JP3970788B2 - Discharge tube - Google Patents

Discharge tube Download PDF

Info

Publication number
JP3970788B2
JP3970788B2 JP2003063321A JP2003063321A JP3970788B2 JP 3970788 B2 JP3970788 B2 JP 3970788B2 JP 2003063321 A JP2003063321 A JP 2003063321A JP 2003063321 A JP2003063321 A JP 2003063321A JP 3970788 B2 JP3970788 B2 JP 3970788B2
Authority
JP
Japan
Prior art keywords
discharge tube
tube
metal cap
discharge
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003063321A
Other languages
Japanese (ja)
Other versions
JP2003234086A (en
Inventor
治夫 山崎
博文 山下
年宏 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003063321A priority Critical patent/JP3970788B2/en
Publication of JP2003234086A publication Critical patent/JP2003234086A/en
Application granted granted Critical
Publication of JP3970788B2 publication Critical patent/JP3970788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置のバックライト用光源やカメラのストロボ用光源等に用いられる放電管に関するものである。
【0002】
【従来の技術】
従来より、液晶モジュールのバックライト用の放電管として冷陰極蛍光ランプが多用されている。この冷陰極蛍光ランプは、図9に示すように、内面に蛍光体1が塗布されたガラス管2の端部に導入線3が封着され、この導入線3の先端に棒状または筒状の電極4を保持した構成を有している。
【0003】
このような冷陰極蛍光ランプでは、電極構造が簡単であるがゆえにランプの細管化、コンパクト化が容易であり、このため液晶表示装置の小型軽量化に適した光源として有用され、管外径1.8mmのものが実用化されるに至っている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の冷陰極蛍光ランプでは、封着部と電極部とを加えたいわゆる非発光部の長さはほとんど短縮されていない。そのため、最近の液晶モジュールの狭額縁化に対して、従来の冷陰極蛍光ランプでは、非発光部が長いために液晶画面の端辺部の輝度が低くなってしまうという問題点があった。また、カメラのストロボ用光源として用いられているキセノンフラッシュランプでも同様に長い非発光部が反射鏡ユニットのコンパクト化を図る上で障害になっていた。さらに、このような冷陰極放電管は、陰極降下電圧が高いために管電圧、管電力が高く、発光効率が低いという問題があった。
【0005】
本発明はこのような問題点を解決するためになされたものであり、狭額縁の液晶モジュールのバックライト用光源や、その他のコンパクト化が要求される照明装置用の光源に適した、非発光部の長さが短くかつ発光効率のよい放電管を提供するものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明の放電管は、両端に開口部を有する円筒状のガラス管と、一端に開口部を備え、他端に閉塞部を備えた封着部材と放電電極を兼ねた、前記一端から前記他端側の閉塞部までが同一径である円筒の金属キャップとを有し、前記金属キャップの開口部側が前記ガラス管の各開口部に封着されている放電管であって、前記金属キャップの開口部が前記ガラス管の各開口部の内側に挿入され、かつ金属キャップの円筒の外周面と前記ガラス管の内周面とが密着状態でこのガラス管の両端に封着されると共に、前記金属キャップの閉塞部が前記ガラス管の開口部端に位置しているものである。
【0007】
この構成により、金属キャップが封着部材と放電電極を兼ね備えることができるので、従来の放電管に比べて非発光部の長さを短縮することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0011】
本発明の第1の実施の形態の放電管は、図1に示すように、中央部が外径2.1mm、内径1.5mm、両端部が外径2.0mm、内径1.4mmのホウケイ酸ガラスからなり、両端に開口部を有し、内面に蛍光体1を塗布したガラス管5と、一端に開口部を有し、他端に閉塞部を有し、かつガラス管5の熱膨張係数に近い熱膨張係数を有するコバール金属からなる金属キャップ6とを有する。そして金属キャップ6は、その開口部側がガラス管5の開口部内側に挿入され、高周波加熱等を用いて900℃に加熱されてガラス管5の各開口部に封着されており、点灯中はホロー型の放電電極として動作するものである。金属キャップ6の寸法は外径1.4mm、内径1.2mm、長さ3mmであり、金属キャップ6の先端間距離すなわち電極間距離は80mm、放電管の全長は86mmである。また、金属キャップ6の閉塞部の内面には、直径が1.1mm、厚さ0.5mmの円板状の、チタン等のゲッタ材料を含んだ水銀合金部材7を備えている。これは金属キャップ6を封着する時の加熱によりガラス管5内に水銀を封入するためのものである。チタン等のゲッタ材料はガラス管5内の不純物ガスを取り除くためのものである。また、ガラス管5内には水銀とともにアルゴンとネオンとの混合ガスが、全圧が11kPaになるように封入されている。
【0012】
かかる構成によれば、金属キャップ6が封着部材と電極とを兼ね備えることができるので、従来の放電管に比べて非発光部の長さを短縮することができる。
【0013】
本発明の第1の実施の形態における放電管と従来の放電管とを高周波点灯回路を用いて点灯周波数50kHz、管電流5mAで点灯したところ、放電管の軸方向の管表面の輝度分布として図2に示す通りの結果が得られた。図2において、曲線Aは本発明の第1の実施の形態における放電管の場合、曲線Bは従来の放電管の場合の輝度分布特性をそれぞれ示す。また、横軸の座標は、放電管の一方の管端から軸方向に沿った距離を表す。なお、従来の放電管は図9に示されるように、内面に蛍光体1が塗布されたガラス管2の端部にコバール金属からなる導入線3が封着され、さらに導入線3に外径0.8mm、長さ3mmのタングステンよりなる棒状の電極4を保持したものである。この従来の放電管は、全長を本発明の放電管と同じ86mmとしており、電極間距離は76mmである。
【0014】
図2より、本発明の第1の実施の形態における放電管は従来のものに比べ発光部分の長さが長いことが確認された。また、本発明の第1の実施の形態における放電管の消費電力は従来のものと変わらなかった。その結果、本発明の第1の実施の形態における放電管は従来のものに比べ発光効率が約5%向上することが認められた。
【0015】
本発明の第2の実施の形態の放電管は、図3に示すように、金属キャップ6の閉塞部の内面に、チタン等のゲッタ材料を含んだ水銀合金部材7および電子放射体8を備えた構成を有している。その他の構成については、図1に示すものと同様である。電子放射体8としてペロブスカイト型結晶構造を有する金属酸化物La0.5Sr0.5MnO3を用い、外径1.1mm、内径0.7mm、長さ2mmの筒状に形成した焼結体とした。そして、これを外径1.4mm、内径1.2mm、長さ3mmの金属キャップ6内に収納して電極9を構成した。内面に蛍光体1を塗布したガラス管5は中央部が外径2.1mm、内径1.5mm、両端部が外径2.0mm、内径1.4mmであり、ホウケイ酸ガラスからなる。また、放電管の全長は86mmであり、ガラス管5の内部には水銀と共にアルゴンとネオンとの混合ガスが11kPa封入されている。また、金属キャップ6は、高周波加熱等を用いて900℃に加熱されてガラス管5の各開口部に封着されている。
【0016】
この構成により、電子放射体8が金属よりも仕事関数が小さいので電極からの電子放出が容易になり、陰極降下電圧が低減することにより管電圧が低下し、結果として管電力が低下し、放電管の発光効率を向上させることができる。また、筒状に形成された電子放射体8の中空部において放電が誘起され、電極9の放電面積を増大させ、電子をより放出しやすくして管電圧の低減とそれによる発光効率を向上させることができる。さらに電子放射体8は焼結体であるので、イオン衝撃による飛散が少なく、その飛散物質と管内に封入した水銀とのアマルガム形成が少なくなるので、電子放射体8および水銀合金部材7の消耗が抑制され、放電管の寿命を長くすることができる。
【0017】
上記電子放射体8を備えた放電管、金属キャップ6のみを備えた放電管および従来の放電管に関して、高周波点灯回路を用いて50kHzで点灯したところ、図4に示す通りの管電流−管電圧特性が得られた。図4において、曲線Aが電子放射体8を備えた放電管(以下放電管Aという)の場合、曲線Bが金属キャップ6のみを備えた放電管(以下放電管Bという)の場合、曲線Cが従来の放電管(以下放電管Cという)の場合の特性である。なお、放電管Bは、第1の実施の形態において説明した、蛍光体1を塗布したガラス管5と、コバール金属からなる金属キャップ6とを有する放電管であり、電極間距離は80mm、放電管の全長は86mmである。また、放電管Cは図9に示すような構造を有し、封着部の長さが2mmのコバール金属からなる導入線3に外径0.8mm、長さ3mmのタングステンよりなる棒状の電極4を保持したものであり、電極間距離は76mm、全長は86mmである。
【0018】
図4から明らかなように、放電管Bと放電管Cとは管電圧はほぼ同じであった。一方、放電管Aは、放電管Bよりもさらに管電圧を約30V低減できることが確認された。ここで、放電管の中央部の輝度は電極の形態によらず全て35000cd/m2であったので、放電管Aは、放電管Bに比べ約10%、放電管Cに比べ約15%発光効率が向上することがわかった。
【0019】
なお、電子放射体8を構成する材料としてLa0.5Sr0.5MnO3を用いたが、ペロブスカイト型の結晶構造を有する金属酸化物であれば他の組成比や元素であってもよい。また、例えばLa23-X(但し0≦x<3)などペロブスカイト型の結晶構造を有さない他の金属酸化物でもよい。
【0020】
また、水銀合金部材7として、水銀を含む金属、化合物または混合物を用いてもよい。
【0021】
本発明の第3の実施の形態の放電管は、図5に示すように金属キャップ6の内面に電子放射体8を塗布したものである。この構成によれば、従来の放電管よりも発光効率を向上させることができる。
【0022】
本発明の第4の実施の形態の放電管は、図6に示すように電子放射体8を中空部を有さない焼結体の形で収納させたものである。この構成によれば、従来の放電管よりも発光効率を向上させることができる。
【0023】
本発明の第5の実施の形態の放電管は、図7に示すように電子放射体8を細い棒状に形成した焼結体を、金属キャップ6の軸中心に備えたものである。この構成によれば、従来の放電管よりも発光効率を向上させることができる。
【0024】
本発明の第6の実施の形態の放電管は、図8に示すように金属キャップ6をガラス管5に外接して封着したものである。この構成によれば、従来の放電管よりも発光効率を向上させることができる。
【0025】
本発明は蛍光放電管だけでなく、キセノンフラッシュ放電管など、他の放電管にも実施することができる。
【0026】
【発明の効果】
以上のように、本発明の放電管によれば、従来の放電管に比べて非発光部の長さを短縮することができ、発光効率を向上させることができる。
【0027】
また、本発明の放電管によれば、金属キャップ内に仕事関数の低い電子放射体を備えることにより、電極からの電子放射効率を高めて陰極降下電圧を低減させることができるため、従来よりも管電圧、管電力を低減させることができ、発光効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における放電管の断面図
【図2】本発明の第1の実施の形態における放電管と従来の放電管の点灯時における管軸方向の輝度分布を示す図
【図3】本発明の第2の実施の形態における放電管の要部断面図
【図4】本発明の第1の実施の形態における放電管、同第2の実施の形態における放電管および従来の放電管の点灯時における管電流と管電圧との関係を示した図
【図5】本発明の第3の実施の形態における放電管の要部断面図
【図6】同第4の実施の形態における放電管の要部断面図
【図7】同第5の実施の形態における放電管の要部断面図
【図8】同第6の実施の形態における放電管の要部断面図
【図9】従来の放電管の部分断面図
【符号の説明】
1 蛍光体
5 ガラス管
6 金属キャップ
7 水銀合金部材
8 電子放射体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a discharge tube used for a backlight light source of a liquid crystal display device, a strobe light source of a camera, and the like.
[0002]
[Prior art]
Conventionally, cold cathode fluorescent lamps are widely used as discharge tubes for backlights of liquid crystal modules. In this cold cathode fluorescent lamp, as shown in FIG. 9, an introduction line 3 is sealed at an end of a glass tube 2 having an inner surface coated with a phosphor 1, and a rod-like or cylindrical shape is formed at the end of the introduction line 3. The electrode 4 is held.
[0003]
In such a cold cathode fluorescent lamp, since the electrode structure is simple, it is easy to make the lamp thin and compact. Therefore, the cold cathode fluorescent lamp is useful as a light source suitable for reducing the size and weight of the liquid crystal display device. .8 mm has come into practical use.
[0004]
[Problems to be solved by the invention]
However, in the conventional cold cathode fluorescent lamp, the length of the so-called non-light emitting portion including the sealing portion and the electrode portion is hardly shortened. Therefore, in contrast to the recent narrowing of the frame of the liquid crystal module, the conventional cold cathode fluorescent lamp has a problem that the luminance at the edge of the liquid crystal screen is lowered because the non-light emitting portion is long. Similarly, in the xenon flash lamp used as a light source for a strobe of a camera, a long non-light emitting portion has been an obstacle to make the reflector unit compact. Further, such a cold cathode discharge tube has a problem in that the cathode voltage drop is high, the tube voltage and the tube power are high, and the light emission efficiency is low.
[0005]
The present invention has been made to solve such problems, and is suitable for light sources for backlights of liquid crystal modules having a narrow frame and other light sources for lighting devices that require compactness. It is an object of the present invention to provide a discharge tube having a short part length and high luminous efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a discharge tube of the present invention serves as a cylindrical glass tube having openings at both ends, a sealing member having an opening at one end and a closing portion at the other end, and a discharge electrode. A discharge tube having a cylindrical metal cap having the same diameter from the one end to the closed portion on the other end side, the opening side of the metal cap being sealed to each opening of the glass tube. The opening of the metal cap is inserted inside each opening of the glass tube, and the outer peripheral surface of the cylinder of the metal cap and the inner peripheral surface of the glass tube are in close contact with each end of the glass tube. While being sealed, the closed portion of the metal cap is located at the opening end of the glass tube .
[0007]
With this configuration, since the metal cap can serve as both the sealing member and the discharge electrode, the length of the non-light emitting portion can be shortened as compared with the conventional discharge tube.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
As shown in FIG. 1, the discharge tube of the first embodiment of the present invention is a borosilicate having an outer diameter of 2.1 mm, an inner diameter of 1.5 mm, and both ends of an outer diameter of 2.0 mm and an inner diameter of 1.4 mm. A glass tube 5 made of acid glass, having openings at both ends and coated with phosphor 1 on the inner surface, an opening at one end, a closed portion at the other end, and thermal expansion of the glass tube 5 And a metal cap 6 made of Kovar metal having a thermal expansion coefficient close to the coefficient. The opening side of the metal cap 6 is inserted inside the opening of the glass tube 5 and heated to 900 ° C. using high-frequency heating or the like and sealed in each opening of the glass tube 5. It operates as a hollow discharge electrode. The metal cap 6 has an outer diameter of 1.4 mm, an inner diameter of 1.2 mm, and a length of 3 mm. The distance between the tips of the metal cap 6, that is, the distance between the electrodes is 80 mm, and the total length of the discharge tube is 86 mm. Further, the inner surface of the closed portion of the metal cap 6 is provided with a mercury alloy member 7 containing a getter material such as titanium having a disk shape with a diameter of 1.1 mm and a thickness of 0.5 mm. This is for sealing mercury in the glass tube 5 by heating when the metal cap 6 is sealed. A getter material such as titanium is for removing impurity gas in the glass tube 5. Further, a mixed gas of argon and neon together with mercury is sealed in the glass tube 5 so that the total pressure becomes 11 kPa.
[0012]
According to this configuration, the metal cap 6 can serve as both a sealing member and an electrode, so that the length of the non-light emitting portion can be shortened as compared with the conventional discharge tube.
[0013]
When the discharge tube according to the first embodiment of the present invention and the conventional discharge tube are lit at a lighting frequency of 50 kHz and a tube current of 5 mA using a high-frequency lighting circuit, the brightness distribution on the tube surface in the axial direction of the discharge tube is illustrated. The result as shown in 2 was obtained. In FIG. 2, curve A shows the luminance distribution characteristics in the case of the discharge tube according to the first embodiment of the present invention, and curve B shows the luminance distribution characteristics in the case of the conventional discharge tube. The coordinate on the horizontal axis represents the distance along the axial direction from one end of the discharge tube. In the conventional discharge tube, as shown in FIG. 9, an introduction wire 3 made of Kovar metal is sealed at the end of the glass tube 2 coated with the phosphor 1 on the inner surface, and the introduction wire 3 has an outer diameter. A rod-shaped electrode 4 made of tungsten having a length of 0.8 mm and a length of 3 mm is held. This conventional discharge tube has an overall length of 86 mm, which is the same as that of the discharge tube of the present invention, and the distance between the electrodes is 76 mm.
[0014]
From FIG. 2, it was confirmed that the discharge tube in the first embodiment of the present invention has a longer light emitting portion than the conventional one. Further, the power consumption of the discharge tube in the first embodiment of the present invention was not different from the conventional one. As a result, it was confirmed that the light emission efficiency of the discharge tube in the first embodiment of the present invention was improved by about 5% compared to the conventional one.
[0015]
As shown in FIG. 3, the discharge tube of the second embodiment of the present invention includes a mercury alloy member 7 containing a getter material such as titanium and an electron emitter 8 on the inner surface of the closed portion of the metal cap 6. It has a configuration. Other configurations are the same as those shown in FIG. A metal oxide La 0.5 Sr 0.5 MnO 3 having a perovskite crystal structure was used as the electron emitter 8, and a sintered body formed into a cylindrical shape having an outer diameter of 1.1 mm, an inner diameter of 0.7 mm, and a length of 2 mm was obtained. And this was accommodated in the metal cap 6 of outer diameter 1.4mm, inner diameter 1.2mm, and length 3mm, and the electrode 9 was comprised. A glass tube 5 coated with phosphor 1 on its inner surface has an outer diameter of 2.1 mm and an inner diameter of 1.5 mm, both ends have an outer diameter of 2.0 mm and an inner diameter of 1.4 mm, and is made of borosilicate glass. The total length of the discharge tube is 86 mm, and 11 kPa of a mixed gas of argon and neon is enclosed inside the glass tube 5 together with mercury. Further, the metal cap 6 is heated to 900 ° C. using high-frequency heating or the like and is sealed in each opening of the glass tube 5.
[0016]
With this configuration, since the electron emitter 8 has a work function smaller than that of metal, it is easy to emit electrons from the electrode, the cathode fall voltage is reduced, the tube voltage is lowered, and as a result, the tube power is lowered and the discharge is reduced. The luminous efficiency of the tube can be improved. In addition, a discharge is induced in the hollow portion of the electron emitter 8 formed in a cylindrical shape, increasing the discharge area of the electrode 9 and facilitating electron emission, thereby reducing the tube voltage and thereby improving the luminous efficiency. be able to. Furthermore, since the electron emitter 8 is a sintered body, it is less scattered by ion bombardment, and amalgam formation between the scattered substance and mercury enclosed in the tube is reduced, so that the electron emitter 8 and the mercury alloy member 7 are consumed. It is suppressed and the life of the discharge tube can be extended.
[0017]
When the discharge tube provided with the electron emitter 8, the discharge tube provided with only the metal cap 6 and the conventional discharge tube were lit at 50 kHz using a high frequency lighting circuit, the tube current-tube voltage as shown in FIG. Characteristics were obtained. In FIG. 4, when the curve A is a discharge tube (hereinafter referred to as discharge tube A) provided with the electron emitter 8, the curve B is a discharge tube provided only with the metal cap 6 (hereinafter referred to as discharge tube B). These are the characteristics in the case of a conventional discharge tube (hereinafter referred to as discharge tube C). The discharge tube B is a discharge tube having the glass tube 5 coated with the phosphor 1 and the metal cap 6 made of Kovar metal described in the first embodiment, and the distance between the electrodes is 80 mm. The total length of the tube is 86 mm. Further, the discharge tube C has a structure as shown in FIG. 9 and is a rod-shaped electrode made of tungsten having an outer diameter of 0.8 mm and a length of 3 mm on an introduction wire 3 made of Kovar metal having a sealing part length of 2 mm. 4, the distance between the electrodes is 76 mm, and the total length is 86 mm.
[0018]
As is apparent from FIG. 4, the discharge tube B and the discharge tube C have substantially the same tube voltage. On the other hand, it was confirmed that the discharge tube A can further reduce the tube voltage by about 30 V than the discharge tube B. Here, since the luminance at the center of the discharge tube was 35000 cd / m 2 regardless of the form of the electrode, the discharge tube A emitted about 10% of the discharge tube B and about 15% of the discharge tube C. It turns out that efficiency improves.
[0019]
Although La 0.5 Sr 0.5 MnO 3 is used as a material constituting the electron emitter 8, other composition ratios and elements may be used as long as they are metal oxides having a perovskite crystal structure. Further, other metal oxides having no perovskite crystal structure such as La 2 O 3-X (where 0 ≦ x <3) may be used.
[0020]
Further, as the mercury alloy member 7, a metal, a compound or a mixture containing mercury may be used.
[0021]
In the discharge tube of the third embodiment of the present invention, an electron emitter 8 is applied to the inner surface of a metal cap 6 as shown in FIG. According to this configuration, the luminous efficiency can be improved as compared with the conventional discharge tube.
[0022]
The discharge tube according to the fourth embodiment of the present invention is one in which an electron emitter 8 is accommodated in the form of a sintered body having no hollow portion as shown in FIG. According to this configuration, the luminous efficiency can be improved as compared with the conventional discharge tube.
[0023]
The discharge tube of the fifth embodiment of the present invention is provided with a sintered body in which an electron emitter 8 is formed in a thin rod shape at the center of the metal cap 6 as shown in FIG. According to this configuration, the luminous efficiency can be improved as compared with the conventional discharge tube.
[0024]
The discharge tube of the sixth embodiment of the present invention is such that a metal cap 6 is circumscribed and sealed on a glass tube 5 as shown in FIG. According to this configuration, the luminous efficiency can be improved as compared with the conventional discharge tube.
[0025]
The present invention can be applied not only to a fluorescent discharge tube but also to other discharge tubes such as a xenon flash discharge tube.
[0026]
【The invention's effect】
As described above, according to the discharge tube of the present invention, the length of the non-light emitting portion can be shortened as compared with the conventional discharge tube, and the luminous efficiency can be improved.
[0027]
In addition, according to the discharge tube of the present invention, by providing the electron emitter with a low work function in the metal cap, the electron emission efficiency from the electrode can be increased and the cathode fall voltage can be reduced. Tube voltage and tube power can be reduced, and luminous efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a discharge tube according to a first embodiment of the present invention. FIG. 2 is a luminance distribution in the tube axis direction when the discharge tube according to the first embodiment of the present invention and a conventional discharge tube are turned on. FIG. 3 is a cross-sectional view of a main part of a discharge tube according to a second embodiment of the present invention. FIG. 4 is a discharge tube according to the first embodiment of the present invention, and a discharge according to the second embodiment. The figure which showed the relationship between the tube current at the time of lighting of a tube | pipe and the conventional discharge tube, and a tube voltage. FIG. 5 is sectional drawing of the principal part of the discharge tube in the 3rd Embodiment of this invention. FIG. 7 is a cross-sectional view of the main part of the discharge tube in the fifth embodiment. FIG. 8 is a cross-sectional view of the main part of the discharge tube in the sixth embodiment. FIG. 9 is a partial sectional view of a conventional discharge tube.
1 Phosphor 5 Glass tube 6 Metal cap 7 Mercury alloy member 8 Electron emitter

Claims (1)

両端に開口部を有する円筒状のガラス管と、一端に開口部を備え、他端に閉塞部を備えた封着部材と放電電極を兼ねた、前記一端から前記他端側の閉塞部までが同一径である円筒の金属キャップとを有し、前記金属キャップの開口部側が前記ガラス管の各開口部に封着されている放電管であって、前記金属キャップの開口部が前記ガラス管の各開口部の内側に挿入され、かつ金属キャップの円筒の外周面と前記ガラス管の内周面とが密着状態でこのガラス管の両端に封着されると共に、前記金属キャップの閉塞部が前記ガラス管の開口部端に位置していることを特徴とする放電管。A cylindrical glass tube having openings at both ends, an opening at one end, a sealing member having a closing portion at the other end, and a discharge electrode, from the one end to the closing portion at the other end and a cylindrical metal cap is the same size, a discharge tube opening side of the metal cap is sealed to the opening of the glass tube, the opening of the metal cap of the glass tube Inserted inside each opening, and the outer peripheral surface of the cylinder of the metal cap and the inner peripheral surface of the glass tube are sealed to both ends of the glass tube, and the closed portion of the metal cap is A discharge tube characterized by being positioned at an opening end of a glass tube .
JP2003063321A 2003-03-10 2003-03-10 Discharge tube Expired - Fee Related JP3970788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063321A JP3970788B2 (en) 2003-03-10 2003-03-10 Discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063321A JP3970788B2 (en) 2003-03-10 2003-03-10 Discharge tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08848998A Division JP3970418B2 (en) 1998-04-01 1998-04-01 Discharge tube

Publications (2)

Publication Number Publication Date
JP2003234086A JP2003234086A (en) 2003-08-22
JP3970788B2 true JP3970788B2 (en) 2007-09-05

Family

ID=27785850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063321A Expired - Fee Related JP3970788B2 (en) 2003-03-10 2003-03-10 Discharge tube

Country Status (1)

Country Link
JP (1) JP3970788B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633216B2 (en) * 2005-11-28 2009-12-15 General Electric Company Barium-free electrode materials for electric lamps and methods of manufacture thereof

Also Published As

Publication number Publication date
JP2003234086A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
JPS63248050A (en) Rare gas discharge lamp
JP2002289138A (en) Cold cathode fluorescent lamp
US7116043B2 (en) Compact self-ballasted fluorescent lamp with improved rising characteristics
US4904900A (en) Glow discharge lamp
JP2006269301A (en) Discharge lamp and lighting system
JP3970788B2 (en) Discharge tube
JP3970418B2 (en) Discharge tube
JP3400489B2 (en) Composite discharge lamp
JP4199022B2 (en) Cold cathode fluorescent lamp
JP3067661B2 (en) Cold cathode fluorescent lamp
JP2000133201A (en) Electrode of cold cathode fluorescent lamp
JP2002025499A (en) Cold cathode fluorescent lamp
KR100582236B1 (en) Cold cathode fluorescent lamp
JP2523921Y2 (en) Small fluorescent lamp
JPH06251746A (en) Cold cathode low pressure discharge lamp
KR200296091Y1 (en) Cold cathode fluorescent lamp
JP2004127538A (en) Cold cathode fluorescent lamp
JPH09204899A (en) Cold cathode discharge lamp and lighting system
JP3141019U (en) Cold cathode fluorescent lamp
JPH043387Y2 (en)
JP3353687B2 (en) Ceramic discharge lamp
KR100795517B1 (en) Inner Electrode Flourscent Lamp
JP2005251585A (en) Cold cathode fluorescent lamp
JPH10199476A (en) Cold cathode discharge lamp and lighting system
JPH11273617A (en) Cold cathode low pressure discharge lamp

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050315

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees