JP3971311B2 - Negative electrode active material for lithium secondary battery and lithium secondary battery - Google Patents

Negative electrode active material for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP3971311B2
JP3971311B2 JP2003000447A JP2003000447A JP3971311B2 JP 3971311 B2 JP3971311 B2 JP 3971311B2 JP 2003000447 A JP2003000447 A JP 2003000447A JP 2003000447 A JP2003000447 A JP 2003000447A JP 3971311 B2 JP3971311 B2 JP 3971311B2
Authority
JP
Japan
Prior art keywords
negative electrode
ultrafine particles
active material
secondary battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003000447A
Other languages
Japanese (ja)
Other versions
JP2004214055A (en
Inventor
恵子 松原
利章 津野
輝 高椋
揆允 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2003000447A priority Critical patent/JP3971311B2/en
Priority to KR10-2004-0000263A priority patent/KR100529099B1/en
Priority to US10/752,297 priority patent/US8048568B2/en
Priority to CNB2004100038537A priority patent/CN100349311C/en
Publication of JP2004214055A publication Critical patent/JP2004214055A/en
Application granted granted Critical
Publication of JP3971311B2 publication Critical patent/JP3971311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A33/00Adaptations for training; Gun simulators
    • F41A33/02Light- or radiation-emitting guns ; Light- or radiation-sensitive guns; Cartridges carrying light emitting sources, e.g. laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A33/00Adaptations for training; Gun simulators
    • F41A33/04Acoustical simulation of gun fire, e.g. by pyrotechnic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A33/00Adaptations for training; Gun simulators
    • F41A33/06Recoil simulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/02Photo-electric hit-detector systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用負極活物質及びリチウム二次電池に関するものである。
【0002】
【従来の技術】
リチウム二次電池の負極活物質の高容量化の研究は、現在の負極活物質を炭素とする電池システムが実用化される以前から行われ、現在もSiやSn、Al等の金属若しくは半金属材料を中心に活発に行われているものの、未だ実用化には至っていない。これは主として、充放電する際にSiやSn、Al等の粉末がリチウムと合金化することで粉末の膨張収縮が生じ、これが粉末の更なる微粉化を招いてサイクル特性が低下するといった不具合を解決できないことによるものである。
【0003】
そこで、この問題を解決すべく、下記特許文献1に記載されているように、CVDやスパッタリングにより作成された非晶質または微晶質のSi薄膜を負極活物質に用いることが検討されている。非晶質のSiは、結晶質のSiに比べてリチウムと合金化した場合の体積膨張が少ないため、充放電を繰り返した場合でも微粉化することなく、サイクル特性が良好であることが期待されている。
【0004】
【特許文献1】
特開2002―83594号公報
【0005】
しかし、従来から用いられている黒鉛電極以上の容量を得るためには、Si薄膜の膜厚を相当量厚くしなければならず、多くの時間とコストを要するとともに、膜が厚くなることによって導電性が低下し、十分な電池特性を得ることが難しくなる。
そこで、塊状の結晶質Siを機械粉砕により高せん断力を印加しつつ粉砕することで、Si中の結晶子を歪ませて非晶質化させ、かつ平均粒径を小さくしたSi粉末の利用が考えられている。
【0006】
【発明が解決しようとする課題】
しかし、上記のように機械粉砕によって製造した非晶質のSi粉末は、粒度分布の幅が比較的大きいため、平均粒径が数百nmのものでも粒径が最大で1μm程度の粒子が混在している。このような大粒径の粒子が非晶質のSi粉末中に存在すると、充放電時における粒子の微粉化がこの大粒径の粒子に集中して起こり、サイクル特性が低下してしまう問題があった。
また、機械粉砕したSi粉末と黒鉛とを複合化させた材料もあるが、この場合も機械的に粉砕したものは粒度分布が広く、粒径が1μm程度の粒子が存在するため、その大きな粒子が膨張する際の絶対的な膨張幅によって電極劣化がおこるといった問題があった。
【0007】
本発明は、上記事情に鑑みてなされたものであって、充放電時の活物質体積の膨張収縮による微粉化を抑制してサイクル特性に優れた負極活物質及びリチウム二次電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池用負極活物質は、ガス中蒸発法により形成されてなり、粒径が1nm以上200nm以下の範囲であってリチウムと合金化が可能な元素からなる超微粒子の粉末からなり、ラマン分光法によって観測されるラマンシフトが480cm −1 以上520cm −1 の範囲であり、ピーク半値幅が9cm −1 超40cm −1 未満の範囲であることを特徴とする。
特に、前記超微粒子はSiからなることが好ましい。
【0009】
本発明におけるリチウム二次電池用負極活物質は、ガス中蒸発法により形成された超微粒子の粉末からなり、粒度分布の範囲が1〜200nmと狭く、最大で200nmの粒径の超微粒子を含んだものである。このような超微粒子は、サイズ効果により、それ以上の大きさのSi粒子とは結晶構造が異なるため、リチウムと合金化しても体積膨張がほとんど見られず、サイクル特性に優れたものとなる。
また、ラマンシフトが480cm −1 以上520cm −1 の範囲であり、ピーク半値幅が9cm −1 超40cm −1 未満の範囲であり、非晶質相を主体とする粒子であると考えられるので、リチウムと合金化した場合でも体積膨張が少なく、サイクル特性に優れたものとなる。
【0010】
また、本発明のリチウム二次電池用負極活物質は、先に記載のリチウム二次電池用負極活物質であって、前記超微粒子には、粒子が孤立した孤立超微粒子、複数の粒子が鎖状に連なってなる連鎖状超微粒子、複数の粒子が塊状に集合してなる塊状超微粒子のいずれか1種以上のものが含まれ、これら孤立超微粒子、連鎖状超微粒子、塊状超微粒子の粒径が1〜200nmの範囲であることが好ましい。
【0011】
本発明におけるリチウム二次電池用負極活物質には、孤立超微粒子、連鎖状超微粒子、塊状超微粒子の少なくとも1種以上のものが含まれ、しかもこれらの粒度分布の範囲が1〜200nmと狭く、しかも最大でも200nmの粒径なので、リチウムと合金化しても体積膨張がほとんど見られず、サイクル特性に優れたものとなる。
【0014】
次に、本発明のリチウム二次電池は、先のいずれかに記載のリチウム二次電池用負極活物質を具備してなることを特徴とする。
【0015】
かかるリチウム二次電池によれば、上記の負極活物質を具備しており、充電の際の活物質の膨張がほとんど起きないので、サイクル特性を向上できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
本発明のリチウム二次電池用負極活物質は、ガス中蒸発法により形成されてなるものであって、粒径が1nm以上200nm以下の範囲であってリチウムと合金化が可能な元素からなる超微粒子の粉末である。リチウムと合金化が可能な元素としては、Si、Pb、Al、Sn等があるが、本発明では特に前記超微粒子がSiからなることが好ましい。
【0017】
この負極活物質はリチウム二次電池の負極に備えられる。リチウム二次電池が充電されると、リチウムが正極から負極に移行するが、この時に負極においてリチウムと超微粒子とが合金化する。合金化した超微粒子は体積膨張をほとんど起こさないため、リチウム二次電池のサイクル特性が向上する。
超微粒子がリチウムと合金化しても体積膨張を示さないのは、超微粒子の粒径が1〜200nmと極めて小さく、しかも粒度分布の範囲が狭いので、平均粒径が数μm程度の従来の機械粉砕による粉末とは特異な性質が現れるためと思われる。
【0018】
本実施形態の負極活物質を構成する超微粒子にはいくつかの形態がある。即ち図1に示すように、粒子が孤立した孤立超微粒子や、図2に示すような複数の粒子が鎖状に連なってなる連鎖状超微粒子や、図3(a)及び図3(b)に示すような、複数の粒子が塊状に集合してなる塊状超微粒子といったものが含まれる。図2及び図3に示すように、連鎖状超微粒子及び塊状超微粒子を構成する粒子は、個々の大きさが異なっていても良い。負極活物質には、これら孤立超微粒子、連鎖状超微粒子、塊状超微粒子のうちの少なくとも1種以上が含まれていればよく、全ての形態のものが含まれていても良い。
これら孤立超微粒子、連鎖状超微粒子、塊状超微粒子の粒径は、どの形態のものでも1〜200nmの範囲であることが好ましい。尚、連鎖状超微粒子の粒径とは、粒子が鎖状に連なった方向に沿った方向の長さであり、塊状超微粒子の粒径とは、複数の粒子が塊状に集合した状態の長尺方向に沿った長さである。
これら孤立超微粒子、連鎖状超微粒子、塊状超微粒子は、粒度分布の範囲が1〜200nmと狭く、粒径が最大でも200nmなので、リチウムと合金化しても体積膨張がほとんど起きず、サイクル特性に優れたものとなる。
【0019】
また本実施形態の負極活物質は、ラマン分光法によって観測されるラマンシフトが480cm−1以上520cm−1以下の範囲であることが好ましい。Siの場合、結晶質Siではラマンシフトが520cm−1を越えたものとなるが、非晶質の場合はラマンシフトの値がこれよりも低く、しかもピークの形状もブロードになる。従って、本実施形態の負極活物質では、ラマンシフトが480cm−1以上520cm−1以下の範囲のものであれば、非晶質相を主体とした組織からなるものとなり、リチウムと合金化した場合でも体積膨張が少なく、サイクル特性に優れたものとなる。
【0020】
また、本発明の超微粒子を黒鉛粉末の表面に付着させて複合材料としたものを負極活物質として用いても良い。
【0021】
次に、本実施形態のリチウム二次電池は、上記の負極活物質を備えた負極と、正極と、電解質を少なくとも具備してなるものである。
【0022】
リチウム二次電池の負極は、例えば、超微粒子の集合体からなる負極活物質が、超微粒子同士を相互に結着する結着材によってシート状に固化成形されたものを例示できる。
また、上記のシート状に固化成形されたものに限るものではなく、円柱状、円盤状、板状若しくは柱状に固化成形されたペレットであっても良い。
【0023】
結着材は、有機質または無機質のいずれでも良いが、超微粒子と共に溶媒に分散あるいは溶解し、更に溶媒を除去することにより超微粒子同士を結着させるものであればどのようなものでもよい。また、超微粒子と共に混合し、加圧成形等の固化成形を行うことにより超微粒子同士を結着させるものでもよい。このような結着材としてたとえば、ビニル系樹脂、セルロース系樹脂、フェノール樹脂、熱可塑性樹脂、熱硬化性樹脂などが使用でき、たとえばポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、スチレンブタジエンラバー、等の樹脂を例示できる。
また、本発明に係る負極においては、負極活物質及び結着材の他に、導電助材としてカーボンブラック等を添加しても良い。
【0024】
次に正極としては例えば、LiMn、LiCoO、LiNiO、LiFeO、V、TiS、MoS等、及び有機ジスルフィド化合物や有機ポリスルフィド化合物等のリチウムを吸蔵、放出が可能な正極活物質を含むものを例示できる。
また、上記の正極には、上記正極活物質の他に、ポリフッ化ビニリデン等の結着材や、カーボンブラック等の導電助材を添加しても良い。
正極及び負極の具体例として、上記の正極または負極を金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。
【0025】
更に電解質としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒を例示でき、特にプロピレンカーボネート、エチレンカーボネート(EC)、ブチレンカーボネートのいずれか1つを必ず含むとともにジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)のいずれか1つを必ず含むことが好ましい。
【0026】
また、リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y十1SO)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものを例示でき、特にLiPF、LiBFのいずれか1つを含むものが好ましい。
またこの他に、リチウム二次電池の有機電解液として従来から知られているものを用いることもできる。
【0027】
また電解質の別の例として、PEO、PVA等のポリマーに上記記載のリチウム塩のいずれかを混合させたものや、膨潤性の高いポリマーに有機電解液を含浸させたもの等、いわゆるポリマー電解質を用いても良い。
更に、本発明のリチウム二次電池は、正極、負極、電解質のみに限られず、必要に応じて他の部材等を備えていても良く、例えば正極と負極を隔離するセパレータを具備しても良い。
【0028】
本実施形態のリチウム二次電池用負極活物質は、ガス中蒸発法により製造することができる。ガス中蒸発法とは、真空容器内に不活性ガスを導入し、不活性ガス雰囲気中で種々の物質を加熱して、蒸発または昇華させ、得られる蒸気分子が不活性ガス分子と衝突しながら徐々に冷却され分子同士が凝集し、微粒子粉体を形成させ、その微粒子粉体を回収する方法である。
【0029】
本実施形態の負極活物質の製造方法においては、水蒸気を除去するため、1×10−3Pa〜1×10−4Pa程度に減圧した真空容器内に不活性ガスを導入し、背圧を1×10Pa〜5×10Pa程度に設定した不活性ガス雰囲気中で、シリコンインゴット、シリコン粉末等をアーク放電によって加熱してシリコンを蒸発し、得られたシリコン蒸気分子を不活性ガス分子と衝突させながら徐々に冷却しつつ分子同士を凝集させることにより超微粒子を形成し、その微粒子を回収して粉末を得る。
【0030】
真空容器に導入する不活性ガスとしては、アルゴンやヘリウムなどの不活性ガスの他、N2 ガスなど、シリコンとの反応性が小さなガスを選択できる。
また、シリコンの加熱手段としては、アーク放電の他に、ヒーター加熱、誘導加熱、レーザー加熱、抵抗加熱あるいは電子銃加熱などといった手段を用いることができる。通常、ガス中蒸発法での加熱温度は、加熱したい材料の融点より100℃から200℃程度高めに設定する。温度が低いと粒子が蒸発しにくく、また高すぎると急冷速度が低下するため、アモルファス材料を得ることができなくなる。シリコンの場合には1550℃〜1700℃程度が好ましい。
【0031】
不活性雰囲気中においてシリコン分子を徐々に冷却させつつ凝集させて超微粒子を形成するため、シリコン分子が無秩序に凝集して非晶質を主体とする組織が形成される。このようにして、粒径が1nm以上200nm以下の範囲であってラマンシフトが480cm−1以上520cm−1以下の範囲である超微粒子の粉末が得られる。
【0032】
【実施例】
[負極活物質の製造]
(実施例1)
真空容器内を5×10Paのヘリウム雰囲気とし、予め真空容器内に設置しておいたシリコン粉末をアーク加熱法により1700℃に加熱してシリコン蒸気を発生させた。発生したシリコン蒸気は、ヘリウム雰囲気中において冷却されしつつ凝集され、最終的に超微粒子として真空容器の内面に付着した。この操作を4時間程度連続して行うことにより、Siの超微粒子からなる粉末を製造した。この粉末を実施例1の負極活物質とした。
得られた粉末について、電子顕微鏡により超微粒子の粒径を確認したところ、10nm〜200nmの範囲であった。また、電子顕微鏡観察によって、図1に示すような孤立超微粒子や、図2に示すような連鎖状超微粒子や、図3に示すような塊状超微粒子の存在が確認された。更に、ラマン分光法によりラマンシフトを測定したところ、500cm−1付近にピークが認められ、またピーク半値幅は15cm−1であった。
【0033】
(比較例1)
平均粒径が1μmのシリコン粉末を用意し、この粉末を直径0.5mmのジルコニアビーズを使用したビーズミルで24時間程度粉砕することにより粉末を得た。この粉末を比較例1の負極活物質とした。
得られた粉末について、電子顕微鏡により粉末の粒径を確認したところ、平均粒径が250nm程度であった。ただし、粒径が0.9μm程度の粒子も含まれていた。また、ラマン分光法によりラマンシフトを測定したところ、490cm−1付近にピークが認められ、またピーク半値幅は40cm−1であった。
【0034】
(比較例2)
平均粒径が1μmのシリコン粉末を比較例2の負極活物質とした。この粉末のラマンシフトを測定したところ、520cm−1付近にピークが認められ、またピーク半値幅は9cm−1であった。
【0035】
(リチウム二次電池の製造)
実施例1及び比較例1、2の各々の負極活物質70重量部と、導電材として平均粒径2μmの黒鉛粉末20重量部と、ポリフッ化ビニリデン10重量部とを混合し、N−メチルピロリドンを加えてから攪拌してスラリーを作成した。次にこのスラリーを厚さ14μmの銅箔上に塗布してから乾燥し、これを圧延して厚さ80μmの負極電極を作成した。作成した負極電極を直径13mmの円形に打ち抜き、この負極電極に多孔質ポリプロピレン製のセパレータを挟んで対極として金属リチウムを重ね、更に容積比でEC:DMC:DEC=3:3:1の混合溶媒にLiPFを1モル/Lの濃度で添加してなる電解液を注液することにより、コイン型のリチウム二次電池を製造した。
得られたリチウム二次電池に対して、電池電圧0V〜1.5Vの範囲で0.2Cの電流密度による充放電を10サイクル繰り返し行った。
【0036】
(負極活物質の物性)
実施例1の負極活物質は、粒径が10nm〜200nmの範囲であり、一方、比較例1の負極活物質は、平均粒径が250nm程度と実施例1よりも大きく、しかも実施例1にはない0.9μm程度の粒径の粒子も含まれていた。このような違いは、実施例1と比較例1の製造方法の相違によるものと考えられる。即ち、実施例1の負極活物質は、一旦生成させたシリコン蒸気を凝集させることによって製造したため、粒径が小さくしかも粒径が揃ったものが得られ、一方、比較例1の負極活物質は、粒径1μm程度の粉末を機械粉砕して製造したため、粒径が比較的大きく、しかも粒径の範囲が広いものが得られたものと思われる。
【0037】
また、実施例1の負極活物質は、ラマンシフトが500cm−1、半値幅が15cm−1であり、非晶質であると推測される。一方、比較例2の負極活物質は、ラマンピークが520cm−1、半値幅が9cm−1であり、実施例1と比べて結晶性が高いことが分かる。また、比較例1の負極活物質は、ラマンシフトが490cm−1、半値幅が40cm−1であり、実施例1よりも結晶性が低くなっている。これは、機械粉砕による応力によってシリコン結晶が大きく歪んだためと推測される。
【0038】
(リチウム二次電池の特性)
表1に、1サイクル目の放電容量と、1サイクル目の放電容量に対する10サイクル目の放電容量の容量維持率を示す。
【0039】
【表1】

Figure 0003971311
【0040】
表1に示すように、初期の放電容量は、実施例1よりも比較例1、2の方が高くなっているものの、容量維持率を見ると実施例1が比較例1,2を上回っていることがわかる。このように、容量維持率に差が生じたのは、次の理由によるものと考えられる。
即ち、実施例1の負極活物質は、比較的結晶性が低いので充電時の超微粒子の体積膨張が少ないこと、200nm以下の微粒子であるためにいわゆるサイズ効果によって結晶性の高いSiとは異なった特異な性質を有していること、機械粉砕品のような粗い粒子を含まないので粉末の膨張収縮による劣化が少ないこと、シリコン蒸気が凝集して形成されるのでシリコンの原子配列が結晶性の高いSiとは異なっていること、などが主な理由として考えられる。
【0041】
実施例1の超微粒子のサイズ効果と電池特性との関係は現在のところ明確ではないが、バンド構造などのSiの基本的な性質が、超微粒子と機械粉砕粒子との間で異なったものとなり、この相異が電池特性に影響しているものと考えられる。
【0042】
【発明の効果】
以上、詳細に説明したように、本発明のリチウム二次電池用負極活物質は、ガス中蒸発法により形成された超微粒子の粉末からなり、粒度分布の範囲が1〜200nmと狭く、最大で200nmの粒径の超微粒子を含んだものである。このような超微粒子は、リチウムと合金化しても体積膨張がほとんど見られず、サイクル特性に優れたものとなる。
【図面の簡単な説明】
【図1】 本実施形態の負極活物質を構成する超微粒子の一例を示す模式図。
【図2】 本実施形態の負極活物質を構成する超微粒子の一例を示す模式図。
【図3】 本実施形態の負極活物質を構成する超微粒子の一例を示す模式図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery.
[0002]
[Prior art]
Research on increasing the capacity of the negative electrode active material of lithium secondary batteries has been conducted before the battery system using the current negative electrode active material as carbon is put into practical use, and is still a metal or semi-metal such as Si, Sn, and Al. Although it is actively conducted mainly on materials, it has not yet been put into practical use. This is mainly due to the fact that powders such as Si, Sn, and Al are alloyed with lithium during charging and discharging, which causes expansion and shrinkage of the powder, which leads to further micronization of the powder, resulting in deterioration of cycle characteristics. This is because it cannot be resolved.
[0003]
Therefore, in order to solve this problem, as described in Patent Document 1 below, the use of an amorphous or microcrystalline Si thin film prepared by CVD or sputtering as a negative electrode active material has been studied. . Since amorphous Si has less volume expansion when alloyed with lithium than crystalline Si, it is expected to have good cycle characteristics without being pulverized even when charging and discharging are repeated. ing.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-83594
However, in order to obtain a capacity higher than that of the conventional graphite electrode, it is necessary to increase the thickness of the Si thin film by a considerable amount, which requires much time and cost. And the battery characteristics are difficult to obtain.
Therefore, the use of Si powder in which agglomerated crystalline Si is pulverized by applying high shear force by mechanical pulverization to distort crystallites in Si to be amorphous, and to reduce the average particle size. It is considered.
[0006]
[Problems to be solved by the invention]
However, the amorphous Si powder produced by mechanical pulverization as described above has a relatively large particle size distribution, so even if the average particle size is several hundred nm, particles with a maximum particle size of about 1 μm are mixed. is doing. When such a large particle size particle is present in the amorphous Si powder, the fine particles of the particles during charging and discharging are concentrated on the large particle size particle, resulting in a problem that the cycle characteristics are deteriorated. there were.
There is also a material in which mechanically pulverized Si powder and graphite are combined, but in this case as well, the mechanically pulverized material has a wide particle size distribution and there are particles with a particle size of about 1 μm. There is a problem that electrode deterioration occurs due to an absolute expansion width when the liquid expands.
[0007]
The present invention has been made in view of the above circumstances, and provides a negative electrode active material and a lithium secondary battery excellent in cycle characteristics by suppressing pulverization due to expansion and contraction of the active material volume during charge and discharge. With the goal.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
The negative electrode active material for a lithium secondary battery of the present invention is formed from an ultrafine powder made of an element that can be alloyed with lithium and having a particle size in the range of 1 nm to 200 nm, formed by evaporation in a gas. Do Ri, Raman shift observed by Raman spectroscopy is in a range of 480 cm -1 or more 520 cm -1, and wherein the peak half width is in the range of less than 9cm -1 super 40 cm -1.
In particular, the ultrafine particles are preferably made of Si.
[0009]
The negative electrode active material for a lithium secondary battery according to the present invention is composed of ultrafine powder formed by gas evaporation, and has a narrow particle size distribution range of 1 to 200 nm and includes ultrafine particles having a maximum particle size of 200 nm. It is a thing. Due to the size effect, such ultrafine particles have a crystal structure different from that of larger Si particles. Therefore, even when alloyed with lithium, almost no volume expansion is observed, and the cycle characteristics are excellent.
Moreover, the range of the Raman shift 480 cm -1 or more 520 cm -1, in the range peak half width is less than 9cm -1 super 40 cm -1, it is considered to be a particle mainly composed of amorphous phases, Even when alloyed with lithium, the volume expansion is small and the cycle characteristics are excellent.
[0010]
The negative electrode active material for a lithium secondary battery of the present invention is the negative electrode active material for a lithium secondary battery described above, wherein the ultrafine particles include isolated ultrafine particles in which particles are isolated, and a plurality of particles are chained. 1 type or more of chained ultrafine particles that are linked in the form of a single particle, and bulk ultrafine particles that are formed by agglomerating a plurality of particles in a lump. These isolated ultrafine particles, chained ultrafine particles, and bulky ultrafine particles The diameter is preferably in the range of 1 to 200 nm.
[0011]
The negative electrode active material for a lithium secondary battery in the present invention includes at least one of isolated ultrafine particles, chained ultrafine particles, and massive ultrafine particles, and the range of the particle size distribution is as narrow as 1 to 200 nm. Moreover, since the particle size is 200 nm at the maximum, even when alloyed with lithium, there is almost no volume expansion, and the cycle characteristics are excellent.
[0014]
Next, the lithium secondary battery of the present invention is characterized by comprising the negative electrode active material for a lithium secondary battery as described above.
[0015]
According to such a lithium secondary battery, since the negative electrode active material is provided and the active material hardly expands during charging, cycle characteristics can be improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The negative electrode active material for a lithium secondary battery of the present invention is formed by a gas evaporation method and has a particle size in the range of 1 nm to 200 nm and is made of an element that can be alloyed with lithium. It is a fine powder. Examples of elements that can be alloyed with lithium include Si, Pb, Al, and Sn. In the present invention, the ultrafine particles are particularly preferably made of Si.
[0017]
This negative electrode active material is provided in the negative electrode of a lithium secondary battery. When the lithium secondary battery is charged, lithium moves from the positive electrode to the negative electrode. At this time, lithium and ultrafine particles are alloyed in the negative electrode. Since the alloyed ultrafine particles hardly cause volume expansion, the cycle characteristics of the lithium secondary battery are improved.
The reason why the ultrafine particles do not exhibit volume expansion even when alloyed with lithium is because the ultrafine particles have a very small particle size of 1 to 200 nm and the range of the particle size distribution is narrow. This seems to be due to the appearance of unique properties of the powder by grinding.
[0018]
There are several forms of ultrafine particles constituting the negative electrode active material of the present embodiment. That is, as shown in FIG. 1, isolated ultrafine particles in which particles are isolated, chained ultrafine particles in which a plurality of particles are connected in a chain as shown in FIG. 2, and FIGS. 3 (a) and 3 (b). As shown in FIG. 5, the ultrafine particles formed by agglomerating a plurality of particles in a lump are included. As shown in FIGS. 2 and 3, the particles constituting the chain ultrafine particles and the massive ultrafine particles may have different sizes. The negative electrode active material only needs to contain at least one or more of these isolated ultrafine particles, chained ultrafine particles, and bulk ultrafine particles, and may include all forms.
The particle size of these isolated ultrafine particles, chained ultrafine particles, and massive ultrafine particles is preferably in the range of 1 to 200 nm in any form. The particle size of the chain ultrafine particles is the length in the direction along the direction in which the particles are linked in a chain, and the particle size of the massive ultrafine particles is the length of a state in which a plurality of particles are aggregated in a lump. It is the length along the scale direction.
These isolated ultrafine particles, chain ultrafine particles, and massive ultrafine particles have a narrow particle size distribution range of 1 to 200 nm and a maximum particle size of 200 nm. Therefore, even when alloyed with lithium, volume expansion hardly occurs and cycle characteristics are improved. It will be excellent.
[0019]
Moreover, it is preferable that the negative electrode active material of this embodiment has the Raman shift observed by Raman spectroscopy in the range of 480 cm −1 or more and 520 cm −1 or less. In the case of Si, in the case of crystalline Si, the Raman shift exceeds 520 cm −1 , but in the case of amorphous, the value of Raman shift is lower than this, and the peak shape is also broad. Therefore, in the negative electrode active material of this embodiment, when the Raman shift is in the range of 480 cm −1 or more and 520 cm −1 or less, the negative electrode active material has a structure mainly composed of an amorphous phase and is alloyed with lithium. However, the volume expansion is small and the cycle characteristics are excellent.
[0020]
Further, a composite material obtained by attaching the ultrafine particles of the present invention to the surface of graphite powder may be used as the negative electrode active material.
[0021]
Next, the lithium secondary battery of this embodiment comprises at least a negative electrode provided with the above negative electrode active material, a positive electrode, and an electrolyte.
[0022]
Examples of the negative electrode of the lithium secondary battery include a material in which a negative electrode active material composed of an aggregate of ultrafine particles is solidified and formed into a sheet by a binder that binds ultrafine particles to each other.
Moreover, it is not restricted to what was solidified and formed in said sheet form, The pellet solidified and formed in the column shape, the disk shape, the plate shape, or the column shape may be sufficient.
[0023]
The binder may be either organic or inorganic, but any binder may be used as long as it is dispersed or dissolved in a solvent together with the ultrafine particles, and further the ultrafine particles are bound together by removing the solvent. Moreover, it may mix with ultrafine particles, and may bind ultrafine particles by performing solidification molding such as pressure molding. As such a binder, for example, vinyl resin, cellulose resin, phenol resin, thermoplastic resin, thermosetting resin and the like can be used, such as polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, styrene butadiene rubber, etc. Resins can be exemplified.
In the negative electrode according to the present invention, carbon black or the like may be added as a conductive additive in addition to the negative electrode active material and the binder.
[0024]
Next, as the positive electrode, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, MoS, etc., and positive electrode capable of inserting and extracting lithium such as organic disulfide compounds and organic polysulfide compounds The thing containing an active material can be illustrated.
In addition to the positive electrode active material, a binder such as polyvinylidene fluoride or a conductive additive such as carbon black may be added to the positive electrode.
Specific examples of the positive electrode and the negative electrode include those obtained by applying the positive electrode or the negative electrode to a current collector made of a metal foil or a metal net and forming the sheet.
[0025]
Further, examples of the electrolyte include an organic electrolytic solution in which a lithium salt is dissolved in an aprotic solvent.
As aprotic solvents, propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl An aprotic solvent such as ether or a mixed solvent in which two or more of these solvents are mixed can be exemplified, and in particular, any one of propylene carbonate, ethylene carbonate (EC) and butylene carbonate must be included and dimethyl carbonate It is preferable to always include any one of (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).
[0026]
As the lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (C x F 2x + 1 SO 2) (C y F 2y tens 1 SO 2) (provided that x, y is a natural number), LiCl, by mixing one or more lithium salts of such LiI made Te be exemplified, preferably specifically including any one of LiPF 6, LiBF 4.
In addition to this, a conventionally known organic electrolyte for a lithium secondary battery can be used.
[0027]
As another example of the electrolyte, a so-called polymer electrolyte such as a polymer obtained by mixing any of the above lithium salts with a polymer such as PEO or PVA, or a polymer having a high swellability impregnated with an organic electrolytic solution is used. It may be used.
Furthermore, the lithium secondary battery of the present invention is not limited to the positive electrode, the negative electrode, and the electrolyte, and may include other members as necessary. For example, the lithium secondary battery may include a separator that separates the positive electrode and the negative electrode. .
[0028]
The negative electrode active material for a lithium secondary battery of the present embodiment can be produced by a gas evaporation method. In-gas evaporation method means introducing an inert gas into a vacuum vessel, heating various substances in an inert gas atmosphere to evaporate or sublimate, and the resulting vapor molecules collide with the inert gas molecules. This is a method of gradually cooling and aggregating molecules to form a fine particle powder and collecting the fine particle powder.
[0029]
In the method for producing a negative electrode active material of the present embodiment, in order to remove water vapor, an inert gas is introduced into a vacuum container depressurized to about 1 × 10 −3 Pa to 1 × 10 −4 Pa, and the back pressure is reduced. In an inert gas atmosphere set to about 1 × 10 4 Pa to 5 × 10 5 Pa, silicon ingot, silicon powder, etc. are heated by arc discharge to evaporate silicon, and the resulting silicon vapor molecules are inert gas. Ultrafine particles are formed by aggregating the molecules while gradually cooling while colliding with the molecules, and the fine particles are collected to obtain a powder.
[0030]
As an inert gas introduced into the vacuum vessel, a gas having a low reactivity with silicon, such as N 2 gas, can be selected in addition to an inert gas such as argon or helium.
In addition to arc discharge, silicon heating means such as heater heating, induction heating, laser heating, resistance heating, or electron gun heating can be used. Usually, the heating temperature in the gas evaporation method is set to be about 100 ° C. to 200 ° C. higher than the melting point of the material to be heated. If the temperature is low, the particles are difficult to evaporate, and if it is too high, the rapid cooling rate decreases, so that an amorphous material cannot be obtained. In the case of silicon, about 1550 ° C. to 1700 ° C. is preferable.
[0031]
In the inert atmosphere, the silicon molecules are aggregated while being gradually cooled to form ultrafine particles, so that the silicon molecules are aggregated randomly and a structure mainly composed of amorphous is formed. In this way, ultrafine powder having a particle size in the range of 1 nm to 200 nm and a Raman shift in the range of 480 cm −1 to 520 cm −1 is obtained.
[0032]
【Example】
[Manufacture of negative electrode active material]
Example 1
The inside of the vacuum vessel was made into a helium atmosphere of 5 × 10 4 Pa, and silicon vapor previously set in the vacuum vessel was heated to 1700 ° C. by an arc heating method to generate silicon vapor. The generated silicon vapor was aggregated while being cooled in a helium atmosphere, and finally adhered to the inner surface of the vacuum vessel as ultrafine particles. By performing this operation continuously for about 4 hours, a powder made of ultrafine particles of Si was produced. This powder was used as the negative electrode active material of Example 1.
About the obtained powder, when the particle diameter of the ultrafine particle was confirmed with the electron microscope, it was the range of 10 nm-200 nm. Moreover, the presence of isolated ultrafine particles as shown in FIG. 1, chained ultrafine particles as shown in FIG. 2, and massive ultrafine particles as shown in FIG. 3 were confirmed by electron microscope observation. Furthermore, when the Raman shift was measured by Raman spectroscopy, a peak was observed in the vicinity of 500 cm −1 , and the peak half-value width was 15 cm −1 .
[0033]
(Comparative Example 1)
A silicon powder having an average particle diameter of 1 μm was prepared, and this powder was pulverized for about 24 hours by a bead mill using zirconia beads having a diameter of 0.5 mm. This powder was used as the negative electrode active material of Comparative Example 1.
About the obtained powder, when the particle diameter of the powder was confirmed with the electron microscope, the average particle diameter was about 250 nm. However, particles having a particle size of about 0.9 μm were also included. The measured Raman shift by Raman spectroscopy, peaks were observed around 490 cm -1, also the peak half width was 40 cm -1.
[0034]
(Comparative Example 2)
Silicon powder having an average particle diameter of 1 μm was used as the negative electrode active material of Comparative Example 2. When the Raman shift of this powder was measured, a peak was observed in the vicinity of 520 cm −1 , and the peak half width was 9 cm −1 .
[0035]
(Manufacture of lithium secondary batteries)
70 parts by weight of each of the negative electrode active materials of Example 1 and Comparative Examples 1 and 2, 20 parts by weight of graphite powder having an average particle size of 2 μm as a conductive material, and 10 parts by weight of polyvinylidene fluoride were mixed, and N-methylpyrrolidone was mixed. After stirring, a slurry was prepared by stirring. Next, this slurry was applied onto a copper foil having a thickness of 14 μm, dried, and then rolled to prepare a negative electrode having a thickness of 80 μm. The prepared negative electrode was punched into a circle having a diameter of 13 mm, and a metallic polypropylene was stacked on the negative electrode with a porous polypropylene separator interposed therebetween, and a mixed solvent of EC: DMC: DEC = 3: 3: 1 in volume ratio. A coin-type lithium secondary battery was manufactured by injecting an electrolytic solution obtained by adding LiPF 6 at a concentration of 1 mol / L.
The obtained lithium secondary battery was repeatedly charged and discharged with a current density of 0.2 C for 10 cycles in the battery voltage range of 0V to 1.5V.
[0036]
(Physical properties of negative electrode active material)
The negative electrode active material of Example 1 has a particle size in the range of 10 nm to 200 nm, while the negative electrode active material of Comparative Example 1 has an average particle size of about 250 nm, which is larger than that of Example 1, and There were also particles having a particle size of about 0.9 μm. Such a difference is considered to be due to a difference in manufacturing method between Example 1 and Comparative Example 1. That is, since the negative electrode active material of Example 1 was manufactured by aggregating the silicon vapor once generated, a product having a small particle size and a uniform particle size was obtained, while the negative electrode active material of Comparative Example 1 was The powder having a particle size of about 1 μm was produced by mechanical pulverization, so that it seems that a product having a relatively large particle size and a wide particle size range was obtained.
[0037]
Moreover, the negative electrode active material of Example 1 has a Raman shift of 500 cm −1 and a half width of 15 cm −1 , and is presumed to be amorphous. On the other hand, the negative electrode active material of Comparative Example 2 has a Raman peak of 520 cm −1 and a full width at half maximum of 9 cm −1 , indicating that the crystallinity is higher than that of Example 1. The negative electrode active material of Comparative Example 1, the Raman shift 490 cm -1, the half width is 40 cm -1, crystallinity is lower than that of Example 1. This is presumably because the silicon crystal was greatly distorted by the stress caused by mechanical grinding.
[0038]
(Characteristics of lithium secondary battery)
Table 1 shows the discharge capacity at the first cycle and the capacity retention rate of the discharge capacity at the 10th cycle relative to the discharge capacity at the first cycle.
[0039]
[Table 1]
Figure 0003971311
[0040]
As shown in Table 1, the initial discharge capacity is higher in Comparative Examples 1 and 2 than in Example 1, but when looking at the capacity retention rate, Example 1 exceeds Comparative Examples 1 and 2. I understand that. Thus, it is thought that the difference in the capacity retention rate is due to the following reason.
That is, since the negative electrode active material of Example 1 has relatively low crystallinity, the volume expansion of ultrafine particles during charging is small, and since it is a fine particle of 200 nm or less, it is different from Si having high crystallinity due to the so-called size effect. In addition, it does not contain coarse particles such as mechanically pulverized products, so there is little deterioration due to expansion and contraction of the powder, and silicon vapor is formed by agglomeration, so the atomic arrangement of silicon is crystalline. The main reason is that it is different from high Si.
[0041]
Although the relationship between the size effect of the ultrafine particles of Example 1 and the battery characteristics is not clear at present, the basic properties of Si such as the band structure are different between the ultrafine particles and the mechanically pulverized particles. This difference is considered to affect the battery characteristics.
[0042]
【The invention's effect】
As described above in detail, the negative electrode active material for a lithium secondary battery according to the present invention is composed of ultrafine powder formed by gas evaporation, and has a narrow particle size distribution range of 1 to 200 nm. It contains ultrafine particles with a particle size of 200 nm. Such ultrafine particles exhibit little volume expansion even when alloyed with lithium and have excellent cycle characteristics.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of ultrafine particles constituting a negative electrode active material of the present embodiment.
FIG. 2 is a schematic view showing an example of ultrafine particles constituting the negative electrode active material of the present embodiment.
FIG. 3 is a schematic view showing an example of ultrafine particles constituting the negative electrode active material of the present embodiment.

Claims (4)

ガス中蒸発法により形成されてなり、粒径が1nm以上200nm以下の範囲であってリチウムと合金化が可能な元素からなる超微粒子の粉末からなり、
ラマン分光法によって観測されるラマンシフトが480cm−1以上520cm−1の範囲であり、ピーク半値幅が9cm−1超40cm−1未満の範囲であるリチウム二次電池用負極活物質であって、前記蒸発法は1×10 −3 Pa乃至1×10 −4 Pa程度に減圧した真空容器内に不活性ガスを導入し、背圧を1×10 Pa乃至5×10 Pa程度に設定した不活性ガス雰囲気中でシリコンを蒸発させる工程で実施することを特徴とするリチウム二次電池用負極活物質。
It is formed by an in-gas evaporation method, and has a particle size in the range of 1 nm to 200 nm, and consists of ultrafine powder made of an element that can be alloyed with lithium,
Raman shift observed by Raman spectroscopy is in a range of 480 cm -1 or more 520 cm -1, peak half width is a negative active material is in the range of less than 9cm -1 super 40 cm -1, In the evaporation method , an inert gas was introduced into a vacuum vessel whose pressure was reduced to about 1 × 10 −3 Pa to 1 × 10 −4 Pa, and the back pressure was set to about 1 × 10 4 Pa to 5 × 10 5 Pa. A negative electrode active material for a lithium secondary battery, which is carried out in a step of evaporating silicon in an inert gas atmosphere .
前記超微粒子がSiからなることを特徴とする請求項1に記載のリチウム二次電池用負極活物質。  The negative electrode active material for a lithium secondary battery according to claim 1, wherein the ultrafine particles are made of Si. 前記超微粒子には、粒子が孤立した孤立超微粒子、複数の粒子が鎖状に連なってなる連鎖状超微粒子、複数の粒子が塊状に集合してなる塊状超微粒子のいずれか1種以上のものが含まれ、これら孤立超微粒子、連鎖状超微粒子、塊状超微粒子の粒径が1〜200nmの範囲であることを特徴とする請求項1または請求項2に記載のリチウム二次電池用負極活物質。  The ultrafine particles include one or more of isolated ultrafine particles with isolated particles, chained ultrafine particles in which a plurality of particles are linked in a chain, and bulk ultrafine particles in which a plurality of particles are aggregated 3. The negative electrode active for a lithium secondary battery according to claim 1, wherein the particle size of the isolated ultrafine particles, the chain ultrafine particles, and the massive ultrafine particles is in the range of 1 to 200 nm. material. 請求項1ないし請求項3のいずれかに記載のリチウム二次電池用負極活物質を具備してなることを特徴とするリチウム二次電池。  A lithium secondary battery comprising the negative electrode active material for a lithium secondary battery according to any one of claims 1 to 3.
JP2003000447A 2003-01-06 2003-01-06 Negative electrode active material for lithium secondary battery and lithium secondary battery Expired - Lifetime JP3971311B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003000447A JP3971311B2 (en) 2003-01-06 2003-01-06 Negative electrode active material for lithium secondary battery and lithium secondary battery
KR10-2004-0000263A KR100529099B1 (en) 2003-01-06 2004-01-05 Negative active material for rechargeable lithium battery and rechargeable lithium battery
US10/752,297 US8048568B2 (en) 2003-01-06 2004-01-06 Negative active material for rechargeable lithium battery and rechargeable lithium battery
CNB2004100038537A CN100349311C (en) 2003-01-06 2004-01-06 Cathode active material of rechargeable lithium battery and rechargeable lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000447A JP3971311B2 (en) 2003-01-06 2003-01-06 Negative electrode active material for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004214055A JP2004214055A (en) 2004-07-29
JP3971311B2 true JP3971311B2 (en) 2007-09-05

Family

ID=32818762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000447A Expired - Lifetime JP3971311B2 (en) 2003-01-06 2003-01-06 Negative electrode active material for lithium secondary battery and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP3971311B2 (en)
KR (1) KR100529099B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
KR100763892B1 (en) 2006-01-20 2007-10-05 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
WO2010047828A1 (en) * 2008-10-24 2010-04-29 Primet Precision Materials, Inc. Group iva small particle compositions and related methods
JP5520538B2 (en) * 2009-08-03 2014-06-11 古河電気工業株式会社 Negative electrode material for lithium ion secondary battery containing nano-sized particles, negative electrode for lithium ion secondary battery, lithium ion secondary battery
JP5761740B2 (en) * 2011-03-25 2015-08-12 国立研究開発法人産業技術総合研究所 Electrode and electrode forming method
JP2013222641A (en) * 2012-04-18 2013-10-28 Showa Denko Kk Negative electrode material for lithium ion battery and application thereof
CN104854740A (en) * 2012-12-06 2015-08-19 株式会社Lg化学 Anode active material having high capacity for lithium secondary battery, preparation thereof and lithium secondary battery comprising the same
JP6434351B2 (en) * 2015-03-26 2018-12-05 株式会社豊田自動織機 Amorphous-containing Si powder and method for producing the same
JP2020123465A (en) * 2019-01-30 2020-08-13 株式会社Gsユアサ Anode and manufacturing method of anode

Also Published As

Publication number Publication date
JP2004214055A (en) 2004-07-29
KR100529099B1 (en) 2005-11-15
KR20040063803A (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP3954001B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery, and method for producing negative electrode active material for lithium secondary battery
JP5390336B2 (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US7658871B2 (en) Method of preparing a negative active material for rechargeable lithium battery
KR100570639B1 (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
JP6010279B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
CN100349311C (en) Cathode active material of rechargeable lithium battery and rechargeable lithium battery
US9837658B2 (en) Silicon-containing particle, negative-electrode material for use in non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
EP2741350B1 (en) Negative electrode active material, method of preparing the same, negative electrode and lithium secondary battery employing the electrode including the negative electrode active material
KR101375455B1 (en) Electrode active material for rechargeable battery
US20100193731A1 (en) Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
KR20160137518A (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP2007335283A (en) Nonaqueous electrolyte secondary battery
EP3471177A1 (en) Negative electrode active material and negative electrode comprising same for electrochemical device
US11088367B2 (en) Method for producing active material, active material and battery
US20050074672A1 (en) Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery using same
JP3746501B2 (en) ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY
JPH10302770A (en) Negative electrode material for lithium ion secondary battery and manufacture thereof
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
US20050042128A1 (en) Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery
JP3971311B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3929429B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP2004183019A (en) Electrode material for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery
CN113748545A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term