JP3965113B2 - Segment connection structure - Google Patents

Segment connection structure Download PDF

Info

Publication number
JP3965113B2
JP3965113B2 JP2002376804A JP2002376804A JP3965113B2 JP 3965113 B2 JP3965113 B2 JP 3965113B2 JP 2002376804 A JP2002376804 A JP 2002376804A JP 2002376804 A JP2002376804 A JP 2002376804A JP 3965113 B2 JP3965113 B2 JP 3965113B2
Authority
JP
Japan
Prior art keywords
segment
joint
main girder
bolt
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002376804A
Other languages
Japanese (ja)
Other versions
JP2004084456A (en
Inventor
宗弘 石田
正人 三宅
径 豊島
実 鰰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002376804A priority Critical patent/JP3965113B2/en
Publication of JP2004084456A publication Critical patent/JP2004084456A/en
Application granted granted Critical
Publication of JP3965113B2 publication Critical patent/JP3965113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は上下水道、地下鉄、電力・通信ケーブル共同溝、放水トンネル、道路トンネルなどの管渠をシールド工法などで構築する場合に用いられるセグメントについて、特にセグメントの主桁と継手板との溶接仕様を簡素化できるセグメント連結部構造に関する。
【0002】
【従来の技術】
わが国における都市施設の整備に対する要望は近時急速に高まり、すでに浅い地面下、特に大都市における主要道路下はこれらの施設が飽和状態になるまでに至っている。従って、今後の都市施設整備のための空間は地下深くに求めざるを得ない状態となり、いわゆる大深度地下空間の利用構想が各界で研究開発されている。この大深度地下空間の利用のための地下工事には、従来より工事の安全性と地上交通を阻害することの少ないシールド工法がこれからも主体となると考えられる。
【0003】
従来、シールド工法には一般的に鋼製セグメントが使用され、鋼製セグメントはシールドトンネルにおける上下水道、電力・通信ケーブル共同溝を始めとして鉄道・道路用トンネルの特殊部分などに多くの使用実績がある。ところが、鋼製セグメントは今まで有利と考えられていた中小径セグメントの範囲でも地盤の悪い場所、特殊荷重の作用する場所、及び大深度(約20m以上)等でセグメントに作用する荷重が大きくなる場合には、鋼製セグメントが使用されない実例が出てきている。この理由は、例えば大深度シールドトンネルではセグメントに発生する断面力(曲げモーメント、軸力及び剪断力)が浅深度シールドトンネルに較べて大きくなるため、シールドを推進するためのジャッキも大きくなってしまう。このため浅深度シールドトンネルではセグメンド断面が曲げモーメントで決定されることから鋼製セグメントが有利であったのが、大深度シールドトンネルではセグメント断面が軸力で決定され、設計上必ずしも有利ではなくなってしまう。
【0004】
その一方で、シールド工法に特許文献1に開示されるようなコンクリート中詰鋼殻セグメントを用いることが考えられる。コンクリート中詰鋼殻セグメントは、主桁と、継手板と、スキンプレートとからなる既存の鋼製セグメントを基本構造とした鋼殻を使用し、工場等においてコンクリートをあらかじめ中詰めした鋼とコンクリートとの特性をもつ簡易合成構造のセグメントである。このコンクリート中詰鋼殻セグメントは、スキンプレートの端縁に接合された主桁と継手板からなる鋼殻内にコンクリートを閉塞状態で充填するため、コンクリートの変形を抑制した簡易合成構造となって、高い剛性、強度を確保することができる。
【0005】
【特許文献1】
特開平7−252994号公報
【0006】
【発明が解決しようとする課題】
前記従来技術に代表されるコンクリート中詰鋼殻セグメントまたは鋼製セグメントのトンネル周方向継手部は、継手板にボルトおよびナットを緊締して連結を行なう連結構造を採用している。したがって、トンネル周方向の応力を主桁に伝達させるためには継手板と主桁とを確実に溶接する必要がある。この点に関し、「道路橋示方書」においても、継手板と主桁の接合部のように引張力が作用する箇所の溶接仕様は完全溶け込み溶接によるとされている。しかし、大深度等の条件下では主桁の板厚や高さも大きくなるため、従来型の連結構造では継手板と主桁との溶接コストが著しく増大する点で改善の余地があった。
【0007】
本発明は前記従来技術における課題を解消するためにされたものであり、その目的は、主桁と継手板との溶接仕様を簡素化できるセグメント連結部構造を提供することである。
【0008】
【課題を解決するための手段】
本発明のセグメント連結部構造は、主桁、継手板およびスキンプレートで構成されたセグメントの連結部構造であって、前記主桁の長手方向端部の内側面には、少なくとも主桁高さ方向に沿って複数本のボルト孔が設けられた継手金物が隅肉溶接されており、前記継手金物の隅肉溶接用の定着部はセグメント周方向に対して突出する形状に形成され、かつ前記定着部が主桁高さ方向の上端側および下端側に分割されており、トンネル周方向に隣接する前記セグメントの連結が、前記継手金物と前記継手板とを挿通してなる連結ボルトによって行なわれることを特徴とする。なお、本発明の連結部構造では、継手金物に仮設用ボルト孔および本設用ボルト孔を並列して設けてもよい。
また、本発明のセグメント連結部構造は、主桁高さ方向に加えて主桁幅方向に沿って複数本のボルト孔が並列配置された継手金物を主桁に隅肉溶接するセグメント連結部構造であって、前記継手金物のボルト挿通部が、主桁から離れるに伴ってセグメント周方向の長さを短く設定されていてもよい。
た、本発明のセグメント連結部構造は、トンネル周方向に隣接するセグメント間に生じる力を主桁に直接伝達し、継手板の板厚を主桁の板厚より小さくしてもよい。
また、本発明のセグメント連結部構造は、継手金物に設けられるボルト孔の形状が、継手板に面する側に向かってボルト孔径が大きくなる截頭円錐形状に形成されてもよい。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しつつ詳細に説明する。図1から図3は本発明の第1参考形態におけるセグメント1の連結部構造を示した図である。第1参考形態のセグメント1は、図1に示すように、主桁2、継手板3およびスキンプレート4からなる鋼殻5の内部にコンクリート6を充填して構成され、鋼殻5でセグメント1の外周面を箱状に被覆することでコンクリート6の変形が抑制される簡易合成構造となっている。
【0010】
第1参考形態では、トンネル円周方向に伸長する2本の円弧状の主桁2の端部にトンネル軸方向に伸長する2本の継手板3を接合し、かつ主桁2および継手板3のトンネル地山側(セグメント外周側)にスキンプレート4を固定して鋼殻5が構成されている。主桁2および継手板3には、連結ボルト8を挿通するための挿通孔2a,3aが開孔されている。なお、鋼殻5のスキンプレート4の内周面には、トンネル軸方向に伸長する縦リブ4aが複数枚立設されている。
【0011】
また、主桁2の長手方向端部(トンネル周方向端部)には、ボルト孔7aが設けられた継手金物7がそれぞれ2つづつ隅肉溶接7bされている。この継手金物7は、継手金物7のボルト孔7aと継手板3の挿通孔3aとが同軸上に位置するように主桁2に固定されている。なお継手金物7の大きさは、セグメント連結時に使用する連結ボルト8の径およびボルト長さ、隅肉溶接部7bの溶接長などを考慮して決定される。
【0012】
さらに、鋼殻5の内部にはコンクリート6が充填される一方で、主桁2の挿通孔2aおよび継手金物7付近にはコンクリート6が充填されていない空隙部6aが設けられており、ボルト8の接合作業のためにスペースが確保されている。
【0013】
第1参考形態では、図2および図3に示すように、一方のセグメント1の継手金物7および継手板3と、相対するセグメント1の継手金物7および継手板3とを挿通してなる連結ボルト8にナット8aを締結して、セグメント周方向の連結を行なっている。すなわち本発明の第1参考形態では、相対するセグメント1の継手金物7を外側から挟み込む状態で連結ボルト8にナット8aが螺合されている。そして、本発明の第1参考形態の連結部構造では、トンネル周方向の応力は、一方のセグメント1の主桁2から、この主桁2に溶接された継手金物7と連結ボルト8とを介して、相対するセグメント1の継手金物7に伝達されるようになっている。
【0014】
ここで、従来型のセグメントの連結構造では、継手板に開孔されたボルト孔に連結ボルトを挿通してセグメント間の連結を行なっていた。つまり、従来型のセグメントの連結構造におけるトンネル周方向の応力は、一方のセグメントの主桁から、この主桁に溶接された継手板と連結ボルトとを介して相対するセグメントに伝達される。したがって、セグメント周方向に引張力がかかる場合、主桁と継手板との接合部には引張力が作用するので、主桁と継手板との溶接仕様は「道路橋示方書」の規格に従って完全溶け込み溶接で行なわざるを得なかった。
【0015】
一方、本発明の第1参考形態のセグメントの連結構造では、トンネル周方向の応力は、一方のセグメント1の主桁2に隅肉溶接7bされた継手金物7から、連結ボルト8を介して相対する継手金物7および主桁2に伝達される。したがって、本発明の連結構造では継手金物7と主桁2との接合部で応力を伝達するため、主桁2と継手板3との接合部の溶接仕様を簡易化できる。なお、セグメント周方向に引張力がかかる場合、継手金物7と主桁2との接合部にはせん断力が作用するが、「道路橋示方書」によればせん断力が作用する箇所の溶接仕様は隅肉溶接でもよいとされているので、連結部の溶接コストは大幅に低減される。
【0016】
また本発明の第1参考形態の連結部構造では、継手金物7と主桁2との接合部で応力を伝達し、継手板3を応力伝達させるための構造材とはしないので、継手板3の板厚も大幅に薄肉化できる。
【0017】
図4は、本発明の第2参考形態におけるセグメント1の連結部構造を示した図である。第2参考形態のセグメント1の連結部構造では、主桁2に隅肉溶接9cされる継手金物9に、仮設用ボルト孔9aと本設用ボルト孔9bとの2つのボルト孔が並列して開孔されている点のみ第1参考形態と相違する。なお、第2参考形態において第1参考形態と同一の構成には同一符号を付して説明を省略する。
【0018】
第2参考形態の継手金物9の全体形状は、直方体を一部切り欠いたような断面L字状の階段型に形成されている。この継手金物9には本設用ボルト孔9bと仮設用ボルト孔9aとの2つのボルト孔が並列して開孔されている。本設用ボルト孔9bは、継手金物9の基底面と上側段差面とを貫通しており、仮設用ボルト孔9aは、継手金物9の基底面と下側段差面とを貫通している。
【0019】
そして第2参考形態の継手金物9は、仮設用ボルト孔9aおよび本設用ボルト孔9bが開孔された基底面を継手板3に向けて、かつ仮設用ボルト孔9aが本設用ボルト孔9bよりセグメント内側に位置する状態で主桁2に隅肉溶接9cされる。なお、第2参考形態でも第1参考形態と同様に、一方のセグメント1の継手金物9および継手板3と、相対するセグメント1の継手金物9および継手板3とを挿通してなる連結ボルト8あるいは仮設ボルト8bにナット8aを締結して、セグメント周方向の連結を行なっている。
【0020】
第2参考形態のセグメント連結構造において、継手金物9に仮設用ボルト孔9aおよび本設用ボルト孔9bの2つのボルト孔を設けたのは以下の理由による。例えば、並列な2本のセグメントトンネル間を切り広げて1つのトンネルを構築する場合などにおいて、仮設状態から本設状態に至るまでにボルトに様々な応力履歴が残る。したがって、前記の場合に本設用ボルトのみで対応する場合には、応力履歴の影響を考慮して本設用ボルトのボルト径を大径化する必要が生じる。一方、本設用ボルトと仮設用ボルトとを併用する場合には、本設時に締結する本設用ボルトには仮設時の応力履歴の影響が及ばないので、ボルト径を小径にできる点で有利となる。
【0021】
図6から図9は、本発明の第実施形態におけるセグメント1の連結部構造を示した図である。第実施形態のセグメント1の連結部構造は、少なくとも主桁2の高さ方向に沿って複数本のボルト孔が配列された継手金物11を用いた高耐力継手構造である。なお、第実施形態例では、並列配置されたボルト孔はいずれもが本設用のボルト孔である。
【0022】
セグメントの継手部分における伝達力が大きい場合には、主桁2と継手金物との溶接部に大きな伝達耐力が必要となる。この場合において十分な伝達耐力を確保するためには、ボルト本数の増加や各ボルトの大径化などの対策が必要となる。しかし、ボルト本数を増加してボルトを密に配列する場合には、ボルト1本に対して1つの継手金物を設置する場合(図3参照)と異なり、継手金物の周囲を主桁2に溶接するために十分な空間を確保すること自体が困難である。
【0023】
また、主桁2と平行して複数のボルト孔を包含する大きな寸法の継手金物(例えば、図5に示すような2×3本のボルト孔を有するブロック型の継手金物10)を用いる場合には、主桁2との溶接は継手金物10の主桁延長方向(セグメント周方向)の側面部のみで行なわなければならない。従って、上記例のような継手金物10の場合、隅肉溶接脚長や溶接延長の増大に繋がり、加工コストや材料コストの増加を引き起こす要因となる。そのため、コスト面で有利な高耐力継手構造を実現するためには狭い範囲で溶接延長を大きくとる工夫が必要となる。
【0024】
そこで第実施形態では、少なくとも主桁2の高さ方向に沿って複数本のボルト孔が密に配列された継手金物11を用い、この継手金物11には、主桁2と溶接するための定着部11bを設け、かつ定着部11を主桁2の高さ方向に分割する構成とした。すなわち、第3実施形態の継手金物11の全体形状は、主桁2と隣接する隅肉溶接用の定着部11bがセグメント周方向に対して最も長く突出し、かつ定着部11bが主桁2の高さ方向の上端側および下端側に分割配置されて偏在している。
【0025】
これにより、継手金物11にボルトを密に配列する場合においても、各々の定着部11bの周囲にて主桁2と溶接されることから、溶接延長が大きくとれる一方で隅肉溶接脚長を縮小することが可能である。また、定着部11bが上下に分割配置されていることから、主桁−継手金物間の伝達曲げ耐力の増加を図ることができる。さらに、主桁中央部に空間を確保することで、セグメントリング間を接合するボルト12と継手金物11との干渉を回避できる。
【0026】
なお、主桁と溶接するための定着部は、さらに溶接延長を大きく取るために、主桁の高さ方向に3つ以上の奇数箇所あるいは偶数箇所に設置することもできる。例えば、奇数箇所の場合は、主桁の高さ方向中央部付近に1つの定着部を設け、残りの定着部を主桁高さ方向の上端側および下端側に分配配置してもよい[図示を省略する]。
【0027】
また、継手金物11の重量および材料コストの低減を図るため、継手金物11のボルト挿通部は主桁2から離れるに伴い、セグメント周方向の長さが短くなるように設定するのが好ましい。例えば、図7から図9に示すように、主桁高さ方向の上端側および下端側のボルト挿通部を、直方体を一部切り欠いたような断面L字状の階段型に形成して、主桁2から離れたボルト挿通部11dの長さを、主桁に近いボルト挿通部11eより短く設定してもよい(すなわち、11d<11e)。
【0028】
なお、継手金物11に設けられるボルト孔11cの形状は、現場にて継手金物11のボルト孔11cへの長ボルト8の挿通作業を容易にするべく、継手板3に面する側に向かってボルト孔径を大きくするラッパ状(截頭円錐形状)に形成してもよい(図9参照)。
【0029】
図10から図12は、本発明の第実施形態におけるセグメント1の連結部構造を示した図である。第実施形態の連結部構造は、主桁2の高さ方向に配列された各段のボルト長さBLの比が、主桁2における圧縮力作用端から各段ボルトまでの距離Lの比になるように設定されたものである。図10の例では、中央の段に配置されたボルト長さBL1が下段に配置されたボルト長さBL2よりも短く設定されている。
【0030】
図12はセグメント継手に曲げモーメントが作用し、継手部が目開きを起こした状態を示している。セグメント継手は、主桁上縁が当接して圧縮力を伝達し、継手ボルトで引張力を伝達する。鋼製セグメントの継手部は目開きに対して剛体変形を起こすため、主桁2の圧縮力作用端から他端に向けての距離に比例して目開き量Wを発生することになる。また、継手ボルトの発生応力はボルト8の発生ひずみに比例し、発生ひずみは目開き量Wをボルト長さBLで除して定義される。ボルト8の最適設計の観点からは、ボルト8に可能な限り等しく応力負担をさせることが望ましい。
【0031】
そのため第実施形態では、主桁2の圧縮力作用端から各段ボルトまでの距離Lの比と各段のボルト長さBLの比とを等しくすること(すなわち、L1:L2=BL1:BL2)で、セグメント連結部構造のより合理的な設計を実現した。
【0032】
【発明の効果】
本発明のセグメントの連結構造では、トンネル周方向の応力は、一方のセグメントの主桁に隅肉溶接された継手金物から、連結ボルトを介して相対する継手金物および主桁に伝達される。したがって、本発明の連結構造では継手金物と主桁との接合部で応力を伝達するため、主桁と継手板との接合部の溶接仕様を簡易化できる。特に、大深度等の条件下では主桁の板厚や高さも大きくなるため、本発明の連結部構造が特に有利である。
【0033】
また本発明のセグメントの連結部構造では、継手金物と主桁との接合部で応力を伝達し、継手板を応力伝達させるための構造材とはしないので、継手板の板厚も大幅に薄肉化できる。
【0034】
さらに本発明のセグメントの連結部構造において、継手金物に仮設用ボルト孔および本設用ボルト孔の2つのボルト孔を設けた場合には、例えば、並列な2本のセグメントトンネル間を切り広げて1つのトンネルを構築する場合などにおいて、本設用ボルトに仮設時の応力履歴の影響が及ばないので、ボルト径を小径にできる点で有利となる。
【0035】
くわえて本発明のセグメント継手構造によって、継手板の板厚の大幅薄肉化、溶接仕様の簡易化が図れ、併設するトンネルセグメント間に鉄筋コンクリート躯体路を構築し、トンネルセグメントと接続する道路トンネル分岐合流部構造などにおいて、曲げが卓越する場合に必要となる高耐力セグメント継手の対応が容易となる。
【図面の簡単な説明】
【図1】本発明の第1参考形態におけるセグメントの斜視図である。
【図2】第1参考形態におけるセグメントの連結構造部分の斜視図である。
【図3】(a)は第1参考形態におけるセグメント連結時の部分平面図であり、(b)は(a)図のA−A断面図である。
【図4】(a)は第2参考形態におけるセグメントの連結構造部分の斜視図である。(b)は第2参考形態におけるセグメント連結時の部分平面図であり、(c)は(b)図のB−B断面図である。
【図5】継手金物と主桁を2箇所で溶接するセグメントの連結部の断面図である。
【図6】第実施形態におけるセグメントの連結部の断面図である。
【図7】第実施形態におけるセグメントの連結部の平面図である。
【図8】第実施形態におけるセグメントの連結部の側面図である。
【図9】第実施形態における継手金物の拡大図である。
【図10】第実施形態における連結部の側面図である。
【図11】第実施形態におけるセグメントの連結部の平面図である。
【図12】第実施形態における連結部の側面図であり、継手が目開いた状態を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a segment used when constructing pipes for water and sewage systems, subways, common grooves for electric power / communication cables, water discharge tunnels, road tunnels, etc., in particular, welding specifications between the main girder of the segment and the joint plate It relates to a segment connecting part structure that can be simplified.
[0002]
[Prior art]
The demand for the development of urban facilities in Japan has increased rapidly in recent years, and these facilities have already become saturated under shallow ground, especially under major roads in large cities. Therefore, the space for future urban facility development has to be found deep underground, and so-called deep underground space utilization concepts are being researched and developed in various fields. In the underground work for the use of this deep underground space, it is considered that the shield method will be the main subject from now on, since it is less in the way of safety and ground traffic.
[0003]
Conventionally, steel segments are generally used for shield construction methods, and steel segments have a long history of use in shield tunnels, such as water and sewage, common grooves for power and communication cables, and other special parts of railway and road tunnels. is there. However, steel segments have a large load acting on the segment even in the range of medium and small diameter segments, which have been considered advantageous until now, in places with poor ground, places where special loads are applied, and large depths (about 20 m or more). In some cases, examples have emerged where steel segments are not used. This is because, for example, in the deep shield tunnel, the cross-sectional force (bending moment, axial force and shear force) generated in the segment is larger than that in the shallow shield tunnel, so the jack for propelling the shield also becomes large. . For this reason, the steel segment was advantageous because the segment cross section was determined by the bending moment in the shallow shield tunnel, but the segment cross section was determined by the axial force in the deep shield tunnel. End up.
[0004]
On the other hand, it is conceivable to use a concrete-filled steel shell segment as disclosed in Patent Document 1 for the shield method. The concrete-filled steel shell segment uses steel shells whose basic structure is an existing steel segment consisting of a main girder, a joint plate, and a skin plate. It is a segment of a simple composite structure with the following characteristics. This concrete filled steel shell segment is filled with concrete in a closed state in the steel shell consisting of the main girder and the joint plate joined to the edge of the skin plate, so it has a simple composite structure that suppresses deformation of the concrete. High rigidity and strength can be ensured.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-252994
[Problems to be solved by the invention]
A tunnel circumferential joint portion of a concrete filled steel shell segment or a steel segment represented by the prior art employs a connection structure in which a bolt and a nut are fastened to a joint plate for connection. Therefore, in order to transmit the stress in the circumferential direction of the tunnel to the main beam, it is necessary to reliably weld the joint plate and the main beam. In this regard, also in the “Road Bridge Specification”, it is said that the welding specification of the portion where the tensile force acts, such as the joint between the joint plate and the main girder, is based on complete penetration welding. However, since the plate thickness and height of the main girder increase under conditions such as a large depth, there is room for improvement in the conventional connection structure in that the welding cost between the joint plate and the main girder increases significantly.
[0007]
The present invention has been made to solve the above-described problems in the prior art, and an object of the present invention is to provide a segment connecting portion structure capable of simplifying the welding specifications between the main beam and the joint plate.
[0008]
[Means for Solving the Problems]
The segment connecting portion structure of the present invention is a connecting portion structure of a segment constituted by a main girder, a joint plate, and a skin plate, and at least the main girder height direction is provided on the inner surface of the longitudinal end portion of the main girder. A joint metal provided with a plurality of bolt holes is welded to the fillet, and a fixing portion for fillet welding of the joint metal is formed in a shape protruding in the circumferential direction of the segment, and the fixing The section is divided into an upper end side and a lower end side in the main girder height direction, and the segments adjacent in the tunnel circumferential direction are connected by a connecting bolt formed by inserting the joint hardware and the joint plate. It is characterized by. In the connecting portion structure of the present invention, the temporary bolt hole and the permanent bolt hole may be provided in parallel on the joint hardware.
In addition, the segment connecting portion structure of the present invention is a segment connecting portion structure in which fillet welded to a main girder is a joint hardware in which a plurality of bolt holes are arranged in parallel along the main girder width direction in addition to the main girder height direction. And the length of the segment circumferential direction may be set shorter as the bolt insertion portion of the joint hardware moves away from the main beam .
Also, the segment connecting part structure of the present invention, the forces generated between adjacent segments to the tunnel circumferentially directly transmitted to the main beam, the plate thickness of the joint plates may be smaller than the thickness of the main girder.
Moreover, the segment connection part structure of this invention may be formed in the truncated cone shape where the bolt hole diameter provided in a joint metal fitting becomes large toward the side which faces a joint board.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 to FIG. 3 are views showing the connecting portion structure of the segment 1 in the first reference embodiment of the present invention. As shown in FIG. 1, the segment 1 of the first reference form is configured by filling concrete 6 in a steel shell 5 composed of a main girder 2, a joint plate 3 and a skin plate 4. A simple composite structure is provided in which deformation of the concrete 6 is suppressed by covering the outer peripheral surface of the box in a box shape.
[0010]
In the first reference embodiment, two joint plates 3 extending in the tunnel axis direction are joined to the ends of two arc-shaped main beams 2 extending in the tunnel circumferential direction, and the main beam 2 and the joint plate 3 are joined. A steel shell 5 is formed by fixing a skin plate 4 to the tunnel ground side (segment outer peripheral side). The main girder 2 and the joint plate 3 are provided with insertion holes 2a and 3a through which the connecting bolts 8 are inserted. A plurality of vertical ribs 4 a extending in the tunnel axis direction are erected on the inner peripheral surface of the skin plate 4 of the steel shell 5.
[0011]
Further, at the longitudinal end portion (tunnel circumferential direction end portion) of the main girder 2, two joint fittings 7 each having bolt holes 7 a are welded 7 b to the fillet. The joint metal 7 is fixed to the main girder 2 so that the bolt hole 7a of the joint metal 7 and the insertion hole 3a of the joint plate 3 are located on the same axis. The size of the joint hardware 7 is determined in consideration of the diameter and bolt length of the connecting bolt 8 used at the time of segment connection, the weld length of the fillet weld 7b, and the like.
[0012]
Furthermore, while the inside of the steel shell 5 is filled with the concrete 6, a gap 6a not filled with the concrete 6 is provided in the vicinity of the insertion hole 2a of the main girder 2 and the joint hardware 7, and the bolt 8 Space is secured for the joining work.
[0013]
In the first reference embodiment, as shown in FIGS. 2 and 3, a connecting bolt formed by inserting the joint metal 7 and joint plate 3 of one segment 1 and the joint metal 7 and joint plate 3 of the opposite segment 1. A nut 8a is fastened to 8 to connect the segments in the circumferential direction. That is , in the first reference embodiment of the present invention , the nut 8a is screwed to the connecting bolt 8 with the joint metal 7 of the opposing segment 1 being sandwiched from the outside. And in the connection part structure of the 1st reference form of this invention, the stress of a tunnel circumferential direction is via the joint metal fixture 7 and the connection bolt 8 which were welded to this main girder 2 from the main girder 2 of one segment 1. FIG. Thus, it is transmitted to the joint hardware 7 of the opposing segment 1.
[0014]
Here, in the conventional connecting structure of segments, the connecting bolts are inserted into the bolt holes opened in the joint plate to connect the segments. That is, the stress in the tunnel circumferential direction in the conventional segment connection structure is transmitted from the main girder of one segment to the opposing segment via the joint plate welded to the main girder and the connection bolt. Therefore, when a tensile force is applied in the circumferential direction of the segment, a tensile force acts on the joint between the main girder and the joint plate, so the welding specifications for the main girder and the joint plate are completely in accordance with the standard of the “Road Bridge Specification”. It had to be done by penetration welding.
[0015]
On the other hand, in the segment connection structure of the first reference embodiment of the present invention, the stress in the tunnel circumferential direction is relatively transferred from the joint metal 7 welded to the main girder 2 of one segment 1 via the connection bolt 8. Is transmitted to the joint hardware 7 and the main girder 2. Therefore, in the connection structure of the present invention, since the stress is transmitted at the joint between the joint metal 7 and the main girder 2, the welding specifications of the joint between the main girder 2 and the joint plate 3 can be simplified. In addition, when a tensile force is applied in the circumferential direction of the segment, a shearing force acts on the joint between the joint metal 7 and the main girder 2, but according to the “Road Bridge Specification”, the welding specifications of the location where the shearing force acts Since fillet welding may be used, the welding cost of the connecting portion is greatly reduced.
[0016]
Moreover, in the connection part structure of the 1st reference form of this invention, since stress is transmitted in the junction part of the joint metal object 7 and the main girder 2, it is not used as the structural material for making the joint board 3 transmit stress, so the joint board 3 The plate thickness can be significantly reduced.
[0017]
FIG. 4 is a view showing the connecting portion structure of the segment 1 in the second reference embodiment of the present invention. In the connection part structure of the segment 1 of the second reference form, two bolt holes, a temporary bolt hole 9a and a permanent bolt hole 9b, are arranged in parallel on the joint metal 9 which is fillet welded 9c to the main beam 2. Only the point which is opened is different from the first reference embodiment. In the second reference embodiment, the same components as those in the first reference embodiment are denoted by the same reference numerals and description thereof is omitted.
[0018]
The overall shape of the joint fitting 9 of the second reference form is formed in a stepped shape having an L-shaped cross section such that a rectangular parallelepiped is partially cut away. Two bolt holes of a permanent bolt hole 9b and a temporary bolt hole 9a are opened in parallel in the joint metal piece 9. The permanent bolt hole 9b passes through the base bottom surface and the upper step surface of the joint hardware 9, and the temporary bolt hole 9a passes through the base bottom surface and the lower step surface of the joint hardware 9.
[0019]
And the joint metal fitting 9 of the second reference form is such that the base surface where the temporary bolt hole 9a and the permanent bolt hole 9b are opened faces the joint plate 3, and the temporary bolt hole 9a is the permanent bolt hole. Fillet welding 9c is performed on the main girder 2 in a state of being located inside the segment from 9b. In the second reference form, similarly to the first reference form, a connecting bolt 8 formed by inserting the joint metal 9 and joint plate 3 of one segment 1 and the joint metal 9 and joint plate 3 of the opposite segment 1 is inserted. Or the nut 8a is fastened to the temporary volt | bolt 8b, and the connection of the segment circumferential direction is performed.
[0020]
In the segment connection structure of the second reference form, the joint metal fitting 9 is provided with two bolt holes, the temporary bolt hole 9a and the permanent bolt hole 9b, for the following reason. For example, when one tunnel is constructed by expanding two parallel segment tunnels, various stress histories remain on the bolt from the temporary state to the permanent state. Accordingly, when only the main bolt is used in the above case, it is necessary to increase the bolt diameter of the main bolt in consideration of the stress history. On the other hand, when the permanent bolt and the temporary bolt are used in combination, the permanent bolt to be fastened at the time of permanent installation is not affected by the stress history at the time of temporary installation, which is advantageous in that the bolt diameter can be reduced. It becomes.
[0021]
FIGS. 6 to 9 are views showing the connecting portion structure of the segment 1 in the first embodiment of the present invention. The connecting portion structure of the segment 1 of the first embodiment is a high strength joint structure using a joint hardware 11 in which a plurality of bolt holes are arranged at least along the height direction of the main beam 2. In the first embodiment, all the bolt holes arranged in parallel are bolt holes for permanent installation.
[0022]
When the transmission force at the joint portion of the segment is large, a large transmission strength is required at the welded portion between the main girder 2 and the joint hardware. In this case, measures such as increasing the number of bolts and increasing the diameter of each bolt are necessary to ensure sufficient transmission strength. However, when the number of bolts is increased and the bolts are arranged closely, unlike the case where one fitting hardware is installed for one bolt (see FIG. 3), the periphery of the fitting hardware is welded to the main girder 2. It is difficult to secure a sufficient space for this purpose.
[0023]
Further, when a joint metal fitting having a large size including a plurality of bolt holes in parallel with the main beam 2 (for example, a block-type joint hardware 10 having 2 × 3 bolt holes as shown in FIG. 5) is used. The main girder 2 must be welded only on the side surface of the joint hardware 10 in the main girder extending direction (segment circumferential direction). Therefore, in the case of the joint fitting 10 as in the above example, the fillet weld leg length and the weld extension are increased, which causes an increase in processing cost and material cost. For this reason, in order to realize a high strength joint structure that is advantageous in terms of cost, it is necessary to devise a method for increasing the welding extension within a narrow range.
[0024]
Therefore, in the first embodiment, a joint metal 11 in which a plurality of bolt holes are densely arranged along at least the height direction of the main girder 2 is used, and the joint metal 11 is welded to the main girder 2. The fixing unit 11 b is provided and the fixing unit 11 is divided in the height direction of the main beam 2. That is, the overall shape of the joint hardware 11 of the third embodiment is such that the fillet welding fixing portion 11b adjacent to the main girder 2 protrudes the longest in the circumferential direction of the segment, and the fixing portion 11b is the height of the main girder 2. It is divided and arranged unevenly on the upper end side and the lower end side in the vertical direction.
[0025]
As a result, even when the bolts are densely arranged on the joint hardware 11, the main girder 2 is welded around each fixing portion 11 b, so that the weld extension can be increased while the fillet weld leg length is reduced. It is possible. Moreover, since the fixing part 11b is divided and arranged vertically, the transmission bending strength between the main girder and the joint hardware can be increased. Furthermore, by ensuring a space in the center part of the main beam, interference between the bolts 12 that join the segment rings and the joint hardware 11 can be avoided.
[0026]
In addition, the fixing part for welding with the main girder can be installed at three or more odd places or even places in the height direction of the main girder in order to further increase the welding extension. For example, in the case of an odd number, one fixing unit may be provided near the center of the main girder in the height direction, and the remaining fixing units may be distributed and arranged on the upper end side and the lower end side in the main girder height direction [illustrated] Is omitted].
[0027]
In order to reduce the weight of the joint hardware 11 and the material cost, it is preferable that the bolt insertion portion of the joint hardware 11 is set so that the length in the segment circumferential direction becomes shorter as the distance from the main girder 2 increases. For example, as shown in FIGS. 7 to 9, the bolt insertion portions on the upper end side and the lower end side in the main girder height direction are formed in a stepped shape having an L-shaped cross section such that a rectangular parallelepiped is partially cut out, The length of the bolt insertion portion 11d away from the main girder 2 may be set shorter than the bolt insertion portion 11e close to the main girder (that is, 11d <11e).
[0028]
In addition, the shape of the bolt hole 11c provided in the joint metal 11 is a bolt toward the side facing the joint plate 3 in order to facilitate the insertion of the long bolt 8 into the bolt hole 11c of the joint metal 11 at the site. You may form in the trumpet shape (a frustoconical shape) which enlarges a hole diameter (refer FIG. 9).
[0029]
FIG. 10 to FIG. 12 are views showing the connecting portion structure of the segment 1 in the second embodiment of the present invention. In the connecting portion structure of the second embodiment, the ratio of the bolt length BL of each stage arranged in the height direction of the main girder 2 is the ratio of the distance L from the compression force acting end to each stage bolt in the main girder 2. Is set to be In the example of FIG. 10, the bolt length BL1 arranged at the center stage is set shorter than the bolt length BL2 arranged at the lower stage.
[0030]
FIG. 12 shows a state in which a bending moment is applied to the segment joint and the joint portion is opened. In the segment joint, the upper edge of the main beam abuts to transmit the compressive force, and the joint bolt transmits the tensile force. Since the joint portion of the steel segment causes rigid deformation with respect to the opening, the opening amount W is generated in proportion to the distance from the compressive force acting end of the main girder 2 to the other end. The generated stress of the joint bolt is proportional to the generated strain of the bolt 8, and the generated strain is defined by dividing the opening amount W by the bolt length BL. From the viewpoint of the optimum design of the bolt 8, it is desirable that the bolt 8 is equally stressed as possible.
[0031]
Therefore, in the second embodiment, the ratio of the distance L from the compression force acting end of the main beam 2 to each step bolt and the ratio of the bolt length BL of each step are made equal (that is, L1: L2 = BL1: BL2). ) Realized a more rational design of the segment connection structure.
[0032]
【The invention's effect】
In the segment connection structure of the present invention, the stress in the circumferential direction of the tunnel is transmitted from the joint metal welded to the main girder of one segment to the opposite joint metal and main girder via the connection bolt. Therefore, in the connection structure of the present invention, stress is transmitted at the joint between the joint metal and the main girder, so that the welding specification of the joint between the main girder and the joint plate can be simplified. In particular, since the plate thickness and height of the main girder increase under conditions such as a large depth, the connecting portion structure of the present invention is particularly advantageous.
[0033]
Further, in the segment connecting portion structure of the present invention, since the stress is transmitted at the joint between the joint hardware and the main girder and the joint plate is not a structural material for transmitting the stress, the thickness of the joint plate is significantly reduced. Can be
[0034]
Furthermore, in the segment connecting portion structure of the present invention, when two bolt holes, a temporary bolt hole and a permanent bolt hole, are provided in the joint hardware, for example, the two parallel segment tunnels are widened. In the case of constructing one tunnel or the like, the permanent bolt is not affected by the stress history at the time of temporary installation, which is advantageous in that the bolt diameter can be reduced.
[0035]
In addition, with the segment joint structure of the present invention, the thickness of the joint plate can be greatly reduced, welding specifications can be simplified, reinforced concrete frame roads can be constructed between adjacent tunnel segments, and road tunnel branch junctions can be connected to the tunnel segments. In part structures, etc., it becomes easy to handle high-strength segment joints that are required when bending is outstanding.
[Brief description of the drawings]
FIG. 1 is a perspective view of a segment according to a first reference embodiment of the present invention.
FIG. 2 is a perspective view of a connecting structure portion of segments in the first reference embodiment.
FIG. 3A is a partial plan view when segments are connected in the first reference embodiment, and FIG. 3B is a cross-sectional view taken along line AA in FIG.
FIG. 4A is a perspective view of a connecting structure portion of segments in a second reference embodiment. (B) is a partial top view at the time of the segment connection in 2nd reference form, (c) is BB sectional drawing of (b) figure.
FIG. 5 is a cross-sectional view of a connecting portion of a segment that welds a joint hardware and a main girder at two locations.
FIG. 6 is a cross-sectional view of a segment connecting portion in the first embodiment.
FIG. 7 is a plan view of a connecting portion of segments in the first embodiment.
FIG. 8 is a side view of a connecting portion of segments in the first embodiment.
FIG. 9 is an enlarged view of a fitting hardware in the first embodiment.
FIG. 10 is a side view of a connecting portion in the second embodiment.
FIG. 11 is a plan view of a connecting portion of segments in the second embodiment.
FIG. 12 is a side view of the connecting portion in the second embodiment, showing a state where the joint is open.

Claims (5)

主桁、継手板およびスキンプレートで構成されたセグメントの連結部構造であって、
前記主桁の長手方向端部の内側面には、少なくとも主桁高さ方向に沿って複数本のボルト孔が設けられた継手金物が隅肉溶接されており、前記継手金物の隅肉溶接用の定着部はセグメント周方向に対して突出する形状に形成され、かつ前記定着部が主桁高さ方向の上端側および下端側に分割されており、トンネル周方向に隣接する前記セグメントの連結が、前記継手金物と前記継手板とを挿通してなる連結ボルトによって行なわれることを特徴とするコンクリート中詰鋼殻セグメントまたは鋼製セグメントのセグメント連結部構造。
A connecting structure of a segment composed of a main girder, a joint plate and a skin plate,
A joint metal provided with a plurality of bolt holes along at least the main girder height direction is fillet welded to the inner side surface of the longitudinal end portion of the main girder. The fixing portion is formed in a shape protruding in the circumferential direction of the segment, and the fixing portion is divided into an upper end side and a lower end side in the main girder height direction, and the segments adjacent to each other in the tunnel circumferential direction are connected. A segment connecting portion structure for a concrete-filled steel shell segment or a steel segment, characterized in that it is performed by a connecting bolt formed by inserting the joint hardware and the joint plate.
仮設用ボルト孔および本設用ボルト孔が並列して設けられた継手金物を主桁に隅肉溶接したことを特徴とする請求項1に記載のセグメント連結部構造。  2. The segment connecting portion structure according to claim 1, wherein a joint metal fitting in which the temporary bolt hole and the permanent bolt hole are provided in parallel is fillet welded to the main girder. 主桁高さ方向に加えて主桁幅方向に沿って複数本のボルト孔が並列配置された継手金物を主桁に隅肉溶接するセグメント連結部構造であって、前記継手金物のボルト挿通部が、主桁から離れるに伴ってセグメント周方向の長さを短く設定されていることを特徴とする請求項1又は2に記載のセグメント連結部構造。A segment connecting part structure that welds a joint metal in which a plurality of bolt holes are arranged in parallel along the main girder width direction in addition to the main girder height direction to the main girder, and the bolt insertion part of the joint metal The segment connecting portion structure according to claim 1, wherein the length in the circumferential direction of the segment is set shorter as the distance from the main girder increases. 請求項1から請求項のいずれか1項に記載のセグメントの連結部構造であって、トンネル周方向に隣接するセグメント間に生じる力を主桁に直接伝達し、継手板の板厚を主桁の板厚より小さくすることを特徴とするセグメント連結部構造。The segment connecting portion structure according to any one of claims 1 to 3 , wherein a force generated between adjacent segments in the circumferential direction of the tunnel is directly transmitted to the main beam, and the thickness of the joint plate is mainly set. Segment connecting portion structure characterized by being smaller than the thickness of the girders. 継手金物に設けられるボルト孔の形状が、継手板に面する側に向かってボルト孔径が大きくなる截頭円錐形状に形成されたことを特徴とする請求項1から請求項のいずれか1項に記載のセグメント連結部構造。The shape of the bolt holes provided in the joint hardware is any one of claims 1 to 4, bolt holes diameter towards the side facing the joint plate is characterized in that it is formed in a truncated conical shape increases The segment connecting part structure described in 1.
JP2002376804A 2002-07-01 2002-12-26 Segment connection structure Expired - Fee Related JP3965113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376804A JP3965113B2 (en) 2002-07-01 2002-12-26 Segment connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002192070 2002-07-01
JP2002376804A JP3965113B2 (en) 2002-07-01 2002-12-26 Segment connection structure

Publications (2)

Publication Number Publication Date
JP2004084456A JP2004084456A (en) 2004-03-18
JP3965113B2 true JP3965113B2 (en) 2007-08-29

Family

ID=32071874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376804A Expired - Fee Related JP3965113B2 (en) 2002-07-01 2002-12-26 Segment connection structure

Country Status (1)

Country Link
JP (1) JP3965113B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537882B2 (en) * 2015-05-14 2019-07-03 大成建設株式会社 Joint structure of segment
JP6570503B2 (en) * 2016-11-17 2019-09-04 大成建設株式会社 Segment joint structure

Also Published As

Publication number Publication date
JP2004084456A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
WO2022213492A1 (en) Frp steel concrete column and steel beam combined joint, and installation method therefor
JP5306922B2 (en) Reinforced concrete column and steel beam jointing device and reinforced concrete column and steel beam joint structure
KR101178381B1 (en) Steel-concrete hybrid column using square shaped steel pipe and manufacturing method thereof
CN110258791B (en) Hinged nondestructive energy consumption prefabricated frame beam column node and construction method thereof
KR20120074130A (en) Compisite column structure for steel and concrete
KR20110018581A (en) Structure for connecting and jointing square still supporting beam in temporary soil sheathing and reinforcing members for the same
KR20100023089A (en) H-beam connecting structure
CN210316185U (en) Prefabricated shear wall, connected node
CN113062476B (en) Heavy-load large-span combined beam-column structure and construction method
CN105821903A (en) Synthesized pipe rack with frame composite structure
JP3965113B2 (en) Segment connection structure
CN110284589B (en) Hub type precast concrete beam column assembly type self-resetting system and construction method
KR101982596B1 (en) Seismic rehabilitation of structural concrete columns for building structures
CN111021553A (en) Precast concrete post and girder steel connected node of baffle in area
GB2131849A (en) Structural framework
JP2009215748A (en) Composite structure beam, and building structure having composite structure beam
JP4449788B2 (en) Hinge joint structure of RC structural member
CN211369156U (en) Assembled steel concrete shear force wall
CN110016967B (en) Prefabricated part composite beam-prefabricated superposed composite column connecting plate assembly type node
CN110206140A (en) The overlapped joints of rectangular steel-tube concrete column and beams of concrete
CN211774623U (en) Precast concrete post and girder steel connected node of baffle in area
KR20150004136A (en) A web member for improving the connection structure of the node connecting of composite truss girder
CN215802268U (en) Novel frame construction that carapace roof beam and steel core concrete column constitute
KR100739926B1 (en) Joint structure of column and beam
JP6836853B2 (en) Brace joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070525

R151 Written notification of patent or utility model registration

Ref document number: 3965113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees