JP3974867B2 - Hydraulic drive unit for construction machinery - Google Patents

Hydraulic drive unit for construction machinery Download PDF

Info

Publication number
JP3974867B2
JP3974867B2 JP2003064805A JP2003064805A JP3974867B2 JP 3974867 B2 JP3974867 B2 JP 3974867B2 JP 2003064805 A JP2003064805 A JP 2003064805A JP 2003064805 A JP2003064805 A JP 2003064805A JP 3974867 B2 JP3974867 B2 JP 3974867B2
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
valve
throttle
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003064805A
Other languages
Japanese (ja)
Other versions
JP2004270867A (en
Inventor
純也 川本
靖貴 釣賀
究 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2003064805A priority Critical patent/JP3974867B2/en
Publication of JP2004270867A publication Critical patent/JP2004270867A/en
Application granted granted Critical
Publication of JP3974867B2 publication Critical patent/JP3974867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧ショベル等の建設機械に用いられるLS制御方式の油圧駆動装置に係わり、特に、油圧ポンプの吐出圧を複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう制御しかつ複数の流量制御弁の前後差圧を制御する圧力補償弁のそれぞれの目標補償差圧を油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧に基づいて設定する建設機械の油圧駆動装置に関する。
【0002】
【従来の技術】
油圧ショベル等の建設機械の油圧駆動装置としては、一般に、可変容量型の油圧ポンプと、この油圧ポンプから吐出された圧油により駆動される複数のアクチュエータと、油圧ポンプから複数のアクチュエータに供給される圧油の流量をそれぞれ制御する複数の流量制御弁と、複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、油圧ポンプの吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう制御するポンプ制御手段とを備え、複数の圧力補償弁のそれぞれの目標補償差圧を油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧に基づいて設定するようにしたものが知られている(例えば特開昭60−11706号公報参照)。
【0003】
このような油圧駆動装置においては、複数の流量制御弁の前後差圧を圧力補償弁により制御することにより、複数のアクチュエータを同時に駆動する複合操作時に負荷圧の大小に係わらず流量制御弁の開口面積に応じた比率で圧油を供給することができる。
【0004】
また、複数の流量制御弁の前後差圧を制御する圧力補償弁のそれぞれの目標補償差圧をLS差圧により設定することにより、複数のアクチュエータを同時に駆動する複合動作時に、油圧ポンプの吐出流量が複数の流量制御弁の要求する流量に満たないサチュレーション状態になったときでも、サチュレーションの程度に応じてLS差圧が低下し、これに伴って圧力補償弁の目標補償差圧も小さくなるため、油圧ポンプの吐出流量をそれぞれのアクチュエータが要求する流量の比に再分配することができる。
【0005】
また、この種の油圧駆動装置として、特開2002−323002号公報に記載のものがある。この油圧駆動装置は、油圧ポンプの吐出圧と複数のアクチュエータの最高負荷圧との差圧(以下、適宜LS差圧という)を絶対圧として出力する差圧減圧弁と、この差圧減圧弁の出力ポートに接続された絞りを有する一次差圧ラインと、この一次差圧ラインから分岐し、複数の圧力補償弁のそれぞれの目標補償差圧設定用の受圧部に接続された個別の二次差圧ラインとを備え、差圧減圧弁の出力圧を全ての圧力補償弁の受圧部に、絞りを有する一次差圧ラインとそれぞれの二次差圧ラインを介して導くようにしている。
【0006】
LS差圧を差圧減圧弁により絶対圧として出力し複数の圧力補償弁の受圧部に導くことにより、各圧力補償弁に接続される信号圧ラインが二次差圧ラインの一本だけとなり、回路構成が簡素化される。
【0007】
また、一次差圧ラインに絞りを設け、全ての圧力補償弁の受圧部に差圧減圧弁の出力圧を、その絞りを有する一次差圧ラインと個別の二次差圧ラインを介して導くことにより、2つ以上のアクチュエータを同時に駆動させた状態から、一方のアクチュエータを停止させた時においても、LS差圧の急上昇が緩和された圧力となって伝達され、その結果、停止させなかった他方のアクチュエータに係わる圧力補償弁の目標補償差圧の急上昇が防げ、当該圧力補償弁により制御されアクチュエータヘの供給流量は急激に増大することがなくなるので、アクチュエータに発生するショックを軽減することができる。
【0008】
【特許文献1】
特開昭60−11706号公報
【特許文献2】
特開2002−323002号公報
【0009】
【発明が解決しようとする課題】
上記のように特開2002−323002号公報に記載の油圧駆動装置では、全ての圧力補償弁の受圧部に差圧減圧弁の出力圧を絞りを有する一次差圧ラインとそれぞれの二次差圧ラインを介して導くことにより、2つ以上のアクチュエータを同時に駆動させた状態から、一方のアクチュエータを停止させた時においても、停止させなかった他方のアクチュエータに発生するショックを軽減することができる。しかし、この従来技術では、LS差圧の急上昇を緩和するための絞りを複数の圧力補償弁に共通となる一次差圧ラインに設け、同じ絞りを介して全ての圧力補償弁の受圧部に差圧減圧弁の出力圧(LS差圧の絶対圧)を導く構成としているため、各アクチュエータの起動時や複合操作での相手側アクチュエータの減速・停止時に、制御の応答性が全てのアクチュエータに対して同じとなり、アクチュエータのそれぞれに適した応答性を得ることはできなかった。
【0010】
本発明の目的は、旋回油圧モータ、ブームシリンダ及びアームシリンダのうちの2つ以上のアクチュエータを同時に駆動させた状態から、一方のアクチュエータを停止させた時に、停止させなかた旋回モータまたはブームシリンダに発生するショックを軽減することができるとともに、旋回油圧モータ、ブームシリンダ及びアームシリンダの起動時や複合操作での相手側アクチュエータの減速・停止時にアクチュエータのそれぞれに適した応答性を得ることができる建設機械の油圧駆動装置を提供することである。
【0011】
【問題を解決するための手段】
上記目的を達成するために、本発明は、可変容量型の油圧ポンプと、この油圧ポンプから吐出された圧油により駆動される旋回モータ、ブームシリンダ及びアームシリンダと、前記油圧ポンプから前記旋回油圧モータ、ブームシリンダ及びアームシリンダに供給される圧油の流量をそれぞれ制御する流量制御弁と、前記流量制御弁の前後差圧をそれぞれ制御する圧力補償弁と、前記油圧ポンプの吐出圧が前記旋回油圧モータ、ブームシリンダ及びアームシリンダの最高負荷圧より目標差圧だけ高くなるよう制御するポンプ制御手段とを備え、前記圧力補償弁のそれぞれの目標補償差圧を前記油圧ポンプの吐出圧と前記最高負荷圧との差圧に基づいて設定する建設機械の油圧駆動装置において、前記油圧ポンプの吐出圧と前記旋回油圧モータ、ブームシリンダ及びアームシリンダの最高負荷圧との差圧を絶対圧として出力する差圧減圧弁と、前記旋回油圧モータ、ブームシリンダ及びアームシリンダの各圧力補償弁の開き方向に目標補償差圧が設定される各圧力補償弁の受圧部と、前記差圧減圧弁の出力ポートに接続された第1差圧ラインと、この第1差圧ラインを、前記旋回油圧モータ、ブームシリンダ及びアームシリンダの各圧力補償弁のそれぞれの前記各受圧部に接続する個別の第2差圧ラインとを備え、前記旋回油圧モータ及びブームシリンダの個別の第2差圧ラインのそれぞれに第1絞りを設け、前記差圧減圧弁の出力圧を前記第1差圧ライン、前記旋回油圧モータ及びブームシリンダの個別の前記第2差圧ライン及び前記各第1絞りを介して対応する各圧力補償弁の受圧部に導くとともに前記旋回油圧モータに係る第1絞りの開口面積を前記ブームシリンダに係る第1絞りの開口面積より小さくし、かつ、前記旋回油圧モータ及びブームシリンダの個別の第2差圧ラインの前記各第1絞りと前記各受圧部との間の部分を各タンクラインと各第2絞りを介してタンクに連通させ、前記各第1絞りの開口面積を前記各第2絞りの開口面積より大きくし、前記旋回油圧モータ、ブームシリンダ及びアームシリンダの前記各圧力償弁の制御の遅れ時間T1、T2及びT3をT1>T2>T3としたことを特徴とする建設機械の油圧駆動装置。ものとする。
【0012】
このように旋回油圧モータ及びブームシリンダの個別の第2差圧ラインのそれぞれに第1絞りを設け、前記差圧減圧弁の出力圧を前記第1差圧ライン、前記旋回油圧モータ及びブームシリンダの個別の前記第2差圧ライン及び前記各第1絞りを介して対応する各圧力補償弁の受圧部に導くとともに前記旋回油圧モータに係る第1絞りの開口面積を前記ブームシリンダに係る第1絞りの開口面積より小さくし、かつ、前記旋回油圧モータ及びブームシリンダの個別の第2差圧ラインの前記各第1絞りと前各記受圧部との間の部分を各タンクラインと各第2絞りを介してタンクに連通させ、前記各第1絞りの開口面積を前記各第2絞りの開口面積より大きくし、前記旋回油圧モータ、ブームシリンダ及びアームシリンダの前記各圧力償弁の制御の遅れ時間T1、T2及びT3をT1>T2>T3としたことにより、旋回油圧モータ、ブームシリンダ及びアームシリンダのうちの2つ以上のアクチュエータを同時に駆動させた状態から、一方のアクチュエータを停止させた時に、差圧減圧弁の出力圧が急上昇しても、停止させなかた旋回モータまたはブームシリンダに係る第1絞りの下流側の圧力(対応する圧力補償弁の受圧室に導かれる圧力)は急上昇を緩和された圧力となるため、旋回モータまたはブームシリンダに発生するショックを軽減することができる。
【0013】
また、旋回油圧モータ及びブームシリンダの個別の第2差圧ラインのそれぞれに第1絞りを設け、前記差圧減圧弁の出力圧を前記第1差圧ライン、前記旋回油圧モータ及びブームシリンダの個別の前記第2差圧ライン及び前記各第1絞りを介して対応する各圧力補償弁の受圧部に導くとともに前記旋回油圧モータに係る第1絞りの開口面積を前記ブームシリンダに係る第1絞りの開口面積より小さくし、かつ、前記旋回油圧モータ及びブームシリンダの個別の第2差圧ラインの前記各第1絞りと前各記受圧部との間の部分を各タンクラインと各第2絞りを介してタンクに連通させ、前記各第1絞りの開口面積を前記各第2絞りの開口面積より大きくし、前記旋回油圧モータ、ブームシリンダ及びアームシリンダの前記各圧力償弁の制御の遅れ時間T1、T2及びT3をT1>T2>T3としたことにより、
旋回油圧モータ、ブームシリンダ及びアームシリンダの起動時或いは旋回油圧モータ、ブームシリンダ及びアームシリンダのうち2以上のアクチュエータを同時に駆動させた複合操作の状態から、一方のアクチュエータを停止又は減速させた時の旋回油圧モータ、ブームシリンダ及びアームシリンダの制御の各遅れ時間がT1、T2及びT3それぞれ異なるものとなり、かつT1>T2>T3のようにアームシリンダに対しては応答性の良いきびきびした応答性が得られ、旋回モータに対してはショックの少ない滑らかな動作が得られ、ブームシリンダに対してはそれらの中間的な応答性が得られ、旋回油圧モータ、ブームシリンダ及びアームシリンダ毎にそれぞれに適切な応答性が得ることができる。
【0014】
また、旋回油圧モータ及びブームシリンダの個別の第2差圧ラインの前記各第1絞りと前各記受圧部との間の部分を各タンクラインと各第2絞りを介してタンクに連通させ、前記各第1絞りの開口積を前記各第2絞りの開口面積より大きくした事により各第1絞りの上流側から第各1絞り各タンクライン各第2絞りを介してタンクに至る圧油の流れが生じ、各第1絞りの下流側に差圧減圧弁の出力圧とタンク圧との中間圧が発生するため、第1絞りの有無、或いは第1絞り同士の開口面積の差に応じた遅れ時間T1,T2,T3を確実に発生させ、旋回油圧モータ、ブームシリンダ及びアームシリンダのそれぞれに応じた応答性を確実に発揮することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
【0021】
図1は本発明の一実施の形態に係わる建設機械の油圧駆動装置を示す図である。
【0022】
図1において、本実施の形態に係わる油圧駆動装置は、エンジン1と、このエンジン1により駆動されるメインポンプとしての可変容量型の油圧ポンプ2及び固定容量型のパイロットポンプ30と、メインの油圧ポンプ2から吐出された圧油により駆動される複数のアクチュエータ3a,3b,3cと、油圧ポンプ2の供給油路5に接続され、油圧ポンプ2からアクチュエータ3a,3b,3cに供給される圧油の流量と方向を制御するコントロールバルブ4と、油圧ポンプ2の吐出圧と複数のアクチュエータ3a,3b,3cの最高負荷圧との差圧(LS差圧)を絶対圧として出力する差圧減圧弁11と、油圧ポンプ2の傾転(容量)を制御するポンプ傾転制御機構12と、エンジン回転数に依存する圧力を絶対圧として出力するエンジン回転数検出回路13とを備えている。
【0023】
コントロールバルブ4は、油圧ポンプ2からアクチュエータ3a,3b,3cに供給される圧油の流量と方向を制御するクローズドセンタ型の複数の流量制御弁(メインスプール)6a,6b,6cと、これら複数の流量制御弁6a,6b,6cのメータイン絞り部61,62の前後差圧を同じ値に制御する複数の圧力補償弁7a,7b,7cとを有している。
【0024】
流量制御弁6a,6b,6cはそれぞれ図示しない操作レバーの操作により切り換え操作され、その操作レバーの操作量に応じてメータイン絞り部61又は62の開口面積が決まる。
【0025】
複数の圧力補償弁7a,7b,7cは、それぞれ、流量制御弁6a,6b,6cのメータイン絞り部61,62の上流に設置された前置きタイプ(ビフォアオリフィスタイプ)であり、圧力補償弁7aは1対の対向する受圧部70a,70bと開方向作動の受圧部70cとを有し、圧力補償弁7b,7cも、同様に、受圧部71a,71b及び72a,72bと受圧部71c及び72cを有している。
【0026】
受圧部70a,70b;71a,71b;72a,72bはそれぞれ圧力フィードバック用であり、受圧部70a,70bに流量制御弁6aの上流側及び下流側の圧力がそれぞれ導かれ、受圧部71a,71bに流量制御弁6bの上流側及び下流側の圧力がそれぞれ導かれ、受圧部72a,72bに流量制御弁6cの上流側及び下流側の圧力がそれぞれ導かれる。受圧部70c,71c,72cは目標補償差圧設定用であり、差圧減圧弁11の出力圧が導かれる(後述)。これにより圧力補償弁7a,7b,7cは、それぞれ、差圧減圧弁11の出力圧を目標補償差圧として流量制御弁6a,6b,6cの前後差圧を制御する。
【0027】
複数の流量制御弁6a,6b,6cには、それぞれ、アクチュエータ3a,3b,3cの駆動時にそれらの負荷圧を取り出す負荷ポート60a,60b,60cが設けられ、これら負荷ポート60a,60b,60cに取り出された負荷圧のうちの最高の圧力が負荷ライン8a,8b,8c、8d及びシャトル弁9a,9bを介して信号ライン10に検出される。
【0028】
差圧減圧弁11は、出力圧を増やす側に位置する受圧部11aと出力圧を減らす側に位置する受圧部11b,11cを有し、受圧部11aに油圧ポンプ2の吐出圧が導かれ、受圧部11b,11cにそれぞれ信号ライン10に検出された最高負荷圧と自己の出力圧が導かれ、これらの圧力のバランスで油圧ポンプ2の吐出圧と最高負荷圧との差圧(LS差圧)を絶対圧として出力する。
【0029】
差圧減圧弁11の出力ポート11dは第1差圧ライン21に接続され、第1差圧ライン21は信号ライン22を介してポンプ傾転制御機構12に設けられたLS制御弁12bの受圧部12dに接続され、差圧減圧弁11の出力圧が受圧部12dに導かれる。また、第1差圧ライン21は個別の第2差圧ライン23,24,25を介して圧力補償弁7a,7b,7cの目標補償差圧設定用の受圧部70c,71c,72cに接続され、第2差圧ライン23,24には第1絞り41,42が設けられ、第2差圧ライン23,24の第1絞り23,24と受圧部70c,71cの間の部分23a,24aはタンクライン43,44を介してタンクに接続され、タンクライン43,44に第2絞り45,46が設けられている。これにより受圧部70cには、差圧減圧弁11の出力圧が第1差圧ライン21及び第2差圧ライン23と第1絞り41を介して導かれ、受圧部70cに導かれた圧力は差圧減圧弁11の出力圧を第1絞り41とタンクライン43及び第2絞り45により調整したものとなる。同様に受圧部71cには、差圧減圧弁11の出力圧が第1差圧ライン21及び第2差圧ライン24と第1絞り42介して導かれ、受圧部71cに導かれた圧力は差圧減圧弁11の出力圧を第1絞り42とタンクライン44及び第2絞り46により調整したものとなる。一方、受圧部72cには差圧減圧弁11の出力圧が第1差圧ライン21及び第2差圧ライン25を介して直接(そのまま)導かれ、LS制御弁12bの受圧部12dにも差圧減圧弁11の出力圧が第1差圧ライン21及び信号ライン22を介して直接(そのまま)導かれる。
【0030】
ここで、第1絞り41,42の開口面積をそれぞれA1a,A1b、第2絞り45,46の開口面積をそれぞれA2a,A2bとすると、それぞれ以下の関係となっている。
【0031】
A1a>>A2a
A2a>>A2b
A1a<A1b
A2a≒A2b
つまり、第1絞り41,42の開口面積A1a,A1bは第2絞り45,46の開口面積A2a,A2bより大きく、第2絞り45,46の開口面積A2a,A2bは可能な限り小さくして第1絞り41,42の開口面積A1a,A1bと第2絞り45,46の開口面積A2a,A2bの差を大きくしており、これにより第1絞り41,42の下流側(受圧室70c,71cの圧力)には第1絞り41,43の上流側の圧力(差圧減圧弁11の出力圧)とタンク圧の中間圧が発生し、かつその中間圧が差圧減圧弁11の出力圧と大きな差異が生じないようにしている。
【0032】
また、第1絞り41の開口面積A1aは第1絞り42の開口面積A1bより小さくし、これにより差圧減圧弁11の出力圧の変動時、第1絞り41の下流側は第1絞り42の下流側よりも圧力変化を伝わりにくくし、応答性を遅くしている。
【0033】
ポンプ傾転制御機構12は、油圧ポンプ2の吐出圧が高くなると油圧ポンプ2の傾転を減らす馬力制御傾転アクチュエータ12aと、油圧ポンプ2の吐出圧が複数のアクチュエータ3a,3b,3cの最高負荷圧より目標差圧だけ高くなるようロードセンシング制御するLS制御弁12b及びLS制御傾転アクチュエータ12cとを備えている。
【0034】
LS制御弁12bは、アクチュエータ12cを増圧し油圧ポンプ2の傾転を減らす側に位置する受圧部12dと、アクチュエータ12cを減圧し油圧ポンプ2の傾転を増やす側に位置する受圧部12eとを有し、受圧部12dには差圧減圧弁11の出力圧(油圧ポンプ2の吐出圧とアクチュエータ3a,3b,3cの最高負荷圧との差圧、つまりLS差圧)が導かれ、受圧部12eにはエンジン回転数検出回路13の出力圧がロードセンシング制御の目標差圧(目標LS差圧)として導かれる。
【0035】
エンジン回転数検出回路13は、パイロットポンプ30の吐出ライン31に配置された流量検出弁50と、この流量検出弁50の前後差圧を検出する差圧減圧弁51とを備えている。
【0036】
流量検出弁50は吐出ライン31が通過する可変の絞り部50aを有している。吐出ライン31は流量検出弁50により上流側のライン31aと下流側のライン31bとに分けられ、下流側のライン31bには、パイロット油圧源としての元圧を規定するリリーフ弁32が接続され、この下流側のライン31bは、例えば流量制御弁6a,6b,6cを切換操作するためのパイロット圧を生成するリモコン弁(図示せず)へと接続されている。
【0037】
吐出ライン31を流れる圧油の流量はパイロットポンプ30の吐出流量であり、この吐出流量はエンジン1の回転数によって変化する。また、絞り部50aの前後差圧は吐出ライン31を流れる圧油の流量に依存して変化する。例えば、エンジン1の回転数が低下すれば吐出ライン31を流れる流量(パイロットポンプ30の吐出流量)が減少し、絞り部50aの前後差圧は低下する。流量検出弁50は吐出ライン31を流れる流量(パイロットポンプ30の吐出流量)の変化を絞り部50aの前後差圧の変化として検出し、エンジン回転数の変化を検出するものである。
【0038】
また、絞り部50aは開口面積が連続的に変化する可変絞り部として構成されており、流量検出弁50は開方向作動の受圧部50bと絞り方向作動の受圧部50c及びバネ50dを有し、受圧部50bに可変絞り部50aの上流側圧力(ライン31aの圧力)が導かれ、受圧部50cに可変絞り部50aの下流側圧力(ライン31bの圧力)が導かれ、可変絞り部51a自身の前後差圧に依存してその開口面積を変化させる構成となっている。このように流量検出弁50を構成し、可変絞り部50aの前後差圧を検出し目標LS差圧として用いる(後述)ことにより、エンジン回転数に応じたサチュレーション現象の改善が図れ、エンジン回転数を低く設定した場合に良好な微操作性が得られる。なお、この点は特開平10−196604号公報に詳しい。
【0039】
差圧減圧弁51は、エンジン回転数に依存する圧力である可変絞り部50aの前後差圧を絶対圧として出力するエンジン回転数検出弁であり、出力圧を増やす側に位置する受圧部51aと出力圧を減らす側に位置する受圧部51b,51cを有し、受圧部51aに可変絞り部50aの上流側圧力が導かれ、受圧部51b,51cにそれぞれ可変絞り部50aの下流側圧力と自己の出力圧が導かれ、これらの圧力のバランスでライン31bの圧力を基に可変絞り部50aの前後差圧を絶対圧として出力する。この差圧減圧弁51の出力ポート51dは信号ライン53を介してLS制御弁12bの受圧部12eへと接続され、差圧減圧弁51の出力圧が目標LS差圧として受圧部12eに導かれる。これにより可変絞り部50aの前後差圧が目標LS差圧として設定され、エンジン回転数に応じたアクチュエータスピードの設定が可能となり、エンジン回転数を低く設定した場合に良好な微操作性が得られる。
【0040】
図2に本発明が適用される建設機械の一例である油圧ショベルの外観を示す。油圧ショベルは下部走行体200、上部旋回体201、フロント作業機202を有し、下部走行体は左右の走行モータ203a,203b(一方のみ図示)により駆動される左右のクローラ式走行装置を有し、上部旋回体201は旋回モータ204により下部走行体200上に軸Oを中心に旋回可能であり、フロント作業機202は上部旋回体201の前部で上下動可能である。フロント作業機202はブーム205、アーム206、バケット207を有する多関節構造であり、ブーム205はブームシリンダ208により、アーム206はアームシリンダ209により、バケット207はバケットシリンダ210によりそれぞれ軸Oを含む平面内を回転駆動される。下部走行体200の前部にはブレード211が装着され、ブレード211は図示しない油圧シリンダによる上下動可能である。
【0041】
本実施の形態において、アクチュエータ3aは例えば旋回モータ204であり、アクチュエータ3bは例えばブームシリンダ208であり、アクチュエータ3cは例えばアームシリンダ209である。
【0042】
次に、本実施の形態の動作を比較例と対比して説明する。
【0043】
図3は、比較例1として、図1に示した圧力補償弁7a,7bの受圧部70c,71cにも差圧検出弁11の出力圧を直接(そのまま)導いたものである。つまり、第2差圧ライン23,24には、図1に示した第1絞り41,42、タンクライン43,44、第2絞り45,46は設けられていない。この構成は、特開2002−323002号公報の図4に記載の構成(特開2002−323002号公報の発明の従来技術)に相当するものである。
【0044】
図4は、比較例2として、図3に示した比較例1の第1差圧ライン21に第1絞り91とタンクライン92を設け、タンクライン92に第2絞り93を設け、全ての圧力補償弁7a,7b,7cの受圧部70c,71c,72cに差圧減圧弁11の出力圧を第1差圧ライン21と第1絞り91及び個別の第2差圧ライン23,24,25を介して導き、受圧部70c,71c,72cの圧力を差圧減圧弁11の出力圧を第1絞り91とタンクライン92及び第2絞り93により調整した同じ圧力としたものである。第1絞り91、第2絞り93の開口面積をそれぞれAa,Abとすると、それらの関係はAa>>Abである。この構成は、特開2002−323002号公報の図2に記載の構成(特開2002−323002号公報の発明の第2実施例)に相当するものである。
【0045】
差圧減圧弁11の出力圧(油圧ポンプ2の吐出圧と最高負荷圧との差圧)をPLSとし、圧力補償弁7a,7b,7cの受圧室70c,71c,72cにより設定される目標補償差圧をそれぞれPc1,Pc2,Pc3とすると、図3の比較例1では、受圧室70c,71c,72cには差圧減圧弁11の出力圧PLSが直接導かれるので、目標補償差圧Pc1,Pc2,Pc3は全てPLSとなる。
【0046】
Pc1=PLS
Pc2=PLS
Pc3=PLS
図4の比較例2では、差圧減圧弁11の出力圧PLSを第1絞り91を介して圧力補償弁7a,7b,7cの受圧室70c,71c,72cに導き、かつ第1絞り91の下流側をタンクライン92及び第2絞り93を介してタンクに連通している。このため第1絞り91の下流側の圧力をPLS0とすると、静的な状態において、差圧減圧弁11の出力圧PLSと圧力補償弁7a,7b,7cの目標補償差圧Pc1,Pc2,Pc3とは以下の関係となる。
【0047】
Pc1=PLS0<PLS
Pc2=PLS0<PLS
Pc3=PLS0<PLS
一方、図1に示す本実施の形態では、個別の第2差圧ライン23,24に第1絞り41,42とタンクライン43,44及び第2絞り45,46が設けられているので、第1絞り41,42の下流側の圧力をそれぞれPLS1,PLS2とすると、圧力補償弁7a,7bの受圧室70c,71cには圧力PLS1,PLS2が導かれ、圧力補償弁7cの受圧室72cには差圧減圧弁11の出力圧PLSが直接導かれている。圧力PLS1は差圧減圧弁11の出力圧を第1絞り41とタンクライン43及び第2絞り45により調整した圧力であり、圧力PLS2は差圧減圧弁11の出力圧を第1絞り42とタンクライン44及び第2絞り46により調整した圧力である。また、第1絞り41の開口面積A1a、第1絞り42の開口面積A1b、第2絞り45の開口面積A2a、第2絞り46の開口面積A2bの関係は、A1a>>A2a、A2a>>A2b、A1a<A1b、A2a≒A2bである。よって、静的な状態において、差圧減圧弁11の出力圧PLSと圧力補償弁7a,7b,7cの目標補償差圧Pc1,Pc2,Pc3とは以下の関係となる。
【0048】
Pc1=PLS1<PLS
Pc2=PLS2<PLS,PLS2>PLS1
Pc3=PLS3=PLS
図5は、2つ以上のアクチュエータを同時に駆動させた複合操作の状態から、一方のアクチュエータを停止させ単独操作に移行した場合として、アクチュエータ3a(旋回モータ)とアクチュエータ3b(ブームシリンダ)の伸び方向(ブーム上げ方向)の駆動を同時に行う旋回・ブーム上げの複合操作からアクチュエータ3bの伸び方向の駆動(ブーム上げ)を停止させた場合を例に取り、流量制御弁6a,6bの開口面積(図5(a))、各圧力補償弁7a,7b,7cの目標補償差圧(図5(b),(d),(f))、アクチュエータ3a,3bの供給流量(図5(c),(e),(g))のそれぞれの変化を示すタイムチャートである。また、図5(b)及び(c)は比較例1の場合を、図5(d)及び(e)は比較例2の場合を、図5(f)及び(g)は本発明の場合をそれぞれ示す。
【0049】
旋回・ブーム上げの複合操作時は、アクチュエータ3a,3bの流量制御弁6a,6bの要求流量と油圧ポンプ2の吐出流量との関係は、
流量制御弁6a,6bの要求流量の合計>油圧ポンプ2の最大吐出流量
であり、油圧ポンプ2の吐出流量が供給不足状態となる。このため差圧減圧弁11の出力圧(油圧ポンプ2の吐出圧と最高負荷圧との差圧)PLSはLS制御弁12bの受圧部12eにより設定される目標LS差圧より若干低くなる(図5(b),(d),(f))。この状態からブーム上げを停止させるべく流量制御弁6bを操作して開口面積を0にすると、
流量制御弁6aの要求流量<油圧ポンプ2の最大吐出流量
であるため、油圧ポンプ2の吐出流量が供給不足状態から満足状態となり、ポンプ傾転制御機構12のLS制御の応答遅れにより油圧ポンプ2の吐出圧が急上昇し、差圧滅圧弁11の出力圧(油圧ポンプ2の吐出圧と最高負荷圧との差圧)PLSも急上昇する(図5(b),(d),(f))。
【0050】
図3の比較例1では、受圧室70c,71c,72cには差圧減圧弁11の出力圧PLSが直接導かれるので、差圧滅圧弁11の出力圧PLSが急上昇すると圧力補償弁7aの目標補償差圧Pc1も同様に急上昇し(図5(b))、アクチュエータ3a(旋回モータ)に供給される圧油の流量が急上昇するため(図5(c))、旋回が増速しショックを発生する。
【0051】
図4の比較例2では、差圧減圧弁11の出力圧PLSを第1絞り91を介して圧力補償弁7a,7b,7cの受圧室70c,71c,72cに導き、かつ第1絞り91の下流側をタンクライン92及び第2絞り93を介してタンクに連通しているため、第1絞り91の上流側の圧力である差圧減圧弁11の出力圧PLSが急上昇しても、第1絞り91の下流側の圧力である各圧力補償弁7a,7b,7cの受圧室70c,71c,72cに導かれる圧力PLS0は急上昇を緩和された圧力となる(図5(d))。その結果、アクチュエータ3(旋回モータ)に供給される圧油の流量は急激に増大することなく時間T0でショックなく制御され(図5(e))、旋回増速時のショックを防止することができる。
【0052】
図1の本実施の形態では、個別の第2差圧ライン23,24に第1絞り41,42とタンクライン43,44及び第2絞り45,46が設けられているため、比較例2と同様、第1絞り41,42の上流側の圧力である差圧減圧弁11の出力圧PLSが急上昇しても、第1絞り41,42の下流側の圧力である各圧力補償弁7a,7bの受圧室70c,71cに導かれる圧力PLS1,PLS2は急上昇を緩和された圧力となる(図5(f))。その結果、アクチュエータ3(旋回モータ)に供給される圧油の流量は急激に増大することなく時間T1でショックなく制御され(図5(g))、旋回増速時のショックを防止することができる。
【0053】
アクチュエータ3a(旋回モータ)とアクチュエータ3b(ブームシリンダ)以外の複合操作で一方のアクチュエータを停止させ単独操作に移行した場合、或いは2つ以上のアクチュエータを同時に駆動させた複合操作の状態から、一方のアクチュエータを減速させた場合も同様である。
【0054】
図6は、アクチュエータ3a(旋回モータ)、アクチュエータ3b(ブームシリンダ)、アクチュエータ3c(アームシリンダ)のそれぞれについて、他のアクチュエータとの複合操作の状態から他のアクチュエータを減速・停止させた場合の各圧力補償弁7a,7b,7cの目標補償差圧(図6(a),(c),(e))、アクチュエータ3a,3b,3cの供給流量(図6(b),(d),(f))のそれぞれの変化を示すタイムチャートである。また、図6(a)及び(b)は比較例1の場合を、図6(c)及び(d)は比較例2の場合を、図6(e)及び(f)は本発明の場合をそれぞれ示す。また、複合操作時のアクチュエータ3b(ブームシリンダ)、アクチュエータ3c(アームシリンダ)の供給流量は同じで、アクチュエータ3a(旋回モータ)の供給流量はそれよりも少ないものとする。
【0055】
図3の比較例1では、差圧滅圧弁11の出力圧PLSが急上昇すると圧力補償弁7a,7b,7cの目標補償差圧Pc1,Pc2,Pc3も同様に急上昇するため(図6(a))、アクチュエータ3a(旋回モータ)と他のアクチュエータとの複合操作では、前述した如くアクチュエータ3a(旋回モータ)に供給される圧油の流量が急上昇し(図6(b))、旋回が増速しショックを発生する。アクチュエータ3b(ブームシリンダ)と他のアクチュエータの複合操作、アクチュエータ3c(アームシリンダ)と他のアクチュエータの複合操作の場合も、旋回の増速ほど問題にはならないが、同様に増速が生じる(図6(b))。
【0056】
図4の比較例2では、第1絞り91の上流側の圧力である差圧減圧弁11の出力圧PLSが急上昇しても、第1絞り91の下流側の圧力である各圧力補償弁7a,7b,7cの受圧室70c,71c,72cに導かれる圧力PLS0は急上昇を緩和された圧力となるため(図6(c))、アクチュエータ3a(旋回モータ)と他のアクチュエータとの複合操作では、前述した如くアクチュエータ3(旋回モータ)に供給される圧油の流量は急激に増大することなく時間T0でショックなく制御され(図6(d))、旋回増速時のショックを防止することができる。アクチュエータ3b(ブームシリンダ)と他のアクチュエータの複合操作、アクチュエータ3c(アームシリンダ)と他のアクチュエータの複合操作の場合も同様に時間T0でショックなく制御される(図6(d))。
【0057】
ここで、油圧ショベルの場合、一般に、アームやバケットのアクチュエータは応答性を良くしてきびきびした動作が望まれ、旋回や走行などのアクチュエータは比較的ショックを小さくし滑らかな動作が望まれる。ブームのアクチュエータはアームやバケットほどではないが旋回や走行よりは応答性の良い動作が望まれる。しかし、比較例2では、圧力補償弁7a,7b,7cの制御の遅れ時間は全て同じT0であるため、アクチュエータ3a,3b,3cの特性に応じた応答性を得ることができない(図6(c)及び(d))。
【0058】
図1の本実施の形態では、比較例2と同様、第1絞り41,42の上流側の圧力である差圧減圧弁11の出力圧PLSが急上昇しても、第1絞り41,42の下流側の圧力である各圧力補償弁7a,7bの受圧室70c,71cに導かれる圧力PLS1,PLS2は急上昇を緩和された圧力となるため(図6(e))、アクチュエータ3a(旋回モータ)と他のアクチュエータとの複合操作では、前述した如くアクチュエータ3(旋回モータ)に供給される圧油の流量は急激に増大することなく時間T1でショックなく制御され(図6(f))、旋回増速時のショックを防止することができる。アクチュエータ3b(ブームシリンダ)と他のアクチュエータの複合操作の場合も同様に、時間T2でショックなく制御される(図6(f))。
【0059】
また、本実施の形態では、圧力補償弁7a,7bの個別の第2差圧ライン23,24に第1絞り41,42とタンクライン43,44及び第2絞り45,46を設け、圧力補償弁7cの個別の第2差圧ライン25には絞りは設けず、第1絞り41,42の開口面積A1a,A1bの関係をA1a<A1bとしたので、アクチュエータ3a,3b,3c毎に適切な応答性が得られる。
【0060】
つまり、複合操作での相手側アクチュエータの減速・停止時には、圧力補償弁7a,7b,7cの制御の遅れ時間はT1,T2,T3とそれぞれ異なるものとなり、かつT1>T2>T3となる(図6(e),(h))。よって、アームのアクチュエータ3cに対しては、応答性の良いきびきびした動作が得られ、旋回のアクチュエータ3aに対してはショックの少ない滑らかな動作が得られ、ブームのアクチュエータ3bに対してはそれらの中間の応答性が得られる。
【0061】
図7は、アクチュエータ3a(旋回モータ)、アクチュエータ3b(ブームシリンダ)、アクチュエータ3c(アームシリンダ)の起動時における流量制御弁6a,6b,6cの開口面積(図7(a))、各圧力補償弁7a,7b,7cの目標補償差圧(図7(b),(d))、アクチュエータ3a,3b,3cの供給流量(図7(c),(e))のそれぞれの変化を示すタイムチャートである。また、図7(b)及び(c)は比較例2の場合を、図7(d)及び(e)は本発明の場合をそれぞれ示す。
【0062】
全アクチュエータの停止時、差圧減圧弁11の受圧室11bにはタンク圧が導かれ、油圧ポンプの吐出流量は最少となっている。このポンプ吐出流量はアンロード弁(図示せず)を介してタンクに還流している。この状態から任意のアクチュエータを起動すべく流量制御弁を操作すると、当該アクチュエータの負荷圧が差圧減圧弁11の受圧室11bに導かれ、ポンプ傾転機構12により油圧ポンプ2の吐出圧とアクチュエータの負荷圧との差圧(差圧減圧弁11の出力圧PLS)が目標LS差圧に保たれるよう油圧ポンプ2の吐出流量が制御される。しかし、流量制御弁を操作した瞬間はポンプ傾転制御機構12のLS制御の応答遅れにより、油圧ポンプ2の吐出圧とアクチュエータの負荷圧との差圧は急減し、差圧減圧弁11の出力圧PLSも急減する(図7(b)及び(d))。
【0063】
比較例2では、圧力補償弁7a,7b,7cに共通の第1差圧ライン21に第1絞り91、タンクライン92、第2絞り93を設け、一律に同じ目標補償差圧PLS0で制御するので、起動時における圧力補償弁7a,7b,7cの目標補償差圧及びアクチュエータ3a,3b,3cの供給流量の立ち上がり時間は全て同じT0となり、アクチュエータ3a,3b,3cの特性に応じた応答性を得ることができない(図7(b)及び(c))。
【0064】
本実施の形態では、圧力補償弁7a,7bの個別の第2差圧ライン23,24に第1絞り41,42とタンクライン43,44及び第2絞り45,46を設け、圧力補償弁7cの個別の第2差圧ライン25には絞りは設けず、第1絞り41,42の開口面積A1a,A1bの関係をA1a<A1bとしたので、圧力補償弁7a,7b,7cの制御の遅れ時間T1,T2,T3はT1>T2>T3となり、アクチュエータ3a,3b,3c毎に適切な応答性が得られる。
【0065】
以上のように本実施の形態によれば、2つ以上のアクチュエータを同時に駆動させた状態から、一方のアクチュエータを停止させた時に、停止させなかった他方のアクチュエータに発生するショックを軽減することができるとともに、各アクチュエータの起動時や複合操作での相手側アクチュエータの減速・停止時にアクチュエータのそれぞれに適した応答性を得ることができる。
【0066】
また、ブーム、アーム、旋回のうち特に旋回の増速によるショックはオペレータに直接伝わるので、操作性を著しく害する。旋回モータ3aに係わる圧力補償弁7aの第2差圧ライン23に第1絞り41とタンクライン43及び第2絞り45を設けることにより、旋回の増速によるショックの発生を防止し、操作性を向上することができる。また、第1絞り41の開口面積を適切に設定することにより、旋回のアクチュエータ3aに対してはショックの少ない滑らかな動作が得られる。
【0067】
また、第1絞り41,42の下流側(第1絞り41,42と圧力補償弁7a,7bの受圧部70c,71cとの間の部分)をタンクライン43,44と第2絞り45,46を介してタンクに連通させたので、第1絞り41,42の上流側から第1絞り41,42、タンクライン43,44、第2絞り43,45を介してタンクに至る圧油の流れが生じ、第1絞り41,42の下流側に差圧減圧弁11の出力圧とタンク圧との中間圧が発生するため、第1絞り41,42の有無、或いは第1絞り41,42同士の開口面積の差に応じた遅れ時間T1,T2,T3を確実に発生させ、アクチュエータのそれぞれに応じた応答性を確実に発揮することができる。
【0069】
更に、上記実施の形態では、油圧駆動装置は油圧ショベルの旋回、ブーム、アームの各アクチュエータ3a,3b,3cを備えるものとしたが、油圧駆動装置は油圧ショベルのバケット、走行、ブレード等、その他の被駆動部材のアクチュエータを備えたものであってもよく、このような油圧駆動装置に本発明を適用しても同様の効果が得られる。特に、走行の増速によるショックは旋回の場合と同様オペレータに直接伝わり操作性を低下させるので、走行モータに係わる圧力補償弁の第2差圧ラインに第1絞りとタンクライン及び第2絞りを設けても操作性の改善効果は大きい。また、油圧クレーン、ホイールローダ等、その他の建設機械の油圧駆動装置に本発明を適用してもよく、この場合も同様の効果が得られる。
【0071】
本発明によれば、旋回油圧モータ、ブームシリンダ及びアームシリンダのうちの2つ以上のアクチュエータを同時に駆動させた状態から、一方のアクチュエータを停止させた時に、停止させなかった旋回モータまたはブームシリンダ発生するショックを軽減することができるとともに、旋回油圧モータ、ブームシリンダ及びアームシリンダの起動時や複合操作での相手側アクチュエータの減速・停止時にアクチュエータのそれぞれに適した応答性を確実に得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる建設機械の油圧駆動装置を示す油圧回路図である。
【図2】本発明が適用される建設機械の一例である油圧ショベルの外観を示す図である。
【図3】比較例1として、特開2002−323002号公報の図4に記載の構成(特開2002−323002号公報の発明の従来技術)を示す油圧回路図である。
【図4】比較例2として、特開2002−323002号公報の図2に記載の構成(特開2002−323002号公報の発明の第2実施例)を示す油圧回路図である。
【図5】旋回モータとブームシリンダの伸び方向(ブーム上げ方向)の駆動を同時に行う旋回・ブーム上げの複合操作からブームシリンダの駆動を停止させた場合の流量制御弁の開口面積、各圧力補償弁の目標補償差圧、アクチュエータ流量の変化を示すタイムチャートである。
【図6】図6は、図1、図3及び図4の示した3つのアクチュエータのそれぞれについて、他のアクチュエータとの複合操作の状態から他のアクチュエータを減速・停止させた場合の各圧力補償弁の目標補償差圧、アクチュエータの供給流量のそれぞれの変化を示すタイムチャートである。
【図7】各アクチュエータの起動時における流量制御弁の開口面積、各圧力補償弁の目標補償差圧、アクチュエータ流量の変化を示すタイムチャートである。
【符号の説明】
1 エンジン
2 メインの油圧ポンプ
3a,3b,3c アクチュエータ
4 コントロールバルブ
5 供給油路
6a,6b,6c 流量制御弁
7a,7b,7c 圧力補償弁
8a,8b,8c、8d 負荷ライン
9a,9b シャトル弁
10 信号ライン
11 差圧減圧弁
12 ポンプ傾転制御機構
12a 馬力制御傾転アクチュエータ
12b LS制御弁
12c LS制御傾転アクチュエータ
13 エンジン回転数検出回路
21 第1差圧ライン
23,24,25 個別の第2差圧ライン
41,42 第1絞り
43,44 タンクライン
45,46 第2絞り
50 流量検出弁
50a 絞り部
51 差圧減圧弁
53 信号ライン
60a,60b,60c 負荷ポート
61,62 メータイン可変絞り部
70a,70b,70c 受圧部
71a,71b,71c 受圧部
72a,72b,72c 受圧部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an LS control type hydraulic drive device used for construction machines such as a hydraulic excavator, and in particular, controls a discharge pressure of a hydraulic pump to be higher by a target differential pressure than a maximum load pressure of a plurality of actuators. The hydraulic drive device for construction machinery that sets the target compensation differential pressure of each pressure compensation valve that controls the differential pressure before and after the flow rate control valve based on the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of multiple actuators About.
[0002]
[Prior art]
As a hydraulic drive device for a construction machine such as a hydraulic excavator, generally, a variable displacement hydraulic pump, a plurality of actuators driven by pressure oil discharged from the hydraulic pump, and a plurality of actuators supplied from the hydraulic pump are supplied. Multiple flow control valves that respectively control the flow rate of pressure oil, multiple pressure compensation valves that control the differential pressure across the multiple flow control valves, and the discharge pressure of the hydraulic pump is higher than the maximum load pressure of multiple actuators Pump control means that controls to increase only the target differential pressure, and sets the target compensation differential pressure of each of the multiple pressure compensation valves based on the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of the multiple actuators What is made is known (for example, see Japanese Patent Application Laid-Open No. 60-11706).
[0003]
In such a hydraulic drive device, by controlling the differential pressure across the plurality of flow control valves with a pressure compensation valve, the flow control valve is opened regardless of the magnitude of the load pressure during the combined operation of simultaneously driving the plurality of actuators. Pressure oil can be supplied at a ratio according to the area.
[0004]
In addition, by setting the target compensation differential pressure of each of the pressure compensation valves that control the differential pressure across the plurality of flow control valves by the LS differential pressure, the discharge flow rate of the hydraulic pump during the combined operation of simultaneously driving the plurality of actuators Even when the saturation state is less than the flow rate required by the plurality of flow control valves, the LS differential pressure is reduced according to the degree of saturation, and the target compensation differential pressure of the pressure compensation valve is accordingly reduced. The discharge flow rate of the hydraulic pump can be redistributed to the flow rate ratio required by each actuator.
[0005]
Moreover, there exists a thing of Unexamined-Japanese-Patent No. 2002-323002 as this kind of hydraulic drive device. This hydraulic drive device includes a differential pressure reducing valve that outputs a differential pressure between a discharge pressure of a hydraulic pump and maximum load pressures of a plurality of actuators (hereinafter referred to as LS differential pressure as appropriate) as an absolute pressure, A primary differential pressure line having a throttle connected to the output port, and individual secondary differentials branched from the primary differential pressure line and connected to pressure receiving units for setting target compensation differential pressures of a plurality of pressure compensation valves A pressure line, and the output pressure of the differential pressure reducing valve is guided to the pressure receiving portions of all the pressure compensating valves via the primary differential pressure line having a throttle and the respective secondary differential pressure lines.
[0006]
By outputting the LS differential pressure as an absolute pressure by the differential pressure reducing valve and guiding it to the pressure receiving parts of the plurality of pressure compensating valves, the signal pressure line connected to each pressure compensating valve becomes only one secondary differential pressure line, The circuit configuration is simplified.
[0007]
In addition, a throttle is provided in the primary differential pressure line, and the output pressure of the differential pressure reducing valve is guided to the pressure receiving parts of all the pressure compensating valves via the primary differential pressure line having the throttle and the individual secondary differential pressure line. Thus, even when one of the actuators is stopped from the state where two or more actuators are driven simultaneously, the sudden increase in the LS differential pressure is transmitted as a relaxed pressure, and as a result, the other that has not been stopped. The target compensation differential pressure of the pressure compensation valve related to the actuator can be prevented from suddenly rising, and the supply flow rate to the actuator controlled by the pressure compensation valve does not increase rapidly, so that the shock generated in the actuator can be reduced. .
[0008]
[Patent Document 1]
JP 60-11706 A
[Patent Document 2]
JP 2002-323002 A
[0009]
[Problems to be solved by the invention]
As described above, in the hydraulic drive device described in Japanese Patent Application Laid-Open No. 2002-323002, the primary differential pressure line having the throttle for the output pressure of the differential pressure reducing valve in the pressure receiving portions of all the pressure compensating valves and the respective secondary differential pressures. By guiding through the line, even when one of the actuators is stopped from a state in which two or more actuators are driven simultaneously, it is possible to reduce the shock generated in the other actuator that has not been stopped. However, in this prior art, a throttle for alleviating the sudden rise in the LS differential pressure is provided in the primary differential pressure line common to the plurality of pressure compensation valves, and the pressure is received by the pressure receiving parts of all the pressure compensation valves via the same throttle. Since the output pressure of the pressure reducing valve (absolute pressure of the LS differential pressure) is derived, control response to all actuators when starting each actuator or when decelerating or stopping the counterpart actuator during combined operation Therefore, it was impossible to obtain responsiveness suitable for each actuator.
[0010]
  The purpose of the present invention is toOf swing hydraulic motor, boom cylinder and arm cylinderWhen one actuator is stopped from the state where two or more actuators are driven simultaneously, it is not stoppedSlewing motor or boom cylinderCan reduce the shock that occurs inSwing hydraulic motor, boom cylinder and arm cylinderIt is an object of the present invention to provide a hydraulic drive device for a construction machine that can obtain responsiveness suitable for each of the actuators at the time of starting or decelerating / stopping the counterpart actuator in complex operation.
[0011]
[Means for solving problems]
In order to achieve the above object, the present invention is driven by a variable displacement hydraulic pump and pressure oil discharged from the hydraulic pump.Slewing motor, boom cylinder and arm cylinderAnd from the hydraulic pumpSwing hydraulic motor, boom cylinder and arm cylinderControl the flow rate of pressure oil supplied to eacheachA flow control valve;eachControl the differential pressure across the flow control valve.eachThe pressure compensation valve and the discharge pressure of the hydraulic pump areSwing hydraulic motor, boom cylinder and arm cylinderPump control means for controlling so as to be higher by the target differential pressure than the maximum load pressure ofeachIn a hydraulic drive device for a construction machine that sets a target compensation differential pressure of each pressure compensation valve based on a differential pressure between a discharge pressure of the hydraulic pump and the maximum load pressure, the discharge pressure of the hydraulic pump and the pressureSwing hydraulic motor, boom cylinder and arm cylinderA differential pressure reducing valve that outputs a differential pressure with respect to the maximum load pressure as an absolute pressure, andIn the opening direction of each pressure compensation valve of swing hydraulic motor, boom cylinder and arm cylinderTarget compensation differential pressureEach is setPressure compensation valveeachA pressure receiving unit, a first differential pressure line connected to an output port of the differential pressure reducing valve, and the first differential pressure line,Of swing hydraulic motor, boom cylinder and arm cylinderAn individual second differential pressure line connected to each pressure receiving portion of each pressure compensating valve, andSwing hydraulic motor and boom cylinderA first throttle is provided in each of the individual second differential pressure lines, and the output pressure of the differential pressure reducing valve is set to the first differential pressure line,Through the second differential pressure line of each of the swing hydraulic motor and the boom cylinder and the respective first pressure restrictor, the pressure receiving valve of each corresponding pressure compensation valve is guided and the opening area of the first throttle related to the swing hydraulic motor is increased. The opening area of the first throttle related to the boom cylinder is made smaller, and the portions between the respective first throttles and the respective pressure receiving portions of the individual second differential pressure lines of the swing hydraulic motor and the boom cylinder are respectively The tank line is communicated with the tank via each second throttle, the opening area of each first throttle is made larger than the opening area of each second throttle, and each pressure of the swing hydraulic motor, boom cylinder and arm cylinder is set. Compensation valve control delay times T1, T2 and T3 are set to T1>T2> T3A hydraulic drive device for a construction machine.TheShall.
[0012]
  in this waySwing hydraulic motor and boom cylinderA first throttle is provided in each of the individual second differential pressure lines, and the output pressure of the differential pressure reducing valve is set to the first differential pressure line,Through the second differential pressure line of each of the swing hydraulic motor and the boom cylinder and the respective first pressure restrictor, the pressure receiving valve of each corresponding pressure compensation valve is guided and the opening area of the first throttle related to the swing hydraulic motor is increased. The opening area of the first throttle related to the boom cylinder is made smaller, and the portions between the first throttles and the pressure receiving parts of the swing hydraulic motor and the individual second differential pressure lines of the boom cylinder are respectively The tank lines and the second throttles communicate with the tank, the opening areas of the first throttles are made larger than the opening areas of the second throttles, and each of the swing hydraulic motor, the boom cylinder and the arm cylinder The delay times T1, T2 and T3 of the pressure compensation valve control are set to T1>T2> T3ByOf swing hydraulic motor, boom cylinder and arm cylinderEven if the output pressure of the differential pressure reducing valve suddenly rises when one actuator is stopped from the state where two or more actuators are driven simultaneously, the actuator does not stop.Related to swing motor or boom cylinderSince the pressure on the downstream side of the first throttle (pressure guided to the pressure receiving chamber of the corresponding pressure compensation valve) becomes a pressure in which the sudden rise is moderated,On swing motor or boom cylinderThe shock that occurs can be reduced.
[0013]
  Also,Swing hydraulic motor and boom cylinderA first throttle is provided in each of the individual second differential pressure lines, and the output pressure of the differential pressure reducing valve is set to the first differential pressure line,Through the second differential pressure line of each of the swing hydraulic motor and the boom cylinder and the respective first pressure restrictor, the pressure receiving valve of each corresponding pressure compensation valve is guided and the opening area of the first throttle related to the swing hydraulic motor is increased. The opening area of the first throttle related to the boom cylinder is made smaller, and the portions between the first throttles and the pressure receiving parts of the swing hydraulic motor and the individual second differential pressure lines of the boom cylinder are respectively The tank lines and the second throttles communicate with the tank, the opening areas of the first throttles are made larger than the opening areas of the second throttles, and each of the swing hydraulic motor, the boom cylinder and the arm cylinder The delay times T1, T2 and T3 of the pressure compensation valve control are set to T1>T2> T3By
When one of the actuators is stopped or decelerated from the start of the swing hydraulic motor, boom cylinder and arm cylinder, or from the combined operation state in which two or more actuators of the swing hydraulic motor, boom cylinder and arm cylinder are driven simultaneously The delay times of control of the swing hydraulic motor, boom cylinder and arm cylinder are different for T1, T2 and T3, respectively, and the responsiveness with high response to the arm cylinder such as T1>T2> T3. Smooth operation with little shock is obtained for the swing motor, and intermediate response is obtained for the boom cylinder, which is appropriate for each swing hydraulic motor, boom cylinder and arm cylinder. Responsiveness can be obtained.
[0014]
In addition, a portion between the first throttle and the pressure receiving part of each of the second differential pressure lines of the swing hydraulic motor and the boom cylinder is communicated with the tank via each tank line and each second throttle. Since the opening area of each of the first throttles is larger than the opening area of each of the second throttles, the pressure oil reaching the tank from the upstream side of each of the first throttles through the second throttle of each of the first throttles and each tank line Since a flow occurs and an intermediate pressure between the output pressure of the differential pressure reducing valve and the tank pressure is generated on the downstream side of each first throttle, it corresponds to the presence or absence of the first throttle or the difference in opening area between the first throttles. The delay times T1, T2, and T3 can be reliably generated, and the responsiveness corresponding to each of the swing hydraulic motor, the boom cylinder, and the arm cylinder can be reliably exhibited.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is a diagram showing a hydraulic drive device for a construction machine according to an embodiment of the present invention.
[0022]
In FIG. 1, a hydraulic drive apparatus according to the present embodiment includes an engine 1, a variable displacement hydraulic pump 2 and a fixed displacement pilot pump 30 as main pumps driven by the engine 1, and a main hydraulic pressure. Pressure oil connected to the plurality of actuators 3a, 3b, 3c driven by the pressure oil discharged from the pump 2 and the supply oil passage 5 of the hydraulic pump 2 and supplied from the hydraulic pump 2 to the actuators 3a, 3b, 3c Control valve 4 for controlling the flow rate and direction of pressure, and a differential pressure reducing valve that outputs the differential pressure (LS differential pressure) between the discharge pressure of the hydraulic pump 2 and the maximum load pressure of the plurality of actuators 3a, 3b, 3c as an absolute pressure. 11, a pump tilt control mechanism 12 that controls the tilt (capacity) of the hydraulic pump 2, and an engine that outputs a pressure depending on the engine speed as an absolute pressure And a rolling speed detection circuit 13.
[0023]
The control valve 4 includes a plurality of closed center type flow control valves (main spools) 6a, 6b, and 6c that control the flow rate and direction of the pressure oil supplied from the hydraulic pump 2 to the actuators 3a, 3b, and 3c. The flow rate control valves 6a, 6b, 6c have a plurality of pressure compensating valves 7a, 7b, 7c that control the differential pressure across the meter-in throttle portions 61, 62 to the same value.
[0024]
The flow rate control valves 6a, 6b, and 6c are each switched by operating an operation lever (not shown), and the opening area of the meter-in throttle 61 or 62 is determined according to the operation amount of the operation lever.
[0025]
The plurality of pressure compensation valves 7a, 7b, and 7c are the front type (before orifice type) installed upstream of the meter-in throttle portions 61 and 62 of the flow control valves 6a, 6b, and 6c, respectively. Similarly, the pressure compensation valves 7b and 7c have pressure receiving portions 71a, 71b and 72a, 72b and pressure receiving portions 71c and 72c, respectively, having a pair of opposing pressure receiving portions 70a and 70b and an opening direction pressure receiving portion 70c. Have.
[0026]
The pressure receiving parts 70a, 70b; 71a, 71b; 72a, 72b are for pressure feedback, respectively, and the pressures on the upstream side and the downstream side of the flow control valve 6a are guided to the pressure receiving parts 70a, 70b, respectively, and are received by the pressure receiving parts 71a, 71b. The upstream and downstream pressures of the flow control valve 6b are respectively guided, and the upstream and downstream pressures of the flow control valve 6c are respectively guided to the pressure receiving portions 72a and 72b. The pressure receiving portions 70c, 71c, 72c are for setting a target compensation differential pressure, and the output pressure of the differential pressure reducing valve 11 is guided (described later). As a result, the pressure compensation valves 7a, 7b, and 7c control the differential pressure across the flow control valves 6a, 6b, and 6c using the output pressure of the differential pressure reducing valve 11 as the target compensation differential pressure, respectively.
[0027]
The plurality of flow control valves 6a, 6b, and 6c are provided with load ports 60a, 60b, and 60c, respectively, for taking out the load pressures when the actuators 3a, 3b, and 3c are driven, and the load ports 60a, 60b, and 60c are provided. The highest pressure among the extracted load pressures is detected on the signal line 10 via the load lines 8a, 8b, 8c, 8d and the shuttle valves 9a, 9b.
[0028]
The differential pressure reducing valve 11 has a pressure receiving portion 11a positioned on the side that increases the output pressure and pressure receiving portions 11b and 11c positioned on the side that decreases the output pressure, and the discharge pressure of the hydraulic pump 2 is guided to the pressure receiving portion 11a. The maximum load pressure detected in the signal line 10 and its own output pressure are guided to the pressure receiving portions 11b and 11c, respectively, and the differential pressure (LS differential pressure) between the discharge pressure of the hydraulic pump 2 and the maximum load pressure is balanced by these pressures. ) Is output as absolute pressure.
[0029]
An output port 11 d of the differential pressure reducing valve 11 is connected to a first differential pressure line 21, and the first differential pressure line 21 is a pressure receiving portion of an LS control valve 12 b provided in the pump tilt control mechanism 12 via a signal line 22. 12d, and the output pressure of the differential pressure reducing valve 11 is guided to the pressure receiving portion 12d. The first differential pressure line 21 is connected to the pressure receiving parts 70c, 71c, 72c for setting the target compensation differential pressure of the pressure compensation valves 7a, 7b, 7c via the individual second differential pressure lines 23, 24, 25. The second differential pressure lines 23, 24 are provided with first throttles 41, 42, and portions 23a, 24a between the first throttles 23, 24 and the pressure receiving portions 70c, 71c of the second differential pressure lines 23, 24 are provided. The tank lines 43 and 44 are connected to the tank, and the tank lines 43 and 44 are provided with second throttles 45 and 46, respectively. Thereby, the output pressure of the differential pressure reducing valve 11 is guided to the pressure receiving part 70c through the first differential pressure line 21, the second differential pressure line 23 and the first throttle 41, and the pressure guided to the pressure receiving part 70c is The output pressure of the differential pressure reducing valve 11 is adjusted by the first throttle 41, the tank line 43, and the second throttle 45. Similarly, the output pressure of the differential pressure reducing valve 11 is guided to the pressure receiving portion 71c via the first differential pressure line 21, the second differential pressure line 24 and the first throttle 42, and the pressure guided to the pressure receiving portion 71c is the difference. The output pressure of the pressure reducing valve 11 is adjusted by the first throttle 42, the tank line 44 and the second throttle 46. On the other hand, the output pressure of the differential pressure reducing valve 11 is directly (as it is) guided to the pressure receiving portion 72c via the first differential pressure line 21 and the second differential pressure line 25, and is also different from the pressure receiving portion 12d of the LS control valve 12b. The output pressure of the pressure reducing valve 11 is directly (as is) guided through the first differential pressure line 21 and the signal line 22.
[0030]
Here, assuming that the aperture areas of the first diaphragms 41 and 42 are A1a and A1b, and the aperture areas of the second diaphragms 45 and 46 are A2a and A2b, respectively, the following relations are established.
[0031]
A1a >> A2a
A2a >> A2b
A1a <A1b
A2a ≒ A2b
That is, the opening areas A1a and A1b of the first diaphragms 41 and 42 are larger than the opening areas A2a and A2b of the second diaphragms 45 and 46, and the opening areas A2a and A2b of the second diaphragms 45 and 46 are made as small as possible. The difference between the opening areas A1a, A1b of the first diaphragms 41, 42 and the opening areas A2a, A2b of the second diaphragms 45, 46 is increased, and thereby the downstream side of the first diaphragms 41, 42 (the pressure receiving chambers 70c, 71c). Pressure) is an intermediate pressure between the pressure upstream of the first throttles 41 and 43 (the output pressure of the differential pressure reducing valve 11) and the tank pressure, and the intermediate pressure is larger than the output pressure of the differential pressure reducing valve 11. We try not to make a difference.
[0032]
Further, the opening area A1a of the first throttle 41 is made smaller than the opening area A1b of the first throttle 42, so that when the output pressure of the differential pressure reducing valve 11 fluctuates, the downstream side of the first throttle 41 is the downstream side of the first throttle 42. The pressure change is less likely to be transmitted than on the downstream side, and the response is slow.
[0033]
The pump tilt control mechanism 12 includes a horsepower control tilt actuator 12a that reduces the tilt of the hydraulic pump 2 when the discharge pressure of the hydraulic pump 2 is increased, and the discharge pressure of the hydraulic pump 2 is the highest of the plurality of actuators 3a, 3b, and 3c. An LS control valve 12b and an LS control tilt actuator 12c that perform load sensing control so as to be higher than the load pressure by a target differential pressure are provided.
[0034]
The LS control valve 12b includes a pressure receiving portion 12d located on the side that increases the pressure of the actuator 12c and reduces the tilt of the hydraulic pump 2, and a pressure receiving portion 12e located on the side that reduces the pressure of the actuator 12c and increases the tilt of the hydraulic pump 2. The pressure receiving part 12d is supplied with the output pressure of the differential pressure reducing valve 11 (the pressure difference between the discharge pressure of the hydraulic pump 2 and the maximum load pressure of the actuators 3a, 3b, 3c, that is, the LS differential pressure). In 12e, the output pressure of the engine speed detection circuit 13 is introduced as a target differential pressure (target LS differential pressure) of load sensing control.
[0035]
The engine speed detection circuit 13 includes a flow rate detection valve 50 disposed in the discharge line 31 of the pilot pump 30 and a differential pressure reducing valve 51 that detects a differential pressure across the flow rate detection valve 50.
[0036]
The flow rate detection valve 50 has a variable throttle 50a through which the discharge line 31 passes. The discharge line 31 is divided into an upstream line 31a and a downstream line 31b by a flow rate detection valve 50, and a relief valve 32 for defining a source pressure as a pilot hydraulic pressure source is connected to the downstream line 31b. The downstream line 31b is connected to a remote control valve (not shown) that generates pilot pressure for switching the flow control valves 6a, 6b, and 6c, for example.
[0037]
The flow rate of the pressure oil flowing through the discharge line 31 is the discharge flow rate of the pilot pump 30, and this discharge flow rate varies depending on the rotational speed of the engine 1. Further, the differential pressure across the throttle 50a varies depending on the flow rate of the pressure oil flowing through the discharge line 31. For example, if the rotation speed of the engine 1 decreases, the flow rate flowing through the discharge line 31 (discharge flow rate of the pilot pump 30) decreases, and the differential pressure across the throttle portion 50a decreases. The flow rate detection valve 50 detects a change in the flow rate flowing through the discharge line 31 (a discharge flow rate of the pilot pump 30) as a change in the differential pressure across the throttle portion 50a, and detects a change in the engine speed.
[0038]
Further, the throttle portion 50a is configured as a variable throttle portion whose opening area continuously changes, and the flow rate detection valve 50 includes a pressure receiving portion 50b for opening direction operation, a pressure receiving portion 50c for throttle direction operation, and a spring 50d. The upstream pressure of the variable restrictor 50a (pressure in the line 31a) is guided to the pressure receiving part 50b, and the downstream pressure (pressure in the line 31b) of the variable restrictor 50a is guided to the pressure receiving part 50c, and the variable restrictor 51a itself The opening area is changed depending on the front-rear differential pressure. By configuring the flow rate detection valve 50 in this way, detecting the differential pressure across the variable throttle 50a and using it as a target LS differential pressure (described later), the saturation phenomenon can be improved in accordance with the engine speed, and the engine speed can be improved. Good fine operability can be obtained when is set low. This point is detailed in Japanese Patent Laid-Open No. 10-196604.
[0039]
The differential pressure reducing valve 51 is an engine speed detection valve that outputs the differential pressure across the variable throttle 50a, which is a pressure dependent on the engine speed, as an absolute pressure, and a pressure receiving part 51a positioned on the side that increases the output pressure. The pressure receiving portions 51b and 51c are located on the side where the output pressure is reduced. The upstream pressure of the variable throttle portion 50a is guided to the pressure receiving portion 51a, and the downstream pressure of the variable throttle portion 50a and the self pressure are respectively received by the pressure receiving portions 51b and 51c. Is output, and the differential pressure across the variable throttle 50a is output as an absolute pressure based on the pressure in the line 31b based on the balance of these pressures. The output port 51d of the differential pressure reducing valve 51 is connected to the pressure receiving portion 12e of the LS control valve 12b via the signal line 53, and the output pressure of the differential pressure reducing valve 51 is guided to the pressure receiving portion 12e as the target LS differential pressure. . As a result, the differential pressure across the variable throttle 50a is set as the target LS differential pressure, the actuator speed can be set according to the engine speed, and good fine operability can be obtained when the engine speed is set low. .
[0040]
FIG. 2 shows the appearance of a hydraulic excavator that is an example of a construction machine to which the present invention is applied. The hydraulic excavator has a lower traveling body 200, an upper swing body 201, and a front work machine 202, and the lower traveling body has left and right crawler traveling devices driven by left and right traveling motors 203a and 203b (only one shown). The upper turning body 201 can be turned around the axis O on the lower traveling body 200 by a turning motor 204, and the front work machine 202 can be moved up and down at the front portion of the upper turning body 201. The front work machine 202 has an articulated structure including a boom 205, an arm 206, and a bucket 207. The boom 205 includes a boom cylinder 208, the arm 206 includes an arm cylinder 209, and the bucket 207 includes a bucket cylinder 210. The inside is driven to rotate. A blade 211 is attached to the front portion of the lower traveling body 200, and the blade 211 can be moved up and down by a hydraulic cylinder (not shown).
[0041]
In the present embodiment, the actuator 3a is, for example, a turning motor 204, the actuator 3b is, for example, a boom cylinder 208, and the actuator 3c is, for example, an arm cylinder 209.
[0042]
Next, the operation of the present embodiment will be described in comparison with a comparative example.
[0043]
FIG. 3 shows, as Comparative Example 1, the output pressure of the differential pressure detection valve 11 is directly (as it is) guided to the pressure receiving portions 70c and 71c of the pressure compensation valves 7a and 7b shown in FIG. That is, the second differential pressure lines 23 and 24 are not provided with the first throttles 41 and 42, the tank lines 43 and 44, and the second throttles 45 and 46 shown in FIG. This configuration corresponds to the configuration shown in FIG. 4 of Japanese Patent Laid-Open No. 2002-323002 (prior art of the invention of Japanese Patent Laid-Open No. 2002-323002).
[0044]
4 shows, as Comparative Example 2, a first throttle 91 and a tank line 92 are provided in the first differential pressure line 21 of Comparative Example 1 shown in FIG. 3, and a second throttle 93 is provided in the tank line 92. The pressure receiving portions 70c, 71c, 72c of the compensation valves 7a, 7b, 7c are connected to the output pressure of the differential pressure reducing valve 11 through the first differential pressure line 21, the first throttle 91, and the individual second differential pressure lines 23, 24, 25. The pressures of the pressure receiving portions 70c, 71c, and 72c are set to the same pressure adjusted by the first throttle 91, the tank line 92, and the second throttle 93 as the output pressure of the differential pressure reducing valve 11. If the opening areas of the first diaphragm 91 and the second diaphragm 93 are Aa and Ab, respectively, the relationship is Aa >> Ab. This configuration corresponds to the configuration shown in FIG. 2 of JP-A-2002-323002 (second embodiment of the invention of JP-A-2002-323002).
[0045]
The output pressure of the differential pressure reducing valve 11 (the differential pressure between the discharge pressure of the hydraulic pump 2 and the maximum load pressure) is PLS, and target compensation set by the pressure receiving chambers 70c, 71c, 72c of the pressure compensating valves 7a, 7b, 7c. If the differential pressures are Pc1, Pc2, and Pc3, respectively, the output pressure PLS of the differential pressure reducing valve 11 is directly led to the pressure receiving chambers 70c, 71c, and 72c in the comparative example 1 of FIG. Pc2 and Pc3 are all PLS.
[0046]
Pc1 = PLS
Pc2 = PLS
Pc3 = PLS
In Comparative Example 2 in FIG. 4, the output pressure PLS of the differential pressure reducing valve 11 is guided to the pressure receiving chambers 70 c, 71 c, 72 c of the pressure compensating valves 7 a, 7 b, 7 c through the first throttle 91, and The downstream side communicates with the tank via a tank line 92 and a second throttle 93. Therefore, if the pressure downstream of the first throttle 91 is PLS0, the output pressure PLS of the differential pressure reducing valve 11 and the target compensated differential pressures Pc1, Pc2, Pc3 of the pressure compensating valves 7a, 7b, 7c in a static state. And has the following relationship.
[0047]
Pc1 = PLS0 <PLS
Pc2 = PLS0 <PLS
Pc3 = PLS0 <PLS
On the other hand, in the present embodiment shown in FIG. 1, the first throttles 41 and 42, the tank lines 43 and 44, and the second throttles 45 and 46 are provided in the individual second differential pressure lines 23 and 24. If the pressures downstream of the throttles 41 and 42 are PLS1 and PLS2, respectively, the pressures PLS1 and PLS2 are introduced into the pressure receiving chambers 70c and 71c of the pressure compensation valves 7a and 7b, and the pressure receiving chamber 72c of the pressure compensation valve 7c is introduced. The output pressure PLS of the differential pressure reducing valve 11 is directly guided. The pressure PLS1 is a pressure obtained by adjusting the output pressure of the differential pressure reducing valve 11 with the first throttle 41, the tank line 43 and the second throttle 45, and the pressure PLS2 is the pressure output of the differential pressure reducing valve 11 with the first throttle 42 and the tank. The pressure is adjusted by the line 44 and the second throttle 46. Further, the relationship among the opening area A1a of the first diaphragm 41, the opening area A1b of the first diaphragm 42, the opening area A2a of the second diaphragm 45, and the opening area A2b of the second diaphragm 46 is A1a >> A2a, A2a >> A2b. A1a <A1b and A2a≈A2b. Therefore, in the static state, the output pressure PLS of the differential pressure reducing valve 11 and the target compensated differential pressures Pc1, Pc2, Pc3 of the pressure compensating valves 7a, 7b, 7c have the following relationship.
[0048]
Pc1 = PLS1 <PLS
Pc2 = PLS2 <PLS, PLS2> PLS1
Pc3 = PLS3 = PLS
FIG. 5 shows the extension direction of the actuator 3a (swing motor) and the actuator 3b (boom cylinder) when one actuator is stopped and shifted to a single operation from the combined operation state in which two or more actuators are driven simultaneously. Taking as an example the case of stopping the driving in the extension direction of the actuator 3b (boom raising) from the combined operation of turning and boom raising that simultaneously drive in the (boom raising direction), the opening areas of the flow control valves 6a and 6b (see FIG. 5 (a)), target compensation differential pressures of the pressure compensating valves 7a, 7b, 7c (FIGS. 5 (b), (d), (f)), supply flow rates of the actuators 3a, 3b (FIG. 5 (c), It is a time chart which shows each change of (e) and (g). 5B and 5C show the case of Comparative Example 1, FIGS. 5D and 5E show the case of Comparative Example 2, and FIGS. 5F and 5G show the case of the present invention. Respectively.
[0049]
During combined operation of turning and boom raising, the relationship between the required flow rate of the flow control valves 6a and 6b of the actuators 3a and 3b and the discharge flow rate of the hydraulic pump 2 is
Total required flow rate of flow control valves 6a and 6b> maximum discharge flow rate of hydraulic pump 2
Thus, the discharge flow rate of the hydraulic pump 2 is in an insufficient supply state. For this reason, the output pressure (the differential pressure between the discharge pressure of the hydraulic pump 2 and the maximum load pressure) PLS of the differential pressure reducing valve 11 is slightly lower than the target LS differential pressure set by the pressure receiving portion 12e of the LS control valve 12b (FIG. 5 (b), (d), (f)). If the opening area is set to 0 by operating the flow control valve 6b to stop the boom raising from this state,
Required flow rate of flow control valve 6a <maximum discharge flow rate of hydraulic pump 2
Therefore, the discharge flow rate of the hydraulic pump 2 is changed from the insufficient supply state to the satisfied state, and the discharge pressure of the hydraulic pump 2 rapidly rises due to the response delay of the LS control of the pump tilt control mechanism 12, and the output pressure of the differential pressure reducing valve 11 (Differential pressure between the discharge pressure of the hydraulic pump 2 and the maximum load pressure) PLS also rises rapidly (FIGS. 5B, 5D, and 5F).
[0050]
In Comparative Example 1 of FIG. 3, since the output pressure PLS of the differential pressure reducing valve 11 is directly guided to the pressure receiving chambers 70c, 71c, 72c, if the output pressure PLS of the differential pressure reducing pressure valve 11 rises rapidly, the target of the pressure compensating valve 7a Similarly, the compensation differential pressure Pc1 rapidly increases (FIG. 5B), and the flow rate of the pressure oil supplied to the actuator 3a (swing motor) increases rapidly (FIG. 5C). appear.
[0051]
In Comparative Example 2 in FIG. 4, the output pressure PLS of the differential pressure reducing valve 11 is guided to the pressure receiving chambers 70 c, 71 c, 72 c of the pressure compensating valves 7 a, 7 b, 7 c through the first throttle 91, and Since the downstream side communicates with the tank via the tank line 92 and the second throttle 93, even if the output pressure PLS of the differential pressure reducing valve 11, which is the pressure upstream of the first throttle 91, suddenly rises, the first The pressure PLS0 guided to the pressure receiving chambers 70c, 71c, 72c of the pressure compensating valves 7a, 7b, 7c, which is the pressure on the downstream side of the throttle 91, is a pressure in which the sudden rise is moderated (FIG. 5 (d)). As a result, the flow rate of the pressure oil supplied to the actuator 3 (swing motor) is controlled without a shock at time T0 without rapidly increasing (FIG. 5 (e)), and the shock at the time of turning acceleration can be prevented. it can.
[0052]
In the present embodiment of FIG. 1, the first throttles 41, 42, the tank lines 43, 44, and the second throttles 45, 46 are provided in the individual second differential pressure lines 23, 24. Similarly, even if the output pressure PLS of the differential pressure reducing valve 11 that is upstream of the first throttles 41 and 42 suddenly increases, the pressure compensating valves 7a and 7b that are downstream of the first throttles 41 and 42 are used. The pressures PLS1 and PLS2 guided to the pressure receiving chambers 70c and 71c are pressures in which the sudden rise is moderated (FIG. 5 (f)). As a result, the flow rate of the pressure oil supplied to the actuator 3 (swing motor) is controlled without a shock at time T1 without increasing rapidly (FIG. 5 (g)), and the shock at the time of turning acceleration can be prevented. it can.
[0053]
When one actuator is stopped by a combined operation other than the actuator 3a (swing motor) and the actuator 3b (boom cylinder) and shifted to a single operation, or from the state of a combined operation in which two or more actuators are driven simultaneously, The same applies when the actuator is decelerated.
[0054]
FIG. 6 shows each of the actuator 3a (swing motor), the actuator 3b (boom cylinder), and the actuator 3c (arm cylinder) when the other actuator is decelerated and stopped from the combined operation state with the other actuator. Target compensation differential pressure of pressure compensation valves 7a, 7b, 7c (FIGS. 6A, 6C, 6E), supply flow rates of actuators 3A, 3B, 3C (FIGS. 6B, 6D, 6D) It is a time chart which shows each change of f)). 6A and 6B show the case of Comparative Example 1, FIGS. 6C and 6D show the case of Comparative Example 2, and FIGS. 6E and 6F show the case of the present invention. Respectively. Further, it is assumed that the supply flow rates of the actuator 3b (boom cylinder) and the actuator 3c (arm cylinder) during the combined operation are the same, and the supply flow rate of the actuator 3a (swing motor) is smaller than that.
[0055]
In Comparative Example 1 of FIG. 3, when the output pressure PLS of the differential pressure reducing pressure valve 11 suddenly increases, the target compensation differential pressures Pc1, Pc2, and Pc3 of the pressure compensation valves 7a, 7b, and 7c also increase rapidly (FIG. 6 (a)). ) In the combined operation of the actuator 3a (swing motor) and other actuators, as described above, the flow rate of the pressure oil supplied to the actuator 3a (swing motor) increases rapidly (FIG. 6B), and the rotation speed increases. A shock is generated. The combined operation of the actuator 3b (boom cylinder) and other actuators, and the combined operation of the actuator 3c (arm cylinder) and other actuators are not as problematic as the turning speed increases, but the speed increases in the same way (see FIG. 6 (b)).
[0056]
In Comparative Example 2 in FIG. 4, each pressure compensation valve 7 a that is a pressure on the downstream side of the first throttle 91 even if the output pressure PLS of the differential pressure reducing valve 11 that is a pressure on the upstream side of the first throttle 91 rapidly increases. , 7b, 7c, the pressure PLS0 guided to the pressure receiving chambers 70c, 71c, 72c is a pressure in which the sudden rise is moderated (FIG. 6C). Therefore, in the combined operation of the actuator 3a (swing motor) and other actuators, As described above, the flow rate of the pressure oil supplied to the actuator 3 (swing motor) is controlled without a shock at time T0 without increasing rapidly (FIG. 6 (d)) to prevent a shock at the time of turning acceleration. Can do. Similarly, in the combined operation of the actuator 3b (boom cylinder) and another actuator, and in the combined operation of the actuator 3c (arm cylinder) and another actuator, the control is performed without a shock at the time T0 (FIG. 6D).
[0057]
Here, in the case of a hydraulic excavator, generally, an actuator of an arm or a bucket is desired to have a responsive response and a sharp operation is desired, and an actuator such as turning or traveling is desired to have a relatively small shock and a smooth operation. Boom actuators are not as good as arms and buckets, but are expected to be more responsive than turning or running. However, in Comparative Example 2, the control delay times of the pressure compensation valves 7a, 7b, and 7c are all the same T0, so that it is not possible to obtain responsiveness according to the characteristics of the actuators 3a, 3b, and 3c (FIG. 6 ( c) and (d)).
[0058]
In the present embodiment of FIG. 1, as in Comparative Example 2, even if the output pressure PLS of the differential pressure reducing valve 11, which is the pressure upstream of the first throttles 41 and 42, suddenly rises, Since the pressures PLS1 and PLS2 introduced to the pressure receiving chambers 70c and 71c of the pressure compensating valves 7a and 7b, which are downstream pressures, are pressures that are alleviated from sudden increase (FIG. 6 (e)), the actuator 3a (swing motor) In the combined operation with the other actuator, as described above, the flow rate of the pressure oil supplied to the actuator 3 (swing motor) is controlled without a shock at time T1 without increasing rapidly (FIG. 6 (f)). Shock at the time of acceleration can be prevented. Similarly, in the case of a combined operation of the actuator 3b (boom cylinder) and another actuator, control is performed without a shock at time T2 (FIG. 6 (f)).
[0059]
Further, in the present embodiment, the first throttles 41 and 42, the tank lines 43 and 44, and the second throttles 45 and 46 are provided in the individual second differential pressure lines 23 and 24 of the pressure compensation valves 7a and 7b, respectively. The individual second differential pressure line 25 of the valve 7c is not provided with a throttle, and the relationship between the opening areas A1a and A1b of the first throttles 41 and 42 is set to A1a <A1b, so that each actuator 3a, 3b and 3c is appropriate. Responsiveness is obtained.
[0060]
That is, when the counterpart actuator is decelerated and stopped in the combined operation, the control delay times of the pressure compensation valves 7a, 7b, and 7c are different from T1, T2, and T3, respectively, and T1> T2> T3 (FIG. 6 (e), (h)). Therefore, a responsive and crisp motion is obtained for the arm actuator 3c, a smooth motion with less shock is obtained for the turning actuator 3a, and those operations are obtained for the boom actuator 3b. Intermediate responsiveness is obtained.
[0061]
FIG. 7 shows the opening areas (FIG. 7 (a)) of the flow control valves 6a, 6b and 6c when the actuator 3a (swing motor), the actuator 3b (boom cylinder), and the actuator 3c (arm cylinder) are started, and each pressure compensation. Times indicating changes in the target compensation differential pressures of the valves 7a, 7b, 7c (FIGS. 7B, 7D) and the supply flow rates of the actuators 3A, 3B, 3C (FIGS. 7C, 7E) It is a chart. 7B and 7C show the case of Comparative Example 2, and FIGS. 7D and 7E show the case of the present invention.
[0062]
When all the actuators are stopped, the tank pressure is guided to the pressure receiving chamber 11b of the differential pressure reducing valve 11, and the discharge flow rate of the hydraulic pump is minimized. This pump discharge flow rate is returned to the tank via an unload valve (not shown). When the flow control valve is operated to start an arbitrary actuator from this state, the load pressure of the actuator is guided to the pressure receiving chamber 11b of the differential pressure reducing valve 11, and the discharge pressure of the hydraulic pump 2 and the actuator are pumped by the pump tilting mechanism 12. The discharge flow rate of the hydraulic pump 2 is controlled so that the differential pressure with respect to the load pressure (the output pressure PLS of the differential pressure reducing valve 11) is maintained at the target LS differential pressure. However, at the moment when the flow control valve is operated, the differential pressure between the discharge pressure of the hydraulic pump 2 and the load pressure of the actuator is suddenly reduced due to the delay in response of the LS control of the pump tilt control mechanism 12, and the output of the differential pressure reducing valve 11. The pressure PLS also decreases rapidly (FIGS. 7B and 7D).
[0063]
In Comparative Example 2, the first throttle 91, the tank line 92, and the second throttle 93 are provided in the first differential pressure line 21 common to the pressure compensation valves 7a, 7b, and 7c, and the same target compensation differential pressure PLS0 is controlled uniformly. Therefore, the target compensation differential pressures of the pressure compensation valves 7a, 7b, and 7c and the rising times of the supply flow rates of the actuators 3a, 3b, and 3c are all the same T0 at the time of startup, and the responsiveness according to the characteristics of the actuators 3a, 3b, and 3c. Cannot be obtained (FIGS. 7B and 7C).
[0064]
In the present embodiment, the first throttles 41 and 42, the tank lines 43 and 44, and the second throttles 45 and 46 are provided in the individual second differential pressure lines 23 and 24 of the pressure compensation valves 7a and 7b, and the pressure compensation valve 7c. The individual second differential pressure line 25 is not provided with a throttle, and the relationship between the opening areas A1a and A1b of the first throttles 41 and 42 is set to A1a <A1b. Therefore, the control delay of the pressure compensation valves 7a, 7b, and 7c is delayed. Times T1, T2, and T3 satisfy T1> T2> T3, and appropriate responsiveness is obtained for each of the actuators 3a, 3b, and 3c.
[0065]
As described above, according to the present embodiment, when one actuator is stopped from a state in which two or more actuators are driven simultaneously, the shock generated in the other actuator that has not been stopped can be reduced. In addition, it is possible to obtain responsiveness suitable for each actuator when starting each actuator or when decelerating or stopping the counterpart actuator during combined operation.
[0066]
In addition, the shock caused by the increased speed of the boom, the arm, and the turning is directly transmitted to the operator, so that the operability is remarkably impaired. By providing the first throttle 41, the tank line 43, and the second throttle 45 in the second differential pressure line 23 of the pressure compensation valve 7a related to the swing motor 3a, it is possible to prevent the occurrence of shock due to the increased speed of the swing and improve the operability. Can be improved. Further, by appropriately setting the opening area of the first diaphragm 41, a smooth operation with little shock can be obtained for the turning actuator 3a.
[0067]
Further, the downstream side of the first throttles 41, 42 (the portion between the first throttles 41, 42 and the pressure receiving parts 70c, 71c of the pressure compensation valves 7a, 7b) is connected to the tank lines 43, 44 and the second throttles 45, 46. The pressure oil flows from the upstream side of the first throttles 41, 42 to the tank via the first throttles 41, 42, the tank lines 43, 44, and the second throttles 43, 45. As a result, an intermediate pressure between the output pressure of the differential pressure reducing valve 11 and the tank pressure is generated on the downstream side of the first throttles 41 and 42. Therefore, the presence or absence of the first throttles 41 and 42 or between the first throttles 41 and 42 is generated. The delay times T1, T2, and T3 corresponding to the difference in opening area can be reliably generated, and the responsiveness corresponding to each actuator can be reliably exhibited.
[0069]
Furthermore, in the above-described embodiment, the hydraulic drive device includes the excavator swing, boom, and arm actuators 3a, 3b, and 3c. However, the hydraulic drive device includes the excavator bucket, travel, blade, and the like. The actuator of the driven member may be provided, and the same effect can be obtained by applying the present invention to such a hydraulic drive device. In particular, since the shock caused by the acceleration of traveling is directly transmitted to the operator as in the case of turning and lowers the operability, the first throttle, the tank line, and the second throttle are connected to the second differential pressure line of the pressure compensation valve related to the traveling motor. Even if it is provided, the effect of improving operability is great. Further, the present invention may be applied to a hydraulic drive device for other construction machines such as a hydraulic crane and a wheel loader, and the same effect can be obtained in this case.
[0071]
According to the present invention,Of swing hydraulic motor, boom cylinder and arm cylinderWhen one actuator was stopped from the state where two or more actuators were driven simultaneously, it was not stoppedSlewing motor or boom cylinderWhile reducing the shock that occurs,Swing hydraulic motor, boom cylinder and arm cylinderResponsiveness suitable for each actuator at the time of start-up or when the counterpart actuator decelerates or stops during combined operationcertainlyObtainable.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram showing a hydraulic drive device for a construction machine according to a first embodiment of the present invention.
FIG. 2 is a diagram showing an appearance of a hydraulic excavator that is an example of a construction machine to which the present invention is applied.
FIG. 3 is a hydraulic circuit diagram showing the configuration shown in FIG. 4 of JP-A-2002-323002 (conventional technology of the invention of JP-A-2002-323002) as Comparative Example 1;
4 is a hydraulic circuit diagram showing the configuration shown in FIG. 2 of JP-A-2002-323002 (second embodiment of the invention of JP-A-2002-323002) as Comparative Example 2. FIG.
FIG. 5 shows the flow control valve opening area and each pressure compensation when the boom cylinder drive is stopped by a combined swing / boom lift operation that simultaneously drives the swing motor and boom cylinder in the extension direction (boom lift direction). It is a time chart which shows the change of the target compensation differential pressure of a valve, and actuator flow.
FIG. 6 is a diagram illustrating pressure compensation when each of the three actuators shown in FIG. 1, FIG. 3 and FIG. 4 is decelerated and stopped when the other actuator is decelerated from the state of the combined operation with the other actuator. It is a time chart which shows each change of the target compensation differential pressure of a valve, and the supply flow rate of an actuator.
FIG. 7 is a time chart showing changes in the opening area of the flow rate control valve, the target compensation differential pressure of each pressure compensation valve, and the actuator flow rate when each actuator is activated.
[Explanation of symbols]
1 engine
2 Main hydraulic pump
3a, 3b, 3c Actuator
4 Control valve
5 Supply oil passage
6a, 6b, 6c Flow control valve
7a, 7b, 7c Pressure compensation valve
8a, 8b, 8c, 8d Load line
9a, 9b Shuttle valve
10 signal lines
11 Differential pressure reducing valve
12 Pump tilt control mechanism
12a Horsepower control tilt actuator
12b LS control valve
12c LS control tilt actuator
13 Engine speed detection circuit
21 First differential pressure line
23, 24, 25 Individual second differential pressure line
41, 42 First aperture
43,44 Tank line
45, 46 Second aperture
50 Flow rate detection valve
50a Aperture part
51 Differential pressure reducing valve
53 Signal line
60a, 60b, 60c Load port
61, 62 Meter-in variable aperture
70a, 70b, 70c pressure receiving part
71a, 71b, 71c pressure receiving part
72a, 72b, 72c pressure receiving part

Claims (1)

可変容量型の油圧ポンプと、この油圧ポンプから吐出された圧油により駆動される旋回モータ、ブームシリンダ及びアームシリンダと、前記油圧ポンプから前記旋回油圧モータ、ブームシリンダ及びアームシリンダに供給される圧油の流量をそれぞれ制御する流量制御弁と、前記流量制御弁の前後差圧をそれぞれ制御する圧力補償弁と、前記油圧ポンプの吐出圧が前記旋回油圧モータ、ブームシリンダ及びアームシリンダの最高負荷圧より目標差圧だけ高くなるよう制御するポンプ制御手段とを備え、前記圧力補償弁のそれぞれの目標補償差圧を前記油圧ポンプの吐出圧と前記最高負荷圧との差圧に基づいて設定する建設機械の油圧駆動装置において、
前記油圧ポンプの吐出圧と前記旋回油圧モータ、ブームシリンダ及びアームシリンダの最高負荷圧との差圧を絶対圧として出力する差圧減圧弁と、
前記旋回油圧モータ、ブームシリンダ及びアームシリンダの各圧力補償弁の開く側に設けられ、目標補償差圧が設定される各圧力補償弁の各受圧部と、
前記差圧減圧弁の出力ポートに接続された第1差圧ラインと、
この第1差圧ラインを、前記旋回油圧モータ、ブームシリンダ及びアームシリンダの各圧力補償弁のそれぞれの前記各受圧部に接続する個別の第2差圧ラインとを備え、
前記旋回油圧モータ及びブームシリンダの個別の第2差圧ラインのそれぞれに第1絞りを設け、
前記差圧減圧弁の出力圧を前記第1差圧ライン、前記旋回油圧モータ及びブームシリンダの個別の前記第2差圧ライン及び前記各第1絞りを介して対応する各圧力補償弁の各受圧部に導くとともに前記旋回油圧モータに係る第1絞りの開口面積を前記ブームシリンダに係る第1絞りの開口面積より小さくし、
かつ、前記旋回油圧モータ及びブームシリンダの個別の第2差圧ラインの前記各第1絞りと前記各受圧部との間の部分を各タンクラインと各第2絞りを介してタンクに連通させ、前記各第1絞りの開口面積を前記各第2絞りの開口面積より大きくし、
前記旋回油圧モータ、ブームシリンダ及びアームシリンダの前記各圧力償弁の制御の遅れ時間T1、T2及びT3をT1>T2>T3としたことを特徴とする建設機械の油圧駆動装置。
Variable displacement hydraulic pump, swing motor driven by pressure oil discharged from the hydraulic pump , boom cylinder and arm cylinder, and pressure supplied from the hydraulic pump to the swing hydraulic motor, boom cylinder and arm cylinder Each flow control valve that controls the flow rate of oil, each pressure compensation valve that controls the differential pressure across each flow control valve, and the discharge pressure of the hydraulic pump is controlled by the swing hydraulic motor, boom cylinder, and arm cylinder , respectively. and a pump control means for controlling so as to be higher by the target differential pressure than the maximum load pressure, based on the respective target compensation differential pressure of each pressure compensating valve differential pressure between the maximum load pressure between the discharge pressure of the hydraulic pump In the construction machinery hydraulic drive device
A differential pressure reducing valve that outputs, as an absolute pressure, a differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of the swing hydraulic motor, boom cylinder, and arm cylinder ;
Each pressure receiving portion of each pressure compensation valve provided on the opening side of each pressure compensation valve of the swing hydraulic motor, boom cylinder and arm cylinder, and a target compensation differential pressure is set ;
A first differential pressure line connected to the output port of the differential pressure reducing valve;
An individual second differential pressure line connecting the first differential pressure line to each pressure receiving portion of each pressure compensating valve of the swing hydraulic motor, boom cylinder, and arm cylinder ;
A first throttle is provided in each of the second differential pressure lines of the swing hydraulic motor and the boom cylinder ;
Output pressure of the differential pressure reducing valve is received by each pressure compensation valve corresponding to the first differential pressure line, the swing hydraulic motor and the individual second differential pressure lines of the boom cylinder and the first throttle. And the opening area of the first throttle related to the swing hydraulic motor is made smaller than the opening area of the first throttle related to the boom cylinder,
And the part between each said 1st throttle and each said pressure receiving part of the said 2nd differential pressure line of the said swing hydraulic motor and a boom cylinder is connected to a tank via each tank line and each 2nd throttle, An opening area of each of the first stops is larger than an opening area of each of the second stops;
A hydraulic drive device for a construction machine, wherein delay times T1, T2 and T3 of control of each pressure compensation valve of the swing hydraulic motor, boom cylinder and arm cylinder satisfy T1>T2> T3 .
JP2003064805A 2003-03-11 2003-03-11 Hydraulic drive unit for construction machinery Expired - Fee Related JP3974867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064805A JP3974867B2 (en) 2003-03-11 2003-03-11 Hydraulic drive unit for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064805A JP3974867B2 (en) 2003-03-11 2003-03-11 Hydraulic drive unit for construction machinery

Publications (2)

Publication Number Publication Date
JP2004270867A JP2004270867A (en) 2004-09-30
JP3974867B2 true JP3974867B2 (en) 2007-09-12

Family

ID=33126005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064805A Expired - Fee Related JP3974867B2 (en) 2003-03-11 2003-03-11 Hydraulic drive unit for construction machinery

Country Status (1)

Country Link
JP (1) JP3974867B2 (en)

Also Published As

Publication number Publication date
JP2004270867A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US5267440A (en) Hydraulic control system for construction machine
JP2744846B2 (en) Hydraulic drive and directional switching valve
US8146355B2 (en) Traveling device for crawler type heavy equipment
JP3854027B2 (en) Hydraulic drive
US9074346B2 (en) Work machine and control method for work machines
JPH11303809A (en) Pump control device for hydraulic drive machine
JP4976920B2 (en) Pump discharge control device
JP2022123288A (en) hydraulic drive system
JP2002206508A (en) Hydraulic driving device
CN108884843B (en) Excavator and control valve for excavator
JP3974867B2 (en) Hydraulic drive unit for construction machinery
JP2005226678A (en) Hydraulic drive mechanism
JP3831222B2 (en) Hydraulic drive
JP3980501B2 (en) Hydraulic drive unit for construction machinery
JP3511504B2 (en) Hydraulic circuit of construction machinery
JP2000240604A (en) Revolving controller in construction machine
JPH04285303A (en) Hydraulic circuit for improving operability in load sensing system
JP3760055B2 (en) Hydraulic drive control device for construction machinery
JP2003113805A (en) Hydraulic driving device
JP3321551B2 (en) Construction machine hydraulic circuit
WO2021124767A1 (en) Hydraulic circuit for construction machine
JP3732749B2 (en) Hydraulic drive
JP3286147B2 (en) Construction machine hydraulic circuit
JP3907040B2 (en) Hydraulic drive device for hydraulic excavator
JPH08232299A (en) Control device of construction machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees