JP3967955B2 - Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same - Google Patents

Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same Download PDF

Info

Publication number
JP3967955B2
JP3967955B2 JP2002127109A JP2002127109A JP3967955B2 JP 3967955 B2 JP3967955 B2 JP 3967955B2 JP 2002127109 A JP2002127109 A JP 2002127109A JP 2002127109 A JP2002127109 A JP 2002127109A JP 3967955 B2 JP3967955 B2 JP 3967955B2
Authority
JP
Japan
Prior art keywords
organic solvent
silicone
producing
nanocomposite film
resistant polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002127109A
Other languages
Japanese (ja)
Other versions
JP2003320225A (en
Inventor
ケウホ イ
インチョル キム
ヒュング ユン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Research Institute of Chemical Technology KRICT
Original Assignee
Korea Research Institute of Chemical Technology KRICT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Research Institute of Chemical Technology KRICT filed Critical Korea Research Institute of Chemical Technology KRICT
Priority to JP2002127109A priority Critical patent/JP3967955B2/en
Publication of JP2003320225A publication Critical patent/JP2003320225A/en
Application granted granted Critical
Publication of JP3967955B2 publication Critical patent/JP3967955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、シリコーン含有耐有機溶媒性ポリアミドナノ複合膜およびその製造方法に関し、さらに詳細には、多孔性支持体表面でのポリアミド重合過程中にシリコーンをともにコーティングして製造されるものであって、排除率が優れ、かつ有機溶媒に対する安定性だけでなく透過量も非常に優れたナノ複合膜およびその製造方法に関する。
【0002】
【従来の技術】
現在、有機溶媒に対し耐性のある分離膜の素材としては、セラミックや無機物質と架橋された有機高分子が知られているが、このような素材は値段が非常に高く、分画分子量の範囲が極めて大きい限外濾過膜(ultrafiltration)や精密濾過膜(microfiltration)に適用が限られている。また、大部分のナノ複合膜に用いられる高分子素材は有機溶媒中で膨潤し、一定圧力の下で運転する場合、圧密化が起こるため透過量が大いに減少する。それらの素材は疎水性であるので、水処理を目的としてポリアミドナノ複合膜を適用する場合、大部分の有機溶媒は透過量が非常に減少してしまう。すなわち、食品工学、廃棄物処理、化学プロセス及び精油産業で行われる有機溶媒処理過程に、既存のナノ複合膜を適用するのは不適合である。また、有機溶媒に耐性のある疎水性ナノ複合膜は、「Membrane D」(Membrane Osmonics Co.)という製品名で商業化されているものの、シリコーン自体の柔軟性のため排除率が高くないという短所がある。
【0003】
有機溶媒に対し耐性のある分離膜に係る従来技術は、次の通りである。米国特許第5,030,282号で報告されている分離膜は、有機溶媒に対する耐性は大きいが、水溶液の透過量が大きく、コーティング層の構造からみると親水性膜と言え、実際に有機溶媒を用いて透過実験を行う場合、有機溶媒の透過量は非常に低い。米国特許第6,113,794号で報告されているキトサンがコーティングされたナノ複合膜の場合、キトサンもまた親水性膜であって、大部分の有機溶媒に対する耐性は優れているが、純水の透過量が他の有機溶媒の透過量より遥かに多いと報告されている。しかも、ヘキサンを用いて透過量を測定した結果、ほとんど透過しないと報告されている。すなわち、米国特許第6,113,794号で報告されている分離膜は、疎水性の有機溶媒の透過には不適合であると言える。
【0004】
一方、従来の分離膜技術分野においては、排除率測定のための透過実験を、水溶液を用いて行うだけで、有機溶媒に溶けている有機物の排除挙動を全く考慮していない。
これに対し、本発明の分離膜は、既存の特許方法とは異なり、大分部の有機溶媒に対する透過実験を行い、疎水性の有機溶媒の透過量が非常に多いとともに、有機溶媒に溶けている有機物の排除率が非常に高いという長所がある。
【0005】
【発明が解決しようとする課題】
本発明に係るナノ複合膜は、多孔性支持体の表面にシリコーンとポリアミドとがブレンドされたスキン層が形成されており、前記多孔性支持体はスキン層を支持する構造となっており、前記スキン層は反応性ジアミン単量体と反応性ジカルボン酸単量体とを互いに重縮合させるとともに、シロキサン繰返し単位を有する高分子をコーティングすることにより製造される。このようにして製造されたナノ複合膜は大部分の有機溶媒に対して優れた安定性と高い透過量および優れた分離能を示す。
【0006】
したがって、本発明は、有機溶媒に含まれた低分子有機物の分離能に優れ、有機溶媒に対する透過速度が優れたポリアミドナノ複合膜とその製造方法を提供することにその目的がある。
【0007】
【課題を解決するための手段】
本発明は、多孔性支持体上にポリアミドとシリコーンとを含むスキン層が形成されている耐有機溶媒性ポリアミドナノ複合膜をその特徴とする。
また、本発明は、多孔性支持体上において、ジアミン単量体とジカルボン酸単量体とを用いて界面重合させるとともに、シリコーンを含ませてコーティングすることによりスキン層を形成する耐有機溶媒性ポリアミドナノ複合膜の製造方法を他の特徴とする。
【0008】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明のナノ複合膜を構成する多孔性支持体は、スキン層を支持する構造となっており、通常の複合膜の製造に適用されてきた多孔性支持体のすべてを適用することができる。特に、多孔性支持体として数平均分子量が約50,000のポリアクリロニトリルは、有機溶媒に対する耐性の点からより好ましく、ポリアクリロニトリル支持体の分画分子量は約ポリエチレングリコール(PEG)50,000程度である。
【0009】
ポリアクリロニトリル支持体を製造するためには、ポリアクリロニトリルをN−メチル−2−ピロリドンに溶かして高分子溶液を製造した後、不織布上にキャストしてポリアクリロニトリル限外濾過膜を製造する。前記多孔性支持体の表面には一定の条件でシリコーンとポリアミドとを用いてスキン層を形成した後、常温あるいは高温で乾燥過程を経、最終的にエタノール水溶液に浸漬し、気孔サイズをナノ水準に低めて本発明の目的とするナノ複合膜を製造する。スキン層は、ジアミン単量体とジカルボン酸単量体とを界面重合させるとともにポリジメチルシロキサンをコーティングすることにより製造される。
【0010】
ポリアミド合成のための界面重合に用いられるジアミン単量体は、芳香族ジアミン、脂肪族ジアミン、脂肪族シクロジアミンなど通常のポリアミド重合に適用される単量体の中から選ばれ、1種または2種以上の混合物として使用される。芳香族ジアミンとしては、2,4−ジアミノトルエン、2,4−ジアミノ安息香酸、p−フェニレンジアミン、m−フェニレンジアミン、1,3,5−トリアミノベンゼン、アミドール(amidol)などが挙げられ、脂肪族ジアミンとしては、エチレンジアミン、プロピレンジアミンなどが挙げられ、脂肪族シクロジアミンとしては、ピペラジン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサンなどが挙げられる。
【0011】
ポリアミド合成のための界面重合に用いられるジカルボン酸単量体は、ジカルボン酸化合物、カルボン酸二無水物、ジアシルハライドなど通常のポリアミド重合に適用される単量体の中から選ばれ、1種または2種以上の混合物として使用される。ジアシルハライドは、2つ以上の反応性アシルハライドを有する芳香族または脂肪族化合物であり、芳香族アシルハライドとしては、トリメゾイルクロリド、テレフタル酸クロリド、イソフタル酸クロリドなどが挙げられ、脂肪族アシルハライドとしては、シクロブタンカルボン酸クロリド、シクロペンタンカルボン酸クロリド、シクロヘキサンカルボン酸クロリド、シクロブタントリカルボン酸クロリド、シクロブタンテトラカルボン酸クロリドなどが挙げられる。
【0012】
前記ポリアミド界面重合反応には、ポリイソシアネートまたはシリカ系統の架橋剤も添加してもよい。
【0013】
一方、本発明は、スキン層形成のためのポリアミド界面重合と同時にシリコーンを添加してコーティングすることにその特徴があるが、シリコーンの数平均分子量は400〜200,000の範囲が好ましく、特に好ましくは、シクロまたは広げられた構造のポリジメチルシロキサンを使用する。
【0014】
前述のスキン層形成過程をより具体的に説明すると次の通りである。まず、多孔性支持体をジアミン単量体が0.1〜10重量%の濃度で含有されたジアミン水溶液に浸漬した後、ジカルボン酸単量体を0.005〜5重量%およびシリコーンを0.1〜3重量%の濃度で含んだイソパラフィン溶液に浸漬する。次に、常温〜70℃の温度で乾燥し、最後に10〜80重量%のエタノール水溶液に浸漬してナノ複合膜を製造する。ナノ複合膜のモジュールは、渦巻型(spiral wound)、浸漬型平板状、回転型平板状、及び板枠型(plate and frame)からなる群から選択される。前記のような製造方法で製造されたナノ複合膜は、排除率が優れ、かつ有機溶媒に対する耐性だけでなく、透過量も非常に優れている。
【0015】
【実施例】
以上、述べたような本発明を次の実施例および実験例によってさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
【0016】
実施例1
0.25重量%濃度のm−フェニレンジアミン(MPD)、0.25重量%濃度のトリエチルアミン、0.5重量%濃度のジエチレングリコールジメチルエーテル、及び0.001重量%濃度のドデシル硫酸ナトリウムを含んだジアミン水溶液を製造した。製造したジアミン水溶液を多孔性ポリアクリロニトリル支持体膜上に数分間接触させた後、過度に残っている溶液を除去した。その後、0.0125重量%濃度のトリメゾイルクロリド(TMC)と2重量%濃度のポリジメチルシロキサン(PDMS)とを含んだイソパラフィン溶液を製造し、該イソパラフィン溶液に支持体を数分間接触させた。界面重合された膜を取出して、90℃の乾燥オーブンで数時間乾燥した。こうして、支持体の表面にポリアミドとシリコーンとがともに含まれた複合膜を製造した。製造された複合膜を50重量%エタノール水溶液に数秒間浸漬した。
【0017】
実施例2
ジアミン単量体としてm−フェニレンジアミン(MPD)の代りに0.25重量%濃度のピペラジンを用いたことを除いては、前記実施例1と同様な方法で複合膜を製造した。
【0018】
比較例1
PDMSを添加しなかったことを除いては、前記実施例1と同様な方法で複合膜を製造した。
【0019】
比較例2
ジアミン水溶液とアシルハライドとを加えなかったことを除いては、前記実施例1と同様な方法で複合膜を製造した。
【0020】
実験例1:オレイン酸/ヘキサン溶液の透過速度と排除率の測定
分離膜に対するオレイン酸/ヘキサン溶液の透過速度と排除率を測定するために、1000ppmのオレイン酸(oleic acid)が含まれたヘキサン溶液を製造して、200psiの圧力と25℃の温度条件で透過装置によって透過速度および溶質排除率を測定し、次式1および2によって計算した。
【数1】

Figure 0003967955
【数2】
Figure 0003967955
【0021】
次の表1に、実施例1、比較例1および比較例2で各々製造した非対称分離膜に対するオレイン酸/ヘキサン溶液の透過速度と排除率とを測定した結果を示す。
【表1】
Figure 0003967955
【0022】
実験例2:オレイン酸/ヘキサン溶液の透過速度と排除率の測定
前記実施例1において、ポリジメチルシロキサン(PDMS)の濃度を2重量%に固定し、但し、m−フェニレンジアミン(MPD)の濃度を0.5重量%、1重量%および2重量%に各々増加させ、トリメゾイルクロリド(TMC)の濃度を0.025重量%、0.05重量%および0.1重量%に各々増加させたことを除いては、前記実施例1と同様な方法で複合膜を製造した。そして、製造した非対称分離膜に対して前記実験例1と同様の方法でオレイン酸/ヘキサン溶液の透過速度と排除率を測定し、その結果を次の表2に示す。
【0023】
【表2】
Figure 0003967955
【0024】
実験例3:オレイン酸/ヘキサン溶液の透過速度と排除率の測定
前記実施例1において、m−フェニレンジアミン(MPD)の濃度を0.25重量%、トリメゾイルクロリド(TMC)の濃度を0.0125重量%に固定し、但し、ポリジメチルシロキサン(PDMS)の濃度を0.2重量%、0.5重量%および1重量%に増加させたことを除いては、前記実施例1と同様な方法で複合膜を製造した。そして、製造した非対称分離膜に対して前記実験例1と同様の方法でオレイン酸/ヘキサン溶液の透過速度と排除率を測定し、その結果を次の表3に示す。
【0025】
【表3】
Figure 0003967955
【0026】
実験例4:染料およびオイルの透過速度と排除率の測定
前記実施例1で製造した分離膜に対して、Sudan IV染料およびワックスが除去されたオイルの各々に対する溶質透過速度と排除率を前記実験例1と同様の方法で測定し、その結果を次の表4に示す。
【0027】
【表4】
Figure 0003967955
【0028】
実験例5:溶媒の透過速度と排除率の測定
前記実施例1で製造した分離膜に対して、水(HO)、メタノール(MeOH)、エタノール(EtOH)、イソプロパノール(IPA)、アセトン(acetone)、メチルエチルケトン(MEK)、メチルt−ブチルエーテル(MTBE)、酢酸エチル(EA)、ジエチルエーテル(DEE)、ヘキサン(hexane)溶媒の各々に対する透過速度と排除率を前記実験例1と同様の方法で測定し、その結果を次の表5に示す。
【0029】
【表5】
Figure 0003967955
【0030】
【発明の効果】
以上、詳しく述べたように、本発明のポリアミドナノ複合膜は透過率と排除率が優れた透過特性を有しており、種々の有機溶媒に対して非常に安定であり、透過量と分離能が非常に優れている。特に、本発明のナノ複合膜は、混合有機溶媒の精製および有機溶媒廃水処理をはじめ、有機溶媒に溶けている低分子量有機化合物(分子量100〜1000)の回収に有効である。したがって、本発明のナノ複合膜は精油産業におけるオイルの分離、高値な触媒の分離回収、薬の分離および濃縮、毒性物質の分離などに広く適用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicone-containing organic solvent-resistant polyamide nanocomposite membrane and a method for producing the same, and more specifically, is produced by coating silicone together during a polyamide polymerization process on the surface of a porous support. Furthermore, the present invention relates to a nanocomposite membrane having an excellent rejection rate and an extremely excellent permeation amount as well as stability to an organic solvent and a method for producing the same.
[0002]
[Prior art]
Currently, organic polymers crosslinked with ceramics and inorganic substances are known as materials for separation membranes that are resistant to organic solvents, but such materials are very expensive and have a molecular weight cut-off range. However, its application is limited to ultrafiltration membranes and microfiltration membranes. In addition, the polymer material used in most nanocomposite membranes swells in an organic solvent, and when operating under a constant pressure, the amount of permeation is greatly reduced due to consolidation. Since these materials are hydrophobic, when a polyamide nanocomposite membrane is applied for the purpose of water treatment, the permeation amount of most organic solvents is greatly reduced. That is, it is unsuitable to apply existing nanocomposite membranes to food engineering, waste treatment, chemical processes and organic solvent treatment processes performed in the essential oil industry. In addition, hydrophobic nanocomposite membranes that are resistant to organic solvents are commercialized under the product name "Membrane D" (Membrane Osmonics Co.), but the disadvantage is that the exclusion rate is not high due to the flexibility of silicone itself. There is.
[0003]
The prior art relating to a separation membrane resistant to an organic solvent is as follows. The separation membrane reported in US Pat. No. 5,030,282 is highly resistant to organic solvents, but has a large amount of permeation of an aqueous solution and can be said to be a hydrophilic membrane from the viewpoint of the structure of the coating layer. When a permeation experiment is performed using the organic solvent, the permeation amount of the organic solvent is very low. In the case of the nanocomposite film coated with chitosan reported in US Pat. No. 6,113,794, chitosan is also a hydrophilic film and has excellent resistance to most organic solvents. It has been reported that the permeation amount of is much greater than the permeation amount of other organic solvents. In addition, as a result of measuring the amount of transmission using hexane, it is reported that almost no transmission occurs. That is, it can be said that the separation membrane reported in US Pat. No. 6,113,794 is incompatible with permeation of hydrophobic organic solvents.
[0004]
On the other hand, in the conventional separation membrane technical field, a permeation experiment for measuring an exclusion rate is performed only using an aqueous solution, and the exclusion behavior of an organic substance dissolved in an organic solvent is not considered at all.
On the other hand, the separation membrane of the present invention, unlike the existing patent method, conducts a permeation experiment for most of the organic solvent, and the permeation amount of the hydrophobic organic solvent is very large and is dissolved in the organic solvent. There is an advantage that the exclusion rate of organic matter is very high.
[0005]
[Problems to be solved by the invention]
In the nanocomposite membrane according to the present invention, a skin layer in which silicone and polyamide are blended is formed on the surface of a porous support, and the porous support has a structure that supports the skin layer. The skin layer is produced by polycondensing a reactive diamine monomer and a reactive dicarboxylic acid monomer with each other and coating a polymer having a siloxane repeating unit. The nanocomposite membrane produced in this manner exhibits excellent stability, high permeation amount and excellent separation ability for most organic solvents.
[0006]
Accordingly, an object of the present invention is to provide a polyamide nanocomposite membrane excellent in the ability to separate low-molecular organic substances contained in an organic solvent and having a high permeation rate with respect to the organic solvent, and a method for producing the same.
[0007]
[Means for Solving the Problems]
The present invention is characterized by an organic solvent-resistant polyamide nanocomposite film in which a skin layer containing polyamide and silicone is formed on a porous support.
In addition, the present invention provides an organic solvent resistance that forms a skin layer by interfacial polymerization using a diamine monomer and a dicarboxylic acid monomer on a porous support and coating with silicone. Another feature is a method for producing a polyamide nanocomposite membrane.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The porous support constituting the nanocomposite membrane of the present invention has a structure that supports the skin layer, and all of the porous supports that have been applied to the production of ordinary composite membranes can be applied. In particular, polyacrylonitrile having a number average molecular weight of about 50,000 is more preferred as a porous support from the viewpoint of resistance to organic solvents, and the molecular weight cut off of the polyacrylonitrile support is about polyethylene glycol (PEG) about 50,000. is there.
[0009]
In order to produce a polyacrylonitrile support, polyacrylonitrile is dissolved in N-methyl-2-pyrrolidone to produce a polymer solution, which is then cast on a nonwoven fabric to produce a polyacrylonitrile ultrafiltration membrane. After a skin layer is formed on the surface of the porous support using silicone and polyamide under certain conditions, it is dried at room temperature or high temperature, and finally immersed in an aqueous ethanol solution, and the pore size is nano-level. The nanocomposite film which is the object of the present invention is manufactured at a low temperature. The skin layer is produced by interfacial polymerization of a diamine monomer and a dicarboxylic acid monomer and coating with polydimethylsiloxane.
[0010]
The diamine monomer used for the interfacial polymerization for polyamide synthesis is selected from monomers applied to normal polyamide polymerization such as aromatic diamine, aliphatic diamine, aliphatic cyclodiamine, etc. Used as a mixture of seeds and more. Examples of the aromatic diamine include 2,4-diaminotoluene, 2,4-diaminobenzoic acid, p-phenylenediamine, m-phenylenediamine, 1,3,5-triaminobenzene, amidol, and the like. Examples of the aliphatic diamine include ethylene diamine and propylene diamine, and examples of the aliphatic cyclodiamine include piperazine, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, and the like.
[0011]
The dicarboxylic acid monomer used for the interfacial polymerization for polyamide synthesis is selected from monomers applied to normal polyamide polymerization such as dicarboxylic acid compounds, carboxylic dianhydrides, diacyl halides, etc. Used as a mixture of two or more. The diacyl halide is an aromatic or aliphatic compound having two or more reactive acyl halides. Examples of the aromatic acyl halide include trimesoyl chloride, terephthalic acid chloride, and isophthalic acid chloride. Examples thereof include cyclobutane carboxylic acid chloride, cyclopentane carboxylic acid chloride, cyclohexane carboxylic acid chloride, cyclobutane tricarboxylic acid chloride, cyclobutane tetracarboxylic acid chloride, and the like.
[0012]
A polyisocyanate or a silica-based crosslinking agent may also be added to the polyamide interfacial polymerization reaction.
[0013]
On the other hand, the present invention is characterized in that silicone is added and coated simultaneously with polyamide interfacial polymerization for skin layer formation, but the number average molecular weight of silicone is preferably in the range of 400 to 200,000, particularly preferably. Use polydimethylsiloxane of cyclo or expanded structure.
[0014]
The above-described skin layer forming process will be described in detail as follows. First, after immersing the porous support in a diamine aqueous solution containing diamine monomer at a concentration of 0.1 to 10% by weight, 0.005 to 5% by weight of dicarboxylic acid monomer and 0.1% of silicone were added. Soak in an isoparaffin solution containing 1 to 3% by weight. Next, it is dried at a temperature of room temperature to 70 ° C., and finally immersed in a 10 to 80 wt% aqueous ethanol solution to produce a nanocomposite membrane. The module of the nanocomposite membrane is selected from the group consisting of spiral wound, submerged flat plate, rotary flat plate, and plate and frame. The nanocomposite membrane manufactured by the manufacturing method as described above has an excellent rejection rate and not only resistance to an organic solvent but also a very high permeation amount.
[0015]
【Example】
The present invention as described above will be described in more detail with reference to the following examples and experimental examples, but the present invention is not limited thereto.
[0016]
Example 1
Aqueous diamine solution containing 0.25 wt% m-phenylenediamine (MPD), 0.25 wt% triethylamine, 0.5 wt% diethylene glycol dimethyl ether, and 0.001 wt% sodium dodecyl sulfate. Manufactured. The produced aqueous diamine solution was brought into contact with the porous polyacrylonitrile support membrane for several minutes, and then the excessively remaining solution was removed. Thereafter, an isoparaffin solution containing 0.0125% by weight of trimesoyl chloride (TMC) and 2% by weight of polydimethylsiloxane (PDMS) was prepared, and the support was brought into contact with the isoparaffin solution for several minutes. The interfacially polymerized film was taken out and dried in a drying oven at 90 ° C. for several hours. In this way, a composite membrane in which both the polyamide and the silicone were contained on the surface of the support was produced. The manufactured composite membrane was immersed in a 50 wt% ethanol aqueous solution for several seconds.
[0017]
Example 2
A composite membrane was produced in the same manner as in Example 1 except that piperazine having a concentration of 0.25% by weight was used instead of m-phenylenediamine (MPD) as the diamine monomer.
[0018]
Comparative Example 1
A composite membrane was produced in the same manner as in Example 1 except that PDMS was not added.
[0019]
Comparative Example 2
A composite membrane was produced in the same manner as in Example 1 except that the aqueous diamine solution and the acyl halide were not added.
[0020]
Experimental Example 1: Measurement of permeation rate and rejection rate of oleic acid / hexane solution To measure the permeation rate and rejection rate of oleic acid / hexane solution to the separation membrane, 1000 ppm of oleic acid was used. The contained hexane solution was prepared, and the permeation rate and the solute rejection rate were measured with a permeator at a pressure of 200 psi and a temperature of 25 ° C., and calculated according to the following equations 1 and 2.
[Expression 1]
Figure 0003967955
[Expression 2]
Figure 0003967955
[0021]
Table 1 below shows the results of measuring the permeation rate and rejection of the oleic acid / hexane solution with respect to the asymmetric separation membranes produced in Example 1, Comparative Example 1 and Comparative Example 2, respectively.
[Table 1]
Figure 0003967955
[0022]
Experimental example 2: Measurement of permeation rate and exclusion rate of oleic acid / hexane solution In Example 1, the concentration of polydimethylsiloxane (PDMS) was fixed at 2% by weight, provided that m-phenylenediamine ( The concentration of MPD) was increased to 0.5 wt%, 1 wt% and 2 wt%, respectively, and the concentration of trimesoyl chloride (TMC) was increased to 0.025 wt%, 0.05 wt% and 0.1 wt%, respectively. A composite membrane was produced in the same manner as in Example 1 except that each was increased. And the permeation | transmission speed | rate and exclusion rate of an oleic acid / hexane solution were measured with the method similar to the said Experimental example 1 with respect to the manufactured asymmetrical separation membrane, and the result is shown in following Table 2.
[0023]
[Table 2]
Figure 0003967955
[0024]
Experimental Example 3: Measurement of permeation rate and exclusion rate of oleic acid / hexane solution In Example 1, the concentration of m-phenylenediamine (MPD) was 0.25 wt%, and trimesoyl chloride (TMC) was used. The above examples were fixed except that the concentration was fixed at 0.0125% by weight, except that the concentration of polydimethylsiloxane (PDMS) was increased to 0.2%, 0.5% and 1% by weight. 1 was used to produce a composite membrane. And the permeation | transmission speed | rate and exclusion rate of an oleic acid / hexane solution were measured with the method similar to the said Experimental example 1 with respect to the manufactured asymmetrical separation membrane, and the result is shown in following Table 3.
[0025]
[Table 3]
Figure 0003967955
[0026]
Experimental Example 4: Measurement of dye and oil permeation rate and rejection rate Solvent permeation rate and exclusion rate for each of the oils from which Sudan IV dye and wax were removed from the separation membrane prepared in Example 1 above. The rate was measured by the same method as in Experimental Example 1, and the results are shown in Table 4 below.
[0027]
[Table 4]
Figure 0003967955
[0028]
Experimental Example 5: For separation membrane produced by the measurement <br/> Example 1 of permeation rate and rejection of the solvent, water (H 2 O), methanol (MeOH), ethanol (EtOH), isopropanol (IPA ), Acetone (acetone), methyl ethyl ketone (MEK), methyl t-butyl ether (MTBE), ethyl acetate (EA), diethyl ether (DEE), and hexane (hexane) solvent. The results are shown in Table 5 below.
[0029]
[Table 5]
Figure 0003967955
[0030]
【The invention's effect】
As described above in detail, the polyamide nanocomposite membrane of the present invention has excellent permeability and rejection, and is very stable to various organic solvents. Is very good. In particular, the nanocomposite membrane of the present invention is effective for recovering a low molecular weight organic compound (molecular weight 100 to 1000) dissolved in an organic solvent, including purification of a mixed organic solvent and organic solvent wastewater treatment. Therefore, the nanocomposite membrane of the present invention can be widely applied to oil separation, high-value catalyst separation and recovery, medicine separation and concentration, toxic substance separation and the like in the essential oil industry.

Claims (6)

多孔性支持体の表面に、シリコーンとポリアミドがブレンドされたスキン層が形成されていることを特徴とする耐有機溶媒性ポリアミドナノ複合膜。An organic solvent-resistant polyamide nanocomposite film characterized in that a skin layer in which silicone and polyamide are blended is formed on the surface of a porous support. 前記ナノ複合膜が、有機溶媒に溶けている低分子量化合物(分子量100〜1000)の分離に用いられることを特徴とする請求項1記載の耐有機溶媒性ポリアミドナノ複合膜。  The organic solvent-resistant polyamide nanocomposite film according to claim 1, wherein the nanocomposite film is used for separation of a low molecular weight compound (molecular weight: 100 to 1000) dissolved in an organic solvent. 多孔性支持体をジアミン単量体水溶液に接触させた後、ジカルボン酸単量体及びシリコーンを含む溶液に接触させて界面重合させ、前記多孔性支持体の表面にシリコーンとポリアミドがブレンドされたスキン層を形成することを特徴とする耐有機溶媒性ポリアミドナノ複合膜の製造方法。 A skin in which a porous support is brought into contact with an aqueous solution of a diamine monomer and then brought into contact with a solution containing a dicarboxylic acid monomer and silicone to undergo interfacial polymerization, and the surface of the porous support is blended with silicone and polyamide. A method for producing an organic solvent-resistant polyamide nanocomposite film characterized by forming a layer. 前記ジアミン単量体の濃度が0.1〜10重量%であり、前記ジカルボン酸単量体の濃度が0.005〜5重量%であり、前記シリコーンの濃度が0.1〜3重量%であることを特徴とする請求項3記載の耐有機溶媒性ポリアミドナノ複合膜の製造方法。  The concentration of the diamine monomer is 0.1 to 10% by weight, the concentration of the dicarboxylic acid monomer is 0.005 to 5% by weight, and the concentration of the silicone is 0.1 to 3% by weight. The method for producing an organic solvent-resistant polyamide nanocomposite film according to claim 3. 前記多孔性支持体が、ポリアクリロニトリル限外濾過膜であることを特徴とする請求項3記載の耐有機溶媒性ポリアミドナノ複合膜の製造方法。  The method for producing an organic solvent-resistant polyamide nanocomposite membrane according to claim 3, wherein the porous support is a polyacrylonitrile ultrafiltration membrane. 前記シリコーンが、ポリジメチルシロキサンであることを特徴とする請求項3記載の耐有機溶媒性ポリアミドナノ複合膜の製造方法。  4. The method for producing an organic solvent-resistant polyamide nanocomposite film according to claim 3, wherein the silicone is polydimethylsiloxane.
JP2002127109A 2002-04-26 2002-04-26 Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same Expired - Fee Related JP3967955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002127109A JP3967955B2 (en) 2002-04-26 2002-04-26 Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002127109A JP3967955B2 (en) 2002-04-26 2002-04-26 Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003320225A JP2003320225A (en) 2003-11-11
JP3967955B2 true JP3967955B2 (en) 2007-08-29

Family

ID=29541318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002127109A Expired - Fee Related JP3967955B2 (en) 2002-04-26 2002-04-26 Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3967955B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010001482A1 (en) * 2010-02-02 2011-08-04 Wacker Chemie AG, 81737 Process for the preparation of porous silicone moldings
US9346023B2 (en) 2012-08-21 2016-05-24 General Electric Company Flux enhancing agent for improving composite polyamide reverse osmosis membrane performance

Also Published As

Publication number Publication date
JP2003320225A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
KR100447932B1 (en) Silicone-added polyamide composite nanofiltration membrane organic separation, and method for preparing them
AU611474B2 (en) Polyamide reverse osmosis membranes
US4830885A (en) Chlorine-resistant semipermeable membranes
EP1434647B1 (en) Composite nanofiltratrion and reverse osmosis membranes and method for producing the same
JPH0673617B2 (en) Interface-synthesized reverse osmosis membrane containing amine salt and method for producing the same
JP2001025648A (en) Interfacially polymerized bipiperidine-polyamide membrane for reverse osmosis and/or nano-filtration and production thereof
JPS6322843B2 (en)
JP6346892B2 (en) Aminosiloxane flux enhancer for improving the performance of polyamide composite reverse osmosis membranes
KR20070017740A (en) Method of manufacturing for aromatic polyamide composite membrane
KR100211338B1 (en) Producing method of the polyamide type crosslinked reverse osmosis separation membrane
JP3967955B2 (en) Silicone-containing organic solvent-resistant polyamide nanocomposite film and method for producing the same
EP1356856B1 (en) Silicone-coated organic solvent resistant polyamide composite nanofiltration membrane, and method for preparing the same
JPS62140608A (en) Composite semipermeable membrane, its production, and treatment of aqueous solution
JP2000093771A (en) Fluid separation membrane and its manufacture
JPS61263602A (en) Ultrafilter membrane
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
KR0123279B1 (en) Method for semipermeable composite membrane
JPH0221292B2 (en)
KR19990070134A (en) Manufacturing Method of Polyamide Composite Membrane
JPH05329346A (en) Composite semipermeable membrane
JP3045200B2 (en) Composite semipermeable membrane
KR20220013744A (en) Method for manufacturing water treatment membrane, water treatment membrane, and water treatment module
JP2878798B2 (en) Composite semipermeable membrane and method for producing the same
CA1339054C (en) Chlorine-resistant semipermeable membranes
KR20000059809A (en) Method for the reverse osmosis membrane with high flux

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060623

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3967955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees