatment action as in the first embodiment shown in FIGS. Moreover, since it is a wire mesh conveyor type, the excavated residual soil 1 and sludge 3 can be continuously supplied, and a device suitable for a large amount of excavated residual soil and sludge can be obtained.
[0037]
In addition, the filtered muddy water is not treated in the sedimentation tank 20, but can be collected by a hopper and separately treated or reused.
[0038]
【effect】
As described above, according to the method for separating excavation residue / sludge of claim 1 of the present invention, the excavation residue / sludge is transferred to the discharge side of the rotating rotating wire mesh body while being washed in water, and the inner surface of the rotating wire mesh member is High-pressure jet water is sprayed toward the surface of the water surface, and the clay adhering to the surface and the clay lump in the residual soil are crushed and separated, and further forced filtration is performed, and the wire mesh is clogged. Is prevented. Thereby, there exists an effect which can isolate | separate the silt in a clay lump, a clay component, and a sand component with high precision and efficiency.
[0039]
Further, according to the second aspect of the present invention, since the remaining soil pretreatment step for dispersing the excavated residual soil / sludge in the water is provided before being put into the rotating wire mesh body , to decompose the clay mass was dispersed in water, the crushing of clay mass while drilling surplus soil and sludge due to the injection of high pressure jet water in a rotating wire mesh body and forced filtration is performed more smoothly, high efficiency with higher accuracy There is an effect that separation processing can be performed.
[0040]
According to claim 3 of the present invention, the excavation residual soil / sludge is transferred to the discharge side of the rotating rotating wire mesh body while being washed in water, and high-pressure jet water is jetted toward the floating surface on the inner surface of the rotating wire mesh member. Then, the clay adhering to the surface and the clay lump in the remaining soil are crushed and separated. Further, a forced filtration action is continuously performed without clogging the rotating wire mesh body. Thereby, there exists an effect which can isolate | separate the silt in a clay lump, a clay content, and a sand component with high precision and efficiency.
[0041]
Further, according to claim 4 of the present invention, since the residual soil pretreatment means for dispersing the excavated residual soil and sludge in the water tank is provided, the residual excavated soil / sludge with the residual soil pretreatment means for the excavated residual soil / sludge containing a large amount of clay mass sludge was dispersed in water in a water bath, forced filtration and crushing of clay mass while drilling surplus soil and sludge due to the injection of high pressure jet water in a rotating wire mesh body becomes smooth, separation with high efficiency with higher accuracy There is an effect that can be done.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a first embodiment of the present invention and a front view of a separation processing apparatus.
FIG. 2 is a cross-sectional view of the separation processing apparatus showing the first embodiment of the present invention.
FIG. 3 is a diagram showing a first embodiment of the present invention and is a partial cross-sectional view of a rotating wire mesh body.
FIG. 4 is a distribution diagram showing sand components and roughness of excavated soil and sludge.
FIG. 5 is a diagram showing a first embodiment of the present invention and a flowchart of a separation processing method.
FIG. 6 is a diagram showing a reference example of the present invention and a front view of the separation processing apparatus.
FIG. 7 is a front view of a separation processing apparatus showing a reference example of the present invention.
[Explanation of symbols]
1 excavated residual soil 3 sludge 5 water tank 10 residual soil pretreatment means 13 stirring blade 20, 20A, 20B sedimentation tank 21 rotating drum 22 filtering means 23, 25 support roller 27 wire mesh filter 29 protective wire mesh 30, 30 'rotating wire mesh 33 recovery member 40 supply means 41 high-pressure jet nozzle 43 piping 50 carry-out member 60 sand 70 silt 80 clay particle HP high-pressure pump P1 pump W fresh water W1 high-pressure jet water W2 water surface W3, W3 'mud water 100, 100', 100 〃 separation processing device

Claims (4)

回転金網体を傾斜姿勢に配置するとともにその底部の一部又は全部を沈殿槽の水面に浸漬させるように配置し、これを回転することにより内部に投入される掘削残土・汚泥を移送し、高圧ジェットノズルを回転金網体の内面の水面浮上位置に向けて設けておき、高圧ジェット水を噴射することにより掘削残土・汚泥中の粘土塊を破砕し且つ強制ろ過させるようにしたことを特徴とする掘削残土・汚泥の分離処理方法。The rotating wire mesh is placed in an inclined posture and part or all of its bottom is immersed in the water surface of the settling tank . By rotating this, the excavation residue and sludge thrown into the inside are transferred, and the high pressure A jet nozzle is provided toward the surface of the rotating wire net facing the water surface , and the clay lump in the excavated soil and sludge is crushed and forcedly filtered by jetting high-pressure jet water. Separation method for excavated soil and sludge. 回転金網体に投入する前に、掘削残土・汚泥を水に分散する残土前処理工程を設けたことを特徴とする請求項1記載の掘削残土・汚泥の分離処理方法。 2. The excavation residue / sludge separation method according to claim 1, further comprising a pre-soil pretreatment step for dispersing the excavation residue / sludge in water before being put into the rotating wire mesh body . 回転金網体を傾斜姿勢に配置するとともにその底部の一部又は全部を沈殿槽の水面に浸漬させるように配置し、これを回転することにより内部に投入される掘削残土・汚泥を移送するろ過手段と、高圧ジェットノズルを回転金網体の内面の水面浮上位置に向けて設け、高圧ジェット水を噴射することにより掘削残土・汚泥中の粘土塊を破砕し且つ強制ろ過させる高圧ジェット水の供給手段とを具備したことを特徴とする掘削残土・汚泥の分離処理装置。Filtration means that arranges the rotating wire mesh body in an inclined posture and arranges a part or all of the bottom of the rotating wire mesh body to be immersed in the water surface of the settling tank, and transfers the excavated residual soil and sludge introduced into the interior by rotating this And high pressure jet water supply means for crushing the clay lump in the excavated soil and sludge and forcibly filtering by providing the high pressure jet nozzle toward the surface floating position of the inner surface of the rotating wire mesh body, An apparatus for separating and processing excavated soil and sludge. ろ過手段の前に、掘削残土や汚泥を水槽にて水に分散する残土前処理手段を設けたことを特徴とする請求項3記載の掘削残土・汚泥の分離処理装置。  4. The apparatus for separating excavation residual soil / sludge according to claim 3, further comprising a pre-soil pretreatment means for dispersing the excavation residual soil and sludge in water in a water tank before the filtering means.
JP05431196A 1996-03-12 1996-03-12 Method and apparatus for separating excavated soil and sludge Expired - Lifetime JP3975290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05431196A JP3975290B2 (en) 1996-03-12 1996-03-12 Method and apparatus for separating excavated soil and sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05431196A JP3975290B2 (en) 1996-03-12 1996-03-12 Method and apparatus for separating excavated soil and sludge

Publications (2)

Publication Number Publication Date
JPH09239288A JPH09239288A (en) 1997-09-16
JP3975290B2 true JP3975290B2 (en) 2007-09-12

Family

ID=12967042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05431196A Expired - Lifetime JP3975290B2 (en) 1996-03-12 1996-03-12 Method and apparatus for separating excavated soil and sludge

Country Status (1)

Country Link
JP (1) JP3975290B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501098B2 (en) * 2001-09-12 2010-07-14 環境技術開発株式会社 Method and apparatus for recovering useful particulate matter from waste
KR100834710B1 (en) * 2006-12-27 2008-06-02 김수철 Treatment method and apparatus using a rotary screen for waste soil which is contained in construction waste
JP5367642B2 (en) * 2010-06-04 2013-12-11 友弘エコロジー株式会社 Method and apparatus for thawing soil material
JP2014102122A (en) * 2012-11-19 2014-06-05 Hiroharu Sugawara Sorting device for decontamination of soil and decontamination system of soil
JP5809619B2 (en) * 2012-12-27 2015-11-11 原田産業株式会社 Specific gravity difference sorter
JP6310201B2 (en) * 2013-07-19 2018-04-11 環テックス株式会社 Underwater rotary sieve processing equipment
JP2015087121A (en) * 2013-10-28 2015-05-07 清水建設株式会社 Gravel decontamination facility, and gravel decontamination method
CN110898493A (en) * 2019-12-09 2020-03-24 王长波 Hydraulic engineering environment-friendly purification and filtration equipment

Also Published As

Publication number Publication date
JPH09239288A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP4256505B2 (en) How to treat dredged soil
KR20080058076A (en) Dust seperating method and the apparatus using improved structure of motor-screen
KR20000052354A (en) Method and system for carrying out treatment of granular substances with pollutants adhered
JP3975290B2 (en) Method and apparatus for separating excavated soil and sludge
JP4364889B2 (en) Method and apparatus for treating dredged soil
KR100850257B1 (en) Processing method and device of excavate happening in shield working place for a base rock
JP4190669B2 (en) Method and apparatus for processing particulate matter with contaminants attached
JP4123510B2 (en) Contaminated soil treatment system
JP4046866B2 (en) Separation and processing method for excavated soil and sludge
KR100506369B1 (en) a device for selection and crushing/fine crush of wastes construction
KR100834710B1 (en) Treatment method and apparatus using a rotary screen for waste soil which is contained in construction waste
JP3729805B2 (en) Inorganic sludge treatment equipment
KR100631430B1 (en) Aggregate cleaning device of recycled aggregate manufacturing device
KR100616525B1 (en) A cleansing device aggregate
KR200303298Y1 (en) Recycling sand production device use construction waste
JP2006015327A (en) Earth/sand regeneration system and earth/sand regeneration method
JP2001113230A (en) Crushing and selecting treatment apparatus
KR20020024355A (en) Manufacturing Device of Remaking gravel
JP2909585B1 (en) Mud treatment equipment
CN209853953U (en) Granular solidification equipment of high moisture content mud
KR20050051428A (en) Method of regenerating sand utilizing waste concrete and an apparatus thereof
KR200441015Y1 (en) Treatment apparatus using a rotary screen for waste soil which is contained in construction waste
DE9017954U1 (en) Device for processing deposits
KR200302005Y1 (en) a device for selection and crushing/fine crush of wastes construction
CN217698961U (en) Production equipment of granular solidified soil

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term