JP3968661B2 - Power generator - Google Patents

Power generator Download PDF

Info

Publication number
JP3968661B2
JP3968661B2 JP2003207092A JP2003207092A JP3968661B2 JP 3968661 B2 JP3968661 B2 JP 3968661B2 JP 2003207092 A JP2003207092 A JP 2003207092A JP 2003207092 A JP2003207092 A JP 2003207092A JP 3968661 B2 JP3968661 B2 JP 3968661B2
Authority
JP
Japan
Prior art keywords
generator
voltage
signal
power
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207092A
Other languages
Japanese (ja)
Other versions
JP2005065351A (en
Inventor
良馬 名倉
Original Assignee
西芝電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西芝電機株式会社 filed Critical 西芝電機株式会社
Priority to JP2003207092A priority Critical patent/JP3968661B2/en
Publication of JP2005065351A publication Critical patent/JP2005065351A/en
Application granted granted Critical
Publication of JP3968661B2 publication Critical patent/JP3968661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は発電装置に係り、特に原動機に直結された発電機による発電装置に関する。
【0002】
【従来の技術】
従来の発電装置の一例を図2の単線結線図を参照して説明する。
図において、1は原動機、2は調速機、4は負荷、30はブラシレス発電機、31は変圧器、32は自動電圧調整器である。このような構成の発電装置は分巻励磁方式の発電装置と呼ばれている。
【0003】
上記構成の発電装置の主要な構成機器の作用について説明する。
原動機1は、調速器2によって回転速度を調整されながらブラシレス発電機30を駆動する。自動電圧調整器32はブラシレス発電機30の電機子から変圧器31で降圧した電圧を入力とし、ブラシレス発電機30の出力電圧が一定となるように該発電機の界磁電流を調節する。ブラシレス発電機30は、主発電機33と励磁機34と整流器35により構成されている(特許文献1参照)。
【0004】
以上のような構成の発電装置は、発電機にブラシレス形を用いるため、保守性に優れており、ブラシ付発電機よりも広く一般に使用されている。また、一般に発電装置の定格では遅れ力率、例えば0.8が指定されることが多いが、負荷に遅れ無効電力を供給した場合においても自動電圧調整器がブラシレス発電機の出力電圧を自動的に制御するため、負荷へ一定の電圧で電力を供給することができる。
【0005】
図3は従来の他の発電装置の単線結線図である。
図において、1は原動機、2は調速機、3は磁石発電機(PMG)、4は負荷、36…インバータである。原動機1は、調速器2によって回転速度を調整されながら磁石発電機3を駆動する。インバータ36は、磁石発電機3の発電する交流電力の電圧と周波数を商用電力のそれらに変換して負荷4へ供給する(特許文献2参照)。
【0006】
以上のような構成の発電装置は、発電機に磁石発電機を用いているため、保守性に優れていると共に、負荷に無効電力を供給した場合においてもインバータが供給電力の電圧を制御するため、負荷へ一定の電圧で電力を供給することができる。また、図2のブラシレス発電機のように励磁機を必要としないため発電装置の寸法を小さくすることができる。
【0007】
【特許文献1】
特開平5−15198号公報
【特許文献2】
特開2002−218657号公報
【0008】
【発明が解決しようとする課題】
ところで、図2のように構成された発電装置は、発電機として励磁機を備えるブラシレス発電機を用いるため、ブラシ付き単体発電機や磁石発電機に比べて回転軸の軸長が長くなり、発電装置の寸法が大きくなるという欠点がある。また、励磁機による損失が避けられず、発電装置の効率を低下させる。
【0009】
また、図3のように構成された発電装置では、高価なインバータを必要とするため、発電装置の価格が上昇するという欠点がある。また、インバータによる損失が避けられず、発電装置の効率を低下させる。
本発明の請求項1は、上記状況に鑑みてなされたもので、その課題は、小型、低価格でかつ高効率な発電装置を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1の発電装置は、主巻線の同じ極性同士が接続され且つ制御巻線の異なる極性同士が接続された2台の可飽和リアクトルからなるリアクトル対3組と、負荷へ3相電力を供給する磁石発電機と、前記3組のリアクトル対の主巻線は前記磁石発電機のR,S,T3相の出力端子のR−S間,S―T間,T―R間にそれぞれ接続され、前記リアクトル対の制御巻線は直列に接続され,該制御巻線の直列回路の両端に直流電源とスイッチング素子の直列回路が接続され、該スイッチング素子はスイッチング動作により前記直流電源から該制御巻線の直列回路に印加される電圧を調節し前記直流電源とスイッチング素子の直列回路にカソード端子が前記直流電源の正極と接続されるように並列に接続されたダイオードと、前記磁石発電機の端子電圧を検出する電圧検出器と、電圧指令信号を出力する電圧指令信号発生器と、前記電圧指令信号発生器の出力信号から前記電圧検出器の出力信号を減算した誤差信号を出力する減算器と、前記減算器の出力する誤差信号を増幅し且つ負荷へ供給する遅れ無効電力の変動に伴う発電機電圧の変動を補償し、前記磁石発電機の電圧を所望の電圧に保つための制御信号を出力する演算増幅器と、前記演算増幅器の出力する制御信号に比例するオンデューティのパルス信号を出力するパルス発生器と、前記パルス発生器の出力信号を反転させる否定論理演算器と、前記否定論理演算器の出力するパルス信号に応じて前記スイッチング素子を開閉するドライブ回路を有し、前記スイッチング素子を開閉して前記可飽和リアクトルの制御巻線へ流れる電流を制御することで、負荷の遅れ無効電力量によって変動する前記磁石発電機の端子電圧を一定に制御することを特徴とする発電装置。
【0011】
本発明の請求項1の発電装置によると、磁石発電機の出力端子に接続された可飽和リアクトルの飽和度を自動的に調節することにより、遅れ力率運転においても磁石発電機の電圧を低下させることなく負荷へ一定電圧の電力を供給することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の一実施形態の発電装置の回路構成図である。
図において、1は原動機、2は調速機、3は磁石発電機(PMG)、4は負荷、5〜10は可飽和リアクトル、11はスイッチング素子、12は直流電源、13はダイオード、14は電圧検出器、15は電圧指令発生器、16は減算器、17は演算増幅器、18はパルス発生器、19は否定論理演算器、20はスイッチング素子11のドライブ回路である。
【0013】
次に、本実施形態の主要な構成機器の作用について説明する。
原動機1は、調速機2によって回転速度を調整されながら磁石発電機3を駆動する。磁石発電機3は負荷4へ交流電力を供給する。可飽和リアクトル5,6は主巻線の同じ極性同士を互いに向き合わせて直列に接続して一つの対のリアクトルとして用いる。可飽和リアクトル7,8および可飽和リアクトル9,10も同様に一つの対のリアクトルとして用いる。可飽和リアクトル5,6、可飽和リアクトル7,8および可飽和リアクトル9,10は各々磁石発電機3の出力端子のR−S間、S−T間、T−R間に接続され、これらには無効電力が流れる。可飽和リアクトル5〜10の制御巻線は、極性の向きを全て同じ方向にして直列に接続され、スイッチング素子11と直流電源12の直列回路の両端に接続される。スイッチング素子11はドライブ回路20によって開閉され、直流電源12から可飽和リアクトル5〜10の制御巻線直列回路へ印加される電圧の操作を行う。
【0014】
ダイオード13は可飽和リアクトル5〜10の制御巻線の直列回路の両端に接続される。また、ダイオード13のカソード側は直流電源12の正側端子に接続される。ダイオード13にはスイッチング素子11が開いている期間のみ可飽和リアクトルの制御巻線に電流が流れる。電圧検出器14は磁石発電機3の端子電圧を検出し、電圧検出信号を出力する。この電圧検出信号は磁石発電機3が定格電圧時に電圧指令発生器15の出力信号と同量となる。
【0015】
減算器16は電圧指令発生器15の出力する電圧指令信号から前記電圧検出信号を減算し、誤差信号を出力する。演算増幅器17は減算器16の出力する誤差信号を増幅し、かつ負荷4へ供給する遅れ無効電力の変動に伴う発電機電圧の変動を補償し、磁石発電機3の電圧を所望の電圧に保つための制御信号を出力する。 パルス発生器18は演算増幅器17の出力する制御信号の値に比例するオンデューティを持ったパルス信号を出力する。演算増幅器17の信号の極性は正であるとは限らず負である場合もあるが、制御信号の値の取り得る任意の範囲をオンデューティの0%〜100%に割当て、それ以外の値では0%あるいは100%の制限がかけられる。
【0016】
否定論理演算器19は前記パルス信号を反転した反転パルス信号を出力する。ドライブ回路20は前記反転パルス信号に従ってスイッチング素子11を開閉する。電圧検出器14は例えば交流直流電圧変換器を用いる。
【0017】
電圧指令発生器15、減算器16、演算増幅器17、パルス発生器18、否定論理演算器19は例えばA/D変換器を備えたワンチップマイクロコンピュータを用いる。スイッチング素子11は例えばトランジスタを用いる。
【0018】
スイッチング素子11が閉じると、可飽和リアクトル5〜10の制御巻線に直流電源12の電圧が印加され、可飽和リアクトル制御巻線に流れる直流電流が増加する。スイッチング素子11が開くと、直流電流は可飽和リアクトル制御巻線とダイオード13とから成る回路を流れ、この回路の抵抗成分とインダクタンス成分で決まる時定数で減衰する。従って、スイッチング素子11の開閉期間を操作することにより、可飽和リアクトル5〜10の制御巻線に流れる直流電流の量を調節することができる。
【0019】
可飽和リアクトル5〜10の制御巻線に流れる直流電流を増加させると、鉄心が飽和し、可飽和リアクトルのインダクタンスが減少する。逆に直流電流を減少させると、可飽和リアクトルのインダクタンスが増加する。従って、スイッチング素子11を開閉して可飽和リアクトル5〜10の制御巻線に流れる直流電流を調節することで、可飽和リアクトル5〜10のインダクタンスを調節することができる。
【0020】
図1に示すように、可飽和リアクトル5と可飽和リアクトル6の主巻線は同じ極性同士を互いに向き合わせて直列に接続されており、また、各々の制御巻線極性を同じ方向に向けて直列接続している。従って、これらの制御巻線に直流電流が流れると可飽和リアクトル5は正方向へ、可飽和リアクトル6は負方向へ、同じ量だけ飽和する。
【0021】
このような構成をとることにより可飽和リアクトル5,6は磁石発電機のR−S端子の交流電圧が印加された時、交流電圧の正側の半周期においては可飽和リアクトル5が飽和し、負側の半周期においては可飽和リアクトル6が飽和するので、正負のどちらの周期においても同量のリアクトル電流を流すことができる。可飽和リアクトル7,8および可飽和リアクトル9,10についても同様である。
【0022】
電圧検出器14は磁石発電機の電圧が定格時に電圧指令発生器15が出力する信号と同量の信号を出力する。従って、減算器16の出力する誤差信号は、電圧検出器14による検出信号が電圧指令発生器15の出力信号より大きい場合は負の誤差信号となり、小さい場合は正の誤差信号となる。誤差信号は演算増幅器17によって増幅されて、制御信号として出力されるが、この制御信号の値が大きい程、パルス発生器18のオンデューティは大きくなる。従って、パルス発生器18の出力するパルス信号のオンデューティは、磁石発電機の電圧が定格よりも大きな場合は狭く、小さな場合は広くなる。
【0023】
否定論理演算器19は、パルス信号の論理を反転して出力するため、磁石発電機3の電圧が上がればスイッチング素子11のオン期間は長くなり、逆の場合は短くなる。これらの結果、磁石発電機3の電圧が上がれば可飽和リアクトル5〜10の飽和量が増加してインダクタンスが小さくなり、逆の場合は飽和量が減少してインダクタンスが大きくなる。可飽和リアクトル5〜10のインダクタンスが小さくなると、同リアクタンスへ流れる電流が増加し、電機子反作用により磁石発電機3の電圧は下がり、その逆の場合は磁石発電機3の電圧は上がる。従って、負荷に遅れ無効電力を供給した場合に電機子反作用により端子電圧が低下してしまう磁石発電機3においても、可飽和リアクトルに流れる遅れ無効電力を調節することで、出力電圧を一定に制御することが可能となる。
【0024】
本実施形態は以上のような構成とすることにより、一般に発電装置の定格として指定される遅れ力率(例えば0.8)での運転時においても、負荷へ一定の電圧の交流電力を供給できる磁石発電機を用いた発電装置を実現することも可能となる。そして、本発電装置は磁石発電機を用いるので、回転軸の軸長が短く従来よりも小型であり、インバータや励磁機を必要としないため、低価格で効率のよい発電装置が得られる。
【0025】
【発明の効果】
以上説明したように、本発明によれば、磁石発電機の出力端子に接続された可飽和リアクトルの飽和度を自動的に調節することにより、遅れ力率運転においても磁石発電機の電圧を低下させることなく負荷へ一定電圧の電力を供給することを可能とし、それにより小型、低価格でかつ高効率な発電装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の回路構成図。
【図2】従来の発電装置の単線結線図。
【図3】従来の他の発電装置の単線結線図。
【符号の説明】
1…原動機、2…調速機、3…磁石発電機、4…負荷、5〜10…可飽和リアクトル、11…スイッチング素子、12…直流電源、13…ダイオード、14…電圧検出器、15…電圧指令発生器、16…減算器、17…演算増幅器、18…パルス発生器、19…否定論理演算器、20…ドライブ回路、30…ブラシレス同期発電機、31…変圧器、32…自動電圧調整器、33…主発電機、34…励磁機、35…整流器、36…インバータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generator, and more particularly, to a power generator using a generator directly connected to a prime mover.
[0002]
[Prior art]
An example of a conventional power generator will be described with reference to the single-line diagram in FIG.
In the figure, 1 is a prime mover, 2 is a speed governor, 4 is a load, 30 is a brushless generator, 31 is a transformer, and 32 is an automatic voltage regulator. The power generator having such a configuration is called a split excitation power generator.
[0003]
The operation of the main components of the power generation apparatus having the above configuration will be described.
The prime mover 1 drives the brushless generator 30 while the rotational speed is adjusted by the governor 2. The automatic voltage regulator 32 receives the voltage stepped down by the transformer 31 from the armature of the brushless generator 30 and adjusts the field current of the generator so that the output voltage of the brushless generator 30 becomes constant. The brushless generator 30 includes a main generator 33, an exciter 34, and a rectifier 35 (see Patent Document 1).
[0004]
Since the power generator having the above-described configuration uses a brushless type generator, the power generator is excellent in maintainability and is more widely used than a generator with a brush. In general, a delay power factor, for example, 0.8 is often specified in the rating of the power generator, but the automatic voltage regulator automatically adjusts the output voltage of the brushless generator even when delayed reactive power is supplied to the load. Therefore, electric power can be supplied to the load at a constant voltage.
[0005]
FIG. 3 is a single-line diagram of another conventional power generator.
In the figure, 1 is a prime mover, 2 is a speed governor, 3 is a magnet generator (PMG), 4 is a load, 36... An inverter. The prime mover 1 drives the magnet generator 3 while the rotational speed is adjusted by the governor 2. The inverter 36 converts the voltage and frequency of AC power generated by the magnet generator 3 into those of commercial power and supplies the converted power to the load 4 (see Patent Document 2).
[0006]
Since the power generator configured as described above uses a magnet generator as a generator, it has excellent maintainability, and the inverter controls the voltage of the supplied power even when reactive power is supplied to the load. The power can be supplied to the load at a constant voltage. Further, since the exciter is not required unlike the brushless generator of FIG. 2, the size of the generator can be reduced.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-15198 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-218657
[Problems to be solved by the invention]
By the way, since the power generator configured as shown in FIG. 2 uses a brushless power generator including an exciter as a power generator, the shaft length of the rotating shaft becomes longer than that of a single generator with a brush or a magnet power generator. There is a disadvantage that the size of the device becomes large. In addition, loss due to the exciter is unavoidable, and the efficiency of the power generator is reduced.
[0009]
In addition, the power generator configured as shown in FIG. 3 requires a high-priced inverter, and thus has a drawback that the price of the power generator increases. Moreover, the loss by an inverter is inevitable and the efficiency of a power generator is reduced.
Claim 1 of the present invention has been made in view of the above-described situation, and an object thereof is to provide a power generation apparatus that is small in size, low in price, and highly efficient.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the power generator according to claim 1 of the present invention is a reactor comprising two saturable reactors in which the same polarity of the main winding is connected and different polarities of the control windings are connected. Three sets of pairs, a magnet generator for supplying three-phase power to the load, and the main windings of the three sets of reactor pairs are between R, S and R of the output terminals of the R, S, and T3 phases of the magnet generator, S -T and TR are connected to each other, the control windings of the reactor pair are connected in series, and a DC power source and a series circuit of switching elements are connected to both ends of the series circuit of the control windings. The element adjusts the voltage applied to the series circuit of the control winding from the DC power supply by switching operation, and is connected in parallel so that the cathode terminal is connected to the positive electrode of the DC power supply in the series circuit of the DC power supply and the switching element. Connected Iod, a voltage detector for detecting the terminal voltage of the magnet generator, a voltage command signal generator for outputting a voltage command signal, and subtracting the output signal of the voltage detector from the output signal of the voltage command signal generator A subtractor for outputting the error signal, and amplifying the error signal output from the subtracter and compensating for fluctuations in the generator voltage due to fluctuations in the delayed reactive power supplied to the load, thereby obtaining the desired voltage of the magnet generator An operational amplifier that outputs a control signal for maintaining the voltage at a voltage, a pulse generator that outputs an on-duty pulse signal proportional to the control signal output by the operational amplifier, and a negation that inverts the output signal of the pulse generator a logic unit having a drive circuit for opening and closing the switching element in response to the output pulse signal of the negative logic unit, the adjustable-opening and closing the switching element By controlling the current flowing to the control winding of the sum reactor, power generator and controls the terminal voltage of the magneto generator which varies by lagging reactive power of the load constant.
[0011]
According to the power generator of claim 1 of the present invention, by automatically adjusting the saturation of the saturable reactor connected to the output terminal of the magnet generator, the voltage of the magnet generator is lowered even in the delayed power factor operation. It is possible to supply constant voltage power to the load without causing it to occur.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a power generator according to an embodiment of the present invention.
In the figure, 1 is a prime mover, 2 is a speed governor, 3 is a magnet generator (PMG), 4 is a load, 5 to 10 is a saturable reactor, 11 is a switching element, 12 is a DC power supply, 13 is a diode, 14 is A voltage detector, 15 is a voltage command generator, 16 is a subtractor, 17 is an operational amplifier, 18 is a pulse generator, 19 is a negative logic operator, and 20 is a drive circuit for the switching element 11.
[0013]
Next, the operation of the main components of the present embodiment will be described.
The prime mover 1 drives the magnet generator 3 while the rotational speed is adjusted by the governor 2. The magnet generator 3 supplies AC power to the load 4. Saturable reactors 5 and 6 are used as a pair of reactors by connecting the same polarity of the main windings in series with each other facing each other. Saturable reactors 7 and 8 and saturable reactors 9 and 10 are also used as a pair of reactors. The saturable reactors 5 and 6, the saturable reactors 7 and 8, and the saturable reactors 9 and 10 are respectively connected between R-S, ST, and T-R of the output terminals of the magnet generator 3. Reactive power flows. The control windings of the saturable reactors 5 to 10 are connected in series with the same direction of polarity, and are connected to both ends of the series circuit of the switching element 11 and the DC power supply 12. The switching element 11 is opened and closed by a drive circuit 20 and operates a voltage applied from the DC power source 12 to the control winding series circuit of the saturable reactors 5 to 10.
[0014]
The diode 13 is connected to both ends of a series circuit of control windings of the saturable reactors 5 to 10. The cathode side of the diode 13 is connected to the positive side terminal of the DC power source 12. A current flows through the control winding of the saturable reactor through the diode 13 only when the switching element 11 is open. The voltage detector 14 detects the terminal voltage of the magnet generator 3 and outputs a voltage detection signal. This voltage detection signal has the same amount as the output signal of the voltage command generator 15 when the magnet generator 3 is at the rated voltage.
[0015]
The subtracter 16 subtracts the voltage detection signal from the voltage command signal output from the voltage command generator 15, and outputs an error signal. The operational amplifier 17 amplifies the error signal output from the subtracter 16 and compensates for fluctuations in the generator voltage due to fluctuations in the delayed reactive power supplied to the load 4 to keep the voltage of the magnet generator 3 at a desired voltage. Control signal for output. The pulse generator 18 outputs a pulse signal having an on-duty proportional to the value of the control signal output from the operational amplifier 17. Although the polarity of the signal of the operational amplifier 17 is not necessarily positive but may be negative, an arbitrary range of values of the control signal is assigned to 0% to 100% of the on-duty, and other values are used. There is a limit of 0% or 100%.
[0016]
The negative logic unit 19 outputs an inverted pulse signal obtained by inverting the pulse signal. The drive circuit 20 opens and closes the switching element 11 according to the inverted pulse signal. For example, an AC / DC voltage converter is used as the voltage detector 14.
[0017]
As the voltage command generator 15, the subtractor 16, the operational amplifier 17, the pulse generator 18, and the negative logic arithmetic unit 19, for example, a one-chip microcomputer provided with an A / D converter is used. For example, a transistor is used as the switching element 11.
[0018]
When the switching element 11 is closed, the voltage of the DC power source 12 is applied to the control windings of the saturable reactors 5 to 10, and the DC current flowing through the saturable reactor control winding increases. When the switching element 11 is opened, the direct current flows through a circuit composed of the saturable reactor control winding and the diode 13 and is attenuated by a time constant determined by the resistance component and the inductance component of this circuit. Therefore, the amount of direct current flowing through the control windings of the saturable reactors 5 to 10 can be adjusted by manipulating the switching period of the switching element 11.
[0019]
When the direct current flowing through the control windings of the saturable reactors 5 to 10 is increased, the iron core is saturated and the inductance of the saturable reactor is decreased. Conversely, when the direct current is reduced, the inductance of the saturable reactor increases. Therefore, the inductance of the saturable reactors 5 to 10 can be adjusted by opening and closing the switching element 11 and adjusting the direct current flowing through the control windings of the saturable reactors 5 to 10.
[0020]
As shown in FIG. 1, the main windings of the saturable reactor 5 and the saturable reactor 6 are connected in series with the same polarity facing each other, and the control windings have their polarities directed in the same direction. Connected in series. Therefore, when a direct current flows through these control windings, the saturable reactor 5 is saturated in the positive direction and the saturable reactor 6 is saturated in the negative direction by the same amount.
[0021]
By adopting such a configuration, when the AC voltage of the RS terminal of the magnet generator is applied to the saturable reactors 5 and 6, the saturable reactor 5 is saturated in the half cycle on the positive side of the AC voltage, Since the saturable reactor 6 is saturated in the negative half cycle, the same amount of reactor current can flow in both the positive and negative cycles. The same applies to the saturable reactors 7 and 8 and the saturable reactors 9 and 10.
[0022]
The voltage detector 14 outputs a signal having the same amount as the signal output by the voltage command generator 15 when the voltage of the magnet generator is rated. Therefore, the error signal output from the subtracter 16 becomes a negative error signal when the detection signal from the voltage detector 14 is larger than the output signal from the voltage command generator 15, and becomes a positive error signal when the detection signal is smaller. The error signal is amplified by the operational amplifier 17 and output as a control signal. The larger the value of this control signal, the larger the on-duty of the pulse generator 18. Therefore, the on-duty of the pulse signal output from the pulse generator 18 is narrow when the voltage of the magnet generator is larger than the rating, and wide when it is small.
[0023]
Since the negative logic operator 19 inverts and outputs the logic of the pulse signal, the ON period of the switching element 11 becomes longer when the voltage of the magnet generator 3 increases, and becomes shorter in the opposite case. As a result, if the voltage of the magnet generator 3 is increased, the saturation amount of the saturable reactors 5 to 10 is increased and the inductance is decreased. In the opposite case, the saturation amount is decreased and the inductance is increased. When the inductance of the saturable reactors 5 to 10 decreases, the current flowing to the reactance increases, and the voltage of the magnet generator 3 decreases due to the armature reaction, and vice versa. Therefore, even in the case of the magnet generator 3 in which the terminal voltage decreases due to the armature reaction when the delayed reactive power is supplied to the load, the output voltage is controlled to be constant by adjusting the delayed reactive power flowing through the saturable reactor. It becomes possible to do.
[0024]
By adopting the configuration as described above, this embodiment can supply AC power with a constant voltage to the load even during operation at a delay power factor (e.g., 0.8) that is generally designated as the rating of the power generator. It is also possible to realize a power generation device using a magnet generator. And since this power generator uses a magnet generator, since the axial length of a rotating shaft is short and is smaller than before, an inverter and an exciter are not required, and an efficient power generator can be obtained at low cost.
[0025]
【The invention's effect】
As described above, according to the present invention, the saturation voltage of the saturable reactor connected to the output terminal of the magnet generator is automatically adjusted to reduce the voltage of the magnet generator even in the delayed power factor operation. Therefore, it is possible to supply power of a constant voltage to the load without making it possible to provide a power generator that is small in size, low in price, and highly efficient.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of an embodiment of the present invention.
FIG. 2 is a single-line diagram of a conventional power generator.
FIG. 3 is a single-line diagram of another conventional power generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Prime mover, 2 ... Speed governor, 3 ... Magnet generator, 4 ... Load, 5-10 ... Saturable reactor, 11 ... Switching element, 12 ... DC power supply, 13 ... Diode, 14 ... Voltage detector, 15 ... Voltage command generator, 16 ... subtractor, 17 ... operational amplifier, 18 ... pulse generator, 19 ... negative logic operator, 20 ... drive circuit, 30 ... brushless synchronous generator, 31 ... transformer, 32 ... automatic voltage adjustment 33 ... main generator, 34 ... exciter, 35 ... rectifier, 36 ... inverter.

Claims (1)

主巻線の同じ極性同士が接続され且つ制御巻線の異なる極性同士が接続された2台の可飽和リアクトルからなるリアクトル対3組と、負荷へ3相電力を供給する磁石発電機と、前記3組のリアクトル対の主巻線は前記磁石発電機のR,S,T3相の出力端子のR−S間,S―T間,T―R間にそれぞれ接続され、前記リアクトル対の制御巻線は直列に接続され,該制御巻線の直列回路の両端に直流電源とスイッチング素子の直列回路が接続され、該スイッチング素子はスイッチング動作により前記直流電源から該制御巻線の直列回路に印加される電圧を調節し前記直流電源とスイッチング素子の直列回路にカソード端子が前記直流電源の正極と接続されるように並列に接続されたダイオードと、前記磁石発電機の端子電圧を検出する電圧検出器と、電圧指令信号を出力する電圧指令信号発生器と、前記電圧指令信号発生器の出力信号から前記電圧検出器の出力信号を減算した誤差信号を出力する減算器と、前記減算器の出力する誤差信号を増幅し且つ負荷へ供給する遅れ無効電力の変動に伴う発電機電圧の変動を補償し、前記磁石発電機の電圧を所望の電圧に保つための制御信号を出力する演算増幅器と、前記演算増幅器の出力する制御信号に比例するオンデューティのパルス信号を出力するパルス発生器と、前記パルス発生器の出力信号を反転させる否定論理演算器と、前記否定論理演算器の出力するパルス信号に応じて前記スイッチング素子を開閉するドライブ回路を有し、前記スイッチング素子を開閉して前記可飽和リアクトルの制御巻線へ流れる電流を制御することで、負荷の遅れ無効電力量によって変動する前記磁石発電機の端子電圧を一定に制御することを特徴とする発電装置。A main winding same polarity to each other are connected and the control winding of different polarities to each other connected two variable consisting saturable reactor reactor to 3 sets of the magneto generator for supplying three-phase power to a load, the The main windings of the three pairs of reactors are connected to the R, S, T, and T of the R, S, and T3 phase output terminals of the magnet generator, respectively , and the control windings of the reactor pair. A line is connected in series, and a series circuit of a DC power source and a switching element is connected to both ends of the series circuit of the control winding. The switching element is applied from the DC power source to the series circuit of the control winding by a switching operation. A voltage detection unit for detecting a terminal voltage of the magnet generator and a diode connected in parallel so that a cathode terminal is connected to a positive electrode of the DC power source in a series circuit of the DC power source and the switching element. A voltage command signal generator that outputs a voltage command signal, a subtracter that outputs an error signal obtained by subtracting an output signal of the voltage detector from an output signal of the voltage command signal generator, and an output of the subtractor An operational amplifier that amplifies the error signal and compensates for fluctuations in the generator voltage accompanying fluctuations in the delayed reactive power supplied to the load, and outputs a control signal for maintaining the voltage of the magnet generator at a desired voltage; and A pulse generator that outputs an on-duty pulse signal proportional to a control signal output from the operational amplifier, a negative logic operator that inverts the output signal of the pulse generator, and a pulse signal output from the negative logic operator depending having a drive circuit for opening and closing the switching element, by controlling the current flowing off the switching element to the control winding of said saturable reactor, negative Power generator and controls a constant terminal voltage of the magneto generator which varies by lagging reactive power of.
JP2003207092A 2003-08-11 2003-08-11 Power generator Expired - Fee Related JP3968661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207092A JP3968661B2 (en) 2003-08-11 2003-08-11 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207092A JP3968661B2 (en) 2003-08-11 2003-08-11 Power generator

Publications (2)

Publication Number Publication Date
JP2005065351A JP2005065351A (en) 2005-03-10
JP3968661B2 true JP3968661B2 (en) 2007-08-29

Family

ID=34363697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207092A Expired - Fee Related JP3968661B2 (en) 2003-08-11 2003-08-11 Power generator

Country Status (1)

Country Link
JP (1) JP3968661B2 (en)

Also Published As

Publication number Publication date
JP2005065351A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US6882060B2 (en) Turbine generating apparatus
US7619327B2 (en) Hybrid electromechanical power transfer system
WO2014192696A1 (en) Power conversion device, motor drive control device equipped with power conversion device, compressor and blower equipped with motor drive control device, and air conditioner equipped with compressor or blower
KR880001837B1 (en) Induction motor
Sen et al. Peak current detection starting based position sensorless control of BLDC motor drive for PV array fed irrigation pump
Mishra et al. An efficient control scheme of self-reliant solar-powered water pumping system using a three-level DC–DC converter
Zhou et al. Laboratory control implementations for doubly-fed machines
JP4788949B2 (en) Variable speed drive device for induction motor
RU2579439C2 (en) Selective control of ac engine or dc engine
JP3968661B2 (en) Power generator
Sousa et al. Efficiency optimization of a solar boat induction motor drive
Hazra et al. An active filter-enabled power architecture for oscillating wave energy generation
Kerkman et al. Voltage-controlled current-regulated pwm inverters (for motor drive applications)
JP2720540B2 (en) Voltage regulator for permanent magnet synchronous generator
JP3843355B2 (en) Power generator
Vedrana et al. Optimal control of induction motor using high performance frequency converter
Patel Speed control of three-phase induction motor using variable frequency drive
Hu et al. Direct torque control of induction motor for railway traction in whole speed range
KR20000018630A (en) Velocity controlling method of an alternative current motor
TW561683B (en) A source control apparatus for three-phase induction motor
JP3764011B2 (en) Permanent magnet synchronous motor controller
Link Behavior of DC link voltage source inverters with closed-loop controlled output current
Krischan et al. Low cost speed control for single phase induction motors-comparing different approaches with regard to efficiency
JPH0787717A (en) Brushless synchronous generator
JPS5814151B2 (en) Museiliyuushidendoukinoshidohouhou

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3968661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees