JP3973882B2 - レーザ照射装置およびレーザ照射方法 - Google Patents

レーザ照射装置およびレーザ照射方法 Download PDF

Info

Publication number
JP3973882B2
JP3973882B2 JP2001359395A JP2001359395A JP3973882B2 JP 3973882 B2 JP3973882 B2 JP 3973882B2 JP 2001359395 A JP2001359395 A JP 2001359395A JP 2001359395 A JP2001359395 A JP 2001359395A JP 3973882 B2 JP3973882 B2 JP 3973882B2
Authority
JP
Japan
Prior art keywords
mirrors
laser
mirror
irradiation surface
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001359395A
Other languages
English (en)
Other versions
JP2003158088A (ja
Inventor
幸一郎 田中
智昭 森若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001359395A priority Critical patent/JP3973882B2/ja
Priority to US10/303,085 priority patent/US6765175B2/en
Publication of JP2003158088A publication Critical patent/JP2003158088A/ja
Priority to US10/852,259 priority patent/US7772519B2/en
Application granted granted Critical
Publication of JP3973882B2 publication Critical patent/JP3973882B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • G02B27/0983Reflective elements being curved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laser Beam Processing (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はレーザ光の照射方法およびそれを行うためのレーザ照射装置(レーザと該レーザから出力されるレーザ光を被照射体まで導くための光学系を含む装置)に関する。また、レーザ光の照射を工程に含んで作製された半導体装置の作製方法に関する。なお、ここでいう半導体装置には、液晶表示装置や発光装置等の電気光学装置及び該電気光学装置を部品として含む電子装置も含まれるものとする。
【0002】
【従来の技術】
近年、ガラス等の絶縁基板上に形成された半導体膜に対しレーザアニールを施して、結晶化させたり、結晶性を向上させて、結晶性半導体膜を得る技術が広く研究されている。なお、本明細書中において、結晶性半導体膜とは、結晶化領域が存在する半導体膜のことを言い、全面が結晶化している半導体膜も含む。
【0003】
ガラス基板は、合成石英ガラス基板と比較し、安価で、大面積基板を容易に作製できる利点を持っている。また、結晶化に好んでレーザが使用されるのは、ガラス基板の融点が低いからである。レーザは基板の温度を余り上昇させずに、半導体膜に高いエネルギーを与えることができる。また、電熱炉を用いた熱処理に比べて格段にスループットが高い。
【0004】
レーザ光の照射により形成された結晶性半導体膜は、高い移動度を有するため、この結晶性半導体膜を用いて薄膜トランジスタ(TFT)を形成し、例えば、1枚のガラス基板上に、画素部用、または画素部用と駆動回路用のTFTを作製するアクティブマトリクス型の液晶表示装置等に利用されている。
【0005】
また、出力の大きい、エキシマレーザ等のパルスレーザビームを照射面における形状が、数cm角の四角いスポットや、長さ10cm以上の線状または矩形状となるように光学系にて加工し、レーザビームを走査させて(あるいはレーザビームの照射位置を照射面に対し相対的に移動させて)、レーザアニールを行う方法は、生産性が高く工業的に優れているため、好んで使用されている。
【0006】
特に、線状ビームを用いると、照射面において前後左右の走査が必要なスポット状のレーザビームを用いた場合とは異なり、線状ビームの線方向に直角な方向だけの走査で被照射面全体にレーザビームを照射することができるため、生産性が高い。線方向に直角な方向に走査するのは、それが最も効率の良い走査方向であるからである。この高い生産性により、現在のレーザアニールには、パルス発振エキシマレーザのレーザビームを適当な光学系で加工して、照射面における形状が線状である線状ビームを使用することが主流になりつつある。
【0007】
図6に、特開2001−244213に開示されている照射面におけるレーザビームの形状を線状に加工するための光学系の構成の例を示す。まず、図6の側面図について説明する。レーザ発振器101から出たレーザビームは、ある拡がり角を持って直進し、シリンドリカルレンズ104とシリンドリカルレンズ105により、平行光となり、ミラー106により照射面107にて集光する。図6で示す光学系は、拡がり角の変化に影響を受けやすい為、これを制御する必要があり、拡がり角の変動に影響を受けない平行なビームを作る光学系がある方が好ましい。完全に平行なビームを作るのは不可能であるが、ビームの広がりをより小さく抑えることは可能である。前記光学系をビームコリメータと言う。図6においては、シリンドリカルレンズ104とシリンドリカルレンズ105がビームコリメータとして機能している。また、ミラー106の形状は曲率の異なる放物面ミラーが集まったものであり、1度焦点にて集光した後、照射面に達する。ここでは、放物面ミラーの数は4とした。個々の放物面は曲率が異なるため、焦点も異なっている。これらの放物面ミラー106a〜106dにより、線状ビームの幅方向のエネルギーの均化が図られ、長さが決定される。
【0008】
次に、図6の上面図について説明する。レーザ発振器101から出たレーザビームは、シリンドリカルアレイレンズ102により、レーザビームの進行方向に対し直角方向に分割される。前記方向を本明細書中では、横方向と呼ぶことにする。前記横方向は、光学系の途中でミラーが入ったとき、前記ミラーが曲げた光の方向に曲がるものとする。この構成では4分割となっている。これらの分割されたレーザビームはシリンドリカルレンズ103により照射面107で1つのビームにまとめられる。
【0009】
レーザ光が透過するレンズは使用するに従って劣化が生じて使用できなくなるが、ミラーはレンズと違ってレーザ光が透過するのではなく、レーザ光がミラーの表面で反射するため、劣化は表面だけにとどまる。そのため、長い期間使用しても、ミラーの表面のコーティングをし直せば、再度使用が可能となり、経済的である。
【0010】
【発明が解決しようとする課題】
しかしながら、図6で示す光学系により照射面上において形成されるエネルギー密度の分布は図7のようになった。これは、それぞれのミラーにおけるレンズの収差や照射面までの光路長の差により、エネルギー密度が連続的に変化するためである。そして、それぞれのミラーにおけるこのような偏りのあるエネルギー密度の分布が照射面において合成されるので、その偏りが著しいものとなっている。
【0011】
被照射体に対して一様なレーザアニールを行うには、照射面におけるエネルギー密度の分布が均一であることが望ましい。例えば、被照射体として半導体膜を用いる場合、照射面におけるエネルギー密度が均一であるならば、半導体膜に対して均一なアニールを行うことができ、半導体膜の物性を均一なものとする。そして、このような半導体膜を用いてTFTを作製すると、その電気的特性のばらつきは低減され、このようなTFTを用いて半導体装置を作製すると、その動作特性や信頼性が向上する。
【0012】
そこで本発明は、照射面におけるエネルギー密度の分布が均一なレーザ光を形成するためのレーザ照射装置およびそれを用いるレーザ照射方法を提供することを課題とする。また、このようなレーザ照射方法により、半導体膜の結晶化や不純物元素の活性化を行って得られた半導体膜を用いて半導体装置を作製する方法を提供することを課題とする。
【0013】
【課題を解決するための手段】
本発明は、照射面におけるエネルギー密度の分布の偏りの異なるレーザ光を重畳することで、均一なエネルギー密度の分布を有するレーザ光を形成する。
【0014】
本明細書で開示するレーザ照射装置に関する発明の構成は、レーザと、凹面を有し、かつ、前記レーザから射出されるレーザ光のエネルギー密度を一方向において均一化する2つ以上のミラーと、を有するレーザ照射装置であって、第1のミラーの焦点位置は、該第1のミラーと照射面の間にあり、第2のミラーの焦点位置は、該第2のミラーと前記照射面の間になく、該照射面の後方にあることを特徴としている。
【0015】
上記構成において、前記レーザは、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザであることを特徴としている。なお、前記固体レーザとしては連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ等があり、前記気体レーザとしては連続発振またはパルス発振のエキシマレーザ、Arレーザ、Krレーザ、CO2レーザ等があり、前記金属レーザとしてはヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザが挙げられる。
【0016】
また、上記構成において、前記レーザ光は、非線形光学素子により高調波に変換されていることが望ましい。例えば、YAGレーザは、基本波として、波長1064nmのレーザ光を出すことで知られている。このレーザ光の珪素膜に対する吸収係数は非常に低く、このままでは半導体膜の1つである非晶質珪素膜の結晶化を行うことは技術的に困難である。ところが、このレーザ光は非線形光学素子を用いることにより、より短波長に変換することができ、高調波として、第2高調波(532nm)、第3高調波(355nm)が望ましい。これらの高調波は非晶質珪素膜に対し吸収係数が高いので、非晶質珪素膜の結晶化に用いる事ができる。
【0017】
本明細書で開示するレーザ照射方法に関する発明の構成は、凹面を有する第1のミラーと第2のミラーにより、被照射体またはその近傍におけるエネルギー密度の分布が一方向において均一化されたレーザ光を前記被照射体に照射するレーザ照射方法であって、前記第1のミラーの焦点位置は、該第1のミラーと前記被照射体の間にあり、前記第2のミラーの焦点位置は、該第2のミラーと前記被照射体の間になく、該被照射体の後方にあることを特徴としている。
【0018】
また、本明細書で開示するレーザ照射方法に関する発明の他の構成は、凹面を有する第1のミラーおよび第2のミラーにより、第1のレーザ光を第2のレーザ光および第3のレーザ光に分割し、前記第1のミラーにより前記第2のレーザ光を集光した後被照射体を照射し、前記第2のミラーにより前記第3のレーザ光を集光せずに前記被照射体の同一領域を照射することを特徴としている。
【0019】
上記構成において、前記レーザ光は、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザから射出されたものであることを特徴としている。また、前記レーザ光は、非線形光学素子により高調波に変換されていることが望ましい。
【0020】
本明細書で開示する半導体装置の作製方法に関する発明の構成は、凹面を有する第1のミラーと第2のミラーにより、半導体膜またはその近傍におけるエネルギー密度の分布が一方向において均一化されたレーザ光を前記半導体膜に照射する半導体装置の作製方法であって、前記第1のミラーの焦点位置は、該第1のミラーと前記半導体膜の間にあり、前記第2のミラーの焦点位置は、該第2のミラーと前記半導体膜の間になく、該半導体膜の後方にあることを特徴としている。
【0021】
また、本明細書で開示する半導体装置の作製方法に関する発明の他の構成は、凹面を有する第1のミラーおよび第2のミラーにより、第1のレーザ光を第2のレーザ光および第3のレーザ光に分割し、前記第1のミラーにより前記第2のレーザ光を集光した後半導体膜を照射し、前記第2のミラーにより前記第3のレーザ光を集光せずに前記半導体膜の同一領域を照射することを特徴としている。
【0022】
上記構成において、前記レーザ光は、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザから射出されたものであることを特徴としている。また、前記レーザ光は、非線形光学素子により高調波に変換されていることが望ましい。
【0023】
また、上記構成において、前記半導体膜を形成するための基板は、ガラス基板、石英基板、プラスチック基板、金属基板、可撓性基板などを用いることができる。前記ガラス基板として、バリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板が挙げられる。また、可撓性基板とは、PET、PES、PEN、アクリルなどからなるフィルム状の基板のことであり、可撓性基板を用いて半導体装置を作製すれば、軽量化が見込まれる。可撓性基板の表面、または表面および裏面にアルミ膜(AlON、AlN、AlOなど)、炭素膜(DLC(ダイヤモンドライクカーボン)など)、SiNなどのバリア層を単層または多層にして形成すれば、耐久性などが向上するので望ましい。
【0024】
【発明の実施の形態】
[実施の形態1]
本発明の一実施形態を図1を用いて説明する。
【0025】
図1(A)においてレーザ光は、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザから射出されている。なお、前記固体レーザとしては連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ等があり、前記気体レーザとしては連続発振またはパルス発振のエキシマレーザ、Arレーザ、Krレーザ、CO2レーザ等があり、前記金属レーザとしてはヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザが挙げられる。また、レーザ光は高調波に変換されていることが望ましい。さらに、このようなレーザ光をビームコリメータ等により平行光としておくのが望ましい。なお、平行光がミラー10によって反射すれば、集光位置はそれぞれのミラーの焦点位置に一致し、拡散光がミラー10によって反射すれば集光位置はそれぞれのミラーの焦点位置からずれる。
【0026】
そして、レーザ光は複数のミラーから構成されるミラー10を経て照射面107に到達する。ミラー10は凹型のミラー10aと凹型のミラー10bから構成されている。ミラー10aの焦点位置11aはミラー10aと照射面107の間、つまり照射面107より前方にあり、ミラー10bの焦点位置11bはミラー10bと照射面107の間ではなく、照射面107より後方にある。また、ミラー10aとミラー10bの曲面は同一放物面の一部からなるものであっても良いし、異なる放物面からなるものであってもよい。また、楕円の一部であってもよい。
【0027】
ミラー10aにより反射されるレーザ光は、ミラー10aの焦点位置11aが照射面107より前方にあるため、焦点位置にて集光した後、広がって照射面107に到達する。このとき、照射面107におけるz軸方向のエネルギー密度の分布は図1(B)のようになる。
【0028】
ミラー10により反射されるレーザ光は、ミラー10の焦点位置11bが照射面107より後方にあるため、集光しながら照射面107に到達する。このとき、照射面107におけるz軸方向のエネルギー密度の分布は図1(C)のようになる。
【0029】
照射面107において、ミラー10a、10bを経たそれぞれのレーザ光が重畳される。重畳されたレーザ光のz軸方向のエネルギー密度の分布は図1(D)のように均一なものとなる。
【0030】
このようにして形成されるエネルギー密度が均一なレーザ光を用いて、被照射体に対してレーザアニールを行えば、均一なアニールを行うことができる。例えば、被照射体として半導体膜を用いる場合、照射面におけるエネルギー密度が均一であるならば、半導体膜に対して均一なアニールを行うことができ、半導体膜の物性を均一なものとする。そして、このような半導体膜を用いてTFTを作製すると、その電気的特性のばらつきは低減され、このようなTFTを用いて半導体装置を作製すると、その動作特性や信頼性が向上する。
【0031】
なお、本実施形態において、複数のミラーから構成されるミラーは2つのミラーとしているが、複数であるならその数に限定はない。焦点位置が照射面より前方にあるミラーと後方にあるミラーとが反射するレーザ光のエネルギー量が等しいことが望ましい。また、それぞれのミラーの端部は接していてもよいし、離れていてもよい。さらに、それぞれのミラーにマイクロメーター等を設置して、x軸方向やz軸方向に微調整を行うことができるようにしておくことが望ましい。
【0032】
[実施の形態2]
本実施形態では、本発明を線状ビームを形成する光学系の中で用いる形態について図2を用いて説明する。
【0033】
図2の側面図について説明する。レーザ101から射出されたレーザ光は、ある拡がり角を持って直進し、シリンドリカルレンズ104とシリンドリカルレンズ105により、ビームウエストの位置をミラー10付近に移動させ、ミラー10により照射面107にて集光する。ここで、レーザ101は、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザであり、高調波に変換されていることが望ましい。図2で示す光学系は、拡がり角の変化に影響を受けやすい為、これを制御する必要があり、ビームコリメータが必要となる。図2においては、シリンドリカルレンズ104とシリンドリカルレンズ105がビームコリメータとして機能している。また、ミラー10の形状は曲率の異なる放物面ミラーが集まったものであり、1度焦点にて集光した後、照射面に到達するためのミラー10aと、集光しながら照射面に到達するためのミラー10bとにより構成されている。ここでは、放物面ミラーの数は2としている。ミラー10についての詳細は実施の形態1で説明した通りである。なお、本明細書中においては、放物線または楕円を表す式におけるX 2 の係数を曲率αとする。
【0034】
次に、図2の上面図について説明する。レーザ101から射出されたレーザ光は、シリンドリカルアレイレンズ102により、レーザ光の進行方向に対し直角方向に分割される。前記方向を本明細書中では、横方向と呼ぶことにする。前記横方向は、光学系の途中でミラーが入ったとき、前記ミラーが曲げた光の方向に曲がるものとする。この構成では4分割となっている。これらの分割されたレーザ光はシリンドリカルレンズ103により照射面107で1つのレーザ光にまとめられる。
【0035】
このようにして、長軸方向および短軸方向に均一化がなされた線状ビームが形成される。
【0036】
このようなエネルギー密度が均一な線状ビームを用いて、被照射体に対してレーザアニールを行えば、均一なアニールを行うことができる。例えば、被照射体として半導体膜を用いる場合、照射面におけるエネルギー密度が均一であるならば、半導体膜に対して均一なアニールを行うことができ、半導体膜の物性を均一なものとする。そして、このような半導体膜を用いてTFTを作製すると、その電気的特性のばらつきは低減され、このようなTFTを用いて半導体装置を作製すると、その動作特性や信頼性が向上する。
【0037】
なお、本実施形態において、複数のミラーから構成されるミラーは2つのミラーとしているが、複数であるならその数に限定はない。また、それぞれのミラーの端部は接していてもよいし、離れていてもよい。
【0038】
[実施の形態3]
本発明の一実施形態を図3を用いて説明する。ここでは複数のミラーから構成されるミラー12の形状について説明する。
【0039】
図3(A)においてレーザ光は、実施の形態1と同様に、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザから射出されている。また、レーザ光は高調波に変換されていることが望ましい。さらに、このようなレーザ光をビームコリメータ等により平行光としておくのが望ましい。
【0040】
そして、レーザ光は複数のミラーから構成されるミラー12を経て照射面107に到達する。ミラー12は凹型のミラー12aと凹型のミラー12bから構成されている。ミラー12aの焦点距離はミラー12と照射面107の間とし、ミラー12bの焦点距離はミラー12aと照射面107の間になく、照射面10の後方にあるものにする。そのためのミラー12a、12bの形状を決定する方法について説明する。
【0041】
まず、本実施形態では、照射面107において、z軸方向の長さが0.4mmのレーザ光を形成するものとし、照射面107をx=−3、75.3≦z≦75.7とする。また、ミラー12aは、
【0042】
【数1】
Figure 0003973882
【0043】
を満たす放物線におけるx=119からの一部であるとする。ここで、照射面107が決まっているので、照射面107の端部と(1)式における焦点とを結ぶ直線と(1)式を満たす放物線との交点より、(1)式におけるxの範囲は、119≦x≦135.67の部分となる。なお、(1)式の放物線の焦点は(0、75)であり、照射面より前方にある。
【0044】
次にミラー12bの形状を決定する。ミラー12bの曲率はミラー12aの曲率が同じであるか、大きいとする。これは、ミラー12bによって反射されるレーザ光がミラー12aによって遮られず、かつ、ミラー12bの焦点位置を照射面107の後方に形成するためである。この条件を満たせば、ミラー12bの形状は多数存在するが、ここでは、ミラー12bに対する放物線を、
【0045】
【数2】
Figure 0003973882
【0046】
とした。また、x軸はレーザ光がもれなく照射面に照射するためにミラー12aの端点と一致させる。また、ミラー12bのx軸における幅はミラー12aのx軸における幅と同じ幅、つまり、135.67≦x≦152.34とした。これは、照射面において異なるエネルギー密度の分布を有するレーザ光を重畳するため、それぞれのレーザ光のエネルギー量が等しい方が均一化しやすいためである。そして、(2)式の放物線の焦点と、(2)式の放物線におけるx=135.67、152.34でのz軸の値z=61.56、77.62とそれぞれ直線で結び、z軸に平行で、かつ、両端部がこれらの直線上にある照射面の長さと同じ長さの線分を求める。
【0047】
そして、得られた線分が照射面に一致するように(2)式の放物線をx軸方向およびz軸方向に移動して、新たな放物線を決定する。これは光学シミュレーションのソフトを用いれば容易に決定することができる。このとき得られた放物線は、
【0048】
【数3】
Figure 0003973882
【0049】
であり、この放物線の135.67≦x≦152.34の範囲をミラー12bに用いれば、ミラー12bの形状を決定することができる。なお、(3)式の放物線の焦点は(−6.2、74.875)であり、照射面より後方にあることは明らかである。
【0050】
このようにして、照射面より前方に焦点位置があるミラー12aと後方に焦点位置があるミラー12bの形状を決定することができた。
【0051】
照射面107において、ミラー12a、12bを経たそれぞれのレーザ光の照射面におけるエネルギー密度の分布は図3(B)、図3(C)で示すような偏りのあるレーザ光である。しかしながら、重畳されたレーザ光のz軸方向のエネルギー密度の分布は図3(D)で示すように均一なものとなる。
【0052】
このようにして形成されるエネルギー密度が均一なレーザ光を用いて、被照射体に対してレーザアニールを行えば、均一なアニールを行うことができる。例えば、被照射体として半導体膜を用いる場合、照射面におけるエネルギー密度が均一であるならば、半導体膜に対して均一なアニールを行うことができ、半導体膜の物性を均一なものとする。そして、このような半導体膜を用いてTFTを作製すると、その電気的特性のばらつきは低減され、このようなTFTを用いて半導体装置を作製すると、その動作特性や信頼性が向上する。
【0053】
なお、本実施形態は実施形態2と組み合わせることが可能である。
【0054】
[実施の形態4]
本発明の一実施形態を図4を用いて説明する。ここでは複数のミラーから構成されるミラー13の形状について説明する。
【0055】
図4(A)においてレーザ光は、実施の形態1と同様に、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザから射出されている。また、レーザ光は高調波に変換されていることが望ましい。さらに、このようなレーザ光をビームコリメータ等により平行光としておくのが望ましい。
【0056】
そして、レーザ光は複数のミラーから構成されるミラー13を経て照射面107に到達する。ミラー13は凹型のミラー13a〜13dから構成されている。ミラー13a、13bの焦点距離はミラー13a、13bと照射面107の間、つまり照射面107の前方にあり、ミラー13c、13dの焦点距離はミラー13c、13dと照射面107の間になく、照射面107の後方にあるものにする。そのためのミラー13a〜13dの形状を決定する方法について説明する。
【0057】
まず、本実施形態では、照射面107において、z軸方向の長さが0.4mmのレーザ光を形成するものとし、照射面107をx=−3、75.3≦z≦75.7とする。また、ミラー13aは、
【0058】
【数4】
Figure 0003973882
【0059】
を満たす放物線におけるx=119からの一部であるとする。ここで、照射面107が決まっているので、照射面107の端部と(4)式における焦点とを結ぶ直線と(1)式を満たす放物線との交点より、(4)式におけるxの範囲は、119≦x≦135.67の部分となる。なお、(4)式の放物線の焦点は(0、73.8)であり、照射面より前方にある。
【0060】
次にミラー13bの形状を決定する。ミラー13bの曲率はミラー13aの曲率が同じであるか、大きいとする。これは、照射面107までの距離がミラー13aより遠くなるためである。この条件を満たす、ミラー13bの形状は多数存在するが、ここでは、ミラー13bに対する放物線の曲率をミラー13aと同じにし、照射面が一致するようにz軸方向のみに移動させて、ミラー13bの形状を決定すると、
【0061】
【数5】
Figure 0003973882
【0062】
となる。ミラー13bのx軸はレーザ光がもれなく照射面に照射するためにミラー13aの端点と一致させる。また、ミラー13bのx軸における幅は、照射面と()式から127≦x≦135.67となる。
【0063】
次にミラー13c、ミラー13dの形状を決定する。ミラー13c、ミラー13dの焦点距離はミラー13c、13dと照射面107の距離までより長いものとする。そして、その形状は実施の形態3にしたがって求めればよい。ただし、ミラー13a、13bとミラー13c、13dとが反射するレーザ光のエネルギー量を等しくするため、x軸におけるミラー13a、13bの幅とミラー13c、13dの幅を等しくする。これは、照射面において異なるエネルギー密度の分布を有するレーザ光を重畳するため、それぞれのレーザ光のエネルギー量が等しい方が均一化しやすいためである。
【0064】
実施の形態3にしたがって、ミラー13c、ミラー13dの形状を求めると、
【数6】
Figure 0003973882
【0065】
【数7】
Figure 0003973882
【0066】
のようになる。
【0067】
このようにして、照射面より前方に焦点位置があるミラー13a、13bと後方に焦点位置があるミラー13c、13dの形状を決定することができた。
【0068】
照射面107において、ミラー13a、13bを経たそれぞれのレーザ光の照射面におけるエネルギー密度の分布は図4(B)のようになり、ミラー13c、13dを経たそれぞれのレーザ光の照射面におけるエネルギー密度の分布は図4(C)のようになる。これらのレーザ光が照射面において重畳され、そのエネルギー密度の分布は図4(D)で示す様にz軸方向に均一なものとなる。
【0069】
このようにして形成されるエネルギー密度が均一なレーザ光を用いて、被照射体に対してレーザアニールを行えば、均一なアニールを行うことができる。例えば、被照射体として半導体膜を用いる場合、照射面におけるエネルギー密度が均一であるならば、半導体膜に対して均一なアニールを行うことができ、半導体膜の物性を均一なものとする。そして、このような半導体膜を用いてTFTを作製すると、その電気的特性のばらつきは低減され、このようなTFTを用いて半導体装置を作製すると、その動作特性や信頼性が向上する。
【0070】
[実施の形態5]
本発明の一実施形態を図5を用いて説明する。ここでは複数のミラーから構成されるミラー14の形状について説明する。
【0071】
図5(A)においてレーザ光は、実施の形態1乃至4と同様に、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザから射出されている。また、レーザ光は高調波に変換されていることが望ましい。さらに、このようなレーザ光をビームコリメータ等により平行光としておくのが望ましい。
【0072】
そして、レーザ光は複数のミラーから構成されるミラー14を経て照射面107に到達する。ミラー14は凹型のミラー14a〜14cから構成されている。ミラー14a、14bの焦点距離はミラー14a、14bと照射面107の間にあり、ミラー14cの焦点距離はミラー14cと照射面107の間になく、照射面107の後方にあるものにする。そのためのミラー14a〜14cの形状を決定する方法について説明する。
【0073】
まず、本実施形態では、照射面107において、z軸方向の長さが0.4mmのレーザ光を形成するものとし、照射面107をx=−3、75.3≦z≦75.7とする。ここで、ミラー14a、14bの形状はミラー13a、13bと同じ形状とした。すなわち、ミラー14a、14bは、
【0074】
【数8】
Figure 0003973882
【0075】
【数9】
Figure 0003973882
【0076】
とする。
【0077】
次にミラー14cの形状を決定する。ミラー14cの焦点距離はミラー14cと照射面107の距離までより長いものとする。そして、その形状は実施の形態3にしたがって求めればよい。ただし、ミラー14a、14bとミラー14cとが反射するレーザ光のエネルギー量を等しくするため、x軸におけるミラー14a、14bの幅とミラー14cの幅を等しくする。これは、照射面において異なるエネルギー密度の分布を有するレーザ光を重畳するため、それぞれのレーザ光のエネルギー量が等しい方が均一化しやすいためである。
【0078】
実施の形態3にしたがって、ミラー14cの形状を求めると、
【数10】
Figure 0003973882
【0079】
のようになる。
【0080】
このようにして、照射面より前方に焦点位置があるミラー14a、14bと後方に焦点位置があるミラー14cの形状を決定することができた。
【0081】
照射面107において、ミラー14a〜14cを経たそれぞれのレーザ光が重畳される。ミラー14a、14bの照射面におけるエネルギー密度の分布は図5(B)のようになっており、ミラー14cの照射面におけるエネルギー密度の分布は図5(C)のようになっている。そして、重畳されたレーザ光のz軸方向のエネルギー密度の分布は図5(D)で示す様に均一なものとなる。
【0082】
このようにして形成されるエネルギー密度が均一なレーザ光を用いて、被照射体に対してレーザアニールを行えば、均一なアニールを行うことができる。例えば、被照射体として半導体膜を用いる場合、照射面におけるエネルギー密度が均一であるならば、半導体膜に対して均一なアニールを行うことができ、半導体膜の物性を均一なものとする。そして、このような半導体膜を用いてTFTを作製すると、その電気的特性のばらつきは低減され、このようなTFTを用いて半導体装置を作製すると、その動作特性や信頼性が向上する。
【0083】
【実施例】
[実施例1]
本実施例ではアクティブマトリクス基板の作製方法について図8〜図11を用いて説明する。本明細書ではCMOS回路、及び駆動回路と、画素TFT、保持容量とを有する画素部を同一基板上に形成された基板を、便宜上アクティブマトリクス基板と呼ぶ。
【0084】
まず、本実施例ではバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板400を用いる。なお、基板400としては、石英基板やシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよいし、可撓性基板を用いても良い。なお、本発明はエネルギー分布が同一である線状ビームを容易に形成できるので、複数の線状ビームにより大面積基板を効率良くアニールすることが可能である。
【0085】
次いで、基板400上に酸化珪素膜、窒化珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地膜401を公知の手段により形成する。本実施例では下地膜401として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。
【0086】
次いで、下地膜上に半導体膜を形成する。半導体膜は公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により25〜200nm(好ましくは30〜150nm)の厚さで半導体膜を成膜し、レーザ結晶化法により結晶化させる。レーザ結晶化法は、実施形態1乃至5のいずれか一、またはこれらの実施形態を自由に組み合わせて、レーザ光を半導体膜に照射する。用いるレーザは、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザが望ましい。なお、前記固体レーザとしては連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ等があり、前記気体レーザとしては連続発振またはパルス発振のエキシマレーザ、Arレーザ、Krレーザ、CO2レーザ等があり、前記金属レーザとしては連続発振またはパルス発振のヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザが挙げられる。もちろん、レーザ結晶化法だけでなく、他の公知の結晶化法(RTAやファーネスアニール炉を用いた熱結晶化法、結晶化を助長する金属元素を用いた熱結晶化法等)と組み合わせて行ってもよい。前記半導体膜としては、非晶質半導体膜や微結晶半導体膜、結晶性半導体膜などがあり、非晶質珪素ゲルマニウム膜、非晶質シリコンカーバイト膜などの非晶質構造を有する化合物半導体膜を適用しても良い。
【0087】
本実施例では、プラズマCVD法を用い、50nmの非晶質珪素膜を成膜し、この非晶質珪素膜に結晶化を助長する金属元素を用いた熱結晶化法およびレーザ結晶化法を行う。金属元素としてニッケルを用い、溶液塗布法により非晶質珪素膜上に導入した後、550℃で5時間の熱処理を行って第1の結晶性珪素膜を得る。そして、実施形態1にしたがってレーザアニールを行い、第2の結晶性珪素膜を得る。前記第1の結晶性珪素膜にレーザ光を照射して第2の結晶性珪素膜とすることで、結晶性が向上する。パルス発振のエキシマレーザを用いる場合には、周波数300Hzとし、レーザーエネルギー密度を100〜1000mJ/cm2(代表的には200〜800mJ/cm2)とするのが望ましい。このとき、レーザ光を50〜98%オーバーラップさせても良い。
【0088】
もちろん、第1の結晶性珪素膜を用いてTFTを作製することもできるが、第2の結晶性珪素膜は結晶性が向上しているため、TFTの電気的特性が向上するので望ましい。例えば、第2の結晶性珪素膜を用いてTFTを作製すると、移動度は500〜600cm2/Vs程度と著しく高い値が得られる。
【0089】
このようにして得られた結晶性半導体膜をフォトリソグラフィ法を用いたパターニング処理により、半導体層402〜406を形成する。
【0090】
また、半導体層402〜406を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。
【0091】
次いで、半導体層402〜406を覆うゲート絶縁膜407を形成する。ゲート絶縁膜407はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜を形成する。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の絶縁膜を単層または積層構造として用いても良い。
【0092】
また、酸化珪素膜を用いる場合には、プラズマCVD法でTEOS(Tetraethyl Orthosilicate)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後400〜500℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。
【0093】
次いで、ゲート絶縁膜407上に膜厚20〜100nmの第1の導電膜408と、膜厚100〜400nmの第2の導電膜409とを積層形成する。本実施例では、膜厚30nmのTaN膜からなる第1の導電膜408と、膜厚370nmのW膜からなる第2の導電膜409を積層形成する。TaN膜はスパッタ法で形成し、Taのターゲットを用い、窒素を含む雰囲気内でスパッタする。また、W膜は、Wのターゲットを用いたスパッタ法で形成した。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成することもできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20μΩcm以下にすることが望ましい。
【0094】
なお、本実施例では、第1の導電膜408をTaN、第2の導電膜409をWとしているが、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cu、Cr、Ndから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい。また、リン等の不純物元素をドーピングした多結晶珪素膜に代表される半導体膜を用いてもよい。また、AgPdCu合金を用いてもよい。
【0095】
次に、フォトリソグラフィ法を用いてレジストからなるマスク410〜415を形成し、電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。(図8(B))本実施例では第1のエッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を25:25:10(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行う。基板側(試料ステージ)にも150WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。
【0096】
この後、レジストからなるマスク410〜415を除去せずに第2のエッチング条件に変え、エッチング用ガスにCF4とCl2とを用い、それぞれのガス流量比を30:30(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行う。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増加させると良い。
【0097】
上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15〜45°となる。こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層417〜422(第1の導電層417a〜422aと第2の導電層417b〜422b)を形成する。416はゲート絶縁膜であり、第1の形状の導電層417〜422で覆われない領域は20〜50nm程度エッチングされ薄くなった領域が形成される。
【0098】
次いで、レジストからなるマスクを除去せずに第2のエッチング処理を行う。(図8(C))ここでは、エッチングガスにCF4とCl2とO2とを用い、W膜を選択的にエッチングする。この時、第2のエッチング処理により第2の導電層428b〜433bを形成する。一方、第1の導電層417a〜422aは、ほとんどエッチングされず、第2の形状の導電層428〜433を形成する。
【0099】
そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層にn型を付与する不純物元素を低濃度に添加する。ドーピング処理はイオンドープ法、若しくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013〜5×1014/cm2とし、加速電圧を40〜80keVとして行う。本実施例ではドーズ量を1.5×1013/cm2とし、加速電圧を60keVとして行う。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用いる。この場合、導電層428〜433がn型を付与する不純物元素に対するマスクとなり、自己整合的に不純物領域423〜427が形成される。不純物領域423〜427には1×1018〜1×1020/cm3の濃度範囲でn型を付与する不純物元素を添加する。
【0100】
レジストからなるマスクを除去した後、新たにレジストからなるマスク434a〜434cを形成して第1のドーピング処理よりも高い加速電圧で第2のドーピング処理を行う。イオンドープ法の条件はドーズ量を1×1013〜1×1015/cm2とし、加速電圧を60〜120keVとして行う。ドーピング処理は第2の導電層428b〜430b、432bを不純物元素に対するマスクとして用い、第1の導電層のテーパー部の下方の半導体層に不純物元素が添加されるようにドーピングする。続いて、第2のドーピング処理より加速電圧を下げて第3のドーピング処理を行って図9(A)の状態を得る。イオンドープ法の条件はドーズ量を1×1015〜1×1017/cm2とし、加速電圧を50〜100keVとして行う。第2のドーピング処理および第3のドーピング処理により、第1の導電層と重なる低濃度不純物領域436、442、448には1×1018〜5×1019/cm3の濃度範囲でn型を付与する不純物元素を添加され、高濃度不純物領域435、441、444、447には1×1019〜5×1021/cm3の濃度範囲でn型を付与する不純物元素を添加される。
【0101】
もちろん、適当な加速電圧にすることで、第2のドーピング処理および第3のドーピング処理は1回のドーピング処理で、低濃度不純物領域および高濃度不純物領域を形成することも可能である。
【0102】
次いで、レジストからなるマスクを除去した後、新たにレジストからなるマスク450a〜450cを形成して第4のドーピング処理を行う。この第4のドーピング処理により、pチャネル型TFTの活性層となる半導体層に前記一導電型とは逆の導電型を付与する不純物元素が添加された不純物領域453、454、459、460を形成する。第2の導電層42432aを不純物元素に対するマスクとして用い、p型を付与する不純物元素を添加して自己整合的に不純物領域を形成する。本実施例では、不純物領域453、454、459、460はジボラン(B26)を用いたイオンドープ法で形成する。(図9(B))この第4のドーピング処理の際には、nチャネル型TFTを形成する半導体層はレジストからなるマスク450a〜450cで覆われている。第1乃至3のドーピング処理によって、不純物領域447、448にはそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもp型を付与する不純物元素の濃度を1×1019〜5×1021atoms/cm3となるようにドーピング処理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。
【0103】
以上までの工程で、それぞれの半導体層に不純物領域が形成される。
【0104】
次いで、レジストからなるマスク450a〜450cを除去して第1の層間絶縁膜461を形成する。この第1の層間絶縁膜461としては、プラズマCVD法またはスパッタ法を用い、厚さを100〜200nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により膜厚150nmの酸化窒化珪素膜を形成した。勿論、第1の層間絶縁膜461は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0105】
次いで、レーザ光を照射して、半導体層の結晶性の回復、それぞれの半導体層に添加された不純物元素の活性化を行う。レーザ活性化は、実施形態1乃至5のいずれか一またはこれらの実施形態の組み合わせて、レーザ光を半導体膜に照射する。用いるレーザは、連続発振またはパルス発振の固体レーザまたは気体レーザまたは金属レーザが望ましい。なお、前記固体レーザとしては連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ等があり、前記気体レーザとしては連続発振またはパルス発振のエキシマレーザ(エキシマレーザの連続発振は開発可能との説もあるが、まだ実用化していない)、Arレーザ、Krレーザ、CO2レーザ等があり、前記金属レーザとしては連続発振またはパルス発振のヘリウムカドミウムレーザ、銅蒸気レーザ、金蒸気レーザが挙げられる。このとき、連続発振のレーザを用いるのであれば、レーザ光のエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.01〜10MW/cm2)が必要であり、レーザ光に対して相対的に基板を0.5〜2000cm/sの速度で移動させる。また、パルス発振のレーザを用いるのであれば、レーザーエネルギー密度を50〜1000mJ/cm2(代表的には50〜500mJ/cm2)とするのが望ましい。このとき、レーザ光を50〜98%オーバーラップさせても良い。なお、レーザアニール法の他に、熱アニール法、またはラピッドサーマルアニール法(RTA法)などを適用することができる。
【0106】
また、第1の層間絶縁膜を形成する前に活性化を行っても良い。ただし、用いた配線材料が熱に弱い場合には、本実施例のように配線等を保護するため層間絶縁膜(珪素を主成分とする絶縁膜、例えば窒化珪素膜)を形成した後で活性化処理を行うことが好ましい。
【0107】
そして、熱処理(300〜550℃で1〜12時間の熱処理)を行うと水素化を行うことができる。この工程は第1の層間絶縁膜461に含まれる水素により半導体層のダングリングボンドを終端する工程である。第1の層間絶縁膜の存在に関係なく半導体層を水素化することができる。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)や、3〜100%の水素を含む雰囲気中で300〜450℃で1〜12時間の熱処理を行っても良い。
【0108】
次いで、第1の層間絶縁膜461上に無機絶縁膜材料または有機絶縁物材料から成る第2の層間絶縁膜462を形成する。本実施例では、膜厚1.6μmのアクリル樹脂膜を形成したが、粘度が10〜1000cp、好ましくは40〜200cpのものを用い、表面に凸凹が形成されるものを用いる。
【0109】
本実施例では、鏡面反射を防ぐため、表面に凸凹が形成される第2の層間絶縁膜を形成することによって画素電極の表面に凸凹を形成した。また、画素電極の表面に凹凸を持たせて光散乱性を図るため、画素電極の下方の領域に凸部を形成してもよい。その場合、凸部の形成は、TFTの形成と同じフォトマスクで行うことができるため、工程数の増加なく形成することができる。なお、この凸部は配線及びTFT部以外の画素部領域の基板上に適宜設ければよい。こうして、凸部を覆う絶縁膜の表面に形成された凸凹に沿って画素電極の表面に凸凹が形成される。
【0110】
また、第2の層間絶縁膜462として表面が平坦化する膜を用いてもよい。その場合は、画素電極を形成した後、公知のサンドブラスト法やエッチング法等の工程を追加して表面を凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増加させることが好ましい。
【0111】
そして、駆動回路506において、各不純物領域とそれぞれ電気的に接続する配線46〜46を形成する。なお、これらの配線は、膜厚50nmのTi膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜をパターニングして形成する。もちろん、二層構造に限らず、単層構造でもよいし、三層以上の積層構造にしてもよい。また、配線の材料としては、AlとTiに限らない。例えば、TaN膜上にAlやCuを形成し、さらにTi膜を形成した積層膜をパターニングして配線を形成してもよい。(図10)
【0112】
また、画素部507においては、画素電極470、ゲート配線469、接続電極468を形成する。この接続電極468によりソース配線(43aと43bの積層)は、画素TFTと電気的な接続が形成される。また、ゲート配線469は、画素TFTのゲート電極と電気的な接続が形成される。また、画素電極470は、画素TFTのドレイン領域442と電気的な接続が形成され、さらに保持容量を形成する一方の電極として機能する半導体層45と電気的な接続が形成される。また、画素電極47としては、AlまたはAgを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いることが望ましい。
【0113】
以上の様にして、nチャネル型TFT501とpチャネル型TFT502からなるCMOS回路、及びnチャネル型TFT503を有する駆動回路506と、画素TFT504、保持容量505とを有する画素部507を同一基板上に形成することができる。こうして、アクティブマトリクス基板が完成する。
【0114】
駆動回路506のnチャネル型TFT501はチャネル形成領域437、ゲート電極の一部を構成する第1の導電層428aと重なる低濃度不純物領域436(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域452を有している。このnチャネル型TFT501と電極466で接続してCMOS回路を形成するpチャネル型TFT502にはチャネル形成領域440、ソース領域またはドレイン領域として機能する高濃度不純物領域45と、n型を付与する不純物元素およびp型を付与する不純物元素が導入された不純物領域45を有している。また、nチャネル型TFT503にはチャネル形成領域443、ゲート電極の一部を構成する第1の導電層430aと重なる低濃度不純物領域442(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域456を有している。
【0115】
画素部の画素TFT504にはチャネル形成領域446、ゲート電極の外側に形成される低濃度不純物領域445(LDD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域458を有している。また、保持容量505の一方の電極として機能する半導体層には、n型を付与する不純物元素およびp型を付与する不純物元素が添加されている。保持容量505は、絶縁膜416を誘電体として、電極(432aと432bの積層)と、半導体層とで形成している。
【0116】
本実施例の画素構造は、ブラックマトリクスを用いることなく、画素電極間の隙間が遮光されるように、画素電極の端部をソース配線と重なるように配置形成する。
【0117】
また、本実施例で作製するアクティブマトリクス基板の画素部の上面図を図11に示す。なお、図8〜図11に対応する部分には同じ符号を用いている。図10中の鎖線A−A’は図11中の鎖線A―A’で切断した断面図に対応している。また、図10中の鎖線B−B’は図11中の鎖線B―B’で切断した断面図に対応している。
【0118】
[実施例2]
本実施例では、実施例1で作製したアクティブマトリクス基板から、反射型液晶表示装置を作製する工程を以下に説明する。説明には図12を用いる。
【0119】
まず、実施例1に従い、図10の状態のアクティブマトリクス基板を得た後、図10のアクティブマトリクス基板上、少なくとも画素電極470上に配向膜567を形成しラビング処理を行う。なお、本実施例では配向膜567を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサ572を所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。
【0120】
次いで、対向基板569を用意する。次いで、対向基板569上に着色層570、571、平坦化膜573を形成する。赤色の着色層570と青色の着色層571とを重ねて、遮光部を形成する。また、赤色の着色層と緑色の着色層とを一部重ねて、遮光部を形成してもよい。
【0121】
本実施形態では、実施例1に示す基板を用いている。従って、実施例1の画素部の上面図を示す図11では、少なくともゲート配線469と画素電極470の間隙と、ゲート配線469と接続電極468の間隙と、接続電極468と画素電極470の間隙を遮光する必要がある。本実施例では、それらの遮光すべき位置に着色層の積層からなる遮光部が重なるように各着色層を配置して、対向基板を貼り合わせた。
【0122】
このように、ブラックマスク等の遮光層を形成することなく、各画素間の隙間を着色層の積層からなる遮光部で遮光することによって工程数の低減を可能とした。
【0123】
次いで、平坦化膜573上に透明導電膜からなる対向電極576を少なくとも画素部に形成し、対向基板の全面に配向膜574を形成し、ラビング処理を施した。
【0124】
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材568で貼り合わせる。シール材568にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料575を注入し、封止剤(図示せず)によって完全に封止する。液晶材料575には公知の液晶材料を用いれば良い。このようにして図12に示す反射型液晶表示装置が完成する。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、対向基板のみに偏光板(図示しない)を貼りつけた。そして、公知の技術を用いてFPCを貼りつけた。
【0125】
以上のようにして作製される液晶表示装置はエネルギー分布の均一化が非常に容易であるレーザ光が照射されているため一様にアニールされた半導体膜を用いて作製されたTFTを有しており、前記液晶表示装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
【0126】
なお、本実施例は実施形態1乃至5と自由に組み合わせることが可能である。
【0127】
[実施例3]
本実施例では、実施例1で示したアクティブマトリクス基板を作製するときのTFTの作製方法を用いて、発光装置を作製した例について説明する。本明細書において、発光装置とは、基板上に形成された発光素子を該基板とカバー材の間に封入した表示用パネルおよび該表示用パネルにTFTを備えた表示用モジュールを総称したものである。なお、発光素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層(発光層)と陽極層と、陰極層とを有する。また、有機化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)があり、これらのうちどちらか、あるいは両方の発光を含む。
【0128】
なお、本明細書中では、発光素子において陽極と陰極の間に形成された全ての層を有機発光層と定義する。有機発光層には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的に発光素子は、陽極層、発光層、陰極層が順に積層された構造を有しており、この構造に加えて、陽極層、正孔注入層、発光層、陰極層や、陽極層、正孔注入層、発光層、電子輸送層、陰極層等の順に積層した構造を有していることもある。
【0129】
図13は本実施例の発光装置の断面図である。図13において、基板700上に設けられたスイッチングTFT603は図10のnチャネル型TFT503を用いて形成される。したがって、構造の説明はnチャネル型TFT503の説明を参照すれば良い。
【0130】
なお、本実施例ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
【0131】
基板700上に設けられた駆動回路は図10のCMOS回路を用いて形成される。従って、構造の説明はnチャネル型TFT501とpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0132】
また、配線701、703はCMOS回路のソース配線、702はドレイン配線として機能する。また、配線704はソース配線708とスイッチングTFTのソース領域とを電気的に接続する配線として機能し、配線705はドレイン配線709とスイッチングTFTのドレイン領域とを電気的に接続する配線として機能する。
【0133】
なお、電流制御TFT604は図10のpチャネル型TFT502を用いて形成される。従って、構造の説明はpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0134】
また、配線706は電流制御TFTのソース配線(電流供給線に相当する)であり、707は電流制御TFTの画素電極711上に重ねることで画素電極711と電気的に接続する電極である。
【0135】
なお、711は、透明導電膜からなる画素電極(発光素子の陽極)である。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても良い。画素電極711は、上記配線を形成する前に平坦な層間絶縁膜710上に形成する。本実施例においては、樹脂からなる平坦化膜710を用いてTFTによる段差を平坦化することは非常に重要である。後に形成される発光層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、発光層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。
【0136】
配線701〜707を形成後、図13に示すようにバンク712を形成する。バンク712は100〜400nmの珪素を含む絶縁膜もしくは有機樹脂膜をパターニングして形成すれば良い。
【0137】
なお、バンク712は絶縁膜であるため、成膜時における素子の静電破壊には注意が必要である。本実施例ではバンク712の材料となる絶縁膜中にカーボン粒子や金属粒子を添加して抵抗率を下げ、静電気の発生を抑制する。この際、抵抗率は1×106〜1×1012Ωm(好ましくは1×108〜1×1010Ωm)となるようにカーボン粒子や金属粒子の添加量を調節すれば良い。
【0138】
画素電極711の上には発光層713が形成される。なお、図13では一画素しか図示していないが、本実施例ではR(赤)、G(緑)、B(青)の各色に対応した発光層を作り分けている。また、本実施例では蒸着法により低分子系有機発光材料を形成している。具体的には、正孔注入層として20nm厚の銅フタロシアニン(CuPc)膜を設け、その上に発光層として70nm厚のトリス−8−キノリノラトアルミニウム錯体(Alq3)膜を設けた積層構造としている。Alq3にキナクリドン、ペリレンもしくはDCM1といった蛍光色素を添加することで発光色を制御することができる。
【0139】
但し、以上の例は発光層として用いることのできる有機発光材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせて発光層(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、本実施例では低分子系有機発光材料を発光層として用いる例を示したが、中分子系有機発光材料や高分子系有機発光材料を用いても良い。なお、本明細書中において、昇華性を有さず、かつ、分子数が20以下または連鎖する分子の長さが10μm以下の有機発光材料を中分子系有機発光材料とする。また、高分子系有機発光材料を用いる例として、正孔注入層として20nmのポリチオフェン(PEDOT)膜をスピン塗布法により設け、その上に発光層として100nm程度のパラフェニレンビニレン(PPV)膜を設けた積層構造としても良い。なお、PPVのπ共役系高分子を用いると、赤色から青色まで発光波長を選択できる。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機発光材料や無機材料は公知の材料を用いることができる。
【0140】
次に、発光層713の上には導電膜からなる陰極714が設けられる。本実施例の場合、導電膜としてアルミニウムとリチウムとの合金膜を用いる。勿論、公知のMgAg膜(マグネシウムと銀との合金膜)を用いても良い。陰極材料としては、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。
【0141】
この陰極714まで形成された時点で発光素子715が完成する。なお、ここでいう発光素子715は、画素電極(陽極)711、発光層713及び陰極714で形成されたダイオードを指す。
【0142】
発光素子715を完全に覆うようにしてパッシベーション膜716を設けることは有効である。パッシベーション膜716としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。
【0143】
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い発光層713の上方にも容易に成膜することができる。また、DLC膜は酸素に対するブロッキング効果が高く、発光層713の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に発光層713が酸化するといった問題を防止できる。
【0144】
さらに、パッシベーション膜716上に封止材717を設け、カバー材718を貼り合わせる。封止材717としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、本実施例においてカバー材718はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)や可撓性基板の両面に炭素膜(好ましくはDLC膜)を形成したものを用いる。炭素膜以外にもアルミ膜(AlON、AlN、AlOなど)、SiNなどを用いることができる。
【0145】
こうして図13に示すような構造の発光装置が完成する。なお、バンク712を形成した後、パッシベーション膜716を形成するまでの工程をマルチチャンバー方式(またはインライン方式)の成膜装置を用いて、大気解放せずに連続的に処理することは有効である。また、さらに発展させてカバー材718を貼り合わせる工程までを大気解放せずに連続的に処理することも可能である。
【0146】
こうして、基板700上にnチャネル型TFT601、pチャネル型TFT602、スイッチングTFT(nチャネル型TFT)603および電流制御TFT(チャネル型TFT)604が形成される。
【0147】
さらに、図13を用いて説明したように、ゲート電極に絶縁膜を介して重なる不純物領域を設けることによりホットキャリア効果に起因する劣化に強いnチャネル型TFTを形成することができる。そのため、信頼性の高い発光装置を実現できる。
【0148】
また、本実施例では画素部と駆動回路の構成のみ示しているが、本実施例の製造工程に従えば、その他にも信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路などの論理回路を同一の絶縁体上に形成可能であり、さらにはメモリやマイクロプロセッサをも形成しうる。
【0149】
以上のようにして作製される発光装置はエネルギー分布の均一化が非常に容易であるレーザ光が照射されているため一様にアニールされた半導体膜を用いて作製されたTFTを有しており、前記発光装置の動作特性や信頼性を十分なものとなり得る。そして、このような発光装置は各種電子機器の表示部として用いることができる。
【0150】
なお、本実施例は実施形態1乃至5と自由に組み合わせることが可能である。
【0151】
[実施例4]
本発明を適用して、様々な半導体装置(アクティブマトリクス型液晶表示装置、アクティブマトリクス型発光装置、アクティブマトリクス型EC表示装置)を作製することができる。即ち、それら電気光学装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。
【0152】
その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの例を図14、図15及び図16に示す。
【0153】
図14(A)はパーソナルコンピュータであり、本体3001、画像入力部3002、表示部3003、キーボード3004等を含む。本発明により作製された半導体装置を表示部3003に適用することで、本発明のパーソナルコンピュータが完成する。
【0154】
図14(B)はビデオカメラであり、本体3101、表示部3102、音声入力部3103、操作スイッチ3104、バッテリー3105、受像部3106等を含む。本発明により作製された半導体装置を表示部3102に適用することで、本発明のビデオカメラが完成する。
【0155】
図14(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体3201、カメラ部3202、受像部3203、操作スイッチ3204、表示部3205等を含む。本発明により作製された半導体装置を表示部3205に適用することで、本発明のモバイルコンピュータが完成する。
【0156】
図14(D)はゴーグル型ディスプレイであり、本体3301、表示部3302、アーム部3303等を含む。表示部3302は基板として可撓性基板を用いており、表示部3302を湾曲させてゴーグル型ディスプレイを作製している。また軽量で薄いゴーグル型ディスプレイを実現している。本発明により作製される半導体装置を表示部3302に適用することで、本発明のゴーグル型ディスプレイが完成する。
【0157】
図14(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体3401、表示部3402、スピーカ部3403、記録媒体3404、操作スイッチ3405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digital Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。本発明により作製された半導体装置を表示部3402に適用することで、本発明の記録媒体が完成する。
【0158】
図14(F)はデジタルカメラであり、本体3501、表示部3502、接眼部3503、操作スイッチ3504、受像部(図示しない)等を含む。本発明により作製された半導体装置を表示部3502に適用することで、本発明のデジタルカメラが完成する。
【0159】
図15(A)はフロント型プロジェクターであり、投射装置3601、スクリーン3602等を含む。本発明により作製された半導体装置を投射装置3601の一部を構成する液晶表示装置3808やその他の駆動回路に適用することで、本発明のフロント型プロジェクターが完成する。
【0160】
図15(B)はリア型プロジェクターであり、本体3701、投射装置3702、ミラー3703、スクリーン3704等を含む。本発明により作製された半導体装置を投射装置3702の一部を構成する液晶表示装置3808やその他の駆動回路に適用することで、本発明のリア型プロジェクターが完成する。
【0161】
なお、図15(C)は、図15(A)及び図15(B)中における投射装置3601、3702の構造の一例を示した図である。投射装置3601、3702は、光源光学系3801、ミラー3802、3804〜3806、ダイクロイックミラー3803、プリズム3807、液晶表示装置3808、位相差板3809、投射光学系3810で構成される。投射光学系3810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図15(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。
【0162】
また、図15(D)は、図15(C)中における光源光学系3801の構造の一例を示した図である。本実施例では、光源光学系3801は、リフレクター3811、光源3812、レンズアレイ3813、3814、偏光変換素子3815、集光レンズ3816で構成される。なお、図15(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。
【0163】
ただし、図15に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及び発光装置での適用例は図示していない。
【0164】
図16(A)は携帯電話であり、本体3901、音声出力部3902、音声入力部3903、表示部3904、操作スイッチ3905、アンテナ3906等を含む。本発明により作製された半導体装置を表示部3904に適用することで、本発明の携帯電話が完成する。
【0165】
図16(B)は携帯書籍(電子書籍)であり、本体4001、表示部4002、4003、記憶媒体4004、操作スイッチ4005、アンテナ4006等を含む。本発明により作製された半導体装置は表示部4002、4003に適用することで、本発明の携帯書籍が完成する。携帯書籍を文庫本と同程度の大きさにすることもでき、持ち運びを容易にしている。
【0166】
図16(C)はディスプレイであり、本体4101、支持台4102、表示部4103等を含む。表示部4103は可撓性基板を用いて作製されており、軽量で薄いディスプレイを実現できる。また、表示部4103を湾曲させることも可能である。本発明により作製される半導体装置を表示部4103に適用することで、本発明のディスプレイが完成する。本発明のディスプレイは特に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)のディスプレイには有利である。
【0167】
以上の様に、本発明の適用範囲は極めて広く、さまざまな分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施形態1〜5および実施例1、2または1、3の組み合わせからなる構成を用いても実現することができる。
【0168】
【発明の効果】
本発明のレーザ照射装置を用いることで、照射面におけるレーザ光のエネルギー密度の均一性を向上することができる。
【0169】
更に、レーザ光が透過するレンズは使用するに従って劣化が生じるが、ミラーはレンズと違ってレーザ光が透過するのではなく、ミラーの表面で反射するため、劣化は表面だけにとどまる。そのため、長い期間使用しても、ミラーの表面のコーティングをし直せば、再度使用が可能となり、非常に経済的である。また、放物面ミラーはレンズのような球面収差が生じないため、光学系として用いるのに有効である。さらに、ミラーをマイクロメーター等によって可動式のものにすれば、微調整も可能となる。
【0170】
以上の利点を満たした上で、レーザ照射方法およびそれを行うレーザ照射装置において、効率よくレーザ光の照射を行うことができる。また、アクティブマトリクス型の液晶表示装置に代表される半導体装置において、半導体装置の動作特性および信頼性の向上を実現することができる。さらに、半導体装置の製造コストの低減を実現することができる。
【図面の簡単な説明】
【図1】 本発明が開示するレーザ照射装置の例を示す図。
【図2】 本発明が開示するレーザ照射装置の例を示す図。
【図3】 本発明が開示するレーザ照射装置の例を示す図。
【図4】 本発明が開示するレーザ照射装置の例を示す図。
【図5】 本発明が開示するレーザ照射装置の例を示す図。
【図6】 特開2001−244213に開示されている光学系の例を示す図。
【図7】 図6で示す光学系により照射面において形成されるレーザ光のエネルギー分布の例を示す図。
【図8】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図9】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図10】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図11】 画素TFTの構成を示す上面図。
【図12】 アクティブマトリクス型液晶表示装置の断面図。
【図13】 発光装置の駆動回路及び画素部の断面構造図。
【図14】 半導体装置の例を示す図。
【図15】 半導体装置の例を示す図。
【図16】 半導体装置の例を示す図。
【符号の説明】
10 ミラー
10a、10b ミラー
11a、11b 焦点位置
12、13、14 ミラー
12a、12b、13a〜13d、14a〜14c ミラー
101 レーザ
102 シリンドリカルアレイレンズ
103 シリンドリカルレンズ
104 シリンドリカルレンズ
105 シリンドリカルレンズ
106 ミラー
106a〜106d ミラー
107 照射面

Claims (12)

  1. レーザと、
    凹面を有する複数のミラーと、
    前記複数のミラーで反射されたレーザ光の照射面を有する物が支持されるステージと、を有するレーザ照射装置であって、
    前記複数のミラーは、
    集光位置が前記照射面と前記複数のミラーとの間にある、単数または複数のミラーで構成された第1のミラー部と、
    集光位置が、前記照射面を基準とし、前記複数のミラーの反対側にある、単数または複数のミラーで構成された第2のミラー部と、を有し、
    前記第1及び第2のミラー部によって反射されたレーザ光は、前記照射面において重畳され
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射装置。
  2. レーザと、
    凹面を有する複数のミラーと、
    前記複数のミラーで反射されたレーザ光の照射面を有する物が支持されるステージと、を有するレーザ照射装置であって、
    前記複数のミラーは、
    集光位置が前記照射面と前記複数のミラーとの間にある、単数または複数のミラーで構成された第1のミラー部と、
    集光位置が、前記照射面を基準とし、前記複数のミラーの反対側にある、単数または複数のミラーで構成された第2のミラー部と、を有し、
    前記第1のミラー部に含まれる少なくとも一つのミラーと、前記第2のミラー部に含まれる少なくとも一つのミラーの曲率はそれぞれ異なっており、
    前記第1及び第2のミラー部によって反射されたレーザ光は、前記照射面において重畳され
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射装置。
  3. レーザと、
    凹面を有する複数のミラーと、
    前記複数のミラーで反射されたレーザ光の照射面を有する物が支持されるステージと、を有するレーザ照射装置であって、
    前記複数のミラーは、
    集光位置が前記照射面と前記複数のミラーとの間にある、単数または複数のミラーで構成された第1のミラー部と、
    集光位置が、前記照射面を基準とし、前記複数のミラーの反対側にある、単数または複数のミラーで構成された第2のミラー部と、を有し、
    前記複数のミラーの曲率を表現するαは、当該ミラーが照射面に近いほど小さく、
    前記第1のミラー部に含まれる少なくとも一つのミラーと、前記第2のミラー部に含まれる少なくとも一つのミラーの曲率はそれぞれ異なっており、
    前記第1及び第2のミラー部によって反射されたレーザ光は、前記照射面において重畳され
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射装置。
  4. レーザと、
    凹面を有する複数のミラーと、
    前記複数のミラーで反射されたレーザ光の照射面を有する物が支持されるステージと、を有するレーザ照射装置であって、
    前記複数のミラーは、
    集光位置が前記照射面と前記複数のミラーとの間にある、単数または複数のミラーで構成された第1のミラー部と、
    集光位置が、前記照射面を基準とし、前記複数のミラーの反対側にある、単数または複数のミラーで構成された第2のミラー部と、を有し、
    前記第1のミラー部によって反射されるレーザ光のエネルギー量と、前記第2のミラー部によって反射されるレーザ光のエネルギー量は等しく、
    前記第1及び第2のミラー部によって反射されたレーザ光は、前記照射面において重畳され
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射装置。
  5. レーザと、
    凹面を有する複数のミラーと、
    前記複数のミラーで反射されたレーザ光の照射面を有する物が支持されるステージと、を有するレーザ照射装置であって、
    前記複数のミラーは、
    集光位置が前記照射面と前記複数のミラーとの間にある、単数または複数のミラーで構成された第1のミラー部と、
    集光位置が、前記照射面を基準とし、前記複数のミラーの反対側にある、単数または複数のミラーで構成された第2のミラー部と、を有し、
    前記第1のミラー部に含まれる少なくとも一つのミラーと、前記第2のミラー部に含まれる少なくとも一つのミラーの曲率はそれぞれ異なっており、
    前記第1のミラー部によって反射されるレーザ光のエネルギー量と、前記第2のミラー部によって反射されるレーザ光のエネルギー量は等しく、
    前記第1及び第2のミラー部によって反射されたレーザ光は、前記照射面において重畳され
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射装置。
  6. レーザと、
    凹面を有する複数のミラーと、
    前記複数のミラーで反射されたレーザ光の照射面を有する物が支持されるステージと、を有するレーザ照射装置であって、
    前記複数のミラーは、
    集光位置が前記照射面と前記複数のミラーとの間にある、単数または複数のミラーで構成された第1のミラー部と、
    集光位置が、前記照射面を基準とし、前記複数のミラーの反対側にある、単数または複数のミラーで構成された第2のミラー部と、を有し、
    前記複数のミラーの曲率を表現するαは、当該ミラーが照射面に近いほど小さく、
    前記第1のミラー部に含まれる少なくとも一つのミラーと、前記第2のミラー部に含まれる少なくとも一つのミラーの曲率はそれぞれ異なっており、
    前記第1のミラー部によって反射されるレーザ光のエネルギー量と、前記第2のミラー部によって反射されるレーザ光のエネルギー量は等しく、
    前記第1及び第2のミラー部によって反射されたレーザ光は、前記照射面において重畳され
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射装置。
  7. 請求項1乃至のいずれか一項において、
    前記第1及び第2のミラー部に入射されるレーザ光の進行方向に対して垂直な方向における、前記第1及び第2のミラー部の幅が同じであることを特徴とするレーザ照射装置。
  8. 請求項1乃至のいずれか一項において、
    前記第1及び第2のミラー部に含まれるミラーが各々単数である場合、それぞれのミラーの一方の端点が一致していることを特徴とするレーザ照射装置。
  9. 請求項1乃至のいずれか一項において、
    前記レーザ光は、照射面における形状が線状または矩形状であることを特徴とするレーザ照射装置。
  10. 凹面を有する複数のミラーによりレーザ光を複数のレーザ光に分割し、前記複数のレーザ光を照射面に照射するレーザ照射方法であって、
    前記複数のミラーは、第1及び第2のミラー部に分けられており、
    前記第1のミラー部は、前記照射面と前記複数のミラーとの間において前記レーザ光を集光し、
    前記第2のミラー部は、前記照射面を基準とし、前記複数のミラーの反対側において前記レーザ光を集光し、
    前記第1及び第2のミラー部によって反射されたレーザ光を、前記照射面において重畳させ
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射方法。
  11. 凹面を有する複数のミラーによりレーザ光を複数のレーザ光に分割し、前記複数のレーザ光を照射面に照射するレーザ照射方法であって、
    前記複数のミラーは、第1及び第2のミラー部に分けられており、
    前記第1のミラー部は、前記照射面と前記複数のミラーとの間において前記レーザ光を集光し、
    前記第2のミラー部は、前記照射面を基準とし、前記複数のミラーの反対側において前記レーザ光を集光し、
    前記第1のミラー部によって反射されるレーザ光のエネルギー量と、前記第2のミラー部によって反射されるレーザ光のエネルギー量は等しく、
    前記第1及び第2のミラー部によって反射されたレーザ光を、前記照射面において重畳させ
    前記照射面において重畳されたレーザ光のエネルギー密度の分布は均一であることを特徴とするレーザ照射方法。
  12. 請求項10又は11において、
    前記レーザ光は、照射面における形状が線状または矩形状であることを特徴とするレーザ照射方法。
JP2001359395A 2001-11-26 2001-11-26 レーザ照射装置およびレーザ照射方法 Expired - Fee Related JP3973882B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001359395A JP3973882B2 (ja) 2001-11-26 2001-11-26 レーザ照射装置およびレーザ照射方法
US10/303,085 US6765175B2 (en) 2001-11-26 2002-11-25 Laser irradiation apparatus, laser irradiation method, and manufacturing method for a semiconductor device
US10/852,259 US7772519B2 (en) 2001-11-26 2004-05-25 Laser irradiation apparatus, laser irradiation method, and manufacturing method for a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359395A JP3973882B2 (ja) 2001-11-26 2001-11-26 レーザ照射装置およびレーザ照射方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002329498A Division JP4159858B2 (ja) 2002-11-13 2002-11-13 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2003158088A JP2003158088A (ja) 2003-05-30
JP3973882B2 true JP3973882B2 (ja) 2007-09-12

Family

ID=19170415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359395A Expired - Fee Related JP3973882B2 (ja) 2001-11-26 2001-11-26 レーザ照射装置およびレーザ照射方法

Country Status (2)

Country Link
US (2) US6765175B2 (ja)
JP (1) JP3973882B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856630B2 (en) * 2000-02-02 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, semiconductor device, and method of fabricating the semiconductor device
JP3973882B2 (ja) * 2001-11-26 2007-09-12 株式会社半導体エネルギー研究所 レーザ照射装置およびレーザ照射方法
JP4152806B2 (ja) * 2003-05-28 2008-09-17 株式会社半導体エネルギー研究所 レーザ光照射装置
JP4293098B2 (ja) * 2004-09-15 2009-07-08 セイコーエプソン株式会社 レーザー加工方法、レーザー加工装置、電子機器
JP2008283069A (ja) * 2007-05-11 2008-11-20 Sony Corp 照射装置、半導体装置の製造装置、半導体装置の製造方法および表示装置の製造方法
WO2008143981A1 (en) * 2007-05-18 2008-11-27 Corning Incorporated Method and apparatus for minimizing inclusions in a glass making process
JP5633849B2 (ja) * 2011-08-02 2014-12-03 住友電工ハードメタル株式会社 レーザ用光学部品
DE102013011637A1 (de) * 2013-07-12 2015-01-15 Manz Ag Vorrichtung und Verfahren zum thermischen Behandeln eines Substrats
JP6341279B2 (ja) * 2014-07-03 2018-06-13 新日鐵住金株式会社 レーザ加工装置
AU2019203404A1 (en) 2018-05-15 2019-12-05 Howmedica Osteonics Corp. Fabrication of components using shaped energy beam profiles
JP7041372B2 (ja) * 2020-05-27 2022-03-24 日亜化学工業株式会社 発光装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2918283C2 (de) * 1979-05-07 1983-04-21 Carl Baasel, Lasertechnik KG, 8000 München Gerät zur Substratbehandlung mit einem Drehspiegel od. dgl.
US4475027A (en) * 1981-11-17 1984-10-02 Allied Corporation Optical beam homogenizer
US4798446A (en) * 1987-09-14 1989-01-17 The United States Of America As Represented By The United States Department Of Energy Aplanatic and quasi-aplanatic diffraction gratings
US5138490A (en) * 1989-04-29 1992-08-11 Carl-Zeiss-Stiftung Arrangement for changing the geometrical form of a light beam
JPH08108289A (ja) * 1994-10-07 1996-04-30 Sumitomo Electric Ind Ltd レーザ加工用光学装置
JPH08112683A (ja) 1994-10-12 1996-05-07 Ishikawajima Harima Heavy Ind Co Ltd レーザーによる表面改質処理方法及び装置
JP3453972B2 (ja) * 1995-12-27 2003-10-06 トヨタ自動車株式会社 レーザ溶接方法および装置
JPH1015682A (ja) 1996-07-03 1998-01-20 Mitsubishi Heavy Ind Ltd 塗装鋼板のレーザ切断方法
DK109197A (da) 1996-09-30 1998-03-31 Force Instituttet Fremgangsmåde til bearbejdning af et materiale ved hjælp af en laserstråle
JP2000000683A (ja) 1998-06-12 2000-01-07 Advanced Materials Processing Inst Kinki Japan レーザ溶接方法
JP2000005892A (ja) 1998-06-25 2000-01-11 Advanced Materials Processing Inst Kinki Japan レーザ加工方法
EP1076359B1 (en) * 1999-08-13 2011-02-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation device
JP3751772B2 (ja) * 1999-08-16 2006-03-01 日本電気株式会社 半導体薄膜製造装置
JP2001244213A (ja) 1999-12-24 2001-09-07 Semiconductor Energy Lab Co Ltd レーザ照射装置並びに半導体装置の作製方法
US6573162B2 (en) * 1999-12-24 2003-06-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of fabricating a semiconductor device
FR2803550B1 (fr) * 2000-01-10 2002-03-29 Air Liquide Procede et installation de coupage laser d'acier inoxydable ou revetu, ou d'aluminium et d'alliages avec optique bifocale
US6856630B2 (en) 2000-02-02 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, semiconductor device, and method of fabricating the semiconductor device
JP4637376B2 (ja) 2000-02-02 2011-02-23 株式会社半導体エネルギー研究所 レーザ照射装置及び半導体装置の作製方法
JP3973882B2 (ja) * 2001-11-26 2007-09-12 株式会社半導体エネルギー研究所 レーザ照射装置およびレーザ照射方法

Also Published As

Publication number Publication date
US7772519B2 (en) 2010-08-10
US20040214388A1 (en) 2004-10-28
US20030141287A1 (en) 2003-07-31
US6765175B2 (en) 2004-07-20
JP2003158088A (ja) 2003-05-30

Similar Documents

Publication Publication Date Title
JP5205431B2 (ja) レーザ照射装置
JP4397571B2 (ja) レーザ照射方法およびレーザ照射装置、並びに半導体装置の作製方法
JP3977038B2 (ja) レーザ照射装置およびレーザ照射方法
JP3949564B2 (ja) レーザ照射装置及び半導体装置の作製方法
JP2004179389A6 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP3973882B2 (ja) レーザ照射装置およびレーザ照射方法
JP3910524B2 (ja) レーザ照射方法および半導体装置の作製方法
JP3908153B2 (ja) 半導体装置の作製方法
JP4515473B2 (ja) 半導体装置の作製方法
JP4748873B2 (ja) 半導体装置の作製方法
JP4408011B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP3883935B2 (ja) レーザ照射装置
JP3910523B2 (ja) レーザ照射装置
JP3871993B2 (ja) レーザ照射装置
JP4579217B2 (ja) 半導体装置の作製方法
JP4159858B2 (ja) 半導体装置の作製方法
JP4397582B2 (ja) 半導体装置の作製方法
JP3883936B2 (ja) レーザ照射方法および半導体装置の作製方法
JP4637816B2 (ja) レーザ照射装置および半導体装置の作製方法
JP4515088B2 (ja) 半導体装置の作製方法
JP3871994B2 (ja) レーザ照射方法および半導体装置の作製方法
JP3883952B2 (ja) レーザ照射装置
JP2004200559A6 (ja) レーザ照射方法および半導体装置の作製方法
JP4566504B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4131792B2 (ja) レーザ照射装置およびレーザ照射方法、並びに結晶性半導体膜の作製方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3973882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees