JP3967957B2 - Manufacturing method of fiber reinforced resin strands - Google Patents

Manufacturing method of fiber reinforced resin strands Download PDF

Info

Publication number
JP3967957B2
JP3967957B2 JP2002127697A JP2002127697A JP3967957B2 JP 3967957 B2 JP3967957 B2 JP 3967957B2 JP 2002127697 A JP2002127697 A JP 2002127697A JP 2002127697 A JP2002127697 A JP 2002127697A JP 3967957 B2 JP3967957 B2 JP 3967957B2
Authority
JP
Japan
Prior art keywords
fiber
resin
reinforced resin
stranded wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002127697A
Other languages
Japanese (ja)
Other versions
JP2003328284A (en
Inventor
裕士 玉木
伸二 今村
Original Assignee
日鉄コンポジット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄コンポジット株式会社 filed Critical 日鉄コンポジット株式会社
Priority to JP2002127697A priority Critical patent/JP3967957B2/en
Publication of JP2003328284A publication Critical patent/JP2003328284A/en
Application granted granted Critical
Publication of JP3967957B2 publication Critical patent/JP3967957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/04Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics with a core of fibres or filaments arranged parallel to the centre line
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2042Strands characterised by a coating
    • D07B2201/2044Strands characterised by a coating comprising polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/209Jackets or coverings comprising braided structures
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2096Poly-p-phenylenebenzo-bisoxazole [PBO]
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3003Glass
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3017Silicon carbides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/2023Concrete enforcements
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/203Bridges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Ropes Or Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として、土木、建築、橋梁などの分野において、コンクリート構造物及び鋼構造物などの構造物の補強材や緊張材、地盤補強材、吊り橋等の橋梁のメインケーブルなどとして好適に使用し得る、炭素繊維などの強化繊維を用いた繊維強化樹脂製撚線の製造法に関するものである。
【0002】
【従来の技術】
図1に示すように、繊維強化樹脂製撚線1は、例えば高強度の炭素繊維等とされる強化繊維(フィラメント)fと熱硬化性樹脂を複合化した素線2をスロープ状に撚って成形したストランドで、高強度、高耐食性の特徴を有しており、コンクリート構造物の塩害対策や補強対策に適した材料である。また、比重が鋼材の1/5程度と軽量であることから、省力化施工を可能とする材料であり、コンクリート構造物の緊張材や補強材として様々な工事分野にて好適に使用することができる。
【0003】
従来、繊維強化樹脂製撚線1は、先ず、図2に示すように、多数本の炭素繊維などの強化繊維fに樹脂を含浸させて素線2を作製し、この素線2を複数本撚り合わせることにより作製される。繊維強化樹脂製撚線1の従来の製造法の一例を図6に示す。
【0004】
クリールスタンドに取り付けられたクリール21から解じょされた多数本の強化繊維fは、樹脂含浸工程へと送給され、樹脂が収容された含浸槽22を通すことにより樹脂が含浸される。この樹脂が含浸された強化繊維fは、集合されて繊維芯3とされ、収束工程へと送られる。収束工程では、図示するように、バラケ止めのために外装4として、ワインダー23にて繊維芯3の回りにテープ4aが巻き付けられて素線2が作製される。素線2は、ドラムワインダー24を設けた巻取り工程にてボビンB1に巻き取られる。この状態で、素線2の樹脂は未だ硬化されてはいない。
【0005】
次いで、未硬化状態の素線2を撚線製造工程へと送り、多数本の素線2が撚掛け工程にて撚られ、次いで、絞りダイス25にて所定の径を持った撚線1へと賦形される。この賦形された未硬化撚線1は、硬化工程へと送られて、加熱装置26にて所定の温度、例えば200℃程度に加熱されて硬化される。
【0006】
このようにして作製された繊維強化樹脂製撚線1は、巻取り工程にて巻取機27に巻き取られるか、又は、繊維強化樹脂製撚線1は、定尺切断工程にて、切断機28にて所定の長さに切断される。
【0007】
【発明が解決しようとする課題】
しかしながら、硬化した繊維強化樹脂製撚線1は、柔軟性に欠け、巻き取ることが極めて困難で、必然的にボビン直径は大きなものとなる。また、繊維強化樹脂製撚線1がトラックなどにて輸送し得る長さの場合には、ボビンB2などに巻き取ることなく、工場にて所定長さに切断して輸送されるが、ボビンに巻き付けたものに比べて長さが長くハンドリングし難いことが問題であった。
【0008】
このように、従来の繊維強化樹脂製撚線1は、ボビンへの巻き取り性、延いては、輸送上の問題を有していた。
【0009】
また、一般に、繊維強化樹脂製撚線1の端末は、樹脂又は樹脂モルタルなどを用いて固定金具などに一体的に定着することが必要とされる。
【0010】
ところが、硬化した繊維強化樹脂製撚線1は、表面が硬化した樹脂により滑らかな状態となっており、このままでは樹脂又は樹脂モルタルに対する付着力が弱い。
【0011】
そこで、撚線のままでは接着表面積が小さいので、分線して多数本の素線とする。この際、素線の回りの表面が凹凸を有した粗表面となると共に、多数本の素線とすることにより接着表面積を大きくすることができ、樹脂等に対する付着力が向上する。
【0012】
通常、繊維強化樹脂製撚線端末の処理は、例えば200℃に加熱して繊維強化樹脂製撚線表面の樹脂を軟化させ、その後、図7に示すように、繊維強化樹脂製撚線1の端末部分を加圧しながら解すことにより、撚線の端末部分を素線単位で解線(分線)することにより行われている。この分線化作業により、端末部分には凹凸が付与され、粗表面となり、定着樹脂などに対する付着力が増大する。
【0013】
しかしながら、このような分線作業は、煩雑な作業を必要とし、多くの時間と、費用が余儀なくされる。
【0014】
また、従来の撚線は、プレストレストコンクリートを作製するような場合や、鉄筋などの代替品としてコンクリートに埋め込む場合には、表面が滑らかなため付着力が小さく、定着長を長く取る必要があったり、抜け出し易かったりする問題があった。
【0015】
従って、本発明の目的は、巻取機への巻き取り性が向上し、端末部分の分線化作業が容易であり、また、コンクリート付着力の良い繊維強化樹脂製撚線の製造法を提供することである。
【0016】
【課題を解決するための手段】
上記目的は本発明に係る繊維強化樹脂製撚線の製造法にて達成される。要約すれば、本発明によると、
(a)連続して送給される、強化繊維と熱硬化性樹脂を複合化して形成した未だ硬化されていない複数本の素線を、撚り合わせて、絞りダイスにて所定形状の撚線に成形する工程と、
(b)所定形状に成形された撚線を加熱し硬化する工程と、
(c)硬化した撚線を、分線手段にて素線が互いに分離するように分線し、そして、再度撚り合わせる工程と、
を有し、前記分線手段は、各前記素線が送通される孔を有し、回転することにより各前記素線を撚り合わせるダイスであることを特徴とする繊維強化樹脂製撚線の製造法が提供される。
【0017】
本発明の一実施態様によると、強化繊維は、炭素繊維、ガラス繊維、アラミド繊維、PBO繊維、又は、炭化珪素繊維である。
【0018】
本発明の他の実施態様によると、前記熱硬化性樹脂は、ビニルエステル樹脂、エポキシ樹脂、又は不飽和ポリエステル樹脂である。
【0021】
【発明の実施の形態】
以下、本発明に係る繊維強化樹脂製撚線の製造法を図面に則して更に詳しく説明する。
【0022】
本発明の繊維強化樹脂製撚線は、図1及び図2を参照して説明した従来の繊維強化樹脂製撚線1と同様の構成とされる。ただ、本発明の繊維強化樹脂製撚線1は、硬化後において、全長にわたって、分線されている点で相違する。
【0023】
つまり、本発明の繊維強化樹脂製撚線1は、図1に示すように、素線2が撚り合わせて形成されているが、各素線2は互いに分離された状態とされる。
【0024】
従って、本発明の繊維強化樹脂製撚線1は、従来の、各素線2が樹脂にて一体に硬化された繊維強化樹脂製撚線に比較すると、柔軟性が極めて高く、ボビンなどに巻き取ることが極めて容易である。
【0025】
また、本発明の繊維強化樹脂製撚線1の表面は、素線が互いに分離しており、そのために撚線の表面は極めて粗の状態にある。従って、本発明の繊維強化樹脂製撚線1では、その端末部分を固定金具に定着するに際して、従来の加熱による繊維強化樹脂製撚線表面の樹脂の除去及び撚線解し作業などの特別な分線化作業を必要とせず、簡単に分線できるので、そのまま、固定金具に樹脂又は樹脂モルタルで定着することができ、作業時間の短縮と、作業コストの低減を図ることができる。
【0026】
本発明者らの研究実験の結果によると、樹脂又は樹脂モルタルに対する付着力は、従来と同様の結果を得ることができた。また、コンクリート付着強度については、従来のものの2〜3倍の大きい値を得た。
【0027】
また、本発明の繊維強化樹脂製撚線1は、全長にわたって素線2が互いに分離しているにも拘わらず、繊維強化樹脂製撚線自体の機械的特性、即ち、引張強度、弾性係数は、従来の繊維強化樹脂製撚線と同等であることが確認された。
【0028】
本発明の繊維強化樹脂製撚線1を構成する素線2は、従来と同様に、多数本の炭素繊維などの強化繊維fに樹脂を含浸させて作製される。
【0029】
強化繊維としては、炭素繊維に限定されるものではなく、その他に、ガラス繊維、アラミド繊維、PBO繊維、炭化珪素繊維などが使用可能である。又、樹脂としては、エポキシ樹脂又はビニルエステル樹脂、更には不飽和ポリエステルのような熱硬化性樹脂が好適に使用される。エポキシ樹脂としては、主剤(ビスフェノールA型エポキシ樹脂)と硬化剤(アミン系硬化剤)とを重量比で100:24にて混合したものを使用し得る。また、ビニルエステル樹脂としては、主剤(不飽和ポリエステル樹脂)と硬化剤(メチルエチルケトンパーオキサイド)とを重量比で100:1にて混合したものを使用し得る。この時の、強化繊維と樹脂の比は、体積%で、40〜80とされ、好ましくは、50〜70とされる。
【0030】
又、素線2のバラケ止めのために繊維芯3の周りを被覆する外装4としては、ポリエステル製のテープ4aが好適に使用されるが、その他に、網状体のもの、フィルム状のものなど、当業者には周知のものを使用することができる。
【0031】
また、本実施例では、素線2の数は7本であるとして説明したが、これに限定されるものではなく、例えば、表1に示すように、種々の構成が可能である。表1には、強化繊維として炭素繊維を使用した本発明の繊維強化樹脂製撚線1の種々の形態と、そのときの機械的特性を示す。
【0032】
【表1】

Figure 0003967957
【0033】
次に、本発明の繊維強化樹脂製撚線1の製造法について説明する。
【0034】
図3に、本発明の繊維強化樹脂製撚線1の製造法の一実施例を示す。本実施例の製造法は、図6を参照して説明した従来の繊維強化樹脂製撚線の製造法と同様とされ、ただ、硬化工程において、加熱装置26内に分線手段100が配置され、硬化した撚線を分線(解線)する点においてのみ相違している。従って、同じ構成及び作用をなす工程、装置、部材等には同じ参照番号を付し、詳しい説明は省略し、以下には、本実施例の特徴とする硬化工程について説明する。
【0035】
従来と同様に、解じょ工程、樹脂含浸工程、収束工程、巻き取り工程、を介して素線2が作製される。
【0036】
素線2は、未硬化状態で撚線製造工程へと送り、多数本の素線2が撚掛け工程にて撚られ、次いで、絞りダイス25にて所定の径を持った撚線1へと賦形される。この賦形された未硬化撚線1は、硬化工程へと送られて、加熱装置26にて所定の温度、例えば200℃程度に加熱されて硬化される。
【0037】
本実施例では、加熱装置26内に分線手段100が配置される。分線手段100は、加熱装置26にて、例えば、200℃に加熱されることにより硬化した繊維強化樹脂製撚線1を、各素線2が互いに分離するように分線化する作用をなす。
【0038】
分線手段100は、本実施例によると、図4に示すように、加熱装置26の内側に取り付ける円筒状の基台101と、基台101の内側に軸受102を介して取り付けられた分線ダイス103とを有する。
【0039】
分線ダイス103は、図5をも参照するとより良く理解されるように、中心部に円錐台形状のガイド部104が形成されており、ガイド部104の中心及びその周辺に、繊維強化樹脂製撚線1の素線2が通過するに適した孔105が、素線2の数だけ、本実施例では繊維強化樹脂製撚線1が7本の素線2にて形成されているために、7個形成されている。各孔105は、互いに離隔して形成されている。
【0040】
従って、加熱装置26内へと連続して送給され、加熱装置26にて加熱されることにより硬化した繊維強化樹脂製撚線1は、各素線2が分線ダイス103の孔105に通され、そして、加熱装置26から送出されて、巻取機27にて巻き取られる。分線ダイス103は、送給される撚線1と共に回転しながら、加熱装置26にて一体に加熱硬化された繊維強化樹脂製撚線1を、各素線2が互いに分離するように分線化すると共に、再度撚り合わせる。従って、加熱装置26から送出される繊維強化樹脂製撚線1は、その全長にわたって素線2が分離した撚線とされる。
【0041】
本実施例によれば、分線ダイス103などとされる分線手段100を用いることにより、極めて効率よく、連続して本発明の繊維強化樹脂製撚線1を製造することができる。
【0042】
このようにして作製された繊維強化樹脂製撚線1は、巻き取り性が向上し、巻取り工程における巻取機27での巻き取り作業が極めて容易とされる。又、従来に比べると、ボビンB2もより小径のものを使用することが可能となり、運搬性が飛躍的に向上する。
【0044】
【発明の効果】
以上説明したように、本発明の製造法によれば、分線ダイスとされる分線手段を用いることにより、極めて効率よく、連続して繊維強化樹脂製撚線を製造することができる。
【図面の簡単な説明】
【図1】本発明に係る繊維強化樹脂製撚線の一実施例を説明するための斜視図である。
【図2】素線の一実施例を示す斜視図である。
【図3】本発明に係る繊維強化樹脂製撚線の製造法の一実施例を説明するための工程を示す図である。
【図4】分線手段の一実施例を示す断面図である。
【図5】分線手段の分線ダイスの正面図である。
【図6】従来の繊維強化樹脂製撚線の製造法を説明するための工程を示す図である。
【図7】繊維強化樹脂製撚線の分線された端末部分を示す図である。
【符号の説明】
1 繊維強化樹脂製撚線
2 素線
3 繊維芯
4 外装
21 クリール
22 含浸槽
23 ワインダー
24 ドラムワインダー
25 絞りダイス
26 加熱装置
27 巻取機
28 切断機[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly suitable for use in the fields of civil engineering, architecture, bridges, etc., as reinforcing materials for structures such as concrete structures and steel structures, tension materials, ground reinforcing materials, main cables for bridges such as suspension bridges, etc. The present invention relates to a method for producing a fiber-reinforced resin stranded wire using reinforcing fibers such as carbon fibers.
[0002]
[Prior art]
As shown in FIG. 1, a fiber reinforced resin stranded wire 1 is formed by twisting, for example, a strand 2 in which a reinforcing fiber (filament) f, which is a high-strength carbon fiber or the like, and a thermosetting resin are combined, in a slope shape. This is a strand that has high strength and high corrosion resistance, and is a material suitable for measures against salt damage and reinforcement of concrete structures. In addition, since the specific gravity is as light as 1/5 that of steel, it is a material that enables labor-saving construction, and can be suitably used in various construction fields as a tension material and reinforcement for concrete structures. it can.
[0003]
2. Description of the Related Art Conventionally, a fiber-reinforced resin stranded wire 1 is produced by first impregnating a resin into a large number of reinforcing fibers f such as carbon fibers as shown in FIG. It is produced by twisting together. An example of the conventional manufacturing method of the fiber reinforced resin stranded wire 1 is shown in FIG.
[0004]
A large number of reinforcing fibers f unraveled from the creel 21 attached to the creel stand are fed to the resin impregnation step and impregnated with the resin by passing through the impregnation tank 22 containing the resin. The reinforcing fibers f impregnated with this resin are aggregated to form a fiber core 3 and sent to the convergence step. In the converging step, as shown in the drawing, the tape 4a is wound around the fiber core 3 by the winder 23 as the exterior 4 for preventing the breakage, and the strand 2 is produced. The element wire 2 is wound around the bobbin B1 in a winding process in which the drum winder 24 is provided. In this state, the resin of the strand 2 is not yet cured.
[0005]
Next, the uncured strand 2 is sent to the stranded wire manufacturing process, a large number of strands 2 are twisted in the twisting step, and then to the stranded wire 1 having a predetermined diameter with the drawing die 25. And shaped. The shaped uncured stranded wire 1 is sent to a curing step, and is heated and cured by a heating device 26 to a predetermined temperature, for example, about 200 ° C.
[0006]
The fiber reinforced resin stranded wire 1 thus produced is wound around the winder 27 in the winding step, or the fiber reinforced resin stranded wire 1 is cut in the regular cutting step. The machine 28 is cut into a predetermined length.
[0007]
[Problems to be solved by the invention]
However, the cured fiber reinforced resin stranded wire 1 lacks flexibility and is extremely difficult to wind, and inevitably has a large bobbin diameter. In addition, when the fiber reinforced resin stranded wire 1 is of a length that can be transported by a truck or the like, it is cut into a predetermined length and transported at a factory without being wound around the bobbin B2 or the like. The problem was that it was long and difficult to handle compared to the wound one.
[0008]
As described above, the conventional fiber-reinforced resin stranded wire 1 has a problem in terms of winding property to a bobbin, and further, transportation.
[0009]
In general, the end of the fiber reinforced resin stranded wire 1 is required to be integrally fixed to a fixing bracket or the like using resin or resin mortar.
[0010]
However, the cured fiber reinforced resin stranded wire 1 is in a smooth state due to the cured resin, and the adhesive force to the resin or the resin mortar is weak as it is.
[0011]
Therefore, since the adhesive surface area is small if it is a stranded wire, it is divided into a plurality of strands. At this time, the surface around the strands becomes a rough surface having irregularities, and by using a large number of strands, the adhesion surface area can be increased, and the adhesion to the resin or the like is improved.
[0012]
Usually, the treatment of the fiber reinforced resin stranded wire terminal is performed by, for example, heating to 200 ° C. to soften the resin on the surface of the fiber reinforced resin stranded wire, and then, as shown in FIG. It is performed by breaking the terminal portion of the stranded wire in units of strands by breaking the terminal portion while applying pressure. By this segmentation work, irregularities are imparted to the terminal portion, resulting in a rough surface and an increased adhesion to the fixing resin or the like.
[0013]
However, such a branching operation requires a complicated operation and requires a lot of time and cost.
[0014]
In addition, the conventional stranded wire has a low surface adhesion and requires a long fixing length when making prestressed concrete or embedding it in concrete as an alternative to reinforcing bars. There was a problem that it was easy to get out.
[0015]
Accordingly, an object of the present invention is to provide a method for producing a fiber reinforced resin twisted wire with improved winding property to a winder, easy end-segmenting work, and good adhesion to concrete. It is to be.
[0016]
[Means for Solving the Problems]
The above object is achieved by the method for producing a fiber-reinforced resin stranded wire according to the present invention. In summary, according to the present invention ,
(A) A plurality of uncured strands formed by combining reinforcing fibers and a thermosetting resin, which are continuously fed, are twisted together to form a twisted wire of a predetermined shape with a drawing die Molding process;
(B) a step of heating and curing the stranded wire formed into a predetermined shape;
(C) a step of splitting the cured stranded wires so that the strands are separated from each other by a branching means, and then twisting them again;
And the branching means has a hole through which each of the strands is passed, and is a die for twisting each of the strands by rotating . A manufacturing method is provided.
[0017]
According to one embodiment of the present invention , the reinforcing fibers are carbon fibers, glass fibers, aramid fibers, PBO fibers, or silicon carbide fibers.
[0018]
According to another embodiment of the present invention, the thermosetting resin is a vinyl ester resin, an epoxy resin, or an unsaturated polyester resin.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the manufacturing method of the fiber reinforced resin twisted wire which concerns on this invention is demonstrated in detail according to drawing.
[0022]
The fiber reinforced resin stranded wire of the present invention has the same configuration as the conventional fiber reinforced resin stranded wire 1 described with reference to FIGS. 1 and 2. However, the fiber reinforced resin stranded wire 1 of the present invention is different in that it is divided over the entire length after curing.
[0023]
That is, the fiber-reinforced resin stranded wire 1 of the present invention is formed by twisting the strands 2 as shown in FIG. 1, but the strands 2 are separated from each other.
[0024]
Therefore, the fiber reinforced resin stranded wire 1 of the present invention is extremely flexible compared to the conventional fiber reinforced resin stranded wire in which the strands 2 are integrally cured with resin, and is wound around a bobbin or the like. It is very easy to take.
[0025]
Moreover, the strands are separated from each other on the surface of the fiber-reinforced resin stranded wire 1 of the present invention, and therefore the surface of the stranded wire is in a very rough state. Therefore, in the fiber reinforced resin stranded wire 1 of the present invention, when fixing the terminal portion to the fixing metal, special removal of the resin on the surface of the fiber reinforced resin stranded wire by conventional heating and untwisting work are performed. Since it is possible to easily perform the line separation without requiring a line separation operation, it is possible to fix it to the fixing bracket with resin or resin mortar as it is, and to shorten the work time and the work cost.
[0026]
According to the results of the research experiments conducted by the present inventors, the same adhesion force with respect to the resin or resin mortar could be obtained. Moreover, about the concrete adhesion strength, the big value of 2 to 3 times the conventional thing was obtained.
[0027]
Further, the fiber reinforced resin stranded wire 1 of the present invention has the mechanical properties of the fiber reinforced resin stranded wire itself, that is, the tensile strength and the elastic modulus, although the strands 2 are separated from each other over the entire length. It was confirmed that it was equivalent to a conventional fiber reinforced resin stranded wire.
[0028]
The strand 2 constituting the fiber reinforced resin stranded wire 1 of the present invention is produced by impregnating a resin into a large number of reinforcing fibers f such as carbon fibers, as in the prior art.
[0029]
The reinforcing fiber is not limited to carbon fiber, and glass fiber, aramid fiber, PBO fiber, silicon carbide fiber and the like can be used. As the resin, an epoxy resin or a vinyl ester resin, and further a thermosetting resin such as an unsaturated polyester is preferably used. As an epoxy resin, what mixed the main ingredient (bisphenol A type epoxy resin) and the hardening | curing agent (amine type hardening | curing agent) by 100: 24 by weight ratio can be used. Moreover, as vinyl ester resin, what mixed the main ingredient (unsaturated polyester resin) and the hardening | curing agent (methyl ethyl ketone peroxide) by 100: 1 by weight ratio can be used. At this time, the ratio between the reinforcing fiber and the resin is 40% by volume, and preferably 50-70.
[0030]
Further, as the exterior 4 for covering the periphery of the fiber core 3 in order to prevent the strands 2 from being separated, a tape 4a made of polyester is preferably used. Those known to those skilled in the art can be used.
[0031]
In the present embodiment, the number of the strands 2 has been described as being seven. However, the present invention is not limited to this. For example, as shown in Table 1, various configurations are possible. Table 1 shows various forms of the fiber-reinforced resin twisted wire 1 of the present invention using carbon fibers as the reinforcing fibers and the mechanical properties at that time.
[0032]
[Table 1]
Figure 0003967957
[0033]
Next, the manufacturing method of the fiber reinforced resin strand 1 of this invention is demonstrated.
[0034]
In FIG. 3, one Example of the manufacturing method of the fiber reinforced resin twisted wire 1 of this invention is shown. The manufacturing method of the present embodiment is the same as the manufacturing method of the conventional fiber reinforced resin stranded wire described with reference to FIG. 6, except that the branching means 100 is disposed in the heating device 26 in the curing step. The difference is only in the point of dividing (disconnecting) the cured stranded wire. Therefore, the same reference numerals are given to the steps, devices, members, and the like having the same configuration and action, and detailed description thereof will be omitted, and the curing step that characterizes this embodiment will be described below.
[0035]
The strand 2 is produced through the unraveling step, the resin impregnation step, the convergence step, and the winding step as in the conventional case.
[0036]
The strand 2 is sent to the stranded wire manufacturing process in an uncured state, a large number of strands 2 are twisted in the twisting step, and then to the stranded wire 1 having a predetermined diameter with the drawing die 25. Shaped. The shaped uncured stranded wire 1 is sent to a curing step, and is heated and cured by a heating device 26 to a predetermined temperature, for example, about 200 ° C.
[0037]
In the present embodiment, the branching means 100 is disposed in the heating device 26. For example, the branching unit 100 splits the fiber-reinforced resin stranded wire 1 cured by being heated to 200 ° C. with the heating device 26 so that the strands 2 are separated from each other. .
[0038]
According to the present embodiment, as shown in FIG. 4, the branching unit 100 includes a cylindrical base 101 attached to the inside of the heating device 26, and a branch line attached to the inside of the base 101 via a bearing 102. And a die 103.
[0039]
As can be better understood with reference to FIG. 5, the branching die 103 has a truncated cone-shaped guide portion 104 formed at the center, and is made of fiber reinforced resin at the center of the guide portion 104 and its periphery. Since the hole 105 suitable for the strand 2 of the twisted wire 1 to pass through is equal to the number of the strands 2, the fiber-reinforced resin twisted wires 1 are formed by seven strands 2 in this embodiment. 7 are formed. Each hole 105 is formed apart from each other.
[0040]
Accordingly, in the fiber reinforced resin stranded wire 1 continuously fed into the heating device 26 and cured by being heated by the heating device 26, each strand 2 passes through the hole 105 of the branching die 103. Then, it is sent out from the heating device 26 and taken up by a winder 27. The branching die 103 is rotated so that the strands 2 are separated from each other while being rotated together with the supplied twisted wire 1 and the fiber-reinforced resin twisted wire 1 integrally heated and cured by the heating device 26. And twist again. Therefore, the fiber reinforced resin stranded wire 1 delivered from the heating device 26 is a stranded wire in which the strands 2 are separated over the entire length thereof.
[0041]
According to the present embodiment, the fiber reinforced resin twisted wire 1 of the present invention can be manufactured continuously and extremely efficiently by using the line dividing means 100 such as the line dividing die 103.
[0042]
The fiber-reinforced resin stranded wire 1 produced in this way has improved winding properties, and the winding operation by the winding machine 27 in the winding process is extremely easy. In addition, the bobbin B2 having a smaller diameter can be used as compared with the conventional case, and the transportability is dramatically improved.
[0044]
【The invention's effect】
As described above , according to the manufacturing method of the present invention, a fiber- reinforced resin stranded wire can be manufactured continuously and extremely efficiently by using a branching means as a branching die.
[Brief description of the drawings]
FIG. 1 is a perspective view for explaining an embodiment of a fiber reinforced resin twisted wire according to the present invention.
FIG. 2 is a perspective view showing an embodiment of a wire.
FIG. 3 is a diagram showing a process for explaining an embodiment of a method for producing a fiber-reinforced resin twisted wire according to the present invention.
FIG. 4 is a cross-sectional view showing an embodiment of a dividing means.
FIG. 5 is a front view of a branching die of a branching unit.
FIG. 6 is a diagram showing a process for explaining a conventional method for producing a fiber-reinforced resin stranded wire.
FIG. 7 is a diagram showing a terminal portion of a fiber reinforced resin twisted wire.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fiber reinforced resin twisted wire 2 Elementary wire 3 Fiber core 4 Exterior 21 Creel 22 Impregnation tank 23 Winder 24 Drum winder 25 Drawing die 26 Heating device 27 Winder 28 Cutting machine

Claims (3)

(a)連続して送給される、強化繊維と熱硬化性樹脂を複合化して形成した未だ硬化されていない複数本の素線を、撚り合わせて、絞りダイスにて所定形状の撚線に成形する工程と、
(b)所定形状に成形された撚線を加熱し硬化する工程と、
(c)硬化した撚線を、分線手段にて素線が互いに分離するように分線し、そして、再度撚り合わせる工程と、
を有し、前記分線手段は、各前記素線が送通される孔を有し、回転することにより各前記素線を撚り合わせるダイスであることを特徴とする繊維強化樹脂製撚線の製造法。
(A) A plurality of uncured strands formed by combining reinforcing fibers and a thermosetting resin, which are continuously fed, are twisted together to form a twisted wire of a predetermined shape with a drawing die Molding process;
(B) a step of heating and curing the stranded wire formed into a predetermined shape;
(C) a step of splitting the cured stranded wires so that the strands are separated from each other by a branching means, and then twisting them again;
Have a, the divided line means comprises a hole in which each element wire is passed feed, fiber-reinforced resin stranded wire, characterized in that the die twisting together each said wire by rotating Manufacturing method.
強化繊維は、炭素繊維、ガラス繊維、アラミド繊維、PBO繊維、又は炭化珪素繊維であることを特徴とする請求項1の繊維強化樹脂製撚線の製造法。The method for producing a fiber-reinforced resin twisted wire according to claim 1, wherein the reinforcing fiber is carbon fiber, glass fiber, aramid fiber, PBO fiber, or silicon carbide fiber. 前記熱硬化性樹脂は、ビニルエステル樹脂、エポキシ樹脂、又は不飽和ポリエステル樹脂であることを特徴とする請求項1又は2の繊維強化樹脂製撚線の製造法。The method for producing a fiber-reinforced resin stranded wire according to claim 1 or 2, wherein the thermosetting resin is a vinyl ester resin, an epoxy resin, or an unsaturated polyester resin.
JP2002127697A 2002-04-26 2002-04-26 Manufacturing method of fiber reinforced resin strands Expired - Fee Related JP3967957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127697A JP3967957B2 (en) 2002-04-26 2002-04-26 Manufacturing method of fiber reinforced resin strands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127697A JP3967957B2 (en) 2002-04-26 2002-04-26 Manufacturing method of fiber reinforced resin strands

Publications (2)

Publication Number Publication Date
JP2003328284A JP2003328284A (en) 2003-11-19
JP3967957B2 true JP3967957B2 (en) 2007-08-29

Family

ID=29695768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127697A Expired - Fee Related JP3967957B2 (en) 2002-04-26 2002-04-26 Manufacturing method of fiber reinforced resin strands

Country Status (1)

Country Link
JP (1) JP3967957B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054906B2 (en) * 2005-09-09 2012-10-24 東レ株式会社 Carbon fiber composite resin wire for reinforcing concrete or mortar, method for producing the same, and concrete or mortar structure
JP2009138454A (en) * 2007-12-07 2009-06-25 Tokyo Seiko Co Ltd Wooden member joining method
CN102345238A (en) * 2010-07-27 2012-02-08 江苏恒神碳纤维复合材料工程研究中心有限公司 Wet-method production device for fiber reinforced core material
CN102345236A (en) * 2010-07-27 2012-02-08 江苏恒神碳纤维复合材料工程研究中心有限公司 Wet-method production technology for multicore stranded fiber-reinforced core material
KR101470174B1 (en) * 2013-06-26 2014-12-05 현대자동차주식회사 Lower stiffener for vehicle and manufacturing method
KR101430624B1 (en) * 2014-03-19 2014-08-18 (주) 코리아에스이 Tendon Cable
MX2018013849A (en) * 2016-06-29 2019-02-28 Tokyo Rope Mfg Co Synthetic fiber cable.
KR102242110B1 (en) * 2020-11-20 2021-04-20 권혁주 cable weaving mobile equipment
CN114361910B (en) * 2021-07-26 2024-02-06 恩施冠易科技有限公司 Data line heart yearn rotation type branching mechanism and welding equipment

Also Published As

Publication number Publication date
JP2003328284A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
US8250845B2 (en) Fiber composite twisted cable
JP5416341B2 (en) Method for producing round fiber reinforced plastic wire
US5727357A (en) Composite reinforcement
US5846364A (en) Reinforced concrete structure, reinforcing device, and method for producing same
KR100766954B1 (en) Fiber reinforced polymer bar having self-impregnated protrusion and method for producing the same
WO2014196432A1 (en) High-strength fiber composite, strand structure, and multi-strand structure
JP2020509946A5 (en)
JP3967957B2 (en) Manufacturing method of fiber reinforced resin strands
JPH0718206B2 (en) Method of manufacturing structural rod
WO2022007705A1 (en) Elastomer-bonded fiber-reinforced composite wire material and preparation method therefor
RU2482247C2 (en) Method to manufacture non-metal reinforcement element with periodic surface and reinforcement element with periodic surface
TWI828788B (en) Composite rebar
JPH0533278A (en) Rope comprising carbon fiber-reinforced composite material and production thereof
JP2019026960A (en) Method for producing inorganic fiber
JPH0544301A (en) Tubular tension material
JPH0331832B2 (en)
JPH0693579A (en) Composite material and its production
JP4037041B2 (en) Terminal processing method and terminal fixing method of fiber composite material
JP2012097386A (en) Filament body of fiber-reinforced resin and method for producing the same, and electric wire cable using the same and method for manufacturing the same
JP4336432B2 (en) Production method of thermoplastic resin-coated FRP bar for shear reinforcement and thermoplastic resin-coated FRP bar for shear reinforcement
JP2003161002A (en) Anchor for anchorage
JPH02242987A (en) Strand for twisted yarn of fiber composite material, twisted yarn and production thereof
JP4983105B2 (en) Continuous production method of stranded wire
JPH0640619Y2 (en) High strength composite twisted body
JP2020180444A (en) Fiber rod binding tool and fiber rod binding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees