JP3969185B2 - Pure water production equipment - Google Patents

Pure water production equipment Download PDF

Info

Publication number
JP3969185B2
JP3969185B2 JP2002151025A JP2002151025A JP3969185B2 JP 3969185 B2 JP3969185 B2 JP 3969185B2 JP 2002151025 A JP2002151025 A JP 2002151025A JP 2002151025 A JP2002151025 A JP 2002151025A JP 3969185 B2 JP3969185 B2 JP 3969185B2
Authority
JP
Japan
Prior art keywords
activated carbon
water
biological activated
tower
carbon tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002151025A
Other languages
Japanese (ja)
Other versions
JP2003340481A (en
Inventor
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002151025A priority Critical patent/JP3969185B2/en
Publication of JP2003340481A publication Critical patent/JP2003340481A/en
Application granted granted Critical
Publication of JP3969185B2 publication Critical patent/JP3969185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、残留塩素を含む原水の処理に好適な生物活性炭塔を備えた純水製造装置に関する。
【0002】
【従来の技術及び先行技術】
従来、半導体洗浄用水として用いられている超純水は、図2に示すように前処理システム1、一次純水系システム2、サブシステム3から構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造される。図2において各システムの役割は次の通りである。
【0003】
凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などよりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。
【0004】
逆浸透膜分離装置、脱気装置及びイオン交換装置(混床式又は4床5塔式など)を備える一次純水系システム2では、原水中のイオンや有機成分の除去を行う。なお、逆浸透膜分離装置では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置では無機系炭素(IC)、溶存酸素の除去を行う。
【0005】
低圧紫外線酸化装置、イオン交換純水装置及び限外濾過膜分離装置を備えるサブシステム3では、水の純度をより一層高め超純水にする。なお、低圧紫外線酸化装置では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換樹脂で除去される。限外濾過膜分離装置では、微粒子が除去され、イオン交換樹脂の流出粒子も除去される。
【0006】
このような従来の超純水製造装置で得られる超純水のTOC濃度は、おおむね1μg/L程度である。
【0007】
ところで、LSIの超微細化、高集積化に伴い、超LSIチップ製造における洗浄水としての超純水中の不純物の影響はより大きくなってきている。超純水中の不純物は主に低分子系有機物であり、従って、低分子系有機物成分をより一層効率良く除去する高性能の超純水製造装置が必要となってくる。
【0008】
特開平6−126271号公報には、一次純水系システムに、通常の活性炭と細孔径20〜1000Åの細孔を全細孔の5〜10%以上持つ高性能活性炭とシリカアルミナ系吸着剤との3層からなる多層吸着装置を設置することにより、逆浸透膜分離装置やイオン交換装置では除去することが難しい有機物を効率良く除去することが報告されているが、この方法は単なる吸着による有機物除去法であるため、充填剤の吸着能が飽和に達してしまうと破過してしまうという欠点がある。また、吸着によるTOC除去効果が期待できるのは、初期吸着と呼ばれる通水開始から約2ヶ月ぐらいの間であり、それ以降の除去効果は期待できないという欠点もある。
【0009】
本発明者は、このような問題点を解決し、原水中の有機物、特に低分子系有機物成分を効率的に除去することができ、TOC濃度が極めて低く、高純度な超純水を製造することができる超純水製造装置として、生物活性炭塔を備えるものを提案した(特願2002−122628。以下「先願」という。)。
【0010】
先願の発明では、超純水中に含まれる有機物が低分子系有機物であることに注目し、低分子系有機物の分解性能に優れている生物処理と活性炭による吸着処理効果を併せ持った生物活性炭塔を一次純水系システムに導入することにより、超純水中のTOC濃度の低減を可能とした。
【0011】
この生物活性炭塔の有機物除去機構は
(1) 活性炭による有機物吸着効果
(2) 生物膜による有機物分解効果
(3) 活性炭内の微生物が活性炭に吸着した有機物を分解して細孔容積を回復さ せる生物再生効果
の3つの機構よりなる。この生物活性炭塔は、活性炭自体の吸着能が飽和に達するまでの時間が著しく長い。
【0012】
【発明が解決しようとする課題】
市水系原水には一般的に抗菌作用のある残留塩素が含まれており、また、工水・井水系原水においても配管及びタンク内での微生物の繁殖を抑制する目的からNaClO等の抗菌剤が注入されるため、残留塩素が含まれる。このような残留塩素が生物活性炭塔内に流入すると、微生物の繁殖を抑制したり死滅させる可能性があるため、抗菌剤が生物活性炭塔に流入しないようにすることが望ましい。
【0013】
本発明は、残留塩素を含む水の処理に好適な生物活性炭塔を用いて、TOC濃度が極めて低い純水を製造することができる純水製造装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の純水製造装置は、比重の異なる2種以上の活性炭を充填してなる生物活性炭塔を含み、前記生物活性炭塔の後段に抗菌処理手段を備える純水製造装置であって、該抗菌処理手段が非酸化性スライムコントロール剤の添加手段及び/又は電磁場装置であり、前記生物活性炭塔が更にリン含有物を充填してなることを特徴とする。
【0015】
活性炭塔は、通常、このような残留塩素が後段の逆浸透膜分離装置やイオン交換装置に流入することを抑制して、これらを劣化させることを防止する目的で設置されるものであるが、活性炭塔において、流入原水中の残留塩素の除去に寄与する部分は塔入口側の一部のみ、即ち、例えば、下向流通水の場合には、活性炭塔の充填層の上層部のみである。従って、残留塩素を含む原水が流入した場合、充填層の上層部が残留塩素の除去層となり、充填層の中層部や下層部では、残留塩素が除去された水が流入するため、残留塩素による微生物の生育、繁殖の阻害は起こることなく、微生物が次第に繁殖して生物活性炭化してゆく。
【0016】
しかしながら、通常の活性炭塔においては、残留塩素を含む原水の処理を行った場合、微生物は繁殖しにくく、微生物による有機物分解効果は観測されにくい。その理由は、活性炭塔内の差圧上昇を抑制する目的で定期的に実施される逆洗により、生物活性炭化した中層部、下層部が逆洗時の流動で逆洗後には上層部に移動し、逆洗前に繁殖した微生物は、逆洗後の通水再開後に流入する残留塩素によって殺菌されてしまうことにある。
【0017】
本発明においては、比重の異なる2種以上の活性炭を用いるため、逆洗後には、常に比重の軽い活性炭が充填層の上層へ、比重の重い活性炭が充填層の中層から下層に位置するようになる。このため、充填層の中層〜下層の比重の重い活性炭に微生物が繁殖して生物活性炭化し、逆洗後は、この生物活性炭化した比重の重い活性炭は再び充填層の中層〜下層に位置するようになり、逆洗後に生物活性炭が充填層の上層に移動することによる流入残留塩素による微生物の生育繁殖阻害は防止され、充填層の中層〜下層で微生物を繁殖させて生物活性炭塔を安定に維持することができるようになる(なお、上向流通水の場合には、充填層の中層〜上層が生物活性炭化される。)。
【0018】
ところで、通常、一次純水系システムの前処理として行われる凝集沈澱処理には、凝集剤としてポリ塩化アルミニウム(PAC)或いは硫酸アルミニウムが使用されている。PAC及び硫酸アルミニウムの添加によって生じるアルミニウムイオンは燐と化学反応し、燐酸アルミニウムの沈殿を生じることが知られている。このため、凝集沈殿後に設置される生物活性炭塔の流入水中にはTOCの生分解に必要な燐が不足しており、生物活性炭塔において十分な有機物除去性能を得ることができなくなる。
【0019】
本発明においては、生物活性炭塔にリン含有物を充填することにより、不足する燐を補って良好な生物活性炭処理を行うことができる。リン含有物としては、骨炭、リン鉱石、ヒドロキシアパタイト等が適用できる。中でも、骨炭は有機物吸着能も備えているので好ましい。
【0020】
即ち、骨炭は家畜などの骨を熱処理して得られるものであり、その主成分は燐酸カルシウムである。従って、骨炭を生物活性炭塔に充填することにより、この骨炭から燐が溶出し、水中に不足する燐を補うことができる。
【0021】
本発明の純水製造装置は、このような生物活性炭塔を備えるものであり、生物活性炭処理により、TOC濃度の極めて低い純水を製造することができる。
【0022】
本発明の純水製造装置において、生物活性炭塔の後段の逆浸透膜分離装置及びイオン交換装置においては、生物活性炭塔からリークする余剰菌による目詰まりが懸念されるが、本発明では、生物活性炭塔の後段に抗菌処理手段を設けて生物活性炭塔の流出水を抗菌処理して微生物を死滅させるか、又はその生育を抑制することにより、逆浸透膜分離装置やイオン交換装置の目詰まりを防止することができる。
【0023】
この場合、生物活性炭塔において生分解性有機物はほぼ完全に分解除去されるため、その後段での微生物の繁殖を抑制することも可能となる。
【0024】
なお、骨炭は、上述の如く、燐酸カルシウムを主成分とするものであり、本発明において、炭素を主成分とする活性炭とは区別されるものである。
【0025】
【発明の実施の形態】
以下に本発明の純水製造装置の実施の形態を詳細に説明する。
【0026】
まず、本発明の生物活性炭塔に充填する活性炭及び骨炭について説明する。
【0027】
本発明の生物活性炭塔においては、比重の異なる2種以上の活性炭を充填する。生物活性炭塔に充填する活性炭種としては石炭系、椰子殻系などのいずれでも良く、破砕炭、造粒炭、成形炭などその形状、種類は特に制限はしない。
【0028】
本発明においては、活性炭は比重の異なる2種の活性炭を用いても良く、3種又は4種以上の活性炭を用いても良いが、一般的には2種又は3種で十分な効果を得ることができる。
【0029】
用いる活性炭の比重及び比重差には特に制限はないが、比重0.45g/L以上の活性炭の1種以上と比重0.45g/L未満の活性炭の1種以上を併用することが好ましい。また、比重の異なる活性炭を用いることにより、比重の大きい活性炭を充填層の下層に位置させ、比重の小さい活性炭を充填層の上層に位置させるために、用いる活性炭の比重差は0.05g/L以上であることが好ましい。この比重差を過度に大きくすることは、活性炭の調達の面から困難であることから、一般的には比重差は0.05〜0.1g/L程度であることが好ましい。
【0030】
前述の如く、生物活性炭塔の逆洗後、比重の小さい活性炭は、充填層の上層に、比重の大きい活性炭は充填層の下層に位置するため、本発明においては、原水の流入側に残留塩素の除去に十分な活性炭層が形成されるように、混合割合を決定することが好ましい。
【0031】
通常の場合、残留塩素の除去層となるのは、充填層の1/10〜1/20程度であるため、下向流通水の場合には、上層の比重の小さい活性炭の層がこのような割合となるように、また、上向流通水の場合には、下層の比重の大きい活性炭の層がこのような割合となるように使用割合を決定することが好ましい。
【0032】
また、このような活性炭と共に骨炭を用いる場合、骨炭は水中に生物処理に必要な十分量の燐が溶出するような量であれば良い。この燐濃度には特に制限はないが、本発明の生物活性炭塔を純水製造装置に用いる場合、水中の燐濃度が1〜100μg−P/L、好ましくは10〜50μg−P/Lとなるようにするのが好ましい。
【0033】
このような燐濃度となるように燐を溶出させるために、通常の場合、活性炭と骨炭との合計に対して骨炭を体積割合で1/10〜2/10程度用いることが好ましい。この骨炭の比重は通常0.65〜0.95g/L程度であり、活性炭より若干重くなるため、メッシュを16−32程度に調整することが好ましく、活性炭と混合して充填した場合、骨炭は充填層の中部に位置するようになる。
【0034】
本発明において、生物活性炭塔に比重0.45g/L以上の活性炭と比重0.45g/L未満の活性炭と骨炭とを充填して下向流通水する場合、比重0.45g/L以上の活性炭:比重0.45g/L未満の活性炭:骨炭=5〜8:1〜4:1〜2(体積比)、特に7.5:1.5:1(体積比)となるように用いることが好ましい。
【0035】
本発明の生物活性炭塔への充填方式は、流動床、膨張層、固定床などのいずれでもよいが、菌体のリークが少ないところから固定床が好ましい。生物活性炭塔の通水方式は上向流通水であっても下向流通水であっても良い。
【0036】
本発明の生物活性炭塔の生物担持量は、通水初期の状態でメタノール除去速度10μg/L/min以上を達成できるようなものであることが好ましい。このメタノール除去速度は、例えば、生物活性炭塔にTOCとしてメタノールを含有する水をSV20hr−1で通水したときの入口TOC濃度と出口TOC濃度とから、TOC除去量を求め、これを滞留時間(HRT)で除して求められる。
【0037】
また、生物活性炭塔内の菌体付着量は10個/g−活性炭以上、例えば10〜10個/g−活性炭とすることにより、TOC成分を著しく低濃度にまで除去することができ、好ましい。
【0038】
このような生物活性炭塔による処理条件には特に制限はないが、後述の本発明の純水製造装置に適用する場合、通水速度は、SV5〜60hr−1、特に5〜30hr−1程度とすることが好ましい。また、生物活性炭塔の給水の水温は10〜35℃、pHは4〜8であることが好ましく、従って、必要に応じて、生物活性炭塔の前段に熱交換器やpH調整剤添加手段を設けることが望ましい。
【0039】
次に図面を参照してこのような生物活性炭塔を用いた本発明の純水製造装置の実施の形態を詳細に説明する。
【0040】
図1は本発明の純水製造装置が採用された超純水製造装置の実施の形態を示す系統図である。
【0041】
一次純水系システム2の原水は、工水、市水、井水、或いはこれに回収水(超純水のコースポイントで回収された使用済超純水)を混合した水を凝集、加圧浮上(沈殿)、濾過装置等よりなる前処理システム1で処理して得られた水である。
【0042】
生物活性炭塔に流入する水を前処理しておくことにより、生物活性炭塔の活性炭の寿命が長くなる。即ち、凝集沈殿処理等の前処理を行っていない水には、有機物中の生分解性の低い高分子系有機物成分の割合が多く、このような水を生物活性炭塔に通水すると、前述の生物による有機物の分解及び活性炭の再生効果が得られないために、活性炭が早期に破過してしまう。これに対し、生物活性炭塔を一次純水系システム2に設け、前処理を経た水を生物活性炭塔に通水することにより、高分子系有機物は前処理で除去され、低分子系有機物は生物活性炭で除去される。しかも、この低分子系有機物が生物活性炭で生物的に分解されるため、生物活性炭の寿命が著しく長いものとなる。
【0043】
生物活性炭塔は、生物活性炭塔給水の溶存酸素濃度を高めるために、図1,2に示す如く、脱炭酸塔の後段に設けられることが好ましい。即ち、脱炭酸塔では、炭酸の除去のために一般に空気を吹き込むため、空気中の酸素が水中に溶け込み、生物活性炭塔に必要な溶存酸素を確保することができる。一般に、工水、市水、井水、更には回収水を前処理して得られる水のTOCは、1mg/L程度であるので、この脱炭酸塔で溶解する程度の酸素量で生物活性炭塔に必要な酸素量を十分にまかなうことができる。また、生物活性炭塔から放出される余剰菌体の除去という観点から、生物活性炭塔は逆浸透膜分離装置の前段に設置し、生物活性炭塔と逆浸透膜分離装置との間に抗菌手段を設けることが好ましい。
【0044】
なお、前述した如く、前処理システムで凝集沈殿された水には、生物活性炭によるTOCの生分解に必要な燐が不足している。本発明では、生物活性炭塔に骨炭を充填することにより、この不足している燐を補うことができるが、更に、必要に応じて生物活性炭塔の入口側において、生物活性炭塔の流入水にKHPO,KHPO等の燐酸塩及び/又は燐酸を好ましくは水溶液として添加したり、燐酸アパタイト、ヒドロキシアパタイト等の人工、又は燐鉱石等の天然の燐含有鉱物が充填した塔を設置して、生物活性炭塔の流入水をこの充填塔に通水することにより燐を溶解させても良い。これらの燐添加手段は脱炭酸塔の直後、生物活性炭塔の直前に設置することが好ましい。
【0045】
また、生物による有機物分解手段においては、給水中に燐以外に窒素が含まれていることも重要である。通常、凝集沈殿された水には、生物活性炭による有機物分解に必要分の窒素が含まれていることが常である。しかし、場合によっては不足している場合もあり、この場合には、NHCl等のアンモニウム塩水溶液を、生物活性炭塔の前段で添加することが好ましい。なお、アンモニウム塩水溶液の添加濃度は、生物活性炭塔の流入水の窒素濃度が10〜1000μg−N/L、特に100〜500μg−N/Lとなるような濃度とすることが好ましい。
【0046】
生物活性炭塔は、前述の如く、逆浸透膜分離装置の前段に設け、生物活性炭塔と逆浸透膜分離装置との間に抗菌手段を設けるのが好ましいが、生物活性炭塔から流出した菌体による逆浸透膜分離装置の目詰まりを防止するために、抗菌手段と逆浸透膜分離装置との間には保安フィルターを設けることが望ましい。
【0047】
前述の如く、市水系原水には一般的に抗菌作用のある残留塩素が含まれており、また、工水・井水系原水においても配管及びタンク内での微生物の繁殖を抑制する目的からNaClO等の酸化剤(抗菌剤)が注入されることから、生物活性炭塔の流入水中に、このような酸化剤由来の残留塩素が存在するが、本発明では、この残留塩素は、生物活性炭塔内の入口側の活性炭層で除去される。
【0048】
このように、生物活性炭塔内で残留塩素を除去するため、生物活性炭塔の直前まで残留塩素による微生物の繁殖抑制作用を得ることができる。
【0049】
なお、本発明においては、生物活性炭塔内で残留塩素が除去されるため、残留塩素を除去するための手段を設ける必要はないが、必要に応じて、還元剤の添加手段、活性炭や触媒が充填された抗菌剤除去塔を生物活性炭塔の入口側に設置しても良い。
【0050】
生物活性炭塔において、生物活性炭処理でTOC成分が除去された生物活性炭塔の流出水は、非酸化性スライムコントロール剤を添加するか、電磁場装置により電磁場を印加することにより抗菌処理する。この抗菌処理手段は、生物活性炭塔の直後に設けることが好ましい。
【0051】
なお、抗菌処理手段としては、非酸化性スライムコントロール剤の添加手段と電磁場装置を各々単独で用いても良く、併用しても良い。
【0052】
非酸化性スライムコントロール剤としては、2−メチル−4−イソチアゾリン−3−オン、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、或いはこれらの塩等の酸化力の弱いスライムコントロール剤や、酸化力のないスライムコントロール剤などを用いることができる。非酸化性スライムコントロール剤は1種を単独で用いても良く、2種以上を混合して用いても良い。
【0053】
非酸化性スライムコントロール剤の添加量や、電磁場装置による電磁場の印加量は、生物活性炭塔から流出した微生物による後段の逆浸透膜分離装置やイオン交換装置の目詰まりを防止し得る程度であれば良い。非酸化性スライムコントロール剤であれば、1〜10mg/L程度の添加で良好な添加効果を得ることができる。
【0054】
なお、図示の通り、生物活性炭塔及び抗菌処理手段を一次純水系システムの脱炭酸塔と逆浸透膜分離装置との間に設けることにより、脱炭酸塔による溶存酸素供給及び逆浸透膜分離装置による流出菌体の捕捉を行うことができる。
【0055】
【実施例】
以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。
【0056】
実施例1、比較例1,2
市水(TOC濃度1mg/L、塩素濃度0.6mg/L、pH6.8、水温20℃)を原水として、本発明の生物活性炭塔と通常の活性炭塔及び生物活性炭塔とにそれぞれ通水SV:20hr−1,通水速度20L/hrで1年間通水し、TOCの除去性能を比較する実験を行い、結果を図3に示した。
【0057】
なお、各塔の充填物は以下の通りであり、充填量はいずれも1Lとした。また、実施例1及び比較例2の生物活性炭塔は、メタノール分解除去速度10μg/L/minとなるように生物を担持させたものである。
【0058】
実施例1:生物活性炭塔
使用活性炭:KW10−32(クラレケミカル社製,比重0.45g/L)
GWH24−42(クラレケミカル社製,比重0.4g/L)
骨炭16−32(トーケミ社製,比重0.65g/L)
混合比:KW10−32:GWH24−42:骨炭=7.5:1.5:1(体積比)
【0059】
比較例1:活性炭塔
使用活性炭:KW10−32(クラレケミカル社製,比重0.45g/L)
【0060】
比較例2:生物活性炭塔
使用活性炭:KW10−32(クラレケミカル社製,比重0.45g/L)
なお、比較例2においては、原水に、活性炭塔又は生物活性炭塔の入口の残留塩素濃度が0mg/Lとなるように、NaHSOを添加すると共に、生物活性炭塔流入水の燐濃度が10μg−P/LとなるようにKHPOを添加した。
【0061】
TOC除去性能は、活性炭塔又は生物活性炭塔の入口のTOC濃度と出口のTOC濃度とを島津製作所社製「TOC−5000」で測定し、(出口TOC濃度÷入口TOC濃度)でTOCのリーク率を求めることにより調べた。
【0062】
図3より明らかなように、実施例1及び比較例2の生物活性炭塔のTOC除去率は比較例1の活性炭塔に比べてはるかに良く、これは、通常の活性炭塔では、活性炭による吸着性能のみでTOCを除去するため、早期に活性炭の吸着能が飽和し、TOCがリークしてくるのに対して、生物活性炭塔では、活性炭による吸着のみならず、生物によるTOC分解と生物による活性炭の吸着能の再生作用が得られ、長期に亘りTOC除去能が維持されることによるものである。
【0063】
また、残留塩素の除去を行わず、燐の補充も行わなかった実施例1の生物活性炭塔では、残留塩素除去を行い、水中に不足する燐を補った後、比較例2の生物活性炭塔と同等の性能を発揮することから、本発明では残留塩素除去手段、燐溶解手段といった薬注設備を省くことが可能となることがわかる。
【0064】
実施例2
市水(TOC濃度1mg/L、塩素濃度0.6mg/L、pH6.8、水温20℃、)を、2m/hrの処理量で一次純水系システムとしての脱炭酸塔、生物活性炭塔、逆浸透膜分離装置、混床式イオン交換装置、脱気装置及び逆浸透膜分離装置に順次通水した後、サブシステムとしての低圧紫外線酸化装置、イオン交換純水装置、及び限外濾過膜分離装置に順次通水して処理して超純水を製造する超純水製造装置において、得られた超純水(限外濾過膜分離装置の出口水)のTOC濃度を調べ、結果を表1に示した。
【0065】
超純水のTOC濃度はアナテル社製「A−1000XP」を用いて測定した。
【0066】
なお、用いた生物活性炭塔は、実施例1で用いたものと同様の充填物及びメタノール除去性能のものであり、通水SVは20hr−1とした。生物活性炭塔の流出水には非酸化性スライムコントロール剤として2−メチル−4−イソチアゾリン−3−オンを3mg/Lに添加して抗菌処理した後逆浸透膜分離装置に供給した。
【0067】
比較例3
実施例1において、生物活性炭塔の代りに比較例1で用いたものと同様の活性炭塔を用いたこと以外は同様にして超純水の製造を行い、得られた超純水のTOC濃度を調べ、結果を表1に示した。
【0068】
【表1】

Figure 0003969185
【0069】
表1より次のことが明らかである。
【0070】
即ち、活性炭塔で処理した比較例3では、通水日数に伴いTOC値が増加し超純水中のTOC値は1μg/L程度で安定した。これは図3で示した活性炭塔での傾向と同じである。一方、生物活性炭塔を用いた実施例2においては通水日数によらず超純水のTOC濃度は0.2〜0.3μg/L程度で安定しており、図3で示した、生物活性炭塔単独の時とは傾向が異なる。これは、一部のTOC成分が生物活性炭塔内で完全に分解、吸着除去されなかったとしても、生物活性炭塔を通過することにより生物によって何らかの形態変化を受け、後段の逆浸透膜分離装置やイオン交換装置で除去可能物質に変化したため、TOC濃度が低い値で安定するためと考えられる。
【0071】
上記結果より、本発明の生物活性炭塔を設けることにより、超純水中のTOCを大幅に削減することができることがわかる。
【0072】
なお、実施例2において、生物活性炭塔の後段の逆浸透膜分離装置の透過水量の経時変化を調べ、結果を図4に示した。
【0073】
また、比較のため非酸化性スライムコントロール剤を添加しなかったこと以外は同様に処理を行った場合の生物活性炭塔の後段の逆浸透膜分離装置の透過水量の経時変化を調べ、結果を図4に併記した。
【0074】
図4より明らかなように、生物活性炭塔流出水に非酸化性スライムコントロール剤を添加した場合には、通水開始から40日を経過しても透過水量の低下は認められないが、非酸化性スライムコントロール剤を添加しない場合には、通水開始から徐々に透過水量が低下して、40日後には初期透過水量の75%にまで低下した。
【0075】
【発明の効果】
以上詳述した通り、本発明の生物活性炭塔によれば、残留塩素を含有する原水であっても、残留塩素除去手段を別途設けることなく、効率的に生物活性炭処理してTOCを高度に除去することができる。また、このような本発明の生物活性炭塔を用いた本発明の純水製造装置によれば、TOC濃度が著しく低い、不純物の問題のない高純度な純水ないし超純水を長期に亘り安定に製造することができる。本発明の純水製造装置により製造された超純水は、超LSIチップ洗浄水として、良好な洗浄効果を得ることができる。
【図面の簡単な説明】
【図1】 本発明の純水製造装置が採用された超純水製造装置の実施の形態を示す系統図である。
【図2】 従来の超純水製造装置を示す系統図である。
【図3】 実施例1,比較例1,2の結果を示すグラフである。
【図4】 実施例2の結果を示すグラフである。
【符号の説明】
1 前処理システム
2 一次純水系システム
3 サブシステム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pure water production apparatus equipped with a biological activated carbon tower suitable for treating raw water containing residual chlorine.
[0002]
[Prior art and prior art]
Conventionally, as shown in FIG. 2, ultrapure water used as semiconductor cleaning water is raw water (industrial water, industrial water, etc.) in an ultrapure water production apparatus comprising a pretreatment system 1, a primary pure water system 2, and a subsystem 3. Manufactured by treating city water, well water, etc.). In FIG. 2, the role of each system is as follows.
[0003]
In the pretreatment system 1 composed of agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc., suspended substances and colloidal substances in raw water are removed. In this process, it is also possible to remove high molecular organic substances, hydrophobic organic substances, and the like.
[0004]
In the primary pure water system 2 including a reverse osmosis membrane separation device, a deaeration device, and an ion exchange device (such as a mixed bed type or a 4-bed, 5-tower type), ions and organic components in raw water are removed. The reverse osmosis membrane separation apparatus removes salts and ionic and colloidal TOC. The ion exchange apparatus removes salts and removes the TOC component adsorbed or ion exchanged by the ion exchange resin. In the deaerator, inorganic carbon (IC) and dissolved oxygen are removed.
[0005]
In the subsystem 3 including the low-pressure ultraviolet oxidation device, the ion-exchange pure water device, and the ultrafiltration membrane separation device, the purity of water is further increased to ultrapure water. In the low-pressure ultraviolet oxidizer, TOC is decomposed into organic acids and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp. Organic substances and CO 2 produced by the decomposition are removed by an ion exchange resin in the subsequent stage. In the ultrafiltration membrane separation device, the fine particles are removed, and the outflow particles of the ion exchange resin are also removed.
[0006]
The TOC concentration of ultrapure water obtained with such a conventional ultrapure water production apparatus is about 1 μg / L.
[0007]
By the way, with the miniaturization and high integration of LSIs, the influence of impurities in ultrapure water as cleaning water in the manufacture of VLSI chips is increasing. Impurities in ultrapure water are mainly low molecular organic substances, and therefore, a high-performance ultrapure water production apparatus that more efficiently removes low molecular organic components becomes necessary.
[0008]
Japanese Patent Application Laid-Open No. 6-126271 discloses a high-performance activated carbon having a primary pure water system having 5 to 10% of total pores having a pore diameter of 20 to 1000 mm and a silica alumina type adsorbent. Although it has been reported that organic substances that are difficult to remove by reverse osmosis membrane separators and ion exchangers can be removed efficiently by installing a three-layer multilayer adsorber, this method removes organic substances by simple adsorption. Therefore, there is a drawback in that if the adsorption capacity of the filler reaches saturation, it breaks through. Further, the TOC removal effect by adsorption can be expected for about two months from the start of water flow called initial adsorption, and there is also a drawback that the removal effect after that cannot be expected.
[0009]
The present inventor solves such problems and can efficiently remove organic matter, particularly low molecular weight organic matter components in raw water, and produces ultrapure water having a very low TOC concentration and high purity. As an apparatus for producing ultrapure water, an apparatus equipped with a biological activated carbon tower has been proposed (Japanese Patent Application No. 2002-122628, hereinafter referred to as “prior application”).
[0010]
In the invention of the prior application, paying attention to the fact that the organic substance contained in ultrapure water is a low molecular organic substance, the biological activated carbon having both the biological treatment excellent in the decomposition performance of the low molecular organic substance and the adsorption treatment effect by activated carbon By introducing the tower into the primary pure water system, it was possible to reduce the TOC concentration in the ultrapure water.
[0011]
The organic matter removal mechanism of this biological activated carbon tower
(1) Organic matter adsorption effect by activated carbon
(2) Organic matter decomposition effect by biofilm
(3) It consists of three mechanisms of the bioregeneration effect in which the microorganisms in the activated carbon decompose the organic matter adsorbed on the activated carbon and restore the pore volume. In this biological activated carbon tower, the time until the adsorption ability of the activated carbon itself reaches saturation is remarkably long.
[0012]
[Problems to be solved by the invention]
City water-based raw water generally contains residual chlorine that has antibacterial activity. In addition, antibacterial agents such as NaClO are used in industrial and well water-based raw water to suppress the growth of microorganisms in pipes and tanks. As it is injected, it contains residual chlorine. When such residual chlorine flows into the biological activated carbon tower, there is a possibility that the growth of microorganisms may be suppressed or killed. Therefore, it is desirable that the antibacterial agent does not flow into the biological activated carbon tower.
[0013]
An object of this invention is to provide the pure water manufacturing apparatus which can manufacture the pure water with a very low TOC density | concentration using the biological activated carbon tower suitable for the process of the water containing a residual chlorine.
[0014]
[Means for Solving the Problems]
The pure water production apparatus of the present invention is a pure water production apparatus comprising a biological activated carbon tower formed by packing two or more kinds of activated carbons having different specific gravities, and comprising an antibacterial treatment means at the subsequent stage of the biological activated carbon tower. processing means Ri adding means and / or electromagnetic field device der nonoxidizing slime control agent, wherein the biological activated carbon column is further characterized in Rukoto such by filling a phosphorus-containing substance.
[0015]
The activated carbon tower is usually installed for the purpose of suppressing such residual chlorine from flowing into the subsequent reverse osmosis membrane separation device or ion exchange device and preventing them from deteriorating, In the activated carbon tower, the part that contributes to the removal of residual chlorine in the inflow raw water is only a part on the inlet side of the tower, that is, in the case of, for example, downward circulating water, only the upper layer part of the packed bed of the activated carbon tower. Therefore, when raw water containing residual chlorine flows in, the upper layer of the packed bed becomes a residual chlorine removal layer, and the water from which residual chlorine has been removed flows in the middle and lower layers of the packed bed. There is no inhibition of the growth and reproduction of microorganisms, and microorganisms gradually grow and bioactive carbonize.
[0016]
However, in a normal activated carbon tower, when raw water containing residual chlorine is treated, microorganisms hardly propagate and the organic matter decomposition effect by microorganisms is hardly observed. The reason for this is that the biologically activated carbonized middle layer and lower layer move to the upper layer after backwashing due to the flow during backwashing by backwashing performed periodically to suppress the rise in differential pressure in the activated carbon tower. However, the microorganisms that proliferated before backwashing are sterilized by residual chlorine that flows in after resuming water flow after backwashing.
[0017]
In the present invention, since two or more kinds of activated carbons having different specific gravities are used, after backwashing, activated carbon having a low specific gravity is always located in the upper layer of the packed bed, and activated carbon having a higher specific gravity is positioned from the middle layer to the lower layer of the packed bed. Become. For this reason, microorganisms grow on the activated carbon with a high specific gravity in the middle layer to the lower layer of the packed bed to convert it into a biological activated carbon. After backwashing, this activated carbon with a higher specific gravity is again located in the middle to lower layer of the packed bed. Inhibition of growth and propagation of microorganisms due to residual chlorine flowing in due to the biological activated carbon moving to the upper layer of the packed bed after backwashing, preventing the growth and reproduction of microorganisms from the middle to lower layers of the packed bed, and maintaining the biological activated carbon tower stably (In the case of upward circulating water, the middle layer to the upper layer of the packed bed are bioactive carbonized.)
[0018]
Incidentally, polyaluminum chloride (PAC) or aluminum sulfate is usually used as a flocculant in the coagulation-precipitation treatment performed as a pretreatment of the primary pure water system. Aluminum ions generated by the addition of PAC and aluminum sulfate are known to chemically react with phosphorus, resulting in precipitation of aluminum phosphate. For this reason, phosphorus necessary for biodegradation of TOC is insufficient in the inflow water of the biological activated carbon tower installed after coagulation sedimentation, and sufficient organic substance removal performance cannot be obtained in the biological activated carbon tower.
[0019]
In the present invention, by filling the biological activated carbon tower with a phosphorus-containing material, it is possible to compensate for the insufficient phosphorus and perform a favorable biological activated carbon treatment. As the phosphorus-containing material, bone charcoal, phosphorus ore, hydroxyapatite and the like can be applied. Among these, bone charcoal is preferable because it also has an organic matter adsorption ability.
[0020]
That is, bone charcoal is obtained by heat-treating bones of livestock and the like, and its main component is calcium phosphate. Therefore, by filling bone charcoal into the biological activated carbon tower, phosphorus is eluted from the bone charcoal, and the phosphorus deficient in the water can be compensated.
[0021]
Water purifying system of the present invention are those having such organisms activated carbon column, the biological activated carbon treatment, it is possible to produce a very low pure water TOC concentration.
[0022]
In the pure water production apparatus of the present invention, in the reverse osmosis membrane separation apparatus and ion exchange apparatus in the latter stage of the biological activated carbon tower, there is a concern about clogging due to surplus bacteria leaking from the biological activated carbon tower. Prevent clogging of reverse osmosis membrane separators and ion exchangers by providing antibacterial treatment means at the rear of the tower and killing microorganisms by antibacterial treatment of the effluent water from the biological activated carbon tower or suppressing its growth can do.
[0023]
In this case, since the biodegradable organic matter is almost completely decomposed and removed in the biological activated carbon tower, it is possible to suppress the propagation of microorganisms in the subsequent stage.
[0024]
As described above, bone charcoal is mainly composed of calcium phosphate, and is distinguished from activated carbon based on carbon in the present invention.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the pure water production apparatus of the present invention will be described in detail below.
[0026]
First, the activated carbon and bone charcoal packed in the biological activated carbon tower of the present invention will be described.
[0027]
In the biological activated carbon tower of the present invention, two or more kinds of activated carbons having different specific gravities are packed. The activated carbon type to be packed in the biological activated carbon tower may be any of coal-based, coconut shell-based, and the shape and type of crushed coal, granulated coal, and formed coal are not particularly limited.
[0028]
In the present invention, the activated carbon may be two kinds of activated carbons having different specific gravities, or three or more kinds of activated carbons may be used, but generally two or three kinds of sufficient effects are obtained. be able to.
[0029]
Although there is no restriction | limiting in particular in specific gravity and specific gravity difference of activated carbon to be used, It is preferable to use together 1 or more types of activated carbon with a specific gravity of 0.45 g / L or more and 1 or more types of activated carbon with a specific gravity of less than 0.45 g / L. In addition, by using activated carbons having different specific gravities, the specific gravity difference between the activated carbons used is 0.05 g / L in order to locate the activated carbons having a large specific gravity in the lower layer of the packed bed and the activated carbons having a lower specific gravity in the upper layer of the packed bed. The above is preferable. Since it is difficult to excessively increase the specific gravity difference from the viewpoint of procurement of activated carbon, it is generally preferable that the specific gravity difference is about 0.05 to 0.1 g / L.
[0030]
As described above, after backwashing the biological activated carbon tower, the activated carbon having a low specific gravity is located in the upper layer of the packed bed, and the activated carbon having a higher specific gravity is located in the lower layer of the packed bed. It is preferable to determine the mixing ratio so that an activated carbon layer sufficient for the removal of is formed.
[0031]
In the normal case, the residual chlorine removal layer is about 1/10 to 1/20 of the packed bed. Therefore, in the case of downward circulating water, an activated carbon layer with a small specific gravity of the upper layer is In addition, in the case of upward circulating water, it is preferable to determine the usage ratio so that the layer of activated carbon having a large specific gravity in the lower layer has such a ratio.
[0032]
In addition, when bone charcoal is used together with such activated carbon, the bone charcoal may be in such an amount that a sufficient amount of phosphorus necessary for biological treatment is eluted in water. The phosphorus concentration is not particularly limited, but when the biological activated carbon tower of the present invention is used in a pure water production apparatus, the phosphorus concentration in water is 1 to 100 μg-P / L, preferably 10 to 50 μg-P / L. It is preferable to do so.
[0033]
In order to elute phosphorus so as to have such a phosphorus concentration, it is usually preferable to use bone charcoal in a volume ratio of about 1/10 to 2/10 with respect to the total of activated carbon and bone charcoal. Since the specific gravity of this bone charcoal is usually about 0.65 to 0.95 g / L and slightly heavier than activated carbon, it is preferable to adjust the mesh to about 16-32. It comes to be located in the middle of the packed bed.
[0034]
In the present invention, when the biological activated carbon tower is filled with activated carbon having a specific gravity of 0.45 g / L or more, activated carbon having a specific gravity of less than 0.45 g / L, and bone charcoal, the activated carbon having a specific gravity of 0.45 g / L or more. : Activated carbon with a specific gravity of less than 0.45 g / L: Bone charcoal = 5-8: 1 to 4: 1 to 2 (volume ratio), especially 7.5: 1.5: 1 (volume ratio) preferable.
[0035]
The method of filling the biological activated carbon tower of the present invention may be any of a fluidized bed, an expanded bed, a fixed bed, etc., but a fixed bed is preferred from the viewpoint of less bacterial cell leakage. The water flow system of the biological activated carbon tower may be upward circulating water or downward circulating water.
[0036]
The biological support amount of the biological activated carbon tower of the present invention is preferably such that a methanol removal rate of 10 μg / L / min or more can be achieved in the initial stage of water flow. The methanol removal rate is determined, for example, by calculating the TOC removal amount from the inlet TOC concentration and the outlet TOC concentration when water containing methanol as TOC is passed through the biological activated carbon tower with SV20hr −1 , and this is determined as the residence time ( HRT).
[0037]
Moreover, the amount of microbial cells in the biological activated carbon tower can be 10 6 / g-activated carbon or more, for example, 10 6 to 10 8 / g-activated carbon, so that the TOC component can be removed to a significantly low concentration. ,preferable.
[0038]
Although there is no restriction | limiting in particular in the treatment conditions by such a biological activated carbon tower, When applying to the pure water manufacturing apparatus of this invention mentioned later, a water flow rate is SV5-60hr < -1 >, especially about 5-30hr < -1 >. It is preferable to do. Moreover, it is preferable that the water temperature of the feed water of a biological activated carbon tower is 10-35 degreeC, and pH is 4-8, Therefore, a heat exchanger and a pH adjuster addition means are provided in the front | former stage of a biological activated carbon tower as needed. It is desirable.
[0039]
Referring now to the drawings such organisms embodiment is described embodiment in detail of the pure water production device of the present invention using the activated carbon column.
[0040]
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production apparatus employing the pure water production apparatus of the present invention.
[0041]
The raw water of the primary pure water system 2 agglomerates, pressurizes and floats water from industrial water, city water, well water, or water mixed with recovered water (used ultrapure water collected at the course point of ultrapure water). (Precipitation) is water obtained by treatment with a pretreatment system 1 comprising a filtration device or the like.
[0042]
By pretreating the water flowing into the biological activated carbon tower, the life of the activated carbon in the biological activated carbon tower is extended. That is, in the water that has not been subjected to pretreatment such as coagulation sedimentation treatment, the ratio of the high-molecular-weight organic matter component having low biodegradability in the organic matter is large, and when such water is passed through the biological activated carbon tower, Since the organic matter cannot be decomposed by living organisms and the activated carbon is not regenerated, the activated carbon breaks through early. On the other hand, the biological activated carbon tower is provided in the primary pure water system 2 and the pre-treated water is passed through the biological activated carbon tower, so that the high molecular weight organic matter is removed by the pretreatment, and the low molecular weight organic matter is the biological activated carbon. Is removed. In addition, since the low molecular weight organic matter is biologically decomposed by the biological activated carbon, the life of the biological activated carbon becomes extremely long.
[0043]
In order to increase the dissolved oxygen concentration of the biological activated carbon tower feed water, the biological activated carbon tower is preferably provided at the rear stage of the decarboxylation tower as shown in FIGS. That is, in the decarbonation tower, air is generally blown to remove carbonic acid, so that oxygen in the air dissolves in the water, and the dissolved oxygen necessary for the biological activated carbon tower can be secured. Generally, since the TOC of water obtained by pretreatment of industrial water, city water, well water, and recovered water is about 1 mg / L, the biological activated carbon tower has an oxygen amount that can be dissolved in this decarbonation tower. Can sufficiently cover the amount of oxygen required. In addition, from the viewpoint of removing surplus cells released from the biological activated carbon tower, the biological activated carbon tower is installed in front of the reverse osmosis membrane separation device, and antibacterial means are provided between the biological activated carbon tower and the reverse osmosis membrane separation device. It is preferable.
[0044]
As described above, the water coagulated and precipitated in the pretreatment system lacks phosphorus necessary for biodegradation of TOC by biological activated carbon. In the present invention, this short phosphorus can be compensated by filling the biological activated carbon tower with bone charcoal, and if necessary, KH can be added to the inflow water of the biological activated carbon tower at the inlet side of the biological activated carbon tower. 2 PO 4 , K 2 HPO 4 and other phosphates and / or phosphoric acid are added as an aqueous solution, or a tower filled with natural phosphorus-containing minerals such as phosphate apatite and hydroxyapatite, or phosphate ore is installed. Then, phosphorus may be dissolved by passing the inflow water of the biological activated carbon tower through this packed tower. These phosphorus addition means are preferably installed immediately after the decarbonation tower and immediately before the biological activated carbon tower.
[0045]
In addition, in organic matter decomposing means by living organisms, it is also important that the water supply contains nitrogen in addition to phosphorus. Usually, the water that has been coagulated and precipitated usually contains nitrogen necessary for organic matter decomposition by biological activated carbon. However, in some cases, it may be insufficient. In this case, it is preferable to add an aqueous ammonium salt solution such as NH 4 Cl before the biological activated carbon tower. The addition concentration of the aqueous ammonium salt solution is preferably such that the nitrogen concentration of the inflow water of the biological activated carbon tower is 10 to 1000 μg-N / L, particularly 100 to 500 μg-N / L.
[0046]
As described above, the biological activated carbon tower is preferably provided in the preceding stage of the reverse osmosis membrane separation device, and an antibacterial means is preferably provided between the biological activated carbon tower and the reverse osmosis membrane separation device. In order to prevent clogging of the reverse osmosis membrane separator, it is desirable to provide a security filter between the antibacterial means and the reverse osmosis membrane separator.
[0047]
As mentioned above, municipal raw water generally contains residual chlorine that has an antibacterial action, and in industrial and well water raw water, NaClO and the like are used for the purpose of suppressing the growth of microorganisms in pipes and tanks. Therefore, residual chlorine derived from such an oxidizing agent is present in the inflow water of the biological activated carbon tower. In the present invention, this residual chlorine is contained in the biological activated carbon tower. It is removed by the activated carbon layer on the inlet side.
[0048]
In this way, since residual chlorine is removed in the biological activated carbon tower, it is possible to obtain an effect of suppressing the growth of microorganisms by the residual chlorine until just before the biological activated carbon tower.
[0049]
In the present invention, since residual chlorine is removed in the biological activated carbon tower, it is not necessary to provide means for removing residual chlorine, but if necessary, means for adding a reducing agent, activated carbon and catalyst may be used. You may install the filled antibacterial agent removal tower in the entrance side of a biological activated carbon tower.
[0050]
In biological activated carbon column, effluent biological activated carbon tower TOC component is removed by the biological activated carbon treatment, or adding a non-oxidizing slime control agent, you antimicrobial treatment by applying an electromagnetic field by field device. This antibacterial treatment means is preferably provided immediately after the biological activated carbon tower.
[0051]
As the antibacterial treatment means, a non-oxidizing slime control agent addition means and an electromagnetic field device may be used alone or in combination.
[0052]
As a non-oxidizing slime control agent, 2-methyl-4-isothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one, or a slime control agent having a weak oxidizing power such as a salt thereof In addition, a slime control agent having no oxidizing power can be used. A non-oxidizing slime control agent may be used individually by 1 type, and 2 or more types may be mixed and used for it.
[0053]
The amount of non-oxidizing slime control agent added and the amount of electromagnetic field applied by the electromagnetic field device are sufficient to prevent clogging of the reverse osmosis membrane separation device and ion exchange device in the latter stage caused by microorganisms flowing out from the biological activated carbon tower. good. If it is a non-oxidizing slime control agent, a good addition effect can be obtained by addition of about 1 to 10 mg / L.
[0054]
As shown in the figure, the biological activated carbon tower and the antibacterial treatment means are provided between the decarbonation tower of the primary pure water system and the reverse osmosis membrane separation device, so that the dissolved oxygen supply by the decarbonation tower and the reverse osmosis membrane separation device The spilled bacterial cells can be captured.
[0055]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0056]
Example 1, Comparative Examples 1 and 2
Using city water (TOC concentration 1 mg / L, chlorine concentration 0.6 mg / L, pH 6.8, water temperature 20 ° C.) as raw water, water is passed through the biological activated carbon tower of the present invention, a normal activated carbon tower, and a biological activated carbon tower, respectively. : 20 hr −1 , water flow rate was 20 L / hr for 1 year, and an experiment was conducted to compare the removal performance of TOC. The results are shown in FIG.
[0057]
In addition, the packing of each tower was as follows, and the packing amount was 1L for all. In addition, the biological activated carbon towers of Example 1 and Comparative Example 2 are those on which a living organism is supported so that the methanol decomposition removal rate is 10 μg / L / min.
[0058]
Example 1: Biological activated carbon tower Activated carbon: KW10-32 (Kuraray Chemical Co., Ltd., specific gravity 0.45 g / L)
GWH24-42 (Kuraray Chemical Co., specific gravity 0.4g / L)
Bone charcoal 16-32 (manufactured by Tochemi, specific gravity 0.65 g / L)
Mixing ratio: KW10-32: GWH24-42: bone charcoal = 7.5: 1.5: 1 (volume ratio)
[0059]
Comparative Example 1: Activated carbon tower Activated carbon used: KW10-32 (Kuraray Chemical Co., Ltd., specific gravity 0.45 g / L)
[0060]
Comparative Example 2: Biological activated carbon tower Activated carbon used: KW10-32 (Kuraray Chemical Co., Ltd., specific gravity 0.45 g / L)
In Comparative Example 2, NaHSO 3 was added to the raw water so that the residual chlorine concentration at the inlet of the activated carbon tower or the biological activated carbon tower was 0 mg / L, and the phosphorus concentration in the biological activated carbon tower influent water was 10 μg- It was added KH 2 PO 4 so that the P / L.
[0061]
The TOC removal performance is determined by measuring the TOC concentration at the inlet of the activated carbon tower or biological activated carbon tower and the TOC concentration at the outlet with “TOC-5000” manufactured by Shimadzu Corporation, and the leak rate of TOC by (outlet TOC concentration ÷ inlet TOC concentration). We investigated by seeking.
[0062]
As apparent from FIG. 3, the TOC removal rate of the biological activated carbon towers of Example 1 and Comparative Example 2 is much better than that of the activated carbon tower of Comparative Example 1, which is the adsorption performance by activated carbon in the normal activated carbon tower. In order to remove the TOC only, the adsorption capacity of the activated carbon is saturated early and the TOC leaks. In the biological activated carbon tower, not only the adsorption by the activated carbon but also the decomposition of the TOC by the organism and the activated carbon by the organism. This is due to the fact that the adsorptive capacity regeneration effect is obtained and the TOC removal capacity is maintained over a long period of time.
[0063]
In addition, in the biological activated carbon tower of Example 1 in which residual chlorine was not removed and phosphorus was not replenished, residual chlorine was removed to compensate for phosphorus deficient in water, and then the biological activated carbon tower in Comparative Example 2 Since the equivalent performance is exhibited, it can be seen that the present invention makes it possible to dispense with chemical injection facilities such as residual chlorine removing means and phosphorus dissolving means.
[0064]
Example 2
City water (TOC concentration 1 mg / L, chlorine concentration 0.6 mg / L, pH 6.8, water temperature 20 ° C.) with a treatment amount of 2 m 3 / hr as a decarboxylation tower, biological activated carbon tower as a primary pure water system, After passing water sequentially through a reverse osmosis membrane separator, mixed bed ion exchanger, deaerator and reverse osmosis membrane separator, low pressure ultraviolet oxidizer, ion exchange pure water device, and ultrafiltration membrane separator as subsystems In an ultrapure water production apparatus that produces ultrapure water by sequentially passing water through the apparatus, the TOC concentration of the obtained ultrapure water (the outlet water of the ultrafiltration membrane separator) was examined, and the results are shown in Table 1. It was shown to.
[0065]
The TOC concentration of ultrapure water was measured using “A-1000XP” manufactured by Anatel.
[0066]
The biological activated carbon tower used had the same packing and methanol removal performance as those used in Example 1, and the water flow SV was 20 hr −1 . To the effluent of the biological activated carbon tower, 2-methyl-4-isothiazolin-3-one as a non-oxidizing slime control agent was added to 3 mg / L for antibacterial treatment and then supplied to the reverse osmosis membrane separation device.
[0067]
Comparative Example 3
In Example 1, ultrapure water was produced in the same manner except that the same activated carbon tower as that used in Comparative Example 1 was used instead of the biological activated carbon tower, and the TOC concentration of the obtained ultrapure water was determined. The results are shown in Table 1.
[0068]
[Table 1]
Figure 0003969185
[0069]
From Table 1, the following is clear.
[0070]
That is, in Comparative Example 3 treated with the activated carbon tower, the TOC value increased with the number of water passage days, and the TOC value in ultrapure water was stabilized at about 1 μg / L. This is the same as the tendency in the activated carbon tower shown in FIG. On the other hand, in Example 2 using the biological activated carbon tower, the TOC concentration of ultrapure water is stable at about 0.2 to 0.3 μg / L regardless of the number of water passage days, and the biological activated carbon shown in FIG. The trend is different from that of the tower alone. This is because even if some TOC components are not completely decomposed and adsorbed and removed in the biological activated carbon tower, they undergo some form change by the organism by passing through the biological activated carbon tower. This is considered to be because the TOC concentration is stabilized at a low value because it is changed to a removable substance by the ion exchange device.
[0071]
From the above results, it can be seen that the TOC in ultrapure water can be greatly reduced by providing the biological activated carbon tower of the present invention.
[0072]
In Example 2, the change with time in the amount of permeated water in the reverse osmosis membrane separation device at the latter stage of the biological activated carbon tower was examined, and the results are shown in FIG.
[0073]
For comparison, the change with time in the amount of permeated water in the reverse osmosis membrane separation device in the latter stage of the biological activated carbon tower when the same treatment was performed except that the non-oxidizing slime control agent was not added was examined, and the results are shown in the figure. This is also shown in 4.
[0074]
As is clear from FIG. 4, when the non-oxidizing slime control agent was added to the biological activated carbon tower effluent water, the permeated water amount did not decrease even after 40 days from the start of the water flow. When the sex slime control agent was not added, the amount of permeated water gradually decreased from the start of water flow and decreased to 75% of the initial amount of permeated water after 40 days.
[0075]
【The invention's effect】
As described above in detail, according to the biological activated carbon tower of the present invention, even raw water containing residual chlorine can be efficiently treated with biological activated carbon to remove TOC to a high degree without providing a separate means for removing residual chlorine. can do. In addition, according to the pure water production apparatus of the present invention using such a biological activated carbon tower of the present invention, high-purity pure water or ultrapure water having a very low TOC concentration and no problem of impurities can be stably maintained over a long period of time. Can be manufactured. The ultrapure water manufactured by the pure water manufacturing apparatus of the present invention can obtain a good cleaning effect as the VLSI chip cleaning water.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production apparatus employing a pure water production apparatus of the present invention.
FIG. 2 is a system diagram showing a conventional ultrapure water production apparatus.
3 is a graph showing the results of Example 1, Comparative Examples 1 and 2. FIG.
4 is a graph showing the results of Example 2. FIG.
[Explanation of symbols]
1 Pretreatment system 2 Primary pure water system 3 Subsystem

Claims (1)

比重の異なる2種以上の活性炭を充填してなる生物活性炭塔を含み、前記生物活性炭塔の後段に抗菌処理手段を備える純水製造装置であって、
該抗菌処理手段が非酸化性スライムコントロール剤の添加手段及び/又は電磁場装置であり、前記生物活性炭塔が更にリン含有物を充填してなることを特徴とする純水製造装置。
A pure water production apparatus comprising a biological activated carbon tower formed by filling two or more kinds of activated carbons having different specific gravities, and comprising an antibacterial treatment means at a subsequent stage of the biological activated carbon tower,
Antibacterial processing means Ri adding means and / or electromagnetic field device der nonoxidizing slime control agent, the pure water production device according to claim Rukoto such with biological activated carbon column is further packed with a phosphorus-containing substance.
JP2002151025A 2002-05-24 2002-05-24 Pure water production equipment Expired - Fee Related JP3969185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151025A JP3969185B2 (en) 2002-05-24 2002-05-24 Pure water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151025A JP3969185B2 (en) 2002-05-24 2002-05-24 Pure water production equipment

Publications (2)

Publication Number Publication Date
JP2003340481A JP2003340481A (en) 2003-12-02
JP3969185B2 true JP3969185B2 (en) 2007-09-05

Family

ID=29768728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151025A Expired - Fee Related JP3969185B2 (en) 2002-05-24 2002-05-24 Pure water production equipment

Country Status (1)

Country Link
JP (1) JP3969185B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848641B2 (en) * 2005-02-01 2011-12-28 栗田工業株式会社 Pure water production method and apparatus
JP5604914B2 (en) * 2010-03-05 2014-10-15 栗田工業株式会社 Water treatment method and ultrapure water production method
KR20130014493A (en) 2010-03-05 2013-02-07 쿠리타 고교 가부시키가이샤 Water treatment method and process for producing ultrapure water
JP5915127B2 (en) * 2011-12-05 2016-05-11 栗田工業株式会社 Backwashing method of biological activated carbon tower
JP5957890B2 (en) * 2012-01-11 2016-07-27 栗田工業株式会社 Electronic industrial process wastewater recovery method and recovery device
JP6239911B2 (en) * 2013-09-19 2017-11-29 ダイキン工業株式会社 Wastewater treatment method and treatment apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229595A (en) * 1989-03-03 1990-09-12 Ebara Infilco Co Ltd Water treatment by biological active carbon
JPH0677730B2 (en) * 1989-10-02 1994-10-05 東京都 Organic wastewater treatment method
JP3461514B2 (en) * 1991-05-13 2003-10-27 株式会社明電舎 Advanced water treatment system and method of starting advanced water treatment system
JPH0787914B2 (en) * 1991-08-08 1995-09-27 栗田工業株式会社 Membrane separation method
JP3468784B2 (en) * 1992-08-25 2003-11-17 栗田工業株式会社 Ultrapure water production equipment
JP3227863B2 (en) * 1993-02-10 2001-11-12 栗田工業株式会社 Ultrapure water production method
JPH07328693A (en) * 1994-06-10 1995-12-19 Japan Organo Co Ltd Ultrapure water producing device
JP3464341B2 (en) * 1996-05-07 2003-11-10 栗田工業株式会社 Slime control method for pure water production equipment
JP3932591B2 (en) * 1997-02-10 2007-06-20 栗田工業株式会社 Pure water production method
JP3370576B2 (en) * 1997-10-09 2003-01-27 シャープ株式会社 Ultrapure water production equipment
JPH11128918A (en) * 1997-11-05 1999-05-18 Japan Steel Works Ltd:The Water treatment apparatus
JP4132436B2 (en) * 1999-07-09 2008-08-13 アタカ大機株式会社 Method and apparatus for treating volatile organochlorine compounds
JP3795268B2 (en) * 1999-08-17 2006-07-12 アタカ工業株式会社 Method and apparatus for treating wastewater containing organochlorine compounds
JP3712110B2 (en) * 2000-11-06 2005-11-02 東京都 Purification method of sewage secondary treated water

Also Published As

Publication number Publication date
JP2003340481A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
TWI408107B (en) Extra-pure water production equipment and operating method thereof
Lalezary‐Craig et al. Optimizing the removal of geosmin and 2‐methylisoborneol by powdered activated carbon
US20120223022A1 (en) Contaminant removal from waters using rare earths
JP5412834B2 (en) Ultrapure water production method and apparatus
TWI494282B (en) Water treatment method and manufacturing method of ultra pure water
JP6012402B2 (en) Apparatus and method for treating wastewater containing heavy metals
WO2012040943A1 (en) Method and apparatus for synchronously removing heavy metal and nitrate in drinking water
JP6517137B2 (en) Operation management method of water purification equipment
JP4693128B2 (en) Phosphorus recovery method and phosphorus recovery system
JP3969185B2 (en) Pure water production equipment
JP5055662B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP3948337B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2001096281A (en) Method of recovering desalted water from fluorine- containing waste water
KR20060086293A (en) A process and an apparatus for treating waters containing a biologically treated water
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JPS62110795A (en) Device for producing high-purity water
JPS6336890A (en) Apparatus for producing high-purity water
JP5217883B2 (en) Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP2010017631A (en) Method and apparatus for treating phosphoric acid-containing water
JP2002355683A (en) Ultrapure water making method and apparatus
JPH08332351A (en) Water treatment system and water treatment method
JPH03270800A (en) Treatment of organic sewage
JP2005238084A (en) Wastewater treatment system and wastewater treatment method
JP4669625B2 (en) Crystallization reactor equipped with crystallization reaction component recovery means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees