JP3966742B2 - Variable compression ratio device for internal combustion engine - Google Patents

Variable compression ratio device for internal combustion engine Download PDF

Info

Publication number
JP3966742B2
JP3966742B2 JP2002048606A JP2002048606A JP3966742B2 JP 3966742 B2 JP3966742 B2 JP 3966742B2 JP 2002048606 A JP2002048606 A JP 2002048606A JP 2002048606 A JP2002048606 A JP 2002048606A JP 3966742 B2 JP3966742 B2 JP 3966742B2
Authority
JP
Japan
Prior art keywords
piston
compression ratio
internal combustion
combustion engine
piston outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002048606A
Other languages
Japanese (ja)
Other versions
JP2003065090A (en
Inventor
允 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002048606A priority Critical patent/JP3966742B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to DE60225284T priority patent/DE60225284T2/en
Priority to EP02733417A priority patent/EP1403488B1/en
Priority to BR0210447-4A priority patent/BR0210447A/en
Priority to CA002450280A priority patent/CA2450280C/en
Priority to CNA028120213A priority patent/CN1516780A/en
Priority to KR1020037016293A priority patent/KR100592167B1/en
Priority to US10/480,422 priority patent/US7066118B2/en
Priority to PCT/JP2002/005702 priority patent/WO2002103178A1/en
Priority to AU2002306327A priority patent/AU2002306327B2/en
Priority to TW091112917A priority patent/TW530116B/en
Publication of JP2003065090A publication Critical patent/JP2003065090A/en
Application granted granted Critical
Publication of JP3966742B2 publication Critical patent/JP3966742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の圧縮比可変装置に関し,特に,ピストンを,コンロッドにピストンピンを介して連結されるピストンインナと,このピストンインナに連結されて外端面を燃焼室に臨ませながら,ピストンインナ寄りの低圧縮比位置及び燃焼室寄りの高圧縮比位置間を移動し得るピストンアウタとで構成し,ピストンアウタを低圧縮比位置に作動して機関の圧縮比を下げ,高圧縮比位置に作動して同圧縮比を高めるようにしたものゝ改良に関する。
【0002】
【従来の技術】
従来,かゝる内燃機関の圧縮比可変装置として,(1)ピストンアウタをピストンインナの外周に螺合して,ピストンアウタを正,逆転させることによりピストンインナに対して進退させ,低圧縮比位置及び高圧縮比位置に作動するようにしたもの(例えば特開平11−117779号公報参照)と,(2)ピストンアウタをピストンインナの外周に軸方向摺動可能に嵌合し,これらピストンインナ及びアウタ間に,上部油圧室及び下部油圧室を形成し,これら油圧室に交互に油圧を供給することにより,ピストンアウタを低圧縮比位置及び高圧縮比位置に作動するようにしたもの(例えば特公平7−113330号公報参照)とが知られている。
【0003】
【発明が解決しようとする課題】
ところで,上記(1)の装置では,ピストンアウタを低圧縮比位置及び高圧縮比位置に作動するために,ピストンアウタを回転させる必要があるので,ピストンアウタの頂面の形状を,燃焼室の天井面形状や吸気及び排気弁の配置に対応して自由に設定することができず,高圧縮比位置で機関の圧縮比を充分に高めることが困難である。また上記(2)の装置では,特にピストンアウタが高圧縮比位置にあるとき,機関の膨張行程でピストンアウタが受ける大なるスラスト荷重を上部油圧室の油圧で支えるので,上部油圧室には高圧に耐えるシールが必要となり,その上,上部油圧室に気泡が発生するとピストンアウタの高圧縮比位置が不安定になるから,そのような気泡の除去手段を施す必要もあり,全体としてコスト高となるを免れない。
【0004】
本発明は,かゝる事情に鑑みてなされたもので,ピストンアウタを回転させることなく簡単,的確に低圧縮比位置及び高圧縮比位置に作動し得る,内燃機関の圧縮比可変装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために,本発明の内燃機関の圧縮比可変装置は,コンロッドにピストンピンを介して連結されるピストンインナと,このピストンインナを覆うようにその外周に軸方向にのみ摺動可能に嵌合して外端面を燃焼室に臨ませながら,前記ピストンインナ寄りの低圧縮比位置及び燃焼室寄りの高圧縮比位置間を移動し得るピストンアウタとでピストンを構成し,前記ピストンインナ及びアウタ間に嵩上げ部材を,これがピストンの軸線周りに非嵩上げ位置及び嵩上げ位置間を回動し得るように介裝し,この嵩上げ部材と,前記ピストンインナ及びアウタの一方との軸方向対向面に,それぞれ頂面を平坦面とした凸状で且つ環状に配列される複数の第1カム及び第2カムを形成し,これら第1及び第2カムは,前記嵩上げ部材が非嵩上げ位置に回動したとき互いに噛み合って前記ピストンアウタの低圧縮比位置への移動を許容し,前記嵩上げ部材が嵩上げ位置に回動したとき互いに頂面を当接させて前記ピストンアウタを高圧縮比位置に保持するように配置され,前記嵩上げ部材に,これを非嵩上げ位置及び嵩上げ位置に交互に回動するアクチュエータを連結したことを第1の特徴とする。
【0006】
この第1の特徴によれば,アクチュエータにより嵩上げ部材を非嵩上げ位置に回動すると,嵩上げ部材が,ピストンアウタの低圧縮比位置への移動を許容するので,ピストンアウタが燃焼室側からの高圧により低圧縮比位置に移動することができる。またアクチュエータにより嵩上げ部材を非嵩上げ位置から嵩上げ位置へと回動すると,ピストンアウタを高圧縮比位置に保持することができる。
【0007】
この間,ピストンアウタは,ピストンインナに対して回転することがないから,燃焼室に臨むピストンアウタの頂面形状を燃焼室の形状に対応させて,ピストンアウタの高圧縮比位置での圧縮比を効果的に高めることができる。
【0008】
しかもピストンアウタの高圧縮比位置では,機関の膨張行程時,ピストンアウタが燃焼室から受ける大なる推力は嵩上げ部材で受け止められる。したがって,上記推力のアクチュエータへの作用も回避されることになるから,アクチュエータの小出力化,延いてはコンパクト化が可能となる。またアクチュエータを油圧式に構成する場合でも,これに前記推力が作用しないことから高圧シールは不要であり,また油圧室に多少の気泡が発生してもピストンアウタの高圧縮比位置を不安定にさせることもない。
【0009】
特に,ピストンアウタの高圧縮比位置への到達時には,環状配列の複数の凸状の第1カム及び第2カムが互いに平坦の頂面を当接させるので,機関の膨張行程時,ピストンアウタが燃焼室から受ける大なる推力は,上記頂面に垂直に作用し,嵩上げ部材に回動トルクとして作用するのを確実に防ぐことができる
【0010】
また本発明は,第1の特徴に加えて,前記嵩上げ部材及びアクチュエータを,前記ピストンインナ及びアウタの往復動中,これらを互いに軸方向に離間させたり近接させるようと作用する自然外力によりピストンアウタが低圧縮比位置及び高圧縮比位置間を移動することを許容するように構成したことを第2の特徴とする。前記自然外力には,ピストンアウタがシリンダボアの内面から受ける摩擦抵抗やピストンアウタの慣性力,ピストンアウタに作用する吸気負圧等がある。
【0011】
この第2の特徴によれば,ピストンアウタを低圧縮比位置から高圧縮比位置へ,或いは高圧縮比位置から低圧縮比位置へ移動させるのに自然外力を利用することができ,したがってアクチュエータは嵩上げ部材を単に非嵩上げ位置及び嵩上げ位置間で移動させるだけの出力を発揮すれば足りることになり,アクチュエータの小容量化及び小型化を図ることができる。
【0012】
さらに本発明は,第1の特徴に加えて,前記第1及び第2カムには,前記嵩上げ部材が非嵩上げ位置から嵩上げ位置へ回動するとき互いに軸方向に離反するように滑る斜面を設けたことを第3の特徴とする。
【0013】
この第3の特徴によれば,嵩上げ部材の非嵩上げ位置から嵩上げ位置への回動時には,第1及び第2カムが互いに斜面を滑らせながら軸方向に離反することで,ピストンアウタを高圧縮比位置まで押し上げることができる。
【0014】
さらにまた本発明は,第2の特徴に加えて,前記第1及び第2カムには,それぞれの頂面の周方向両側縁から各カムの根元に略垂直に下りる絶壁面を形成したことを第4の特徴とする。
【0015】
この第4の特徴によれば,第1及び第2カムの各両側面を絶壁面とすることで,嵩上げ部材の作動ストローク角度を小さく設定すること,並びに各カムの頂面を広く形成することが可能となり,嵩上げ部材の応答性を高めると共に,該頂面に作用する面圧を下げ得て,それらの耐久性の向上をも図ることができる。
【0016】
しかもピストンアウタを低圧縮比位置及び高圧縮比位置間で移動するのに,ピストンインナ及びピストンアウタを互いに軸方向に離間させたり近接させる自然外力が利用されるので,嵩上げ部材の非嵩上げ位置及び嵩上げ位置間での回動に支障を来すこともない。
【0017】
さらにまた本発明は,第1〜第4の特徴の何れかに加えて,前記ピストンインナ及びピストンアウタ間には,ピストンアウタが低圧縮比位置に来たとき,ピストンアウタをピストンインナに対して係止するピストンアウタ係止手段を設けたことを第5の特徴とする。
【0018】
この第5の特徴によれば,ピストンアウタが低圧縮比位置に来たとき,ピストンインナ及びピストンアウタの一体作動を保証し得る。
【0019】
さらにまた本発明は,第1〜第5の特徴に加えて,前記ピストンインナ及びピストンアウタ間には,ピストンアウタが高圧縮比位置に来たとき,該ピストンアウタのピストンインナに対する燃焼室側への移動を規制するピストンアウタ規制手段を設けたことを第6の特徴とする。
【0020】
この第6の特徴によれば,ピストンアウタが高圧縮比位置に達したときも,ピストンインナ及びピストンアウタの一体作動を保証し得る。
【0021】
さらにまた本発明は,第1又は第2の特徴に加えて,前記アクチュエータを,油圧源の油圧により作動して嵩上げ部材を嵩上げ位置へ作動する油圧作動手段と,嵩上げ部材を非嵩上げ位置側へ付勢する戻しばねとで構成したことを第7特徴とする。
【0022】
この第7の特徴によれば,油圧作動手段では油圧室が1室で足り,その構成の簡素化を図ることができる。
【0023】
さらにまた本発明は,第5の特徴に加えて,前記ピストンアウタ係止手段を,前記ピストンインナに支持されて前記ピストンアウタ内周面の係止溝に係合する作動位置及び該係止溝から離脱する後退位置間を移動する係止部材と,この係止部材を作動位置へ付勢する作動ばねと,前記油圧源の油圧により作動して係止部材を後退位置へ作動する油圧戻し手段とで構成したことを第8の特徴とする。
【0024】
この第8の特徴によれば,ピストンアウタ係止手段でも油圧室が1室で足り,その構成の簡素化を図ることができる。
【0025】
さらにまた本発明は,第5の特徴の何れかに加えて,前記アクチュエータを,油圧源の油圧により作動して嵩上げ部材を嵩上げ位置へ作動する油圧作動手段と,嵩上げ部材を非嵩上げ位置側へ付勢する戻しばねとで構成し,また前記ピストンアウタ係止手段を,ピストンインナに支持されてピストンアウタ内周面の係止溝に係合する作動位置及び該係止溝から離脱する後退位置間を移動する係止部材と,この係止部材を作動位置へ付勢する作動ばねと,油圧源の油圧により作動して係止部材を後退位置へ作動する油圧戻し手段とで構成し,前記油圧作動手段及び油圧戻し手段に油圧源の油圧を同時に供給するようにしたことを第9の特徴とする。
【0026】
この第9の特徴によれば,共通の油圧をもってアクチュエータ及びピストンアウタ係止手段を合理的に作動することができ,油圧回路の簡素化をもたらすことができる。
【0027】
尚,前記ピストンアウタ規制手段は,後述する本発明の実施例における止環18,118に対応する。また前記油圧作動手段は後述の作動プランジャ23,123及び第1油圧室25,125に対応し,前記油圧油圧戻し手段は後述の第2油圧室37,137及びピストン38,138に対応する。
【0028】
【発明の実施の形態】
本発明の実施の形態を,添付図面に示す本発明の一実施例に基づいて以下に説明する。
【0029】
図1は本発明の第1実施例に係る圧縮比可変装置を備えた内燃機関の要部縦断正面図,図2は図1の2−2線拡大断面図で低圧縮比状態を示す,図3は図2の3−3線断面図,図4は図2の4−4線断面図,図5は図2の5−5線断面図,図6は図2の6−6線断面図,図7は高圧縮比状態を示す,図2との対応図,図8は図7の8−8線断面図,図9は図7の9−9線断面図,図10は嵩上げ部材の作用説明図である。また図11は本発明の第2実施例に係る圧縮比可変装置を備えた内燃機関の要部縦断正面図,図12は図11の12−12線拡大断面図で低圧縮比状態を示す,図13は図2の13−13線断面図,図14は図12の14−14線断面図,図15は図12の15−15線断面図,図16は図12の16−16線断面図,図17は図12の17−17線断面図,図18は高圧縮比状態を示す,図12との対応図,図18は図17の18−18線断面図,図19は図18の19−19線断面図,図20は図18の20−20線断面図,図21は嵩上げ部材の作用説明図である。
【0030】
先ず,図1〜図10に示す本発明の第1実施例の説明より始める。図1及び図2において,内燃機関Eの機関本体1は,シリンダボア2aを有するシリンダブロック2と,このシリンダブロック2の下端に結合されるクランクケース3と,シリンダボア2aに連なる燃焼室4aを有してシリンダブロック2の上端に結合されるシリンダヘッド4とからなり,シリンダボア2aに摺動可能に嵌装されるピストン5にはコンロッド7の小端部7aがピストンピン6を介して連結され,コンロッド7の大端部7bは,左右一対のベアリング8,8′を介してクランクケース3に回転自在に支承されるクランク軸9のクランクピン9aに連結される。
【0031】
前記ピストン5は,ピストンピン6を介してコンロッド7の小端部7aに連結されるピストンインナ5aと,このピストンインナ5aの外周面及びシリンダボア2aの内周面に摺動自在に嵌合し,頂面を燃焼室4aに臨ませるピストンアウタ5bとからなっており,ピストンアウタ5bの外周に,シリンダボア2aの内周面に摺動自在に密接する複数のピストンリング10a〜10cが装着される。
【0032】
また図2及び図3に示すように,ピストンインナ及びアウタ5a,5bの摺動嵌合面には,ピストン5の軸方向に延びて互いに係合する複数のスプライン歯11a及びスプライン溝11bがそれぞれ形成され,ピストンインナ及びアウタ5a,5bは,それらの軸線周りに相対回転できないようになっている。
【0033】
図2及び図6において,ピストンインナ5aの上面には,その上面に一体に突設された枢軸部12に回動可能に嵌合する円環状の嵩上げ部材14が載置される。枢軸部12は,コンロッド7の小端部7aを受容すべく,複数(図では2個)のブロック12a,12aに分割される。
【0034】
嵩上げ部材14は,その軸線周りに設定される第1及び嵩上げ位置A,B間を回動し得るもので,その往復回動に伴いピストンアウタ5bをピストンインナ5a寄りの低圧縮比位置L(図2及び図10(a)参照)と,燃焼室4a寄りの高圧縮比位置H(図7及び図10(c)参照)とに交互に移動させるカム機構15が嵩上げ部材14及びピストンアウタ5b間に設けられる。
【0035】
図10に明示するように,カム機構15は,嵩上げ部材14の上面に形成される環状配列の複数の凸状第1カム16と,ピストンアウタ5bの頂壁下面に形成される環状配列の複数の凸状第2カム17とからなっており,これら第1カム16及び第2カム17は,嵩上げ部材14が非嵩上げ位置Aにあるときは,互いに周方向に交互に並んでピストンアウタ5bの低圧縮比位置Lへの移行を許容するようになっている。これら第1カム16及び第2カム17には,嵩上げ部材14が非嵩上げ位置Aから嵩上げ位置Bへ回動するとき互いに軸方向に離反するように滑る斜面16a,17aと,嵩上げ部材14が嵩上げ位置Bに到達したとき互いに当接してピストンアウタ5bを高圧縮比位置Hに保持する平坦な頂面16b,17bとが設けられる。そして,ピストンアウタ5bが高圧縮比位置Hに達したときは,ピストンアウタ5bが高圧縮比位置Hを越えて燃焼室4a側へ移動することを阻止するための規制手段として,ピストンインナ5aの下端面に当接する止環18がピストンアウタ5bの下端部内周面に係止される。
【0036】
ピストンインナ5a及び嵩上げ部材14間には,嵩上げ部材14を第1及び嵩上げ位置A,Bへ回動させるアクチュエータ20が設けられる。このアクチュエータ20について図2,図5及び図6を参照しながら説明する。
【0037】
ピストンインナ5aには,ピストンピン6を挟んでそれと平行に延びる有底の第1及び第2シリンダ孔22が設けられ,これらシリンダ孔21,22に第1及び第2プランジャ23,24が摺動自在に嵌装される。作動及び戻しプランジャ23,24の先端は,第1及び第2シリンダ孔21,22から同一方向に突出しており,これらの先端に当接配置される第1及び第2受圧片14a,14bが嵩上げ部材14の下面に突設されている。
【0038】
第1シリンダ孔21内には,作動プランジャ23の内端が臨む第1油圧室25が画成され,該室25に油圧を供給すると,その油圧を受けて作動プランジャ23が第1受圧片14aを介して嵩上げ部材14を嵩上げ位置Bへ回動すうようになっている。また第2シリンダ孔22には,戻しプランジャ24の内端が臨むばね室25が画成され,該室25に収容される戻しばね27の力をもって戻しプランジャ24が第2受圧片14bを介して嵩上げ部材14を非嵩上げ位置A方向へ付勢するようになっている。嵩上げ部材14の非嵩上げ位置Aは,第1シリンダ孔21の底面に当接する作動プランジャ23の先端に第1受圧片14aが当接することにより規定され(図5参照),嵩上げ部材14の嵩上げ位置Bは,第2シリンダ孔22の底面に当接する戻しプランジャ24の先端に第2受圧片14bが当接することにより規定される(図9参照)。
【0039】
而して,嵩上げ部材14及びアクチュエータ20は,ピストンアウタ5bの慣性力や,ピストンアウタ5bがシリンダボア2aの内面から受ける摩擦抵抗,ピストンアウタ5bに作用する吸気負圧等,ピストンインナ及びアウタ5a,5bにそれらを互いに軸方向に離間させたり近接させようと作用する自然外力により,ピストンアウタ5bが低圧縮比位置L及び高圧縮比位置H間で移動することを許容する。
【0040】
またピストンインナ5a及びピストンアウタ5b間には,ピストンアウタ5bが低圧縮比位置Lに来たとき,このピストンアウタ5bをピストンインナ5aに対して係止するピストンアウタ係止手段30が設けられる。このピストンアウタ係止手段30について,図2及び図4を参照しながら説明する。
【0041】
ピストンインナ5aの内周面には,周方向に延びる複数の係止溝31が等間隔置きに形成され,ピストンアウタ5bが低圧縮比位置Lに来たとき,これら係止溝31に係合,離脱し得るように複数の係止レバー32がピストンインナ5aにピボット軸33を介して揺動自在に取り付けられる。即ち,係止レバー32は,係止溝31に係合する作動位置C(図4参照)と,係止溝31から離脱する後退位置D(図8参照)との間を揺動することができる。
【0042】
各係止レバー32は,係止溝31に係合,離脱する長腕部32aと,ピボット軸33を挟んで長腕部32aと反対側に延びる短腕部32bとからなっており,長腕部32aを係止溝31との係合方向へ付勢する作動ばね34が長腕部32a及びピストンインナ5a間に縮設される。その際,長腕部32aには,作動ばね34の内周に嵌合してそれを定位置に保持する位置決め突起35が形成される。一方,ピストンインナ5aには,各短腕部32bに対応して複数のシリンダ孔36が形成され,これらシリンダ孔36の摺動自在に嵌装される複数のピストン38の先端が短腕部32bの先端に当接配置される。各シリンダ孔36には,対応するピストン38の内端が臨む第2油圧室37が画成され,この第2油圧室37に油圧を供給すると,その油圧を受けてピストン38が係止レバー32を作動ばね34の力に抗して係止溝31から離脱させるようになっている。
【0043】
図4及び図5に示すように,前記ピストンピン6と,その中空部に圧入されたスリーブ40との間に筒状の油室41が画成され,この油室41を前記第1及び第2油圧室25,37に接続する第1及び第2分配油路42,43がピストンピン6及びピストンインナ5aに渡り設けられる。また油室41は,図1に示すように,ピストンピン6,コンロッド7及びクランク軸9に渡り設けられる油路44に接続され,この油路44は,電磁切換弁45を介して油圧源たるオイルポンプ46と,油溜め47とに切換可能に接続される。
【0044】
次に,この実施例の作用について説明する。
【0045】
例えば内燃機関Eの急加速運転に際して,ノッキングを回避すべく低圧縮比状態を得るには,電磁切換弁45を図1に示すように非通電状態にして,油路44を油溜め47に連通する。こうすれば,第1油圧室25及び第2油圧室37は,何れも油室41及び油路44を通して油溜め47に開放されるので,アクチュエータ20では,図5に示すように,戻しプランジャ24が戻しばね27の付勢力で第2受圧片14bを押圧して,嵩上げ部材14を非嵩上げ位置Aまで回動する。その結果,図10(a)に示すように,カム機構15の第1カム16及び第2カム17は互いに頂部をずらした配置となるから,機関の膨張行程又は圧縮行程で燃焼室4a側の圧力でピストンアウタ5bがピストンインナ5aに対して押圧されたときや,ピストン5の上昇行程でピストンリング10a〜10c及びシリンダボア2a内面間に生ずる摩擦抵抗によりピストンアウタ5bがピストンインナ5aに対して押圧されたときや,ピストン5の下降行程の後半でピストンインナ5aの減速に伴いピストンアウタ5bがその慣性力によりピストンインナ5aに対して押圧されたときに,ピストンアウタ5bは第1カム16及び第2カム17を相互に噛み合せながら,ピストンインナ5aに対して下降し,低圧縮比位置Lに達することができる。このとき,ピストンアウタ係止手段30では,ピストンインナ5aに軸支される係止レバー32と,ピストンアウタ5bの係止溝31とが互いに対向するため,係止レバー32は作動ばね34の付勢力をもって長腕部32aを係止溝31に係合させるように揺動し,それら長腕部32a及び係止溝31の係合により,ピストンアウタ5bの低圧縮比位置Lは保持される。かくして,カム機構15での遊びは無くなり,ピストンインナ及びアウタ5a,5bは,圧縮比を下げながら一体となってシリンダボア2a内を昇降することができる。
【0046】
また例えば内燃機関Eの高速運転時,出力向上を図るべく高圧縮比状態を得るには,電磁切換弁45に通電して,油路44をオイルポンプ46に接続する。こうすると,オイルポンプ46の吐出油圧が油路44及び油室41を通して第1油圧室25及び第2油圧室37に供給されるので,先ず,ピストンアウタ係止手段30において,図8に示すように,ピストン38が第2油圧室37の油圧を受けて係止レバー32を作動ばね34の付勢力に抗して後退位置Dへと揺動させ,長腕部32aをピストンアウタ5bの係止溝31から離脱させる。係止レバー32が係止溝31から離脱すると,ピストンアウタ5bの高圧縮比位置Hへの移動が許容されるので,アクチュエータ20では,図9に示すように,作動プランジャ23が第1油圧室25の油圧を受けて第1受圧片14aを押圧して,嵩上げ部材14を非嵩上げ位置Aから嵩上げ位置Bへと回動する。その回動に伴いカム機構15では,第1カム16及び第2カム17は,互いに斜面16a,17aを滑らせながら軸方向に離間していき(図10(b)参照),嵩上げ部材14が嵩上げ位置に到達すると,図7に示すように,両カム16,17は互いに平坦の頂面16b,17bを当接させるに至り(図10(c)参照),ピストンアウタ5bを高圧縮比位置Hまで押し上げることになる。このとき,ピストンアウタ5bの止環18がピストンインナ5aの下端面に当接して,ピストンアウタ5bの燃焼室4a側へのそれ以上の移動を阻止するので,ピストンアウタ5bの高圧縮比位置Hは,両カム16,17の頂面16b,17bの当接と,止環18のピストンインナ5a下端面への当接とにより保持される。かくして,カム機構15での遊びは無くなり,ピストンインナ及びアウタ5a,5bは,圧縮比を高めながら一体となってシリンダボア2a内を昇降することができる。
【0047】
而して,ピストンアウタ5bは,低圧縮比位置L及び高圧縮比位置H間を移動する際,ピストンインナ5a及びピストンアウタ5bの嵌合面に形成されて互いに摺動自在に係合するスプライン歯11a及びスプライン溝11bにより,ピストンインナ5aに対する回転が拘束されているから,燃焼室4aに臨むピストンアウタ5bの頂面形状を燃焼室4aの形状に対応させて,ピストンアウタ5bの高圧縮比位置Hでの圧縮比を効果的に高めることができる。しかもピストンアウタ5bの高圧縮比位置Hでは,機関の膨張行程時,ピストンアウタ5bが燃焼室4aから受ける大なる推力は,第1カム16及び第2カム17の互いに当接する平坦な頂面16b,17bに垂直に作用するので,該推力によりが嵩上げ部材14が回動されることはなく,したがって第1油圧室25に供給する油圧は,前記推力に抗する程の高圧を必要とせず,また第1油圧室25に多少の気泡が存在しても,ピストンアウタ5bを高圧縮比位置Hに安定的に保持し得るから,支障はない。
【0048】
ところで,係止レバー32が係止溝31から離脱すると,次のような自然外力がピストンアウタ5bの高圧縮比位置Hへの移動をアシストする。即ち,機関の吸気行程で吸気負圧によりピストンアウタ5bが燃焼室4a側に引き寄せられたときや,ピストン5の下降行程でピストンリング10a〜10c及びシリンダボア2a内面間に生ずる摩擦抵抗によりピストンアウタ5bがピストンインナ5aから置き去りにされようとしたときや,ピストン5の上昇行程の後半でピストンインナ5aの減速に伴いピストンアウタ5bがその慣性力によりピストンインナ5aから浮き上がろうとしたときに,ピストンアウタ5bはピストンインナ5aから上昇し,高圧縮比位置Hに容易に到達することができる。その結果,アクチュエータ20の作動と相俟ってピストンアウタ5bの高圧縮比位置Hへの移動を迅速に行うことができ,応答性の向上に寄与し得る。
【0049】
上記のようにピストンアウタ5bの低圧縮比位置L及び高圧縮比位置Hへの位置切り換えに寄与する自然外力のうち,ピストンリング10a〜10c及びシリンダボア2a内面間の摩擦抵抗と,ピストンアウタ5bの慣性力が特に効果的である。また上記摩擦抵抗は機関回転数の変化に対して変化が比較的少ないのに対して,ピストンアウタ5bの慣性力は機関回転数の上昇に応じて2次曲線的に増大するものであるから,ピストンアウタ5bの位置切り換えに対して,機関の低回転域では上記摩擦抵抗が支配的であり,機関の高回転域ではピストンアウタ5bの慣性力が支配的である。
【0050】
またアクチュエータ20は,第1油圧室25の油圧で作動して嵩上げ部材14を非嵩上げ位置Aから嵩上げ位置Bへ回動し得る作動プランジャ23と,第1油圧室25の油圧解放時,戻しばね27の付勢力で作動して嵩上げ部材14を嵩上げ位置Bから非嵩上げ位置Aへ戻し得る戻しプランジャ24とで構成されるので,油圧室25が1室で足り,その構成の簡素化を図ることができる。
【0051】
またピストンアウタ係止手段30は,ピストンインナ5aに軸支されてピストンアウタ5bの係止溝31に係合する作動位置C及び係止溝31から離脱する後退位置D間を移動する係止レバー32と,この係止レバー32を作動位置Cへ付勢する作動ばね34と,第2油圧室37の油圧で作動して係止レバー32を後退位置Dへ作動するピストン38とで構成されるので,この係止手段30においても油圧室37が1室で足り,その構成の簡素化を図ることができる。
【0052】
さらに第1及び第2油圧室25,37には,共通の電磁切換弁45を介してオイルポンプ46及び油溜め47に切換可能に接続されるので,共通の油圧をもってアクチュエータ20及びピストンアウタ係止手段30を合理的に作動することができ,油圧回路の簡素化をも図ることができ,圧縮比可変装置を安価に提供し得る。
【0053】
次に,図11〜図21に示す本発明の第2実施例について説明する。
【0054】
図11及び図12において,ピストン105は,ピストンピン106を介してコンロッドン107の小端部107aに連結されるピストンインナ105aと,このピストンインナ105aの外周面及びシリンダボア102aの内周面に摺動自在に嵌合し,頂面を燃焼室104aに臨ませるピストンアウタ105bとからなっており,ピストンアウタ105bの外周に,シリンダボア102aの内周面に摺動自在に密接する複数のピストンリング110a〜110cが装着される。
【0055】
また図12及び図13に示すように,ピストンインナ及びアウタ5a,5bの摺動嵌合面には,ピストン105の軸方向に延びて互いに係合する複数のスプライン歯111a及びスプライン溝111bがそれぞれ形成され,ピストンインナ及びアウタ105a,105bは,それらの軸線周りに相対回転できないようになっている。
【0056】
図12及び図17において,ピストンインナ105aの上面には,その上面に一体に突設された枢軸部12に回動可能に嵌合する円環状の嵩上げ部材114が載置され,この嵩上げ部材114の上面を押さえて,これの枢軸112からの離脱を阻止する押さえリング150が枢軸112の上面にビス151で固着される。枢軸部12は,コンロッドン107の小端部107aを受容すべく複数(図では4個)のブロック112a,112aに分割されている。
【0057】
嵩上げ部材114は,その軸線周りに設定される第1及び嵩上げ位置A,B間を回動し得るもので,その往復回動に伴いピストンアウタ105bをピストンインナ105a寄りの低圧縮比位置L(図12及び図21(a)参照)と,燃焼室104a寄りの高圧縮比位置H(図18及び図21(c)参照)とに交互に移動させるカム機構115が嵩上げ部材114及びピストンアウタ105b間に設けられる。
【0058】
図21に明示するように,カム機構115は,嵩上げ部材114の上面に形成される複数の凸状第1カム116と,ピストンアウタ105bの頂壁下面に形成される複数の凸状第2カム117とからなっており,これら第1カム116及び第2カム117は,嵩上げ部材114が非嵩上げ位置Aにあるときは,互いに周方向に交互に並んでピストンアウタ105bの低圧縮比位置Lへの移行を許容するようになっている。これら第1カム116及び第2カム117の,嵩上げ部材114の周方向に並ぶ両側面は,各カム116,117の根元から略垂直に起立する絶壁面116a,117aとなっており,両絶壁面116a,117aの上縁間を接続する平坦な頂面116b,117bは,嵩上げ部材114が嵩上げ位置Bに到達したとき互いに当接してピストンアウタ105bを高圧縮比位置Hに保持するようになっている。このように,第1及び第2カム116,117の両側面を絶壁面116a,117aとしたことで,周方向に並ぶ各カム116,117の隣接間隔を狭くすることが可能となり,また各カム116,117の頂面116b,117bの総合面積を前記第1実施例の場合よりも,大幅に大きく設定することができる。
【0059】
ピストンアウタ105bが高圧縮比位置Hに達したときは,ピストンアウタ105bが高圧縮比位置Hを越えて燃焼室104a側へ移動することを阻止するための規制手段として,ピストンインナ105aの下端面に当接する止環118がピストンアウタ105bの下端部内周面に係止される。
【0060】
図12,図15及び図16に示すように,ピストンインナ105a及び嵩上げ部材114間には,嵩上げ部材114を第1及び嵩上げ位置A,Bへ回動させるアクチュエータ120が複数組,図示例では2組設けられる。アクチュエータ120を2組配設した場合の構造について以下に説明する。
【0061】
ピストンインナ105aには,ピストンピン106を挟んでそれと平行に延びる一対の有底のシリンダ孔121,121と,各シリンダ孔121,121の中間部の上壁を貫通する長孔154,154とが設けられ,嵩上げ部材114の下面に一体的に突設されて,その直径線上に並ぶ一対の受圧ピン114a,114aがこれら長孔154,154を通してシリンダ孔121,121に臨ませてある。長孔154,154は,受圧ピン114a,114aが嵩上げ部材114と共に非嵩上げ位置A及び嵩上げ位置B間を移動することを妨げないようになっている。
【0062】
シリンダ孔121,121には,対応する受圧ピン114a,114aを挟んで作動プランジャ123,123及び有底円筒状の戻しプランジャ124,124が摺動可能に嵌装される。その際,作動プランジャ123,123及び戻しプランジャ124,124は,それぞれピストン105の軸線に関して点対称に配置される。
【0063】
シリンダ孔121の底部には,作動プランジャ23の,受圧ピン114aと反対側の端部が臨む第1油圧室125が画成され,該室125に油圧を供給すると,その油圧を受けて作動プランジャ23が対応する受圧ピン114aを介して嵩上げ部材114を嵩上げ位置Bへ回動するようになっている。第1油圧室125は,第1分配油路142,油室141を介して油路144(図11)に接続され,この油路144は,電磁切換弁145を介して油圧源たるオイルポンプ146と,油溜め147とに切換可能に接続される。
【0064】
またシリンダ孔121,121の開放端には,ばね保持環152,152が止環153,153により係止され,これらばね保持環152,152と戻しプランジャ124,124との各間に,戻しプランジャ124,124をそれぞれ受圧ピン114a,114a側に付勢する,コイルばねからなる戻しばね127,127が縮設され,これら戻しばね127,127の付勢力により戻しプランジャ124,124は受圧ピン114a,114aを介して嵩上げ部材114を非嵩上げ位置Aへ回動することができる。
【0065】
各作動プランジャ123は,その軽量化のために,カップ状のプランジャ本体123aと,このプランジャ本体123aの開放端に圧入,固着される硬質材のキャップ123bとで中空に構成されており,そのキャップ123bを受圧ピン114aに当接させるように配置される。また各戻しプランジャ124も,その軽量化のためにカップ状をなしており,その底壁を受圧ピン114aに当接させるように配置される。
【0066】
各ばね保持環152は,戻しばね127の内側にあって戻しプランジャ124内に入り込む円筒状のスカート部152aを備えており,これにより戻しばね127の座屈を防ぐことができる。
【0067】
嵩上げ部材114の非嵩上げ位置Aは,各シリンダ孔121,121の底面に当接する作動プランジャ123,123の先端に受圧ピン片114a,114aが当接することにより規定され(図15参照),嵩上げ部材114の嵩上げ位置Bは,ばね保持環152のスカート部152aに当接する戻しプランジャ24の先端に受圧ピン114aが当接することにより規定される(図20参照)。こうすることにより,嵩上げ部材114の非嵩上げ位置Aでは,隣接する第1及び第2カム116,117の側面接触を回避して,ピストンアウタ105bの高圧縮比位置Hへのスムーズな移動が可能となる。
【0068】
ピストンアウタ係止手段130等,その他の構成は,前記第1実施例と同様であるので,図11〜図21中,第1実施例との対応部分には,第1実施例の参照符号の数字に100を加算した参照符号を付して,その説明を省略する。
【0069】
この第2実施例では,ピストンアウタ105bの低圧縮比位置Lから高圧縮比位置Hへの移動,並びに高圧縮比位置Hから低圧縮比位置Lへの移動は,ピストン105の往復動中,ピストンインナ及びアウタ105a,105bに,それらを軸方向に離間,又は近接させようと作用する前記自然外力のみを利用するものである(図21(b)参照)。したがって,アクチュエータ120は嵩上げ部材114を,図21(c)に示すように,単に非嵩上げ位置A及び嵩上げ位置B間で移動させるだけの出力を発揮すれば足りることになり,アクチュエータ120の小容量化及び小型化を図ることができる。
【0070】
また第1及び第2カム116,117においては,摺動方向に並ぶ両側面を絶壁面116a,117aとすることが可能となり,前記第1実施例のような斜面16a,17aを持たない分,嵩上げ部材114の作動ストローク角度を小さく設定すること,並びに各カム116,117の頂面116b,117bを広く形成することが可能となり,嵩上げ部材114の応答性を高めると共に,該頂面116b,117bに作用する面圧を下げ得て,それらの耐久性の向上をも図ることができる。
【0071】
また図15及び図16に示すように,嵩上げ部材114を作動するアクチュエータ120は,複数組等間隔に配設されるので,嵩上げ部材114に偏荷重を与えることなく,これを枢軸112周りにスムーズに回動することができ,しかも複数組のアクチュエータ120の総合出力は大きいことから,各組のアクチュエータ120の小容量化,延いては小型化を図ることができる。
【0072】
また各組のアクチュエータ120の構成要素である作動プランジャ123及び戻しプランジャ124は,ピストンインナ105aに形成される共通のシリンダ孔121に嵌装されるので,構造が簡単であると共に,孔加工が単純でコストの低減に寄与し得る。
【0073】
またアクチュエータ120を2組,配設する場合には,それぞれのシリンダ孔121,121がピストンインナ105aにピストンピン106と平行に形成されるので,ピストンピン106に干渉されることなく,2組のアクチュエータ120,120をピストン105の周方向等間隔に配設することができる。
【0074】
また作動及び戻しプランジャ123,124の軸線は,各受圧ピン114aの軸線を横切る,枢軸112の半径線に対して略直角に交差するように配置されるので,作動及び戻しプランジャ123,124の押圧力を受圧ピン114を介して嵩上げ部材114に効率良く伝達することができ,アクチュエータ120のコンパクト化に寄与し得る。
【0075】
また作動及び戻しプランジャ123,124の各端面と,受圧ピン114aの円筒状外周面とは線接触で接触するので,その接触面積は前記第1実施例の場合に比して広く,面圧の低減を図り,耐久性の向上に寄与し得る。
【0076】
本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば,電磁切換弁45,145の作動態様は,上記実施例の場合と逆であっても差し支えはない。即ち,該切換弁45,145の非通電状態で油路44,144をオイルポンプ46,146に接続し,通電状態で油路44,144を油溜め47,147に接続することもできる。
【0077】
【発明の効果】
以上のように本発明の第1の特徴によれば,アクチュエータにより嵩上げ部材を非嵩上げ位置に回動すると,嵩上げ部材が,ピストンアウタの低圧縮比位置への移動を許容するので,ピストンアウタが燃焼室側からの高圧により低圧縮比位置に移動することができる。またアクチュエータにより嵩上げ部材を非嵩上げ位置から嵩上げ位置へと回動すると,ピストンアウタを高圧縮比位置に保持することができる。
【0078】
この間,ピストンアウタは,ピストンインナに対して回転することがないから,燃焼室に臨むピストンアウタの頂面形状を燃焼室の形状に対応させて,ピストンアウタの高圧縮比位置での圧縮比を効果的に高めることができる。
【0079】
しかもピストンアウタの高圧縮比位置では,機関の膨張行程時,ピストンアウタが燃焼室から受ける大なる推力は嵩上げ部材で受け止められる。したがって,上記推力のアクチュエータへの作用も回避されることになるから,アクチュエータの小出力化,延いてはコンパクト化が可能となる。またアクチュエータを油圧式に構成する場合でも,これに前記推力が作用しないことから高圧シールは不要であり,また油圧室に多少の気泡が発生してもピストンアウタの高圧縮比位置を不安定にさせることもない。
【0080】
特に,ピストンアウタの高圧縮比位置への到達時には,環状配列の複数の凸状の第1カム及び第2カムが互いに平坦の頂面を当接させるので,機関の膨張行程時,ピストンアウタが燃焼室から受ける大なる推力は,上記頂面に垂直に作用し,嵩上げ部材に回動トルクとして作用するのを確実に防ぐことができる
【0081】
また本発明の第2の特徴によれば,ピストンアウタを低圧縮比位置から高圧縮比位置へ,或いは高圧縮比位置から低圧縮比位置へ移動させるのに自然外力を利用することができるから,アクチュエータは嵩上げ部材を単に非嵩上げ位置及び嵩上げ位置間で移動させるだけの出力を発揮すれば足りることになり,アクチュエータの小容量化及び小型化を図ることができる。
【0082】
さらに本発明の第3の特徴によれば,嵩上げ部材の非嵩上げ位置から嵩上げ位置への回動時には,第1及び第2カムが互いに斜面を滑らせながら軸方向に離反することで,ピストンアウタを高圧縮比位置まで押し上げることができる。
【0083】
さらにまた本発明の第4の特徴によれば,第1及び第2カムの各両側面を絶壁面とすることで,嵩上げ部材の作動ストローク角度を小さく設定すること,並びに各カムの頂面を広く形成することが可能となり,嵩上げ部材の応答性を高めると共に,該頂面に作用する面圧を下げ得て,それらの耐久性の向上をも図ることができる。しかもピストンアウタを低圧縮比位置及び高圧縮比位置間で移動するのに,ピストンインナ及びピストンアウタを互いに軸方向に離間させたり近接させようとする自然外力が利用されるので,嵩上げ部材の非嵩上げ位置から嵩上げ位置への回動に支障を来すこともない。
【0084】
さらにまた本発明の第5の特徴によれば,ピストンアウタが低圧縮比位置に来たとき,ピストンインナ及びピストンアウタの一体作動を保証し得る。
【0085】
さらにまた本発明の第6の特徴によれば,ピストンアウタが高圧縮比位置に達したときも,ピストンインナ及びピストンアウタの一体作動を保証し得る。
【0086】
さらにまた本発明の第7の特徴によれば,油圧作動手段では油圧室が1室で足り,その構成の簡素化を図ることができる。
【0087】
さらにまた本発明の第8の特徴によれば,ピストンアウタ係止手段でも油圧室が1室で足り,その構成の簡素化を図ることができる。
【0088】
さらにまた本発明の第9の特徴によれば,共通の油圧をもってアクチュエータ及びピストンアウタ係止手段を合理的に作動することができ,油圧回路の簡素化をもたらすことができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係る圧縮比可変装置を備えた内燃機関の要部縦断正面図。
【図2】 図1の2−2線拡大断面図で低圧縮比状態を示す。
【図3】 図2の3−3線断面図。
【図4】 図2の4−4線断面図。
【図5】 図2の5−5線断面図。
【図6】 図2の6−6線断面図。
【図7】 高圧縮比状態を示す,図2との対応図。
【図8】 図7の8−8線断面図。
【図9】 図7の9−9線断面図。
【図10】 図10は嵩上げ部材の作用説明図。
【図11】 本発明の第2実施例に係る圧縮比可変装置を備えた内燃機関の要部縦断正面図。
【図12】 図11の12−12線拡大断面図で低圧縮比状態を示す。
【図13】 図12の13−13線断面図。
【図14】 図12の14−14線断面図。
【図15】 図12の15−15線断面図。
【図16】 図12の16−16線断面図。
【図17】 図12の17−17線断面図。
【図18】 高圧縮比状態を示す,図12との対応図。
【図19】 図18の19−19線断面図。
【図20】 図18の20−20線断面図。
【図21】 図21は嵩上げ部材の作用説明図。
【符号の説明】
A・・・・・・・嵩上げ部材の非嵩上げ位置
B・・・・・・・嵩上げ部材の嵩上げ位置
C・・・・・・・係止部材の作動位置
D・・・・・・・係止部材の後退位置
H・・・・・・・ピストンアウタの高圧縮比位置
L・・・・・・・ピストンアウタの低圧縮比位置
5・・・・・・・ピストン
5a・・・・・・ピストンインナ
5b・・・・・・ピストンアウタ
6・・・・・・・ピストンピン
7・・・・・・・コンロッド
14・・・・・・嵩上げ部材
16・・・・・・第1カム
17・・・・・・第2カム
18・・・・・・ピストンアウタ規制手段(止環)
20・・・・・・アクチュエータ
13,25・・・油圧作動手段(作動プランジャ,第1油圧室)
30・・・・・・ピストンアウタ係止手段
31・・・・・・係止溝
32・・・・・・係止部材(係止レバー)
34・・・・・・作動ばね
37,38・・・油圧戻し手段(第2油圧室,ピストン)
46・・・・・・油圧源(オイルポンプ)
105・・・・・ピストン
105a・・・・ピストンインナ
105b・・・・ピストンアウタ
106・・・・・ピストンピン
107・・・・・コンロッド
114・・・・・嵩上げ部材
116・・・・・第1カム
117・・・・・第2カム
118・・・・・ピストンアウタ規制手段(止環)
120・・・・・アクチュエータ
113,125・・・油圧作動手段(作動プランジャ,第1油圧室)
130・・・・・ピストンアウタ係止手段
131・・・・・係止溝
132・・・・・係止部材(係止レバー)
134・・・・・作動ばね
137,138・・・油圧戻し手段(第2油圧室,ピストン)
146・・・・・油圧源(オイルポンプ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compression ratio variable device for an internal combustion engine, and in particular, a piston inner connected to a connecting rod via a piston pin, and a piston inner while being connected to the piston inner and having an outer end face facing a combustion chamber. And a piston outer that can move between a low compression ratio position close to the combustion chamber and a high compression ratio position close to the combustion chamber. The piston outer is operated to a low compression ratio position to lower the compression ratio of the engine and to a high compression ratio position. It is related to the improvement of the one that is operated to increase the compression ratio.
[0002]
[Prior art]
Conventionally, as a compression ratio variable device for such an internal combustion engine, (1) the piston outer is screwed onto the outer periphery of the piston inner, and the piston outer is moved forward and backward with respect to the piston inner to reverse the piston inner. (2) A piston outer is fitted to the outer periphery of the piston inner so as to be slidable in the axial direction, and these piston inners are operated. An upper hydraulic chamber and a lower hydraulic chamber are formed between the outer and outer chambers, and the hydraulic pressure is alternately supplied to the hydraulic chambers so that the piston outer is operated to a low compression ratio position and a high compression ratio position (for example, (See Japanese Patent Publication No. 7-113330).
[0003]
[Problems to be solved by the invention]
By the way, in the apparatus of (1), since it is necessary to rotate the piston outer in order to operate the piston outer to the low compression ratio position and the high compression ratio position, the shape of the top surface of the piston outer is changed to that of the combustion chamber. It cannot be set freely according to the shape of the ceiling surface and the arrangement of intake and exhaust valves, and it is difficult to sufficiently increase the compression ratio of the engine at a high compression ratio position. In the device (2), particularly when the piston outer is in a high compression ratio position, a large thrust load received by the piston outer during the expansion stroke of the engine is supported by the hydraulic pressure of the upper hydraulic chamber. In addition, if air bubbles are generated in the upper hydraulic chamber, the high compression ratio position of the piston outer becomes unstable, and it is necessary to take measures to remove such air bubbles. I can not escape.
[0004]
The present invention has been made in view of such circumstances, and provides a variable compression ratio device for an internal combustion engine that can be easily and accurately operated to a low compression ratio position and a high compression ratio position without rotating a piston outer. The purpose is to do.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a variable compression ratio device for an internal combustion engine according to the present invention includes a piston inner connected to a connecting rod via a piston pin, and slides only in the axial direction on the outer periphery so as to cover the piston inner. A piston is constituted by a piston outer that can be moved between a low compression ratio position near the piston inner and a high compression ratio position near the combustion chamber while fitting so that the outer end face faces the combustion chamber. A raised member is interposed between the inner and outer so that the raised member can rotate between the non-lifted position and the raised position around the axis of the piston, and the raised member and one of the piston inner and outer are opposed in the axial direction. A plurality of first cams and second cams are formed on the surface, each having a convex shape with a top surface as a flat surface and arranged in an annular shape. The piston outer meshes with each other when rotated to the raised position to allow the piston outer to move to a low compression ratio position, and when the raising member rotates to the raised position, the top surfaces abut against each other to highly compress the piston outer. A first feature is that the actuator is arranged so as to be held in a specific position, and an actuator that alternately rotates the raised member to a non-lifted position and a raised position is connected to the raised member.
[0006]
According to the first feature, when the raising member is rotated to the non-lifting position by the actuator, the raising member allows the piston outer to move to the low compression ratio position. Can move to a low compression ratio position. Further, when the raising member is rotated from the non-lifting position to the raising position by the actuator, the piston outer can be held at the high compression ratio position.
[0007]
During this time, since the piston outer does not rotate with respect to the piston inner, the top surface shape of the piston outer facing the combustion chamber corresponds to the shape of the combustion chamber, and the compression ratio at the high compression ratio position of the piston outer is set. Can be effectively increased.
[0008]
Moreover, at the high compression ratio position of the piston outer, a large thrust received by the piston outer from the combustion chamber during the expansion stroke of the engine is received by the raising member. Therefore, the effect of the thrust on the actuator is also avoided. It is possible to reduce the output of the actuator and to make it compact. Even when the actuator is configured hydraulically, the high pressure seal is unnecessary because the thrust does not act on it, and the high compression ratio position of the piston outer is unstable even if some bubbles are generated in the hydraulic chamber. I will not let you.
[0009]
In particular, when the piston outer reaches the high compression ratio position, the plurality of convex first cams and second cams in the annular arrangement abut the flat top surfaces of each other, so that during the expansion stroke of the engine, the piston outer The large thrust received from the combustion chamber acts perpendicularly to the top surface and can reliably prevent acting on the raising member as rotational torque. .
[0010]
According to the present invention, in addition to the first feature, the piston outer member and the actuator may be separated from each other by a natural external force acting to move them apart or close in the axial direction during the reciprocating motion of the piston inner and the outer. The second feature is that the apparatus is allowed to move between the low compression ratio position and the high compression ratio position. The natural external force includes a frictional resistance that the piston outer receives from the inner surface of the cylinder bore, an inertial force of the piston outer, an intake negative pressure that acts on the piston outer, and the like.
[0011]
According to this second feature, a natural external force can be used to move the piston outer from the low compression ratio position to the high compression ratio position, or from the high compression ratio position to the low compression ratio position, so that the actuator It is sufficient if the output of merely raising the raising member between the non-raising position and the raising position is exhibited, and the capacity and size of the actuator can be reduced.
[0012]
Further, according to the present invention, in addition to the first feature, the first and second cams are provided with slopes that slide away from each other in the axial direction when the raising member rotates from the non-lifting position to the raising position. This is the third feature.
[0013]
According to the third feature, when the raising member is rotated from the non-lifting position to the raising position, the first and second cams are separated from each other in the axial direction while sliding on the inclined surfaces, thereby highly compressing the piston outer. It can be pushed up to a specific position.
[0014]
Furthermore, according to the present invention, in addition to the second feature, each of the first and second cams is formed with a wall surface that descends substantially perpendicularly from both circumferential edges of each top surface to the root of each cam. The fourth feature.
[0015]
According to the fourth feature, by setting each side surface of the first and second cams as a wall surface, the working stroke angle of the raising member can be set small, and the top surface of each cam can be formed wide. Thus, the responsiveness of the raising member can be improved, the surface pressure acting on the top surface can be lowered, and the durability can be improved.
[0016]
In addition, since the piston outer is moved between the low compression ratio position and the high compression ratio position, a natural external force that causes the piston inner and the piston outer to be spaced apart from each other or close to each other is used. There is no hindrance to the rotation between the raised positions.
[0017]
Furthermore, in addition to any one of the first to fourth features, the present invention provides that the piston outer is located between the piston inner and the piston outer when the piston outer comes to a low compression ratio position. A fifth feature is that piston outer locking means for locking is provided.
[0018]
According to the fifth feature, when the piston outer comes to the low compression ratio position, the integral operation of the piston inner and the piston outer can be ensured.
[0019]
Furthermore, in addition to the first to fifth features, the present invention is arranged between the piston inner and the piston outer so that when the piston outer comes to a high compression ratio position, the piston outer moves toward the combustion chamber with respect to the piston inner. A sixth feature is that a piston outer restricting means for restricting the movement is provided.
[0020]
According to the sixth feature, even when the piston outer reaches the high compression ratio position, the integral operation of the piston inner and the piston outer can be ensured.
[0021]
Furthermore, in addition to the first or second feature, the present invention further includes hydraulic operating means for operating the actuator by hydraulic pressure of a hydraulic source to operate the raising member to the raising position, and raising the raising member to the non-raising position side. A seventh feature is that the return spring is configured to be biased.
[0022]
According to the seventh feature, one hydraulic chamber is sufficient for the hydraulic operation means, and the configuration can be simplified.
[0023]
In addition to the fifth feature of the present invention, the piston outer locking means is supported by the piston inner and engages with a locking groove on the inner circumferential surface of the piston outer, and the locking groove. A locking member that moves between the retracted positions that are disengaged from the operation, an operating spring that biases the locking member to the operating position, and a hydraulic pressure return means that operates by the hydraulic pressure of the hydraulic source to operate the locking member to the retracted position The eighth feature is that it is configured as described above.
[0024]
According to the eighth feature, one piston chamber is sufficient for the piston outer locking means, and the configuration can be simplified.
[0025]
Furthermore, in addition to any of the fifth characteristics, the present invention provides hydraulic operating means for operating the actuator by the hydraulic pressure of a hydraulic power source to operate the raising member to the raising position, and raising the raising member to the non-raising position side. And an operating position for engaging the piston outer locking means with a locking groove on the inner peripheral surface of the piston outer and a retracting position for releasing from the locking groove. A locking member that moves between them, an operating spring that biases the locking member to the operating position, and a hydraulic pressure return means that operates by the hydraulic pressure of the hydraulic source to operate the locking member to the retracted position, The ninth feature is that the hydraulic pressure of the hydraulic pressure source is simultaneously supplied to the hydraulic pressure operating means and the hydraulic pressure return means.
[0026]
According to the ninth feature, the actuator and the piston outer locking means can be rationally operated with a common hydraulic pressure, and the hydraulic circuit can be simplified.
[0027]
The piston outer restricting means corresponds to the retaining rings 18 and 118 in the embodiment of the present invention described later. The hydraulic operation means corresponds to operation plungers 23 and 123 and first hydraulic chambers 25 and 125, which will be described later, and the hydraulic pressure return means corresponds to second hydraulic chambers 37 and 137 and pistons 38 and 138, which will be described later.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.
[0029]
1 is a longitudinal sectional front view of an essential part of an internal combustion engine provided with a variable compression ratio device according to a first embodiment of the present invention. FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 3 is a sectional view taken along line 3-3 in FIG. 2, FIG. 4 is a sectional view taken along line 4-4 in FIG. 2, FIG. 5 is a sectional view taken along line 5-5 in FIG. 7 shows a high compression ratio state, corresponding to FIG. 2, FIG. 8 is a sectional view taken along line 8-8 in FIG. 7, FIG. 9 is a sectional view taken along line 9-9 in FIG. It is an operation explanatory view. 11 is a longitudinal sectional front view of an essential part of an internal combustion engine equipped with a variable compression ratio device according to a second embodiment of the present invention. FIG. 12 is an enlarged sectional view taken along line 12-12 of FIG. 13 is a sectional view taken along line 13-13 in FIG. 2, FIG. 14 is a sectional view taken along line 14-14 in FIG. 12, FIG. 15 is a sectional view taken along line 15-15 in FIG. 17 is a cross-sectional view taken along line 17-17 in FIG. 12, FIG. 18 is a view corresponding to FIG. 12, showing a high compression ratio state, FIG. 18 is a cross-sectional view taken along line 18-18 in FIG. 19-19 is a sectional view taken along line 19-19, FIG. 20 is a sectional view taken along line 20-20 in FIG. 18, and FIG.
[0030]
First, the description starts with the description of the first embodiment of the present invention shown in FIGS. 1 and 2, the engine body 1 of the internal combustion engine E has a cylinder block 2 having a cylinder bore 2a, a crankcase 3 coupled to the lower end of the cylinder block 2, and a combustion chamber 4a connected to the cylinder bore 2a. And a cylinder head 4 coupled to the upper end of the cylinder block 2, and a small end portion 7a of a connecting rod 7 is connected via a piston pin 6 to a piston 5 slidably fitted to the cylinder bore 2a. 7 is connected to a crankpin 9a of a crankshaft 9 rotatably supported on the crankcase 3 via a pair of left and right bearings 8 and 8 '.
[0031]
The piston 5 is slidably fitted to a piston inner 5a connected to the small end portion 7a of the connecting rod 7 through a piston pin 6, and an outer peripheral surface of the piston inner 5a and an inner peripheral surface of the cylinder bore 2a. The piston outer 5b has a top surface facing the combustion chamber 4a, and a plurality of piston rings 10a to 10c that are slidably in close contact with the inner peripheral surface of the cylinder bore 2a are mounted on the outer periphery of the piston outer 5b.
[0032]
As shown in FIGS. 2 and 3, a plurality of spline teeth 11a and spline grooves 11b that extend in the axial direction of the piston 5 and engage with each other are formed on the sliding fitting surfaces of the piston inner and outer 5a, 5b, respectively. The piston inner and the outer 5a, 5b are formed so as not to rotate relative to each other about their axis.
[0033]
2 and 6, an annular raising member 14 is mounted on the upper surface of the piston inner 5a. The annular raising member 14 is rotatably fitted to a pivot portion 12 that projects integrally with the upper surface of the piston inner 5a. The pivot portion 12 is divided into a plurality of (two in the figure) blocks 12 a and 12 a so as to receive the small end portion 7 a of the connecting rod 7.
[0034]
The raising member 14 can rotate between the first and the raising positions A and B set around the axis thereof, and the piston outer 5b is moved to a low compression ratio position L (close to the piston inner 5a with the reciprocating rotation. 2 and FIG. 10 (a)) and a cam mechanism 15 that is alternately moved to a high compression ratio position H (see FIG. 7 and FIG. 10 (c)) near the combustion chamber 4a is a raised member 14 and a piston outer 5b. Between.
[0035]
As clearly shown in FIG. 10, the cam mechanism 15 includes a plurality of convex first cams 16 formed on the upper surface of the raising member 14 and a plurality of annular arrays formed on the lower surface of the top wall of the piston outer 5b. When the raising member 14 is in the non-lifting position A, the first cam 16 and the second cam 17 are alternately arranged in the circumferential direction of the piston outer 5b. Transition to the low compression ratio position L is allowed. The first cam 16 and the second cam 17 are provided with slopes 16a, 17a that slide away from each other in the axial direction when the raising member 14 rotates from the non-lifting position A to the raising position B, and the raising member 14 is raised. Flat top surfaces 16b and 17b are provided which come into contact with each other when the position B is reached and hold the piston outer 5b at the high compression ratio position H. When the piston outer 5b reaches the high compression ratio position H, the piston outer 5b serves as a restricting means for preventing the piston outer 5b from moving beyond the high compression ratio position H toward the combustion chamber 4a. A retaining ring 18 that contacts the lower end surface is locked to the inner peripheral surface of the lower end portion of the piston outer 5b.
[0036]
Between the piston inner 5a and the raising member 14, an actuator 20 for rotating the raising member 14 to the first and raising positions A and B is provided. The actuator 20 will be described with reference to FIGS.
[0037]
The piston inner 5a is provided with bottomed first and second cylinder holes 22 extending in parallel with the piston pin 6 therebetween, and the first and second plungers 23 and 24 slide in the cylinder holes 21 and 22, respectively. Fits freely. The distal ends of the actuating and returning plungers 23 and 24 protrude in the same direction from the first and second cylinder holes 21 and 22, and the first and second pressure receiving pieces 14a and 14b disposed in contact with these distal ends are raised. It protrudes from the lower surface of the member 14.
[0038]
A first hydraulic chamber 25 is defined in the first cylinder hole 21 so that the inner end of the operating plunger 23 faces. When the hydraulic pressure is supplied to the chamber 25, the operating plunger 23 receives the hydraulic pressure and the first plunger 23a receives the hydraulic pressure. The raising member 14 is rotated to the raising position B via the. Further, a spring chamber 25 is formed in the second cylinder hole 22 so that the inner end of the return plunger 24 faces, and the return plunger 24 is interposed by the force of the return spring 27 accommodated in the chamber 25 via the second pressure receiving piece 14b. The raising member 14 is urged in the non-lifting position A direction. The non-lifting position A of the raising member 14 is defined by the first pressure receiving piece 14a coming into contact with the tip of the operating plunger 23 that comes into contact with the bottom surface of the first cylinder hole 21 (see FIG. 5). B is defined by the second pressure receiving piece 14b coming into contact with the tip of the return plunger 24 coming into contact with the bottom surface of the second cylinder hole 22 (see FIG. 9).
[0039]
Thus, the raising member 14 and the actuator 20 include the piston inner and outer 5a, such as the inertial force of the piston outer 5b, the frictional resistance that the piston outer 5b receives from the inner surface of the cylinder bore 2a, and the intake negative pressure acting on the piston outer 5b. The piston outer 5b is allowed to move between the low compression ratio position L and the high compression ratio position H by a natural external force that acts to separate or approach them in the axial direction.
[0040]
A piston outer locking means 30 is provided between the piston inner 5a and the piston outer 5b to lock the piston outer 5b with respect to the piston inner 5a when the piston outer 5b reaches the low compression ratio position L. The piston outer locking means 30 will be described with reference to FIGS.
[0041]
A plurality of engaging grooves 31 extending in the circumferential direction are formed at equal intervals on the inner peripheral surface of the piston inner 5a. When the piston outer 5b reaches the low compression ratio position L, the engaging grooves 31 are engaged with each other. The plurality of locking levers 32 are swingably attached to the piston inner 5a via the pivot shaft 33 so as to be disengaged. That is, the locking lever 32 can swing between an operating position C (see FIG. 4) that engages with the locking groove 31 and a retracted position D (see FIG. 8) that disengages from the locking groove 31. it can.
[0042]
Each locking lever 32 includes a long arm portion 32a that engages and disengages from the locking groove 31, and a short arm portion 32b that extends to the opposite side of the long arm portion 32a with the pivot shaft 33 interposed therebetween. An operating spring 34 that biases the portion 32a in the direction of engagement with the locking groove 31 is contracted between the long arm portion 32a and the piston inner 5a. At this time, the long arm portion 32a is formed with a positioning projection 35 that fits to the inner periphery of the operating spring 34 and holds it in place. On the other hand, the piston inner 5a is formed with a plurality of cylinder holes 36 corresponding to the respective short arm portions 32b, and the tips of the plurality of pistons 38 that are slidably fitted into the cylinder holes 36 are short arm portions 32b. It is arranged in contact with the tip of the. Each cylinder hole 36 is defined with a second hydraulic chamber 37 facing the inner end of the corresponding piston 38. When hydraulic pressure is supplied to the second hydraulic chamber 37, the piston 38 receives the hydraulic pressure and the locking lever 32 receives the hydraulic pressure. Is separated from the locking groove 31 against the force of the operating spring 34.
[0043]
As shown in FIGS. 4 and 5, a cylindrical oil chamber 41 is defined between the piston pin 6 and a sleeve 40 press-fitted into the hollow portion thereof. First and second distribution oil passages 42 and 43 connected to the two hydraulic chambers 25 and 37 are provided across the piston pin 6 and the piston inner 5a. Further, as shown in FIG. 1, the oil chamber 41 is connected to an oil passage 44 provided over the piston pin 6, the connecting rod 7 and the crankshaft 9, and this oil passage 44 serves as a hydraulic pressure source via an electromagnetic switching valve 45. An oil pump 46 and an oil sump 47 are switchably connected.
[0044]
Next, the operation of this embodiment will be described.
[0045]
For example, during a rapid acceleration operation of the internal combustion engine E, in order to obtain a low compression ratio state in order to avoid knocking, the electromagnetic switching valve 45 is in a non-energized state as shown in FIG. To do. By doing so, the first hydraulic chamber 25 and the second hydraulic chamber 37 are both opened to the oil sump 47 through the oil chamber 41 and the oil passage 44, so that the actuator 20 has the return plunger 24 as shown in FIG. However, the second pressure receiving piece 14b is pressed by the urging force of the return spring 27, and the raising member 14 is rotated to the non-lifting position A. As a result, as shown in FIG. 10 (a), the first cam 16 and the second cam 17 of the cam mechanism 15 are arranged so that their tops are shifted from each other, so that the combustion chamber 4a side in the expansion stroke or compression stroke of the engine. The piston outer 5b is pressed against the piston inner 5a when the piston outer 5b is pressed against the piston inner 5a by pressure or due to the frictional resistance generated between the piston rings 10a to 10c and the inner surface of the cylinder bore 2a during the upward stroke of the piston 5. When the piston outer 5b is pressed against the piston inner 5a by the inertia force as the piston inner 5a decelerates in the latter half of the downward stroke of the piston 5, the piston outer 5b The two cams 17 can be lowered with respect to the piston inner 5a while meshing with each other and reach the low compression ratio position L. . At this time, in the piston outer locking means 30, the locking lever 32 pivotally supported by the piston inner 5a and the locking groove 31 of the piston outer 5b face each other. The long arm portion 32a is swung to engage with the locking groove 31 with a force, and the low compression ratio position L of the piston outer 5b is maintained by the engagement of the long arm portion 32a and the locking groove 31. Thus, there is no play in the cam mechanism 15, and the piston inner and the outer 5a, 5b can be moved up and down in the cylinder bore 2a together while lowering the compression ratio.
[0046]
For example, when the internal combustion engine E is operating at high speed, in order to obtain a high compression ratio state in order to improve the output, the electromagnetic switching valve 45 is energized and the oil passage 44 is connected to the oil pump 46. As a result, the hydraulic pressure discharged from the oil pump 46 is supplied to the first hydraulic chamber 25 and the second hydraulic chamber 37 through the oil passage 44 and the oil chamber 41. First, as shown in FIG. Further, the piston 38 receives the hydraulic pressure of the second hydraulic chamber 37 and swings the locking lever 32 to the retracted position D against the biasing force of the operating spring 34, and the long arm portion 32a is locked to the piston outer 5b. Separate from the groove 31. When the locking lever 32 is disengaged from the locking groove 31, the piston outer 5b is allowed to move to the high compression ratio position H. Therefore, in the actuator 20, as shown in FIG. In response to the hydraulic pressure of 25, the first pressure receiving piece 14a is pressed to rotate the raising member 14 from the non-lifting position A to the raising position B. With the rotation of the cam mechanism 15, the first cam 16 and the second cam 17 are separated from each other in the axial direction while sliding on the inclined surfaces 16a and 17a (see FIG. 10B). When the raised position is reached, as shown in FIG. 7, the cams 16 and 17 come into contact with the flat top surfaces 16b and 17b (see FIG. 10C), and the piston outer 5b is moved to the high compression ratio position. It will be pushed up to H. At this time, the retaining ring 18 of the piston outer 5b comes into contact with the lower end surface of the piston inner 5a and prevents further movement of the piston outer 5b toward the combustion chamber 4a. Is held by the abutment of the top surfaces 16b, 17b of the cams 16, 17 and the abutment of the retaining ring 18 on the lower end surface of the piston inner 5a. Thus, there is no play in the cam mechanism 15, and the piston inner and the outer 5a, 5b can move up and down in the cylinder bore 2a integrally while increasing the compression ratio.
[0047]
Thus, when the piston outer 5b moves between the low compression ratio position L and the high compression ratio position H, the spline formed on the fitting surface of the piston inner 5a and the piston outer 5b is slidably engaged with each other. Since the rotation with respect to the piston inner 5a is constrained by the teeth 11a and the spline grooves 11b, the top surface shape of the piston outer 5b facing the combustion chamber 4a is made to correspond to the shape of the combustion chamber 4a, and the high compression ratio of the piston outer 5b. The compression ratio at the position H can be effectively increased. Moreover, at the high compression ratio position H of the piston outer 5b, the large thrust that the piston outer 5b receives from the combustion chamber 4a during the expansion stroke of the engine is Since the first cam 16 and the second cam 17 act perpendicularly to the flat top surfaces 16b, 17b contacting each other, the raising member 14 is not rotated by the thrust. Therefore, the hydraulic pressure supplied to the first hydraulic chamber 25 does not need to be high enough to resist the thrust, and even if there are some bubbles in the first hydraulic chamber 25, the piston outer 5b is placed in the high compression ratio position. Since it can be held stably at H, there is no problem.
[0048]
By the way, when the locking lever 32 is detached from the locking groove 31, the following natural external force assists the movement of the piston outer 5b to the high compression ratio position H. That is, when the piston outer 5b is attracted to the combustion chamber 4a side by the intake negative pressure during the intake stroke of the engine, or by the friction resistance generated between the piston rings 10a to 10c and the inner surface of the cylinder bore 2a during the downward stroke of the piston 5, the piston outer 5b When the piston inner 5a is left behind, or when the piston outer 5b decelerates the piston inner 5a in the latter half of the upward stroke of the piston 5, the piston outer 5b attempts to lift from the piston inner 5a due to its inertial force. The outer 5b rises from the piston inner 5a and can easily reach the high compression ratio position H. As a result, coupled with the operation of the actuator 20, the piston outer 5b can be quickly moved to the high compression ratio position H, which can contribute to an improvement in responsiveness.
[0049]
Of the natural external forces that contribute to switching the position of the piston outer 5b to the low compression ratio position L and the high compression ratio position H as described above, the frictional resistance between the piston rings 10a to 10c and the inner surface of the cylinder bore 2a and the piston outer 5b Inertial forces are particularly effective. The frictional resistance is relatively small with respect to changes in the engine speed, whereas the inertial force of the piston outer 5b increases in a quadratic curve as the engine speed increases. With respect to the switching of the position of the piston outer 5b, the frictional resistance is dominant in the low rotation range of the engine, and the inertial force of the piston outer 5b is dominant in the high rotation range of the engine.
[0050]
The actuator 20 is actuated by the hydraulic pressure of the first hydraulic chamber 25 to turn the raising member 14 from the non-raised position A to the raised position B. When the hydraulic pressure of the first hydraulic chamber 25 is released, the return spring 27 is constituted by a return plunger 24 that is operated by the urging force of 27 and can return the raising member 14 from the raised position B to the non-lifted position A, so that only one hydraulic chamber 25 is required, and the configuration is simplified. Can do.
[0051]
Also, the piston outer locking means 30 is a locking lever that is supported between the operating position C that is pivotally supported by the piston inner 5a and engages with the locking groove 31 of the piston outer 5b, and the retracted position D that disengages from the locking groove 31. 32, an operating spring 34 that urges the locking lever 32 to the operating position C, and a piston 38 that operates with the hydraulic pressure of the second hydraulic chamber 37 to operate the locking lever 32 to the retracted position D. Therefore, also in this locking means 30, only one hydraulic chamber 37 is sufficient, and the configuration can be simplified.
[0052]
Further, the first and second hydraulic chambers 25 and 37 are connected to an oil pump 46 and an oil sump 47 through a common electromagnetic switching valve 45 so as to be switchable, so that the actuator 20 and the piston outer can be locked with a common hydraulic pressure. The means 30 can be rationally operated, the hydraulic circuit can be simplified, and the variable compression ratio device can be provided at low cost.
[0053]
Next, a second embodiment of the present invention shown in FIGS. 11 to 21 will be described.
[0054]
11 and 12, the piston 105 is slid onto the piston inner 105a connected to the small end 107a of the connecting rod 107 via the piston pin 106, and the outer peripheral surface of the piston inner 105a and the inner peripheral surface of the cylinder bore 102a. A plurality of piston rings 110a, which are movably fitted and have a piston outer 105b whose top surface faces the combustion chamber 104a, are slidably in close contact with the outer peripheral surface of the piston outer 105b and the inner peripheral surface of the cylinder bore 102a. ˜110c is mounted.
[0055]
Further, as shown in FIGS. 12 and 13, a plurality of spline teeth 111a and spline grooves 111b extending in the axial direction of the piston 105 and engaged with each other are formed on the sliding fitting surfaces of the piston inner and outer 5a, 5b, respectively. The piston inner and outer 105a, 105b are formed so that they cannot rotate relative to each other about their axes.
[0056]
12 and 17, an annular raising member 114 is mounted on the upper surface of the piston inner 105a. The annular raising member 114 is rotatably fitted to the pivot 12 integrally projecting from the upper surface. A holding ring 150 is pressed to the upper surface of the pivot 112 with a screw 151 to hold the upper surface of the pivot 112 and prevent it from being detached from the pivot 112. The pivot 12 is divided into a plurality (four in the figure) of blocks 112a and 112a to receive the small end 107a of the connecting rod 107.
[0057]
The raising member 114 can rotate between first and raising positions A and B set around the axis thereof, and the piston outer 105b is moved to a low compression ratio position L (close to the piston inner 105a with the reciprocating rotation. 12 and FIG. 21 (a)) and a cam mechanism 115 that alternately moves to a high compression ratio position H (see FIG. 18 and FIG. 21 (c)) near the combustion chamber 104a is provided with a raising member 114 and a piston outer 105b. Between.
[0058]
As clearly shown in FIG. 21, the cam mechanism 115 includes a plurality of convex first cams 116 formed on the upper surface of the raising member 114 and a plurality of convex second cams formed on the lower surface of the top wall of the piston outer 105b. The first cam 116 and the second cam 117 are alternately arranged in the circumferential direction to the low compression ratio position L of the piston outer 105b when the raising member 114 is in the non-lifting position A. Is allowed to migrate. Both side surfaces of the first cam 116 and the second cam 117 arranged in the circumferential direction of the raising member 114 are wall surfaces 116a and 117a that stand substantially vertically from the roots of the cams 116 and 117, respectively. The flat top surfaces 116b and 117b connecting the upper edges 116a and 117a come into contact with each other when the raising member 114 reaches the raising position B to hold the piston outer 105b at the high compression ratio position H. Yes. As described above, since both side surfaces of the first and second cams 116 and 117 are the absolute wall surfaces 116a and 117a, it is possible to narrow the interval between adjacent cams 116 and 117 arranged in the circumferential direction. The total area of the top surfaces 116b and 117b of 116 and 117 can be set to be significantly larger than in the case of the first embodiment.
[0059]
When the piston outer 105b reaches the high compression ratio position H, the lower end surface of the piston inner 105a serves as a restricting means for preventing the piston outer 105b from moving beyond the high compression ratio position H toward the combustion chamber 104a. A stop ring 118 that is in contact with the piston outer ring 105 is locked to the inner peripheral surface of the lower end of the piston outer 105b.
[0060]
As shown in FIGS. 12, 15 and 16, between the piston inner 105a and the raising member 114, there are a plurality of actuators 120 for turning the raising member 114 to the first and raising positions A and B. A set is provided. The structure when two sets of actuators 120 are arranged will be described below.
[0061]
The piston inner 105 a has a pair of bottomed cylinder holes 121, 121 extending in parallel with the piston pin 106, and elongated holes 154, 154 penetrating through the upper wall between the cylinder holes 121, 121. A pair of pressure receiving pins 114 a, 114 a which are provided and project integrally with the lower surface of the raising member 114 and are arranged on the diameter line thereof face the cylinder holes 121, 121 through the long holes 154, 154. The long holes 154 and 154 do not prevent the pressure receiving pins 114 a and 114 a from moving between the non-lifting position A and the raising position B together with the raising member 114.
[0062]
Actuating plungers 123 and 123 and bottomed cylindrical return plungers 124 and 124 are slidably fitted in the cylinder holes 121 and 121 with the corresponding pressure receiving pins 114a and 114a interposed therebetween. At that time, the actuating plungers 123 and 123 and the return plungers 124 and 124 are arranged point-symmetrically with respect to the axis of the piston 105.
[0063]
A first hydraulic chamber 125 is defined at the bottom of the cylinder hole 121 so that the end of the actuating plunger 23 on the side opposite to the pressure receiving pin 114a faces. When the hydraulic pressure is supplied to the chamber 125, the actuating plunger receives the oil pressure. The raising member 114 is rotated to the raising position B via the corresponding pressure receiving pin 114a. The first hydraulic chamber 125 is connected to an oil passage 144 (FIG. 11) via a first distribution oil passage 142 and an oil chamber 141, and this oil passage 144 is connected to an oil pump 146 serving as a hydraulic pressure source via an electromagnetic switching valve 145. Are connected to an oil sump 147 in a switchable manner.
[0064]
Further, spring holding rings 152 and 152 are locked to the open ends of the cylinder holes 121 and 121 by stop rings 153 and 153, respectively, and a return plunger is provided between the spring holding rings 152 and 152 and the return plungers 124 and 124. The return springs 127 and 127 made of coil springs are urged to urge the 124 and 124 toward the pressure receiving pins 114a and 114a, respectively, and the return plungers 124 and 124 are urged by the urging force of the return springs 127 and 127, respectively. The raising member 114 can be rotated to the non-lifting position A via 114a.
[0065]
In order to reduce the weight of each actuating plunger 123, the cup-shaped plunger main body 123 a and a hard material cap 123 b that is press-fitted and fixed to the open end of the plunger main body 123 a are configured to be hollow. It arrange | positions so that 123b may be contact | abutted to the receiving pin 114a. Each return plunger 124 also has a cup shape for weight reduction, and is arranged so that its bottom wall abuts against the pressure receiving pin 114a.
[0066]
Each spring holding ring 152 is provided with a cylindrical skirt portion 152 a that is inside the return spring 127 and enters the return plunger 124, thereby preventing buckling of the return spring 127.
[0067]
The non-lifting position A of the raising member 114 is defined by the pressure receiving pin pieces 114a and 114a coming into contact with the tips of the operating plungers 123 and 123 that are in contact with the bottom surfaces of the cylinder holes 121 and 121 (see FIG. 15). The raised position B of 114 is defined by the pressure receiving pin 114a contacting the tip of the return plunger 24 that contacts the skirt portion 152a of the spring holding ring 152 (see FIG. 20). By doing so, at the non-lifting position A of the raising member 114, the side contact of the adjacent first and second cams 116, 117 can be avoided, and the piston outer 105b can be smoothly moved to the high compression ratio position H. It becomes.
[0068]
Other configurations such as the piston outer locking means 130 and the like are the same as those of the first embodiment. Therefore, in FIGS. 11 to 21, portions corresponding to those of the first embodiment are denoted by reference numerals of the first embodiment. A reference numeral obtained by adding 100 to a number is attached and description thereof is omitted.
[0069]
In the second embodiment, the movement of the piston outer 105b from the low compression ratio position L to the high compression ratio position H and the movement from the high compression ratio position H to the low compression ratio position L are performed during the reciprocation of the piston 105. Only the natural external force acting on the piston inner and outer 105a, 105b to separate or approach them in the axial direction is used (see FIG. 21B). Therefore, the actuator 120 only needs to exert an output that merely moves the raising member 114 between the non-lifting position A and the raising position B as shown in FIG. And miniaturization can be achieved.
[0070]
Further, in the first and second cams 116 and 117, both side surfaces arranged in the sliding direction can be formed as the wall surfaces 116a and 117a, and the slopes 16a and 17a as in the first embodiment are not provided. The operating stroke angle of the raising member 114 can be set small, and the top surfaces 116b and 117b of the respective cams 116 and 117 can be formed widely, so that the responsiveness of the raising member 114 is enhanced and the top surfaces 116b and 117b are increased. The surface pressure acting on the surface can be lowered, and the durability can be improved.
[0071]
As shown in FIGS. 15 and 16, a plurality of sets of actuators 120 that actuate the raising members 114 are arranged at equal intervals, so that they can be smoothly moved around the pivot 112 without applying an uneven load to the raising members 114. In addition, since the total output of the plurality of sets of actuators 120 is large, the capacity of each set of actuators 120 can be reduced, and thus the size can be reduced.
[0072]
Further, the operating plunger 123 and the return plunger 124, which are constituent elements of each set of actuators 120, are fitted into the common cylinder hole 121 formed in the piston inner 105a, so that the structure is simple and the hole machining is simple. This can contribute to cost reduction.
[0073]
When two sets of actuators 120 are provided, the cylinder holes 121 and 121 are formed in the piston inner 105a in parallel with the piston pin 106, so that the two sets of actuators 120 are not interfered with. The actuators 120, 120 can be arranged at equal intervals in the circumferential direction of the piston 105.
[0074]
Further, since the axes of the actuating and returning plungers 123 and 124 are arranged so as to cross the axis of each pressure receiving pin 114a and substantially perpendicular to the radius of the pivot 112, the pushing and actuating plungers 123 and 124 are pushed. The pressure can be efficiently transmitted to the raising member 114 via the pressure receiving pin 114, which can contribute to the compactness of the actuator 120.
[0075]
Further, since the end surfaces of the actuating and returning plungers 123 and 124 and the cylindrical outer peripheral surface of the pressure receiving pin 114a are in line contact, the contact area is wider than in the case of the first embodiment, and the surface pressure is Reduction can contribute to the improvement of durability.
[0076]
The present invention is not limited to the above embodiment, and various design changes can be made without departing from the scope of the invention. For example, the operation modes of the electromagnetic switching valves 45 and 145 may be reversed from those in the above embodiment. That is, the oil passages 44 and 144 can be connected to the oil pumps 46 and 146 when the switching valves 45 and 145 are not energized, and the oil passages 44 and 144 can be connected to the oil reservoirs 47 and 147 when the switching valves 45 and 145 are not energized.
[0077]
【The invention's effect】
As described above, according to the first feature of the present invention, when the raising member is rotated to the non-lifting position by the actuator, the raising member allows the piston outer to move to the low compression ratio position. It can move to a low compression ratio position by the high pressure from the combustion chamber side. Further, when the raising member is rotated from the non-lifting position to the raising position by the actuator, the piston outer can be held at the high compression ratio position.
[0078]
During this time, since the piston outer does not rotate with respect to the piston inner, the top surface shape of the piston outer facing the combustion chamber corresponds to the shape of the combustion chamber, and the compression ratio at the high compression ratio position of the piston outer is set. Can be effectively increased.
[0079]
Moreover, at the high compression ratio position of the piston outer, a large thrust received by the piston outer from the combustion chamber during the expansion stroke of the engine is received by the raising member. Therefore, the effect of the thrust on the actuator is also avoided. It is possible to reduce the output of the actuator and to make it compact. Even when the actuator is configured hydraulically, the high pressure seal is unnecessary because the thrust does not act on it, and the high compression ratio position of the piston outer is unstable even if some bubbles are generated in the hydraulic chamber. I will not let you.
[0080]
In particular, when the piston outer reaches the high compression ratio position, the plurality of convex first cams and second cams in the annular arrangement abut the flat top surfaces of each other, so that during the expansion stroke of the engine, the piston outer The large thrust received from the combustion chamber acts perpendicularly to the top surface and can reliably prevent acting on the raising member as rotational torque. .
[0081]
According to the second feature of the present invention, a natural external force can be used to move the piston outer from the low compression ratio position to the high compression ratio position or from the high compression ratio position to the low compression ratio position. Thus, it is sufficient for the actuator to exhibit an output that merely moves the raising member between the non-raising position and the raising position, and the capacity and size of the actuator can be reduced.
[0082]
Further, according to the third feature of the present invention, when the raising member is rotated from the non-raised position to the raised position, the first and second cams are separated from each other in the axial direction while sliding on the inclined surfaces, whereby the piston outer Can be pushed up to a high compression ratio position.
[0083]
Furthermore, according to the fourth feature of the present invention, the both side surfaces of the first and second cams are set as absolute walls, so that the operating stroke angle of the raising member is set small, and the top surface of each cam is set. It becomes possible to form widely, and while raising the responsiveness of the raising member, the surface pressure which acts on this top face can be lowered | hung and those durability can also be aimed at. In addition, when the piston outer is moved between the low compression ratio position and the high compression ratio position, a natural external force that attempts to move the piston inner and the piston outer apart or close to each other in the axial direction is used. There is no hindrance to the rotation from the raised position to the raised position.
[0084]
Furthermore, according to the fifth feature of the present invention, when the piston outer comes to the low compression ratio position, the integral operation of the piston inner and the piston outer can be ensured.
[0085]
Furthermore, according to the sixth aspect of the present invention, the integral operation of the piston inner and the piston outer can be ensured even when the piston outer reaches the high compression ratio position.
[0086]
Furthermore, according to the seventh feature of the present invention, only one hydraulic chamber is sufficient in the hydraulic operation means, and the configuration can be simplified.
[0087]
Furthermore, according to the eighth feature of the present invention, only one hydraulic chamber is sufficient for the piston outer locking means, and the configuration can be simplified.
[0088]
Furthermore, according to the ninth feature of the present invention, the actuator and the piston outer locking means can be rationally operated with a common hydraulic pressure, and the hydraulic circuit can be simplified.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view of a main part of an internal combustion engine equipped with a variable compression ratio device according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view taken along line 2-2 of FIG. 1, showing a low compression ratio state.
3 is a cross-sectional view taken along line 3-3 in FIG.
4 is a cross-sectional view taken along line 4-4 of FIG.
5 is a cross-sectional view taken along line 5-5 of FIG.
6 is a cross-sectional view taken along line 6-6 of FIG.
FIG. 7 is a diagram corresponding to FIG. 2 showing a high compression ratio state.
8 is a cross-sectional view taken along line 8-8 in FIG.
9 is a cross-sectional view taken along line 9-9 in FIG.
FIG. 10 is an explanatory diagram of the operation of the raising member.
FIG. 11 is a longitudinal sectional front view of a main part of an internal combustion engine equipped with a variable compression ratio device according to a second embodiment of the present invention.
12 is an enlarged cross-sectional view taken along line 12-12 of FIG. 11, showing a low compression ratio state.
13 is a cross-sectional view taken along line 13-13 in FIG.
14 is a cross-sectional view taken along line 14-14 of FIG.
15 is a cross-sectional view taken along line 15-15 in FIG.
16 is a cross-sectional view taken along the line 16-16 in FIG.
17 is a sectional view taken along line 17-17 in FIG.
18 is a diagram corresponding to FIG. 12, showing a high compression ratio state.
19 is a cross-sectional view taken along line 19-19 in FIG.
20 is a sectional view taken along line 20-20 in FIG.
FIG. 21 is an explanatory diagram of the operation of the raising member.
[Explanation of symbols]
A ······· Non-lifting position of raising member
B ... Raised position of raised member
C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Operating position of locking member
D ···· Retraction position of locking member
H ... High compression ratio position of piston outer
L ・ ・ ・ ・ ・ ・ ・ ・ ・ Low compression ratio position of piston outer
5. Piston
5a ... Piston inner
5b ... Piston outer
6. Piston pin
7 ・ ・ ・ ・ ・ ・ ・ Connecting rod
14 ... Raised member
16 .... First cam
17 ... 2nd cam
18 .... Piston outer restricting means (ring stop)
20 ・ ・ ・ ・ ・ ・ Actuator
13, 25 ... Hydraulic operating means (operating plunger, first hydraulic chamber)
30... Piston outer locking means
31 ........ Locking groove
32 ・ ・ ・ ・ ・ ・ Locking member (locking lever)
34 ... Actuating spring
37, 38 ... Hydraulic pressure return means (second hydraulic chamber, piston)
46 .... Hydraulic power source (oil pump)
105 ... Piston
105a ... Piston inner
105b ... Piston outer
106 ... Piston pin
107 ... connecting rod
114 ... Raising member
116... First cam
117 …… Second cam
118 .. Piston outer regulating means (ring stop)
120 ... Actuator
113, 125 ... Hydraulic operating means (operating plunger, first hydraulic chamber)
130... Piston outer locking means
131 ... Locking groove
132 ... Locking member (locking lever)
134 ... Actuating spring
137, 138 ... hydraulic return means (second hydraulic chamber, piston)
146: Hydraulic source (oil pump)

Claims (9)

コンロッド(7,107)にピストンピン(6,106)を介して連結されるピストンインナ(5a,105a)と,このピストンインナ(5a,105a)を覆うようにその外周に軸方向にのみ摺動可能に嵌合して外端面を燃焼室(4a,104a)に臨ませながら,前記ピストンインナ(5a,105a)寄りの低圧縮比位置(L)及び燃焼室(4a)寄りの高圧縮比位置(H)間を移動し得るピストンアウタ(5b,105b)とでピストン(5,105)を構成し,前記ピストンインナ及びアウタ(5a,5b;105a,105b)間に嵩上げ部材(14)を,これがピストン(5,105)の軸線周りに非嵩上げ位置(A)及び嵩上げ位置(B)間を回動し得るように介裝し,この嵩上げ部材(14)と,前記ピストンインナ及びアウタ(5a,5b)の一方との軸方向対向面に,それぞれ頂面(16b,17b)を平坦面とした凸状で且つ環状に配列される複数の第1カム(16)及び第2カム(17)を形成し,これら第1及び第2カム(16,17)は,前記嵩上げ部材(14)が非嵩上げ位置(A)に回動したとき互いに噛み合って前記ピストンアウタ(5b,105b)の低圧縮比位置(L)への移動を許容し,前記嵩上げ部材(14)が嵩上げ位置(B)に回動したとき互いに頂面(16b,17b)を当接させて前記ピストンアウタ(5b,105b)を高圧縮比位置(H)に保持するように配置され,前記嵩上げ部材(14)に,これを非嵩上げ位置(A)及び嵩上げ位置(B)に交互に回動するアクチュエータ(20,120)を連結したことを特徴とする,内燃機関の圧縮比可変装置。The piston inner (5a, 105a) connected to the connecting rod (7, 107) via the piston pin (6, 106) and the outer periphery of the piston inner (5a, 105a) so as to cover only the axial direction. The low compression ratio position (L) close to the piston inner (5a, 105a) and the high compression ratio position close to the combustion chamber (4a) while fitting so that the outer end faces the combustion chamber (4a, 104a). (H) constitutes a piston (5, 105) with a piston outer (5b, 105b) that can move between the piston inner and the outer (5a, 5b; 105a, 105b), This is interposed so as to be able to rotate between the non-lifting position (A) and the raising position (B) around the axis of the piston (5, 105), and this raising member (14), the piston inner and the piston inner A plurality of first cams (16) and second cams arranged in an annular shape in a convex shape with the top surfaces (16b, 17b) as flat surfaces on the axially facing surface with one of the outers (5a, 5b), respectively. The first and second cams (16, 17) are engaged with each other when the raising member (14) rotates to the non-lifting position (A), and the piston outer (5b, 105b) Is allowed to move to the low compression ratio position (L), and when the raising member (14) is rotated to the raising position (B), the top surfaces (16b, 17b) are brought into contact with each other so that the piston outer (5b , 105b) is held so as to hold the high compression ratio position (H), and the raising member (14) is provided with an actuator (20) that alternately rotates to the non-lifting position (A) and the raising position (B). , 120) That, for an internal combustion engine variable compression ratio device. 請求項1記載の内燃機関の圧縮比可変装置において,
前記嵩上げ部材(14,114)及びアクチュエータ(20,120)を,前記ピストンインナ及びアウタ(5a,5b;105a,105b)の往復動中,これらを互いに軸方向に離間させたり近接させるようと作用する自然外力によりピストンアウタ(5b,105b)が低圧縮比位置(L)及び高圧縮比位置(H)間を移動することを許容するように構成したことを特徴とする,内燃機関の圧縮比可変装置。
In the internal combustion engine variable compression ratio device according to claim 1,
The raising member (14, 114) and the actuator (20, 120) act so as to be spaced apart from each other or close to each other during the reciprocating motion of the piston inner and outer (5a, 5b; 105a, 105b). The compression ratio of the internal combustion engine is characterized in that the piston outer (5b, 105b) is allowed to move between the low compression ratio position (L) and the high compression ratio position (H) by a natural external force. Variable device.
請求項1記載の内燃機関の圧縮比可変装置において,
前記第1及び第2カム(16,17)には,前記嵩上げ部材(14)が非嵩上げ位置(A)から嵩上げ位置(B)へ回動するとき互いに軸方向に離反するように滑る斜面(16a,17a)を設けたことを特徴とする,内燃機関の圧縮比可変装置。
In the internal combustion engine variable compression ratio device according to claim 1,
The first and second cams (16, 17) include slopes (sliding apart from each other in the axial direction when the raising member (14) rotates from the non-lifting position (A) to the lifting position (B)). 16a, 17a), a variable compression ratio device for an internal combustion engine.
請求項2記載の内燃機関の圧縮比可変装置において,
前記第1及び第2カム(116,117)には,それぞれの頂面(116b,117b)の周方向両側縁から各カム(116,117)の根元に略垂直に下りる絶壁面(116a,117a)を形成したことを特徴とする,内燃機関の圧縮比可変装置。
In the internal combustion engine variable compression ratio device according to claim 2,
The first and second cams (116, 117) include steep walls (116a, 117a) that descend substantially perpendicularly from both circumferential edges of the top surfaces (116b, 117b) to the roots of the cams (116, 117). The compression ratio variable device for an internal combustion engine, characterized in that
請求項1〜4の何れかに記載の内燃機関の圧縮比可変装置において,
前記ピストンインナ(5a,105a)及びピストンアウタ(5b,105b)間には,ピストンアウタ(5b,105b)が低圧縮比位置(L)に来たとき,ピストンアウタ(5b,105b)をピストンインナ(5a,105a)に対して係止するピストンアウタ係止手段(30,130)を設けたことを特徴とする,内燃機関の圧縮比可変装置。
The compression ratio variable device for an internal combustion engine according to any one of claims 1 to 4,
Between the piston inner (5a, 105a) and the piston outer (5b, 105b), when the piston outer (5b, 105b) comes to the low compression ratio position (L), the piston outer (5b, 105b) is moved to the piston inner. An internal combustion engine variable compression ratio device comprising piston outer locking means (30, 130) for locking to (5a, 105a).
請求項1〜5の何れかに記載の内燃機関の圧縮比可変装置において,
前記ピストンインナ(5a,105a)及びピストンアウタ(5b,105b)間には,ピストンアウタ(5b,105b)が高圧縮比位置(H)に来たとき,ピストンアウタ(5b,105b)のピストンインナ(5a,105a)に対する燃焼室(4a,104a)側への移動を規制するピストンアウタ規制手段(18,118)を設けたことを特徴とする,内燃機関の圧縮比可変装置。
In the internal combustion engine variable compression ratio device according to any one of claims 1 to 5,
Between the piston inner (5a, 105a) and the piston outer (5b, 105b), when the piston outer (5b, 105b) comes to the high compression ratio position (H), the piston inner of the piston outer (5b, 105b) A compression ratio variable device for an internal combustion engine, characterized in that piston outer restricting means (18, 118) for restricting movement toward (5a, 105a) toward the combustion chamber (4a, 104a) is provided.
請求項1又は2記載の内燃機関の圧縮比可変装置において,
前記アクチュエータ(20,120)を,油圧源(46,146)の油圧により作動して前記嵩上げ部材(14,114)を嵩上げ位置(B)へ作動する油圧作動手段(23,25;123,125)と,前記嵩上げ部材(114)を非嵩上げ位置(A)側へ付勢する戻しばね(27,127)とで構成したことを特徴とする,内燃機関の圧縮比可変装置。
The compression ratio variable device for an internal combustion engine according to claim 1 or 2,
Hydraulic actuators (23, 25; 123, 125) for operating the actuator (20, 120) by the hydraulic pressure of the hydraulic source (46, 146) to operate the raising member (14, 114) to the raised position (B). ) And a return spring (27, 127) for urging the raising member (114) to the non-lifting position (A) side, a compression ratio variable device for an internal combustion engine.
請求項5に記載の内燃機関の圧縮比可変装置において,
前記ピストンアウタ係止手段(30,130)を,前記ピストンインナ(5a,105a)に支持されて前記ピストンアウタ(5b,105b)内周面の係止溝(31,131)に係合する作動位置(C)及び該係止溝(31)から離脱する後退位置(D)間を移動する係止部材(32,132)と,この係止部材(32,132)を作動位置(C)へ付勢する作動ばね(34,134)と,油圧源(46,146)の油圧により作動して係止部材(32,132)を後退位置(D)へ作動する油圧戻し手段(37,38)とで構成したことを特徴とする,内燃機関の圧縮比可変装置。
The internal combustion engine variable compression ratio device according to claim 5,
The piston outer locking means (30, 130) is supported by the piston inner (5a, 105a) and engaged with the locking groove (31, 131) on the inner peripheral surface of the piston outer (5b, 105b). The locking member (32, 132) that moves between the position (C) and the retracted position (D) that is disengaged from the locking groove (31), and the locking member (32, 132) to the operating position (C) Actuating springs (34, 134) for urging and hydraulic pressure return means (37, 38) for operating the locking members (32, 132) to the retracted position (D) by being actuated by the hydraulic pressure of the hydraulic source (46, 146). A compression ratio variable device for an internal combustion engine, characterized by comprising:
請求項5に記載の内燃機関の圧縮比可変装置において,
前記アクチュエータ(20,120)を,油圧源(46,146)の油圧により作動して前記嵩上げ部材(14,114)を嵩上げ位置(B)へ作動する油圧作動手段(23,25;123,125)と,前記嵩上げ部材(14,114)を非嵩上げ位置(A)側へ付勢する戻しばね(27,127)とで構成し,また前記ピストンアウタ係止手段(30,130)を,前記ピストンインナ(5a,105a)に支持されて前記ピストンアウタ(5b,105b)内周面の係止溝(31,131)に係合する作動位置(C)及び該係止溝(31,131)から離脱する後退位置(D)間を移動する係止部材(32,132)と,この係止部材(32,132)を作動位置(C)へ付勢する作動ばね(34,134)と,前記油圧源(46,146)の油圧により作動して係止部材(32,132)を後退位置(D)へ作動する油圧戻し手段(37,38;137,138)とで構成し,前記油圧作動手段(23,25,123,125)及び油圧戻し手段(37,38;137,138)に前記油圧源(46,146)の油圧を同時に供給するようにしたことを特徴とする,内燃機関の圧縮比可変装置。
The internal combustion engine variable compression ratio device according to claim 5,
Hydraulic actuators (23, 25; 123, 125) for operating the actuator (20, 120) by the hydraulic pressure of the hydraulic source (46, 146) to operate the raising member (14, 114) to the raised position (B). ) And a return spring (27, 127) for urging the raised member (14, 114) toward the non-lifted position (A), and the piston outer locking means (30, 130) The operation position (C) supported by the piston inner (5a, 105a) and engaged with the locking groove (31, 131) on the inner peripheral surface of the piston outer (5b, 105b) and the locking groove (31, 131) A locking member (32, 132) that moves between a retracted position (D) that is disengaged from the operating position, and an operating spring (34, 134) that biases the locking member (32, 132) to the operating position (C), The hydraulic source (46, 1 6) hydraulic pressure return means (37, 38; 137, 138) which are actuated by the hydraulic pressure to actuate the locking members (32, 132) to the retracted position (D). 123, 125) and the hydraulic pressure return means (37, 38; 137, 138), the hydraulic pressure of the hydraulic source (46, 146) is simultaneously supplied to the variable compression ratio device for the internal combustion engine.
JP2002048606A 2001-06-15 2002-02-25 Variable compression ratio device for internal combustion engine Expired - Fee Related JP3966742B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2002048606A JP3966742B2 (en) 2001-06-15 2002-02-25 Variable compression ratio device for internal combustion engine
PCT/JP2002/005702 WO2002103178A1 (en) 2001-06-15 2002-06-07 Compression ratio variable device of internal combustion engine
BR0210447-4A BR0210447A (en) 2001-06-15 2002-06-07 Internal combustion engine compression ratio change device
CA002450280A CA2450280C (en) 2001-06-15 2002-06-07 Compression ratio changing device of internal combustion engine
CNA028120213A CN1516780A (en) 2001-06-15 2002-06-07 Compression ratio variable device of internal combustion engine
KR1020037016293A KR100592167B1 (en) 2001-06-15 2002-06-07 Compression ratio variable device of internal combustion engine
DE60225284T DE60225284T2 (en) 2001-06-15 2002-06-07 DEVICE WITH VARIABLE COMPRESSING RATIO FOR INTERNAL COMBUSTION ENGINE
EP02733417A EP1403488B1 (en) 2001-06-15 2002-06-07 Compression ratio variable device of internal combustion engine
AU2002306327A AU2002306327B2 (en) 2001-06-15 2002-06-07 Compression ratio variable device of internal combustion engine
US10/480,422 US7066118B2 (en) 2001-06-15 2002-06-07 Compression ratio variable device in internal combustion engine
TW091112917A TW530116B (en) 2001-06-15 2002-06-13 Compression ratio changing device in internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-181295 2001-06-15
JP2001181295 2001-06-15
JP2002048606A JP3966742B2 (en) 2001-06-15 2002-02-25 Variable compression ratio device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003065090A JP2003065090A (en) 2003-03-05
JP3966742B2 true JP3966742B2 (en) 2007-08-29

Family

ID=26616971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048606A Expired - Fee Related JP3966742B2 (en) 2001-06-15 2002-02-25 Variable compression ratio device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3966742B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979653B2 (en) * 2008-08-05 2012-07-18 本田技研工業株式会社 Variable compression ratio internal combustion engine
JP6413655B2 (en) * 2014-11-04 2018-10-31 株式会社Ihi Variable compression ratio mechanism
WO2016068128A1 (en) 2014-10-30 2016-05-06 株式会社Ihi Uniflow scavenging two-cycle engine

Also Published As

Publication number Publication date
JP2003065090A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
EP1403488B1 (en) Compression ratio variable device of internal combustion engine
JP4464916B2 (en) Control device for hydraulic actuator in piston
JP6172135B2 (en) Variable length connecting rod and variable compression ratio internal combustion engine
JP4283271B2 (en) Variable compression ratio device for internal combustion engine
JP6350755B2 (en) Variable length connecting rod and variable compression ratio internal combustion engine
JP4430654B2 (en) Variable compression ratio device for internal combustion engine
JP4104388B2 (en) Variable compression ratio device for internal combustion engine
JP3975132B2 (en) Variable compression ratio device for internal combustion engine
JP3966742B2 (en) Variable compression ratio device for internal combustion engine
JP4252996B2 (en) Variable compression ratio device for internal combustion engine
JP3975094B2 (en) Variable compression ratio device for internal combustion engine
JP3975095B2 (en) Variable compression ratio device for internal combustion engine
JP6319286B2 (en) Variable compression ratio internal combustion engine
JP4252995B2 (en) Variable compression ratio device for internal combustion engine
JP2779429B2 (en) Variable valve timing / lift amount mechanism for valve train
JP4979653B2 (en) Variable compression ratio internal combustion engine
JPH0117607Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3966742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees