JP3969789B2 - Manufacturing method of electronic device - Google Patents

Manufacturing method of electronic device Download PDF

Info

Publication number
JP3969789B2
JP3969789B2 JP15263997A JP15263997A JP3969789B2 JP 3969789 B2 JP3969789 B2 JP 3969789B2 JP 15263997 A JP15263997 A JP 15263997A JP 15263997 A JP15263997 A JP 15263997A JP 3969789 B2 JP3969789 B2 JP 3969789B2
Authority
JP
Japan
Prior art keywords
exposure
resist
film
pattern
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15263997A
Other languages
Japanese (ja)
Other versions
JPH113844A (en
Inventor
理 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15263997A priority Critical patent/JP3969789B2/en
Publication of JPH113844A publication Critical patent/JPH113844A/en
Application granted granted Critical
Publication of JP3969789B2 publication Critical patent/JP3969789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば液晶表示装置など写真製版法を用いたパターン形成工程を含む電子デバイスの製造方法に関するものである。
【0002】
【従来の技術】
薄膜トランジスタを搭載した液晶表示装置等の電子デバイスにおいて、信頼性の高い電子デバイスを高歩留りで製造するためには、信頼性の高いパターンを形成することが必要である。
例えば、薄膜トランジスタを搭載した液晶表示素子の製造においては、導電性薄膜または誘電体薄膜等が形成されたガラス基板に、感光性を有するレジスト膜を均一に形成し、ステッパー露光装置を用いて、レジスト膜が形成されたガラス基板を順次露光処理し、マスクに形成されたパターンを感光性を有するレジスト膜に投影し転写する。さらにパターンが転写されたレジスト膜の現像、金属薄膜または誘電体薄膜等のエッチングおよびレジスト膜の剥離を行い、金属薄膜または誘電体薄膜等によるパターンを形成する。その後同様の工程を複数回繰り返すことにより、配線パターン、絶縁体パターン、半導体層パターン等を積層し、表示素子を形成する。以上のようなパターン形成方法は、特開平4−305651号公報中の従来技術にも示されている。
【0003】
図9は従来の一般的な写真製版法を用いたパターンの形成工程を示す断面図である。図において、1は基板、2は基板1上に成膜された金属膜あるいは絶縁膜等の薄膜、4は感光性を有するレジスト膜、5はマスク、6はマスク5に形成された遮光膜パターン、7はレジストパターン、14は配線パターンあるいは絶縁体パターン等の薄膜パターンである。
まず図9(a)に示すように、CVD装置やスパッタ装置等を用いて、基板1上に金属膜あるいは絶縁膜等の薄膜2を成膜する。次に図9(b)に示すように、回転塗布法等により、感光性を有するレジストの溶液を塗布し、感光性を有するレジスト膜4を形成する。次に図9(c)に示すように、例えばステッパー露光装置等の露光装置を用い、所定の遮光膜パターン6が形成されたマスク5を介して、基板1上に形成されたレジスト膜4に露光処理を施す。このとき、基板1上に形成されたレジスト膜4が感光するのに適正な露光量になる時間だけ露光装置のシャッターを開いて露光処理を行い、マスク5上の遮光膜パターン6をレジスト膜4に転写する。次に図9(d)に示すように、所定の現像液により現像処理を行い、レジストパターン7を形成する。次に図9(e)に示すように、薄膜2のエッチング処理を行い、レジストパターン7に被覆されていない部分の薄膜2をエッチングする。次に図9(f)に示すように、レジストパターン7の剥離処理を行う。このような工程により、配線パターンあるいは絶縁体パターン14が形成される。
【0004】
【発明が解決しようとする課題】
従来の電子デバイスの製造における写真製版法を用いたパターンの形成方法は以上のように構成されており、感光性を有するレジストを塗布前の基板に異物が付着し、その異物が現像処理においてレジスト膜が除去される部分に付着していた場合、現像処理後に異物の周辺部にレジスト残さが生じ、その結果、レジスト残さの下層にある薄膜がエッチング処理時に除去されないため、薄膜が導電膜である場合には配線間の短絡等パターン欠陥を生じ、製品の歩留りを低下させる問題があった。
【0005】
図10は従来の異物によりパターン欠陥が生じるのを説明するための平面図、図11は図10のD−D線に沿った断面図である。図において、2はAl等の金属膜、3は異物、4は露光処理により感光した部分が現像時に溶解するポジ型の感光性を有するレジスト膜、8は現像処理後に異物周辺部に残存したレジスト残さ、9はマスク5の開口部に対応し、現像処理によりレジスト膜4が除去される領域である。なお、図9と同一部分については同符号を付し説明を省略する。
金属膜2上に異物3が付着している基板1に、ポジ型の感光性を有するレジストの溶液を回転塗布法により塗布しレジスト膜4を形成した場合、図10(a)および図11(a)に示すように、付着している異物3の周辺部では、レジスト溶液の表面張力により、レジスト膜4の膜厚が周囲の平坦な部分より厚く形成される。次に異物3等の付着がなくレジスト膜4が均一に形成された正常な塗布部におけるレジスト膜4の膜厚分が感光するために適正な露光エネルギー量を、レジスト膜4に与える時間だけ露光装置のシャッターを開き、マスク5を介して露光処理を行い、マスク5上の遮光膜パターン6をレジスト膜4に転写する。このとき、基板1上の異物3が、現像処理においてレジスト膜4が除去される領域9に存在した場合、異物3周辺部のレジスト膜4が厚く形成された部分では、露光エネルギーが不足した状態となり、現像処理後には、図10(b)および図11(b)に示すように、異物3周辺部にほぼ円形のレジスト残さ8が生じる。レジスト残さ8の大きさは、異物3の大きさ、および露光、現像条件等により異なるが、レジスト残さ8の発生により、金属膜2のエッチング処理時に、レジスト残さ8の下層の金属膜2がエッチングされずに残り、配線パターン14間の短絡を生じさせて、製品の歩留りを低下させる可能性が大である。
【0006】
また、装置の可動部からの発塵を飛散させないようカバーで覆ったり、人体からの発塵を抑えるために肌等の露出部を極力なくしたり、基板を洗浄することにより、基板上への異物付着を防止する対策が施されているが、現状では、上記のような異物によるパターン欠陥は皆無になっていない。
【0007】
この発明は、上記のような問題を解決するためになされたもので、写真製版工程において基板上に異物が付着した場合でも、パターン欠陥(配線間の短絡等)の発生を抑制できる電子デバイスの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係わる電子デバイスの製造方法は、感光性を有する樹脂を塗布し、写真製版法によりパターン形成を行う工程を含む電子デバイスの製造方法において、被塗布体上に感光性を有する樹脂を塗布する工程と、所望するパターンに対応する遮光膜パターンが形成された第一のマスクを介して被塗布体上の平坦部分に塗布された感光性を有する樹脂が感光するのに適正な露光エネルギー量で露光する第一の露光工程と、所望するパターンを覆うような遮光膜パターンが形成された第二のマスクを介して、被塗布体上の異物付着部分に塗布された感光性を有する樹脂の膜厚と平坦部分に塗布された感光性を有する樹脂の膜厚の差分が感光するのに十分かつ適正な露光エネルギー量で露光する第二の露光工程を含むものである。
【0009】
また、感光性を有する樹脂を塗布し、写真製版法によりパターン形成を行う工程を含む電子デバイスの製造方法において、被塗布体上の異物付着部分に塗布された感光性を有する樹脂の膜厚と平坦部分に塗布された感光性を有する樹脂の膜厚の差を小さくするよう感光性を有する樹脂を厚く塗布する工程と、所望するパターンに対応する遮光膜パターンが形成された第一のマスクを介して被塗布体上の平坦部分に塗布された感光性を有する樹脂が感光するのに適正な露光エネルギー量で露光する第一の露光工程と、所望するパターンを覆うような遮光膜パターンが形成された第二のマスクを介して、被塗布体上の異物付着部分に塗布された感光性を有する樹脂の膜厚と平坦部分に塗布された感光性を有する樹脂の膜厚の差分が感光するのに十分かつ適正な露光エネルギー量で露光する第二の露光工程を含むものである。
また、第一の露光と第二の露光は連続して行われるものである。
【0010】
【発明の実施の形態】
実施の形態1.
以下、この発明の一実施の形態である電子デバイスの製造方法を図について説明する。図1は本発明の実施の形態1による電子デバイス製造時の写真製版工程を示す平面図、図2は図1のA−A線に沿った断面図である。
図において、1は基板、2はスパッタ法等により基板1上に形成された金属膜、3は異物、4は金属膜2が成膜された基板1上に形成された感光性を有するレジスト膜、5はマスク、6はマスク5に形成された遮光膜パターン、7はレジスト膜4を現像処理することにより形成されたレジストパターン、8は現像処理後に異物3周辺部に残ったレジスト残さ、9はマスク5の開口部に対応し、現像処理によりレジスト膜4が除去される領域である。
【0011】
次に、本実施の形態による写真製版工程について説明する。
まず基板1上に、スパッタ装置等を用いて金属膜2を成膜する。次に何らかの原因により金属膜2上に異物3が付着した基板1に、ポジ型の感光性を有するレジストの溶液を回転塗布法により塗布し、レジスト膜4を形成する。ここで、レジスト膜4の膜厚は、レジストを回転塗布するときの基板1の回転数を調整して、1. 8μm〜5. 0μm程度に通常より厚く形成する。次に異物3等の付着がなくレジスト膜4が均一に形成された正常な塗布部におけるレジスト膜4の膜厚分が、感光するために、適正な露光エネルギー量をレジスト膜4に与える時間だけ露光装置のシャッターを開き、遮光膜パターン6を有するマスク5を介して露光処理を行い、マスク5上の遮光膜パターン6をレジスト膜4に転写する。このとき、図1(a)および図2(a)に示すように、金属膜2上に付着している異物3の周辺部では、レジスト溶液の表面張力により、レジスト膜4が均一に形成された正常な塗布部より厚く形成されているが、正常な塗布部におけるレジスト膜4の膜厚を、1. 8μm〜5. 0μm程度に通常より厚く形成したため、正常な塗布部のレジスト膜4と、異物3周辺部のレジスト膜4の膜厚の差は小さい。そのため、異物3が現像処理においてレジスト膜4が除去される領域9に存在した場合でも、図1(b)および図2(b)に示すように、現像処理後に、露光不足により異物3周辺部に残るレジスト残さ8の面積は小さくなる。
【0012】
また、図3は、回転塗布により形成されるレジスト膜の膜厚が4a、4b、4cおよび4dのときの、露光エネルギー量と現像処理後に残るレジスト残膜厚の関係を示す図である。レジスト膜の膜厚は4aが一番厚く、4b、4c、4dの順に薄くなる。なお、4aの膜厚は、レジスト溶液の表面張力により形成できる最大膜厚である。また、4eはレジスト膜の膜厚が4dのときの適正露光エネルギー量、4fはレジスト膜の膜厚が4bのときの適正露光エネルギー量である。例えば、正常な塗布部のレジスト膜の膜厚が4dのとき、その膜厚に対して適正な露光エネルギー量4eにより露光を行った場合、異物の周辺部等でレジスト膜厚が4aあるいは4bと厚く形成された部分は、露光エネルギー量が4eでは露光不足となり、現像処理後にレジスト残さが生じるが、レジスト膜厚が4cの部分ではレジスト残さは生じない。さらに、レジスト膜の膜厚を4b程度まで厚く形成し、その膜厚に対して適正な露光エネルギー量4fで露光を行った場合、レジスト膜厚が4aの部分では、露光不足により現像処理後にレジスト残さが生じるが、レジスト溶液の表面張力により形成できる最大膜厚4aを有するレジスト膜が形成される面積範囲は、異物の極近傍だけであり、現像処理後に異物の周辺部に生じるレジスト残さの面積は低減される。当然のことながら、正常な塗布部のレジスト膜の膜厚が4aとなる条件で塗布された場合には、レジスト残さの発生を防止できる。
【0013】
この発明によれば、電子デバイス製造の写真製版工程において、基板1上に形成されるレジスト膜4の膜厚を1. 8μm〜5. 0μm程度に通常より厚く形成し、レジスト膜4が均一に形成された正常な塗布部と、異物3周辺部等のレジスト溶液の表面張力によりレジスト膜4が厚く形成された部分とのレジスト膜厚の差を小さくすることにより、正常な塗布部のレジスト膜厚に対して適正な露光量で露光処理を行った場合でも、異物3周辺部等の正常な塗布部よりレジスト膜厚の厚い部分に、露光不足によるレジスト残さ8が生じる面積を低減、またはレジスト残さ8が生じるのを防止できる。その結果、異物3が現像処理においてレジスト膜4が除去される領域9に存在した場合でも、金属膜2のエッチング処理時に、レジスト残さ8の下層にあり、エッチングされずに残る金属膜2の面積は小さくなり、残存した金属膜2による配線間の短絡を防止できる。
【0014】
実施の形態2.
図4はこの発明の実施の形態2による電子デバイス製造時の写真製版工程を示す平面図、図5は図4のB−B線に沿った断面図である。また、図6は第一の露光と第二の露光に用いられるマスクに形成された遮光膜パターンの形状の違いを説明するためのマスクの平面図である。図において、5は第一の露光に用いられるマスクで、所望のパターンを形成するための遮光膜パターン6を有している。10は第二の露光に用いられるマスクで、マスク5に形成された遮光膜パターン6に対応する位置に、遮光膜パターン6より幅の大きい遮光膜パターン11を有している。12aおよび12bは遮光膜パターン6と遮光膜パターン11のパターンの幅における両側での寸法差である。13は正常な塗布部よりレジスト膜4が厚く形成された部分の内、二回の露光処理により感光し、現像処理時にレジスト膜4が除去される部分である。なお、図1および図2と同一部分については同符号を付し説明を省略する。
【0015】
次に、本実施の形態による写真製版工程について説明する。
まず基板1上に、スパッタ装置等を用いて金属膜2を成膜する。次に何らかの原因により金属膜2上に異物3が付着した基板1に、ポジ型の感光性を有するレジストの溶液を回転塗布法により塗布し、レジスト膜4を形成する。次に図4(a)および図5(a)に示すように、異物3等の付着がなくレジスト膜4が均一に形成された正常な塗布部におけるレジスト膜4の膜厚分が感光するために、適正な露光エネルギー量をレジスト膜4に与える時間だけ露光装置のシャッターを開き、遮光膜パターン6を有するマスク5を介して第一の露光を行い、マスク5上の遮光膜パターン6をレジスト膜4に転写する。
次に図6に示すように、遮光膜パターンの形状が、第一の露光に用いられたマスク5に形成された遮光膜パターン6より、遮光膜パターンの両端において12aおよび12bだけ(例えば12a=12b=2μm)それぞれ大きく形成された遮光膜パターン11を有するマスク10を用いて第二の露光を行う(図4(b)および図5(b))。また、露光量は、異物3の周辺部で、レジスト溶液の表面張力により、レジスト膜4の膜厚が正常な塗布部のレジスト膜厚より厚く形成されている分のレジスト膜4が感光するために適正な露光エネルギー量とする。
【0016】
次に第一の露光および第二の露光処理が施されたレジスト膜4の現像処理を行う。図4(c)および図5(c)は現像処理後の状態を示している。異物3等の付着がなくレジスト膜4が均一に形成された正常な塗布部におけるレジスト膜4は、第一の露光処理で感光し、現像処理で溶解して、所望のレジストパターン7を形成する。また、現像後に形成されるレジストパターン7を覆う形状の遮光膜パターン11を有するマスク10を介して第二の露光を行うことにより、第一の露光では露光不足となっていた異物3周辺部等、正常な塗布部よりレジスト膜厚が厚い部分は、第二の露光処理で感光し、現像処理で溶解して除去部分13が形成される。すなわち、正常な塗布部よりレジスト膜4が厚く形成された異物3周辺部に対しても、二回の露光により十分な露光エネルギーが与えられるため、異物3周辺部に残るレジスト残さ8の面積は除去部分13の面積分小さくなる。
【0017】
本実施の形態によれば、電子デバイス製造の写真製版工程において、第一の露光は、所望のパターンを形成するための遮光膜パターン6を有するマスク5を介して、レジスト膜4が均一に形成された正常な塗布部におけるレジスト膜厚分が感光するのに適正な量の露光エネルギーを与え、第二の露光は、第一の露光で形成される所望のレジストパターン7部分には過剰露光による悪影響を及ぼさないよう、所望のレジストパターン7を覆うような形状の遮光膜パターン11を有するマスク10を介して行われ、異物3周辺部等の正常な塗布部よりレジスト膜4が厚く形成された部分では、二回の露光により十分な露光エネルギーが与えられるため、異物3周辺部に残るレジスト残さ8の面積は小さくなり、金属膜2のエッチング処理時に、レジスト残さ8の下層にあり、エッチングされずに残る金属膜2の面積は小さくなり、残存した金属膜2による配線間の短絡を防止できる。
【0018】
実施の形態3.
図7はこの発明の実施の形態3による電子デバイス製造時の写真製版工程を示す平面図、図8は図7のC−C線に沿った断面図である。なお、図中の符号は図4および図5と同様であるので説明を省略する。
次に、本実施の形態による写真製版工程について説明する。
まず基板1上に、スパッタ装置等を用いて金属膜2を成膜する。次に何らかの原因により金属膜2上に異物3が付着した基板1に、ポジ型の感光性を有するレジストの溶液を回転塗布法により塗布し、レジスト膜4を形成する。ここで、レジスト膜4の膜厚は、レジストを回転塗布するときの基板1の回転数を調整して、1. 8μm〜5. 0μm程度に通常より厚く形成する。そのため、図7(a)および図8(a)に示すように、正常な塗布部のレジスト膜4の膜厚と、異物3周辺部でレジスト膜4が厚く形成された部分のレジスト膜4の膜厚との差は小さくなっている。
【0019】
次に異物3等がなくレジスト膜4が均一に形成された正常な塗布部におけるレジスト膜4の膜厚分が感光するために、適正な露光エネルギー量をレジスト膜4に与える時間だけ露光装置のシャッターを開き、遮光膜パターン6を有するマスク5を介して第一の露光を行い、マスク5上の遮光膜パターン6をレジスト膜4に転写する(図7(a)および図8(a))。
次に実施の形態2で図6に示したように、遮光膜パターンの形状が、第一の露光に用いられたマスク5に形成された遮光膜パターン6より、遮光膜パターンの両端において12aおよび12bだけ(例えば12a=12b=2μm)それぞれ大きく形成された遮光膜パターン11を有するマスク10を用いて第二の露光を行う(図7(b)および図8(b))。また、露光量は、異物3の周辺部で、レジスト溶液の表面張力により、レジスト膜4の膜厚が正常な塗布部のレジスト膜厚より厚く形成されている分のレジスト膜4が感光するために適正な露光エネルギー量とする。
【0020】
次に第一の露光および第二の露光処理が施されたレジスト膜4の現像処理を行う。図7(c)および図8(c)は現像処理後の状態を示している。
異物3等の付着がなくレジスト膜4が均一に形成された正常な塗布部のレジスト膜4は、第一の露光処理で感光し、現像処理で溶解して、所望のレジストパターン7を形成する。また、現像後に形成されるレジストパターン7を覆う形状の遮光膜パターン11を有するマスクを介して第二の露光を行うことにより、第一の露光では露光不足となっていた異物3周辺部等、正常な塗布部よりレジスト膜4が厚い部分も、第二の露光処理で感光し、現像処理で溶解する。
【0021】
本実施の形態によれば、電子デバイス製造の写真製版工程において、基板1上に形成されるレジスト膜4の膜厚を1. 8μm〜5. 0μm程度に通常より厚く形成することにより、レジスト膜4が均一に形成された正常な塗布部と、異物3周辺部等レジスト溶液の表面張力によりレジスト膜4が厚く形成された部分とのレジスト膜厚の差を小さくでき、さらに第一の露光は、所望のパターンを形成するための遮光膜パターン6を有するマスク5を介して、正常な塗布部のレジスト膜4の膜厚分が感光するのに適正な量の露光エネルギーを与え、第二の露光は、第一の露光で形成される所望のレジストパターン7部分には過剰露光による悪影響を及ぼさないよう、所望のレジストパターン7を覆うような形状の遮光膜パターン11を有するマスク10を介して行われ、異物3周辺部等の正常な塗布部よりレジスト膜4が厚く形成された部分では、二回の露光により十分な露光エネルギーが与えられるため、異物3周辺部に残るレジスト残さ8の面積はさらに小さくなり、金属膜2のエッチング処理時に、レジスト残さ8の下層にあり、エッチングされずに残る金属膜2の面積も小さくなり、残存した金属膜2による配線間の短絡を防止できる。
【0022】
実施の形態4.
実施の形態1、2および3では、異物3が金属膜2上に付着した場合について説明したが、金属膜2の中、もしくは金属膜2の下に異物3が存在している場合でも同様の効果を得ることができる。また、金属膜2はSiN、a−Si等の誘電体膜でもよい。また、電子デバイスとしては、TFT液晶表示装置の他、Poly- SiTFT、パッシブマトリクス液晶表示装置、強誘電性液晶表示装置、カラーフィルタ、プラズマアドレッシングディスプレイ、イメージセンサ、LSI、IC等様々な電子デバイスに適用できる。さらに、レジストとしてポジ型レジストを用いたが、感光性を有する樹脂を塗布して写真製版法によりパターン形成の工程を有するもの全般に適用できる。また、レジスト溶液の塗布方法としては、回転塗布の他、ロールコート法や噴霧塗布法でもよい。
また、実施の形態2および3では、第一の露光に所望のパターンを形成するためのマスク5を用い、第二の露光にマスク10を用いて行ったが、第一の露光にマスク10を用い、第二の露光にマスク5を用いてもよい。また、マクス10に形成された遮光膜パターン11は、マスク5に形成された遮光膜パターン6の幅に対して、片側2μmずつ大きくしたが、片側0. 5μm〜10μmずつ大きくしてもよい。
【0023】
【発明の効果】
以上のように、この発明によれば、電子デバイス製造の写真製版工程において、第一の露光は、所望のパターンを形成するための遮光膜パターンを有するマスクを介して、レジスト膜が均一に形成された正常な塗布部におけるレジスト膜厚分が感光するのに適正な量の露光エネルギーを与え、第二の露光は、第一の露光で形成される所望のレジストパターン部分には過剰露光による悪影響を及ぼさないよう、所望のレジストパターンを覆うような形状の遮光膜パターンを有するマスクを介して行われ、異物周辺部等の正常な塗布部よりレジスト膜が厚く形成された部分には、二回の露光により十分な露光エネルギーが与えられるため、異物の周辺部等のレジスト膜厚が厚い部分において、露光不足によるレジスト残さが生じる面積を低減でき、レジスト残さの下にある膜がエッチングされずに残ることによる、パターン欠陥の発生を抑制できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による電子デバイス製造時の写真製版工程を示す平面図である。
【図2】 この発明の実施の形態1による電子デバイス製造時の写真製版工程を示す断面図である。
【図3】 この発明の実施の形態1による露光エネルギー量とレジスト残膜厚の関係を示す図である。
【図4】 この発明の実施の形態2による電子デバイス製造時の写真製版工程を示す平面図である。
【図5】 この発明の実施の形態2による電子デバイス製造時の写真製版工程を示す断面図である。
【図6】 この発明の実施の形態2による写真製版工程に用いるマスクを示す平面図である。
【図7】 この発明の実施の形態3による電子デバイス製造時の写真製版工程を示す平面図である。
【図8】 この発明の実施の形態3による電子デバイス製造時の写真製版工程を示す断面図である。
【図9】 従来のこの種電子デバイス製造時の写真製版工程を示す断面図である。
【図10】 従来の電子デバイス製造時の写真製版工程を示す平面図である。
【図11】 従来の電子デバイス製造時の写真製版工程を示す断面図である。
【符号の説明】
1 基板、2 金属膜(薄膜)、3 異物、4 レジスト膜、5 マスク、
6 遮光膜パターン、7 レジストパターン、8 レジスト残さ、
9 レジスト膜の除去領域、10 マスク、11 遮光膜パターン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an electronic device including a pattern forming process using a photolithography method such as a liquid crystal display device.
[0002]
[Prior art]
In an electronic device such as a liquid crystal display device including a thin film transistor, in order to manufacture a highly reliable electronic device with a high yield, it is necessary to form a highly reliable pattern.
For example, in the manufacture of a liquid crystal display element equipped with a thin film transistor, a resist film having photosensitivity is uniformly formed on a glass substrate on which a conductive thin film or a dielectric thin film is formed, and the resist is formed using a stepper exposure apparatus. The glass substrate on which the film is formed is sequentially exposed to light, and the pattern formed on the mask is projected onto a resist film having photosensitivity and transferred. Further, development of the resist film to which the pattern has been transferred, etching of the metal thin film or dielectric thin film, and peeling of the resist film are performed to form a pattern of the metal thin film or dielectric thin film. Thereafter, the same process is repeated a plurality of times to laminate a wiring pattern, an insulator pattern, a semiconductor layer pattern, and the like, thereby forming a display element. The pattern forming method as described above is also shown in the prior art in JP-A-4-305651.
[0003]
FIG. 9 is a cross-sectional view showing a pattern forming process using a conventional general photoengraving method. In the figure, 1 is a substrate, 2 is a thin film such as a metal film or an insulating film formed on the substrate 1, 4 is a resist film having photosensitivity, 5 is a mask, and 6 is a light-shielding film pattern formed on the mask 5. 7 is a resist pattern, and 14 is a thin film pattern such as a wiring pattern or an insulator pattern.
First, as shown in FIG. 9A, a thin film 2 such as a metal film or an insulating film is formed on the substrate 1 using a CVD apparatus, a sputtering apparatus, or the like. Next, as shown in FIG. 9B, a resist solution having photosensitivity is applied by spin coating or the like to form a resist film 4 having photosensitivity. Next, as shown in FIG. 9C, the resist film 4 formed on the substrate 1 is applied to the resist film 4 through a mask 5 on which a predetermined light-shielding film pattern 6 is formed using an exposure apparatus such as a stepper exposure apparatus. An exposure process is performed. At this time, the exposure process is performed by opening the shutter of the exposure apparatus only for a time period in which the resist film 4 formed on the substrate 1 has an appropriate exposure amount for exposure, and the light-shielding film pattern 6 on the mask 5 is changed to the resist film 4. Transcript to. Next, as shown in FIG. 9D, a development process is performed with a predetermined developer to form a resist pattern 7. Next, as shown in FIG. 9E, the thin film 2 is etched, and the thin film 2 in a portion not covered with the resist pattern 7 is etched. Next, as shown in FIG. 9F, the resist pattern 7 is removed. By such a process, the wiring pattern or the insulator pattern 14 is formed.
[0004]
[Problems to be solved by the invention]
The pattern formation method using the photoengraving method in the manufacture of conventional electronic devices is configured as described above. Foreign matter adheres to the substrate before application of the photosensitive resist, and the foreign matter is resisted in the development process. If the film is attached to the part to be removed, a resist residue is formed around the foreign matter after the development process, and as a result, the thin film under the resist residue is not removed during the etching process, so the thin film is a conductive film. In such a case, there is a problem that pattern defects such as a short circuit between wirings occur and the product yield is lowered.
[0005]
FIG. 10 is a plan view for explaining that a pattern defect is caused by a conventional foreign matter, and FIG. 11 is a cross-sectional view taken along the line DD of FIG. In the figure, 2 is a metal film of Al or the like, 3 is a foreign substance, 4 is a resist film having a positive photosensitivity in which a portion exposed by the exposure process dissolves during development, and 8 is a resist remaining in the periphery of the foreign substance after the development process. The remainder 9 corresponds to the opening of the mask 5 and is a region where the resist film 4 is removed by development processing. Note that the same parts as those in FIG. 9 are denoted by the same reference numerals and description thereof is omitted.
When the resist film 4 is formed by applying a resist solution having positive photosensitivity to the substrate 1 on which the foreign material 3 is adhered on the metal film 2 by the spin coating method, FIG. 10A and FIG. As shown in a), the film thickness of the resist film 4 is formed thicker than the surrounding flat part due to the surface tension of the resist solution in the peripheral part of the adhered foreign matter 3. Next, the resist film 4 is exposed for an amount of time appropriate for the resist film 4 to be exposed to the thickness of the resist film 4 in a normal coating portion where the resist film 4 is uniformly formed without adhesion of foreign matter 3 or the like. The shutter of the apparatus is opened, exposure processing is performed through the mask 5, and the light shielding film pattern 6 on the mask 5 is transferred to the resist film 4. At this time, when the foreign matter 3 on the substrate 1 exists in the region 9 where the resist film 4 is removed in the development process, the exposure energy is insufficient in the portion where the resist film 4 around the foreign matter 3 is formed thick. Thus, after the development processing, as shown in FIGS. 10B and 11B, a substantially circular resist residue 8 is generated around the foreign material 3. Although the size of the resist residue 8 varies depending on the size of the foreign matter 3 and the exposure and development conditions, the occurrence of the resist residue 8 causes the metal film 2 under the resist residue 8 to be etched during the etching process of the metal film 2. There is a high possibility that the product yield will be lowered by causing a short circuit between the wiring patterns 14 and reducing the product yield.
[0006]
In addition, by covering with a cover so that dust generated from the moving parts of the device is not scattered, eliminating exposed parts such as the skin as much as possible to suppress dust generation from the human body, or cleaning the substrate, foreign matter on the substrate Although measures are taken to prevent adhesion, at present, there is no pattern defect due to the above-mentioned foreign matter.
[0007]
The present invention has been made to solve the above-described problems, and is an electronic device that can suppress the occurrence of pattern defects (such as a short circuit between wirings) even when foreign matter adheres to a substrate in a photolithography process. An object is to provide a manufacturing method.
[0008]
[Means for Solving the Problems]
The method of manufacturing an electronic device according to the present invention, by coating a resin having a sensitive light resistance, in the method of manufacturing an electronic device including the step of forming a pattern by photolithography, the resin having photosensitivity on the medium to be coated The exposure energy appropriate for the photosensitive resin applied to the flat portion on the substrate to be exposed through the coating step and the first mask on which the light shielding film pattern corresponding to the desired pattern is formed is exposed. Resin having a photosensitivity applied to a foreign matter adhering portion on an object to be coated through a first exposure step in which exposure is performed in a quantity and a second mask in which a light shielding film pattern is formed so as to cover a desired pattern And a second exposure process in which exposure is performed with an exposure energy amount that is sufficient and appropriate for exposure to light.
[0009]
Moreover, in the manufacturing method of the electronic device including the step of applying a resin having photosensitivity and performing pattern formation by a photoengraving method, the film thickness of the resin having photosensitivity applied to the foreign matter adhesion portion on the coated body A step of thickly applying a photosensitive resin so as to reduce the difference in film thickness of the photosensitive resin applied to the flat portion, and a first mask on which a light shielding film pattern corresponding to a desired pattern is formed A first exposure process in which the photosensitive resin applied to the flat part on the substrate to be coated is exposed with an exposure energy amount appropriate for photosensitivity, and a light-shielding film pattern that covers the desired pattern is formed. The difference between the film thickness of the resin having photosensitivity applied to the foreign material adhering portion on the object to be coated and the film thickness of the resin having photosensitivity applied to the flat portion is exposed through the second mask. Ten And those containing a second exposure step of exposing at an appropriate amount of exposure energy.
Further, the first exposure and the second exposure are performed continuously.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A method for manufacturing an electronic device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing a photoengraving process at the time of manufacturing an electronic device according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.
In the figure, 1 is a substrate, 2 is a metal film formed on the substrate 1 by sputtering or the like, 3 is a foreign object, and 4 is a resist film having photosensitivity formed on the substrate 1 on which the metal film 2 is formed. 5 is a mask, 6 is a light-shielding film pattern formed on the mask 5, 7 is a resist pattern formed by developing the resist film 4, 8 is a resist residue remaining around the foreign material 3 after the developing process, 9 Corresponds to the opening of the mask 5 and is a region where the resist film 4 is removed by development processing.
[0011]
Next, the photolithography process according to this embodiment will be described.
First, the metal film 2 is formed on the substrate 1 using a sputtering apparatus or the like. Next, a resist solution having positive photosensitivity is applied to the substrate 1 on which the foreign material 3 is adhered on the metal film 2 for some reason, thereby forming a resist film 4. Here, the film thickness of the resist film 4 is formed to be about 1.8 μm to 5.0 μm thicker than usual by adjusting the number of rotations of the substrate 1 when the resist is spin-coated. Next, since the film thickness of the resist film 4 in a normal coating portion where the resist film 4 is uniformly formed without adhesion of foreign matters 3 or the like is exposed, only the time for giving an appropriate exposure energy amount to the resist film 4 is obtained. The shutter of the exposure apparatus is opened, exposure processing is performed through the mask 5 having the light shielding film pattern 6, and the light shielding film pattern 6 on the mask 5 is transferred to the resist film 4. At this time, as shown in FIGS. 1 (a) and 2 (a), the resist film 4 is uniformly formed by the surface tension of the resist solution around the foreign material 3 adhering to the metal film 2. The thickness of the resist film 4 in the normal application portion is about 1.8 μm to 5.0 μm thicker than usual, so that the resist film 4 in the normal application portion The difference in film thickness of the resist film 4 around the foreign material 3 is small. Therefore, even when the foreign matter 3 exists in the region 9 where the resist film 4 is removed in the development process, as shown in FIGS. 1B and 2B, the peripheral portion of the foreign matter 3 is caused by insufficient exposure after the development process. The area of the remaining resist residue 8 becomes smaller.
[0012]
FIG. 3 is a diagram showing the relationship between the amount of exposure energy and the remaining resist film thickness after the development processing when the film thickness of the resist film formed by spin coating is 4a, 4b, 4c, and 4d. The thickness of the resist film is 4a, and the resist film becomes thinner in the order of 4b, 4c, and 4d. The film thickness 4a is the maximum film thickness that can be formed by the surface tension of the resist solution. 4e is an appropriate exposure energy amount when the resist film thickness is 4d, and 4f is an appropriate exposure energy amount when the resist film thickness is 4b. For example, when the film thickness of the resist film in the normal application part is 4d, and the exposure is performed with an appropriate exposure energy amount 4e for the film thickness, the resist film thickness is 4a or 4b at the peripheral part of the foreign matter. The thickly formed portion is underexposed when the exposure energy amount is 4e, and a resist residue is generated after the development process, but no resist residue is generated in the portion where the resist film thickness is 4c. Further, when the resist film is formed to a thickness of up to about 4b and exposure is performed with an appropriate exposure energy amount 4f with respect to the film thickness, the resist film after the development process due to underexposure at the portion where the resist film thickness is 4a. Although the residue is generated, the area of the resist film having the maximum film thickness 4a that can be formed by the surface tension of the resist solution is only in the vicinity of the foreign matter, and the area of the resist residue that occurs in the peripheral portion of the foreign matter after development processing Is reduced. As a matter of course, the resist residue can be prevented from being generated when the resist film is applied under the condition that the thickness of the resist film in the normal application portion is 4a.
[0013]
According to this invention, in the photoengraving process of electronic device manufacturing, the film thickness of the resist film 4 formed on the substrate 1 is formed to be about 1.8 μm to 5.0 μm thicker than usual, and the resist film 4 is uniformly formed. By reducing the difference in resist film thickness between the formed normal coating portion and the portion where the resist film 4 is formed thick due to the surface tension of the resist solution such as the periphery of the foreign material 3, the resist film in the normal coating portion Even when the exposure process is performed with an appropriate exposure amount with respect to the thickness, the area where the resist residue 8 due to insufficient exposure is reduced in a portion where the resist film thickness is thicker than a normal coating portion such as the peripheral portion of the foreign matter 3 or the resist The occurrence of the residue 8 can be prevented. As a result, even when the foreign matter 3 exists in the region 9 where the resist film 4 is removed in the development process, the area of the metal film 2 that remains under the resist residue 8 and remains unetched during the etching process of the metal film 2. And the short circuit between the wirings due to the remaining metal film 2 can be prevented.
[0014]
Embodiment 2. FIG.
4 is a plan view showing a photoengraving process at the time of manufacturing an electronic device according to Embodiment 2 of the present invention, and FIG. 5 is a cross-sectional view taken along the line BB of FIG. FIG. 6 is a plan view of the mask for explaining the difference in the shape of the light shielding film pattern formed on the mask used for the first exposure and the second exposure. In the figure, reference numeral 5 denotes a mask used for the first exposure, which has a light shielding film pattern 6 for forming a desired pattern. A mask 10 is used for the second exposure, and has a light shielding film pattern 11 having a width wider than that of the light shielding film pattern 6 at a position corresponding to the light shielding film pattern 6 formed on the mask 5. 12a and 12b are dimensional differences on both sides in the widths of the light shielding film pattern 6 and the light shielding film pattern 11. Reference numeral 13 denotes a portion where the resist film 4 is formed thicker than a normal coating portion, and is exposed by two exposure processes, and the resist film 4 is removed during the development process. 1 and 2 are denoted by the same reference numerals and description thereof is omitted.
[0015]
Next, the photolithography process according to this embodiment will be described.
First, the metal film 2 is formed on the substrate 1 using a sputtering apparatus or the like. Next, a resist solution having positive photosensitivity is applied to the substrate 1 on which the foreign material 3 is adhered on the metal film 2 for some reason, thereby forming a resist film 4. Next, as shown in FIGS. 4A and 5A, the film thickness of the resist film 4 in a normal coating portion where the resist film 4 is uniformly formed without adhesion of the foreign matter 3 or the like is exposed. In addition, the shutter of the exposure apparatus is opened for a period of time that gives an appropriate exposure energy amount to the resist film 4, and first exposure is performed through the mask 5 having the light shielding film pattern 6, and the light shielding film pattern 6 on the mask 5 is resisted. Transfer to film 4.
Next, as shown in FIG. 6, the shape of the light shielding film pattern is only 12a and 12b at both ends of the light shielding film pattern from the light shielding film pattern 6 formed on the mask 5 used for the first exposure (for example, 12a = 12b = 2 μm) Second exposure is performed using the mask 10 having the light shielding film pattern 11 formed large (FIGS. 4B and 5B). In addition, the resist film 4 is exposed at the peripheral portion of the foreign material 3 due to the surface tension of the resist solution so that the resist film 4 is thicker than the resist film thickness of the normal coating portion. The amount of exposure energy is appropriate.
[0016]
Next, the developing process of the resist film 4 subjected to the first exposure process and the second exposure process is performed. FIG. 4C and FIG. 5C show the state after the development processing. The resist film 4 in a normal coating portion where the resist film 4 is uniformly formed without adhesion of foreign matter 3 or the like is exposed to light in the first exposure process and dissolved in the development process to form a desired resist pattern 7. . Further, by performing the second exposure through the mask 10 having the light shielding film pattern 11 covering the resist pattern 7 formed after the development, the periphery of the foreign matter 3 that has been underexposed in the first exposure, and the like. The portion where the resist film thickness is thicker than the normal coated portion is exposed by the second exposure process and dissolved by the development process to form the removed portion 13. That is, since sufficient exposure energy is given to the peripheral part of the foreign material 3 in which the resist film 4 is formed thicker than the normal application part, the area of the resist residue 8 remaining in the peripheral part of the foreign material 3 is as follows. The area of the removed portion 13 is reduced.
[0017]
According to the present embodiment, in the photoengraving process of the electronic device manufacturing, the first exposure is such that the resist film 4 is uniformly formed through the mask 5 having the light shielding film pattern 6 for forming a desired pattern. An appropriate amount of exposure energy is applied so that the resist film thickness in the normal coated portion is exposed, and the second exposure is caused by overexposure on the desired resist pattern 7 formed in the first exposure. The resist film 4 is formed thicker than a normal coating portion such as the periphery of the foreign matter 3 by performing the mask 10 having the light shielding film pattern 11 shaped to cover the desired resist pattern 7 so as not to adversely affect the resist pattern 7. In the portion, sufficient exposure energy is given by the two exposures, so that the area of the resist residue 8 remaining around the foreign material 3 is reduced, and during the etching process of the metal film 2, Located below the strike left 8, the area of the metal film 2 remains without being etched is reduced, thereby preventing a short circuit between wirings due to residual metal film 2.
[0018]
Embodiment 3 FIG.
FIG. 7 is a plan view showing a photoengraving process when manufacturing an electronic device according to Embodiment 3 of the present invention, and FIG. 8 is a cross-sectional view taken along the line CC of FIG. In addition, since the code | symbol in a figure is the same as that of FIG. 4 and FIG. 5, description is abbreviate | omitted.
Next, the photolithography process according to this embodiment will be described.
First, the metal film 2 is formed on the substrate 1 using a sputtering apparatus or the like. Next, a resist solution having positive photosensitivity is applied to the substrate 1 on which the foreign material 3 is adhered on the metal film 2 for some reason, thereby forming a resist film 4. Here, the film thickness of the resist film 4 is formed to be about 1.8 μm to 5.0 μm thicker than usual by adjusting the number of rotations of the substrate 1 when the resist is spin-coated. Therefore, as shown in FIGS. 7A and 8A, the thickness of the resist film 4 in the normal application portion and the portion of the resist film 4 in which the resist film 4 is thickly formed around the foreign matter 3 are formed. The difference with the film thickness is small.
[0019]
Next, since the film thickness of the resist film 4 in the normal coating portion where the resist film 4 is uniformly formed without the foreign matter 3 is exposed, the exposure apparatus is used for the time required to give the resist film 4 an appropriate exposure energy amount. The shutter is opened, first exposure is performed through the mask 5 having the light shielding film pattern 6, and the light shielding film pattern 6 on the mask 5 is transferred to the resist film 4 (FIGS. 7A and 8A). .
Next, as shown in FIG. 6 in the second embodiment, the shape of the light shielding film pattern is 12a and 12a at both ends of the light shielding film pattern from the light shielding film pattern 6 formed on the mask 5 used for the first exposure. Second exposure is performed using the mask 10 having the light-shielding film pattern 11 formed so as to be larger by 12b (for example, 12a = 12b = 2 μm) (FIGS. 7B and 8B). In addition, the resist film 4 is exposed at the peripheral portion of the foreign material 3 due to the surface tension of the resist solution so that the resist film 4 is thicker than the resist film thickness of the normal coating portion. The amount of exposure energy is appropriate.
[0020]
Next, the developing process of the resist film 4 subjected to the first exposure process and the second exposure process is performed. FIG. 7C and FIG. 8C show the state after the development processing.
The resist film 4 in the normal coating portion where the resist film 4 is uniformly formed without adhesion of foreign matter 3 or the like is exposed to light in the first exposure process and dissolved in the development process to form a desired resist pattern 7. . Further, by performing the second exposure through a mask having a light-shielding film pattern 11 having a shape covering the resist pattern 7 formed after development, the periphery of the foreign matter 3 that has been underexposed in the first exposure, etc. The portion where the resist film 4 is thicker than the normal coating portion is also exposed by the second exposure process and dissolved by the development process.
[0021]
According to the present embodiment, the resist film 4 formed on the substrate 1 is formed to have a thickness of about 1.8 μm to 5.0 μm thicker than usual in the photoengraving process of electronic device manufacturing. The difference in the resist film thickness between the normal coating portion where 4 is uniformly formed and the portion where the resist film 4 is formed thick due to the surface tension of the resist solution such as the periphery of the foreign matter 3 can be reduced. An appropriate amount of exposure energy is applied through the mask 5 having the light-shielding film pattern 6 for forming a desired pattern so that the film thickness of the resist film 4 in the normal coating portion is exposed, In the exposure, a mask having a light-shielding film pattern 11 shaped so as to cover the desired resist pattern 7 so that the desired resist pattern 7 formed in the first exposure is not adversely affected by overexposure. In the portion where the resist film 4 is formed thicker than the normal coated portion such as the peripheral portion of the foreign matter 3 and the like, sufficient exposure energy is given by two exposures. The area of the residue 8 is further reduced, and when the metal film 2 is etched, the area of the metal film 2 that is in the lower layer of the resist residue 8 and remains unetched is also reduced. Can be prevented.
[0022]
Embodiment 4 FIG.
In the first, second, and third embodiments, the case where the foreign matter 3 adheres to the metal film 2 has been described, but the same applies to the case where the foreign matter 3 exists in the metal film 2 or under the metal film 2. An effect can be obtained. The metal film 2 may be a dielectric film such as SiN or a-Si. In addition to TFT liquid crystal display devices, various electronic devices such as poly-Si TFTs, passive matrix liquid crystal display devices, ferroelectric liquid crystal display devices, color filters, plasma addressing displays, image sensors, LSIs, and ICs can be used as electronic devices. Applicable. Further, although a positive resist is used as the resist, it can be applied to all resists having a pattern forming process by photolithography using a photosensitive resin. Further, as a method for applying the resist solution, a roll coating method or a spray coating method may be used in addition to spin coating.
In the second and third embodiments, the mask 5 for forming a desired pattern is used for the first exposure and the mask 10 is used for the second exposure. However, the mask 10 is used for the first exposure. The mask 5 may be used for the second exposure. Further, the light shielding film pattern 11 formed on the max 10 is increased by 2 μm on one side with respect to the width of the light shielding film pattern 6 formed on the mask 5, but may be increased by 0.5 μm to 10 μm on one side.
[0023]
【The invention's effect】
As described above, according to the present invention, in the photoengraving process of electronic device manufacturing, the first exposure is such that the resist film is uniformly formed through the mask having the light shielding film pattern for forming a desired pattern. An appropriate amount of exposure energy is applied so that the resist film thickness in the normal coated portion is exposed, and the second exposure has an adverse effect due to overexposure on the desired resist pattern portion formed in the first exposure. Is performed through a mask having a light-shielding film pattern shaped so as to cover a desired resist pattern, and a portion where the resist film is formed thicker than a normal application part such as a foreign substance peripheral part is Because sufficient exposure energy is given by this exposure, it is possible to reduce the area where resist residue due to underexposure occurs in thick resist areas such as the periphery of foreign matter. Film under the resist residue is due to be left without being etched, you are possible to suppress the occurrence of the pattern defect.
[Brief description of the drawings]
FIG. 1 is a plan view showing a photolithography process at the time of manufacturing an electronic device according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing a photolithography process at the time of manufacturing an electronic device according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing a relationship between an exposure energy amount and a resist residual film thickness according to the first embodiment of the present invention.
FIG. 4 is a plan view showing a photolithography process at the time of manufacturing an electronic device according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a photolithography process at the time of manufacturing an electronic device according to Embodiment 2 of the present invention.
FIG. 6 is a plan view showing a mask used in a photolithography process according to Embodiment 2 of the present invention.
FIG. 7 is a plan view showing a photolithography process at the time of manufacturing an electronic device according to a third embodiment of the present invention.
FIG. 8 is a cross-sectional view showing a photolithography process at the time of manufacturing an electronic device according to Embodiment 3 of the present invention.
FIG. 9 is a sectional view showing a photolithography process at the time of manufacturing this kind of conventional electronic device.
FIG. 10 is a plan view showing a photolithography process in manufacturing a conventional electronic device.
FIG. 11 is a cross-sectional view showing a photolithography process at the time of manufacturing a conventional electronic device.
[Explanation of symbols]
1 substrate, 2 metal film (thin film), 3 foreign material, 4 resist film, 5 mask,
6 light shielding film pattern, 7 resist pattern, 8 resist residue,
9 Removal region of resist film, 10 mask, 11 light shielding film pattern.

Claims (3)

感光性を有する樹脂を塗布し、写真製版法によりパターン形成を行う工程を含む電子デバイスの製造方法において、
被塗布体上に上記感光性を有する樹脂を塗布する工程と、
所望するパターンに対応する遮光膜パターンが形成された第一のマスクを介して、上記被塗布体上の平坦部分に塗布された上記感光性を有する樹脂が感光するのに適正な露光エネルギー量で露光する第一の露光工程と、
上記所望するパターンを覆うような遮光膜パターンが形成された第二のマスクを介して、上記被塗布体上の異物付着部分に塗布された上記感光性を有する樹脂の膜厚と上記平坦部分に塗布された上記感光性を有する樹脂の膜厚の差分が感光するのに十分かつ適正な露光エネルギー量で露光する第二の露光工程を含むことを特徴とする電子デバイスの製造方法。
In the manufacturing method of an electronic device including a step of applying a photosensitive resin and performing pattern formation by a photolithography method,
A step of applying the photosensitive resin on the substrate;
With the exposure energy amount appropriate for the photosensitive resin applied to the flat portion on the coated body to be exposed through the first mask on which the light shielding film pattern corresponding to the desired pattern is formed. A first exposure step for exposing;
The film thickness of the photosensitive resin applied to the foreign matter adhesion portion on the coated body and the flat portion through the second mask on which the light shielding film pattern is formed so as to cover the desired pattern. A method of manufacturing an electronic device, comprising: a second exposure step in which exposure is performed with an exposure energy amount that is sufficient and appropriate for the difference in film thickness of the applied resin having photosensitivity to be exposed .
感光性を有する樹脂を塗布し、写真製版法によりパターン形成を行う工程を含む電子デバイスの製造方法において、
被塗布体上の異物付着部分に塗布された上記感光性を有する樹脂の膜厚と平坦部分に塗布された上記感光性を有する樹脂の膜厚の差を小さくするよう上記感光性を有する樹脂を厚く塗布する工程と、
所望するパターンに対応する遮光膜パターンが形成された第一のマスクを介して、上記被塗布体上の平坦部分に塗布された上記感光性を有する樹脂が感光するのに適正な露光エネルギー量で露光する第一の露光工程と、
上記所望するパターンを覆うような遮光膜パターンが形成された第二のマスクを介して、上記被塗布体上の異物付着部分に塗布された上記感光性を有する樹脂の膜厚と上記平坦部分に塗布された上記感光性を有する樹脂の膜厚の差分が感光するのに十分かつ適正な露光エネルギー量で露光する第二の露光工程を含むことを特徴とする電子デバイスの製造方法。
In the manufacturing method of an electronic device including a step of applying a photosensitive resin and performing pattern formation by a photolithography method,
The photosensitive resin is used so as to reduce the difference between the film thickness of the photosensitive resin applied to the foreign material adhering portion on the substrate and the film thickness of the photosensitive resin applied to the flat portion. A thick coating process,
With the exposure energy amount appropriate for the photosensitive resin applied to the flat portion on the coated body to be exposed through the first mask on which the light shielding film pattern corresponding to the desired pattern is formed. A first exposure step for exposing;
The film thickness of the photosensitive resin applied to the foreign matter adhesion portion on the coated body and the flat portion through the second mask on which the light shielding film pattern is formed so as to cover the desired pattern. A method of manufacturing an electronic device, comprising: a second exposure step in which exposure is performed with an exposure energy amount that is sufficient and appropriate for the difference in film thickness of the applied resin having photosensitivity to be exposed.
第一の露光と第二の露光は、連続して行われることを特徴とする請求項1または請求項2記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1, wherein the first exposure and the second exposure are performed continuously .
JP15263997A 1997-06-10 1997-06-10 Manufacturing method of electronic device Expired - Lifetime JP3969789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15263997A JP3969789B2 (en) 1997-06-10 1997-06-10 Manufacturing method of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15263997A JP3969789B2 (en) 1997-06-10 1997-06-10 Manufacturing method of electronic device

Publications (2)

Publication Number Publication Date
JPH113844A JPH113844A (en) 1999-01-06
JP3969789B2 true JP3969789B2 (en) 2007-09-05

Family

ID=15544807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15263997A Expired - Lifetime JP3969789B2 (en) 1997-06-10 1997-06-10 Manufacturing method of electronic device

Country Status (1)

Country Link
JP (1) JP3969789B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265286B (en) * 2019-05-21 2021-07-06 信利半导体有限公司 Cleaning method of substrate base plate

Also Published As

Publication number Publication date
JPH113844A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US6153361A (en) Method of removing photoresist at the edge of wafers
KR100772267B1 (en) Liquid crystal display panel and manufacturing method thereof
JPH055174B2 (en)
JP3969789B2 (en) Manufacturing method of electronic device
KR20010065038A (en) method for fabricating thin film transistor and array substrate for liquid crystal display device
KR100526527B1 (en) Photomask and foaming mask pattern using the same
KR20080045669A (en) A method for forming a pattern by using a printed pattern
TWI238456B (en) Composite layer method for minimizing PED effect
JPH08272107A (en) Forming method for resist pattern
JP2006512757A (en) Method for producing TFT device formed by printing
JP6767601B1 (en) Photomask
JPS62245251A (en) Resist pattern forming method
CN108010923A (en) TFT substrate production method
JP2001228634A (en) Resist pattern forming method, etching method, method for producing microstructure, microstructure and liquid crystal display
JPH07130751A (en) Method of patterning aluminum system metal film
KR960000187B1 (en) Defect eleminating method of chrome mask
CN110297388B (en) Photomask, method for manufacturing photomask, and method for manufacturing electronic device
JPH11149152A (en) Grounding method and photomask blanks
WO2020208848A1 (en) Photo mask
JPS6315249A (en) Manufacture of optical mask
JPH03271738A (en) Manufacture of photomask
KR0138066B1 (en) The manufacture of phase shift mask
JP2000010298A (en) Production of semiconductor device
JP2804253B2 (en) Electronic device
JPH0760928B2 (en) Wiring formation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term