JP3964381B2 - Vapor grown carbon fiber, production method and use thereof - Google Patents

Vapor grown carbon fiber, production method and use thereof Download PDF

Info

Publication number
JP3964381B2
JP3964381B2 JP2003379663A JP2003379663A JP3964381B2 JP 3964381 B2 JP3964381 B2 JP 3964381B2 JP 2003379663 A JP2003379663 A JP 2003379663A JP 2003379663 A JP2003379663 A JP 2003379663A JP 3964381 B2 JP3964381 B2 JP 3964381B2
Authority
JP
Japan
Prior art keywords
carbon fiber
raw material
vapor grown
grown carbon
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003379663A
Other languages
Japanese (ja)
Other versions
JP2004176244A (en
Inventor
幸太郎 矢野
正治 土岐
斉 井上
智明 吉田
英二 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003379663A priority Critical patent/JP3964381B2/en
Publication of JP2004176244A publication Critical patent/JP2004176244A/en
Application granted granted Critical
Publication of JP3964381B2 publication Critical patent/JP3964381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は気相法による炭素繊維の製造方法に関する。さらに詳しく言えば、気相法により有機化合物を熱分解して分岐の多い炭素繊維を製造する方法、その方法により製造された炭素繊維、及びその炭素繊維を含有する複合材料に関する。   The present invention relates to a method for producing carbon fiber by a vapor phase method. More specifically, the present invention relates to a method for producing a carbon fiber having many branches by thermally decomposing an organic compound by a vapor phase method, a carbon fiber produced by the method, and a composite material containing the carbon fiber.

炭素繊維を樹脂等のマトリックス中に分散させることにより、導電性、熱伝導性を付与することが広く一般的に行われている。気相法炭素繊維(Vapor Grown Carbon Fiber:VGCFと略記することがある。)を樹脂中に添加することは、添加量が少なくても導電性、熱伝導性が大きく向上するので樹脂組成物の加工性、成形品の表面外観を損ねることがなく大変有用である(特許文献1:特許第2862578号公報)。分岐の多い炭素繊維を用いることにより導電性が向上することが知られており(特許文献2:国際公開第02/049412号)、分岐の多い炭素繊維を作製することが望まれている。   It is widely performed to impart conductivity and thermal conductivity by dispersing carbon fibers in a matrix such as a resin. Addition of vapor grown carbon fiber (VAPor Grown Carbon Fiber: VGCF) to the resin greatly improves the conductivity and thermal conductivity even if the addition amount is small. It is very useful without impairing the workability and the surface appearance of the molded product (Patent Document 1: Japanese Patent No. 2862578). It is known that electrical conductivity is improved by using carbon fibers having many branches (Patent Document 2: International Publication No. WO 02/049412), and it is desired to produce carbon fibers having many branches.

気相法による炭素繊維製造法の一つに気化法がある(特許文献3:特公平4−13448号公報)。気化法は有機遷移金属化合物の溶解した有機物の溶液を気化させて加熱帯域中で高温反応させるものである。この方法では分岐の少ない炭素繊維が生成する。一方、原料液滴を反応管壁面に吹き付ける方法により分岐状の炭素繊維を得る方法がある(特許文献4:特許第2778434号)。この方法では、原料液滴が反応管壁面に供給され、反応管壁面で繊維の成長が起こり、反応管を覆った後は、液滴が炭素繊維上に吹き付けられ、繊維上に触媒が生成し、繊維を基板として新たな繊維が成長し、分岐が起き、分岐状炭素繊維が高収率で得られる。   One of the carbon fiber production methods by the vapor phase method is a vaporization method (Patent Document 3: Japanese Patent Publication No. 4-13448). In the vaporization method, an organic solution in which an organic transition metal compound is dissolved is vaporized and reacted at a high temperature in a heating zone. This method produces carbon fibers with few branches. On the other hand, there is a method of obtaining branched carbon fibers by a method of spraying raw material droplets on the reaction tube wall surface (Patent Document 4: Patent No. 2778434). In this method, raw material droplets are supplied to the reaction tube wall surface, fiber growth occurs on the reaction tube wall surface, and after covering the reaction tube, the droplets are sprayed onto the carbon fiber, and a catalyst is generated on the fiber. A new fiber grows using the fiber as a substrate, branching occurs, and a branched carbon fiber is obtained in a high yield.

特許第2862578号公報Japanese Patent No. 2862578 国際公開第02/049412号パンフレットInternational Publication No. 02/049412 Pamphlet 特公平4−13448号公報Japanese Examined Patent Publication No. 4-13448 特許第2778434号公報Japanese Patent No. 2778434

本発明らは、繊維の成長に有効に利用される触媒の粒子の数を多くし、従来の気相法による炭素繊維に比較してより分岐の多い炭素繊維を提供することを目的とする。   It is an object of the present invention to increase the number of catalyst particles that are effectively used for fiber growth, and to provide a carbon fiber having more branches as compared with a carbon fiber obtained by a conventional gas phase method.

本発明者は気相法による炭素繊維製造装置(反応管)の反応域への原料液の供給方法等について鋭意検討した結果、高温に保持された反応域に効率的に原料を供給することにより分岐が多く、嵩密度の低い炭素繊維が得られることを見出し本発明を完成した。
すなわち、本発明は以下の気相法炭素繊維、その炭素繊維の製造方法およびその炭素繊維を用いた複合材料からなる。
As a result of earnestly examining the method of supplying the raw material liquid to the reaction zone of the carbon fiber production apparatus (reaction tube) by the vapor phase method, the present inventor has efficiently supplied the raw material to the reaction zone maintained at a high temperature. The present invention was completed by finding that carbon fibers having many branches and low bulk density can be obtained.
That is, the present invention comprises the following vapor grown carbon fiber, a method for producing the carbon fiber, and a composite material using the carbon fiber.

1.分岐度が0.15個/μm以上の気相法炭素繊維。
2.分岐度0.15個/μm以上の炭素繊維を10質量%以上含むことを特徴とする気相法炭素繊維。
3.嵩密度が0.025g/cm3以下である気相法炭素繊維。
4.嵩密度が0.025g/cm3以下である前記1または2に記載の気相法炭素繊維。
5.嵩密度0.8g/cm3に圧縮したときの比抵抗が0.025Ωcm以下である前記1乃至3のいずれかに記載の気相法炭素繊維。
6.繊維径が1〜500nmである前記1乃至3のいずれかに記載の気相法炭素繊維。
7.炭素源と遷移金属化合物を含む原料液を3〜30度の噴霧角度で噴霧して反応域に供給し熱分解反応させて得られる前記1乃至3のいずれかに記載の気相法炭素繊維。
8.原料液噴霧口以外の少なくとも1カ所からキャリヤガスを反応域に供給し、炭素源と遷移金属化合物を含む原料液を噴霧して反応域に供給し熱分解反応させて得られる前記1乃至6のいずれかに記載の気相法炭素繊維。
9.炭素源と遷移金属化合物を含む原料液を反応域に噴霧し熱分解反応させて炭素繊維を製造する方法において、3〜30度の噴霧角度で原料溶液を噴霧することを特徴とする気相法炭素繊維の製造方法。
10.原料噴霧液の平均液滴径が5μm以上である前記9記載の気相法炭素繊維の製造方法。
11.多重管ノズルより原料液とキャリヤガスを反応管内に供給する前記9または10に記載の気相法炭素繊維の製造方法。
12.多重管の内一つの管から原料液を供給し、他の管からキャリヤガスのみを供給する前記11に記載の気相法炭素繊維の製造方法。
13.2重管の内管より原料液とキャリヤガスを供給し、外管よりキャリヤガスを供給する前記12記載の気相法炭素繊維の製造方法。
14.3重管で最内管と外管よりキャリヤガスを供給し、中間の管より原料液のみを供給する前記12記載の気相法炭素繊維の製造方法。
15.炭素源と遷移金属化合物を含む原料液を反応域に噴霧し、熱分解反応させて炭素繊維を製造する方法において、原料液噴霧口以外の少なくとも1カ所からキャリヤガスを供給することを特徴とする気相法炭素繊維の製造方法。
16.3〜30度の噴霧角度で原料溶液を噴霧する前記15に記載の気相法炭素繊維の製造方法。
17.炭素源と遷移金属化合物を含む原料液が、さらに界面活性剤及び/または増粘剤を含む原料液である前記9または15に記載の気相法炭素繊維の製造方法。
18.回収した炭素繊維を、さらに非酸化性雰囲気下で、800℃〜1500℃に加熱焼成し、次いで非酸化性雰囲気下で2000〜3000℃に加熱して黒鉛化処理する前記9または15に記載の気相法炭素繊維の製造方法。
19.回収した炭素繊維へ結晶化促進化合物としてホウ素、酸化ホウ素、炭化ホウ素、ホウ酸エステル、ホウ酸またはその塩、及び有機ホウ素化合物からなる群から選択される少なくとも一種であるホウ素化合物を、ホウ素換算で0.1〜5質量%ドープした後、加熱して黒鉛化処理する前記18に記載の気相法炭素繊維の製造方法。
20.前記1乃至8のいずれかに記載の気相法炭素繊維を含有する複合材料。
21.前記9乃至19のいずれかに記載の方法で製造した気相法炭素繊維を含有する複合材料。
22.前記1乃至8のいずれかに記載の気相法炭素繊維を含有する樹脂組成物。
23.前記9乃至19のいずれかに記載の方法で製造した気相法炭素繊維を含有する樹脂組成物。
1. Vapor grown carbon fiber with a degree of branching of 0.15 / μm or more.
2. A vapor grown carbon fiber characterized by containing 10% by mass or more of carbon fiber having a branching degree of 0.15 / μm or more.
3. Vapor grown carbon fiber having a bulk density of 0.025 g / cm 3 or less.
4). 3. The vapor grown carbon fiber according to 1 or 2 above, wherein the bulk density is 0.025 g / cm 3 or less.
5). 4. The vapor grown carbon fiber according to any one of 1 to 3 above, wherein a specific resistance when compressed to a bulk density of 0.8 g / cm 3 is 0.025 Ωcm or less.
6). 4. The vapor grown carbon fiber according to any one of 1 to 3, wherein the fiber diameter is 1 to 500 nm.
7). 4. The vapor grown carbon fiber according to any one of 1 to 3, obtained by spraying a raw material liquid containing a carbon source and a transition metal compound at a spray angle of 3 to 30 degrees, supplying the raw material liquid to a reaction zone, and causing a thermal decomposition reaction.
8). 1 to 6 obtained by supplying a carrier gas from at least one place other than the raw material liquid spraying port to the reaction zone, spraying a raw material liquid containing a carbon source and a transition metal compound, supplying the raw material liquid to the reaction zone, and causing a thermal decomposition reaction. The vapor grown carbon fiber according to any one of the above.
9. A gas phase method characterized by spraying a raw material solution at a spray angle of 3 to 30 degrees in a method for producing carbon fiber by spraying a raw material liquid containing a carbon source and a transition metal compound into a reaction zone and causing a thermal decomposition reaction. A method for producing carbon fiber.
10. 10. The method for producing vapor grown carbon fiber according to 9 above, wherein the raw material spray liquid has an average droplet diameter of 5 μm or more.
11. 11. The method for producing vapor grown carbon fiber as described in 9 or 10 above, wherein the raw material liquid and the carrier gas are supplied into the reaction tube from the multi-tube nozzle.
12 12. The method for producing vapor grown carbon fiber according to 11 above, wherein the raw material liquid is supplied from one of the multiple tubes and only the carrier gas is supplied from the other tube.
13. The method for producing vapor grown carbon fiber according to 12 above, wherein the raw material liquid and the carrier gas are supplied from the inner pipe of the double pipe and the carrier gas is supplied from the outer pipe.
14. The method for producing vapor grown carbon fiber according to 12 above, wherein the carrier gas is supplied from the innermost tube and the outer tube by a triple tube, and only the raw material liquid is supplied from the intermediate tube.
15. In a method for producing a carbon fiber by spraying a raw material liquid containing a carbon source and a transition metal compound into a reaction zone and performing a thermal decomposition reaction, a carrier gas is supplied from at least one place other than the raw material liquid spraying port. A method for producing vapor grown carbon fiber.
16. The method for producing vapor grown carbon fiber according to 15 above, wherein the raw material solution is sprayed at a spray angle of 16.3 to 30 degrees.
17. 16. The method for producing vapor grown carbon fiber according to 9 or 15, wherein the raw material liquid containing a carbon source and a transition metal compound is a raw material liquid further containing a surfactant and / or a thickener.
18. The recovered carbon fiber is further calcined at 800 ° C. to 1500 ° C. in a non-oxidizing atmosphere, and then heated to 2000 to 3000 ° C. in a non-oxidizing atmosphere to graphitize the carbon fiber. A method for producing vapor grown carbon fiber.
19. Boron compound, which is at least one selected from the group consisting of boron, boron oxide, boron carbide, boric acid ester, boric acid or salt thereof, and organic boron compound as a crystallization promoting compound to the collected carbon fiber, in terms of boron 19. The method for producing vapor grown carbon fiber as described in 18 above, wherein the carbon fiber is doped by 0.1 to 5% by mass and then heated and graphitized.
20. 9. A composite material containing the vapor grown carbon fiber according to any one of 1 to 8 above.
21. 20. A composite material containing vapor grown carbon fiber produced by the method according to any one of 9 to 19 above.
22. A resin composition containing the vapor grown carbon fiber according to any one of 1 to 8 above.
23. 20. A resin composition containing vapor grown carbon fiber produced by the method according to any one of 9 to 19.

本発明の炭素繊維の製造において用いられる主原料(必須の原料)は有機化合物と遷移金属化合物である。
炭素繊維の原料となる有機化合物としては、液体状のものであれば使用可能である。具体例としては、ベンゼン、トルエン、キシレン等の芳香族化合物類、ヘキサン、ヘプタン等の直鎖状の炭化水素類、シクロヘキサン等の環式炭化水素類、メタノール、エタノール等のアルコール類、揮発油、灯油などを使用できるが、芳香族化合物が望ましく、中でもベンゼンが最も望ましい。また、これらの炭素源は単独で、あるいは2種類以上混合して用いることができる。有機化合物は全量液滴として供給してもよいが、一部を液滴として用い、残部は液状あるいはガス状で供給することも可能である。
The main raw materials (essential raw materials) used in the production of the carbon fiber of the present invention are an organic compound and a transition metal compound.
As an organic compound used as a raw material for carbon fiber, any liquid compound can be used. Specific examples include aromatic compounds such as benzene, toluene and xylene, linear hydrocarbons such as hexane and heptane, cyclic hydrocarbons such as cyclohexane, alcohols such as methanol and ethanol, volatile oils, Kerosene and the like can be used, but aromatic compounds are desirable, and benzene is most desirable. These carbon sources can be used alone or in combination of two or more. The entire amount of the organic compound may be supplied as droplets, but a part of the organic compound may be used as droplets, and the rest may be supplied in liquid or gaseous form.

触媒となる遷移金属化合物としては、IVa、Va、VIa、VIIa、VIII族の金属を含む有機及び無機化合物が適する。中でも遷移金属元素の超微粒シードとなる遷移金属化合物であるFe、Ni、Coの化合物(例えば、フェロセン、ニッケロセンなど)が好ましい。
また原料液に助触媒として硫黄源を添加することにより生産性を向上させることが出来る。硫黄源としては、元素状の硫黄、チオフェン等の有機硫黄化合物、硫化水素等の無機硫黄化合物を用いることができるが、取り扱いの容易さから炭素源に溶解する硫黄、及びチオフェンが望ましい。これらの硫黄、硫黄化合物は単独で用いてもよいし、2種類以上を併用してもよい。
As the transition metal compound serving as a catalyst, organic and inorganic compounds containing metals of groups IVa, Va, VIa, VIIa and VIII are suitable. Among these, compounds of Fe, Ni, and Co, which are transition metal compounds that serve as ultrafine seeds of transition metal elements (for example, ferrocene and nickelocene) are preferable.
Further, productivity can be improved by adding a sulfur source as a promoter to the raw material liquid. As the sulfur source, elemental sulfur, organic sulfur compounds such as thiophene, and inorganic sulfur compounds such as hydrogen sulfide can be used, but sulfur and thiophene that are soluble in the carbon source are desirable for ease of handling. These sulfur and sulfur compounds may be used alone or in combination of two or more.

原料液は有機化合物に遷移金属化合物を溶解させて調製する。原料液の液滴を生成させる方法としては図3に示すようにスプレーノズルを用いて噴霧する方法が適する。
原料液滴は、可能な限り速やかに有機化合物の分解温度以上に設定している反応器の反応域の温度まで昇温することが望ましい。一般に遷移金属化合物の分解温度の方が有機化合物の分解温度に比べ低いので、緩慢な昇温では、炭素繊維の成長前に遷移金属化合物の分解により金属微粒子が生成し、これらの微粒子が衝突し触媒として機能しなくなるまで粒子が成長してしまうからである。スプレーノズルにより高温域に原料液滴を速やかに供給することが、炭素繊維の成長に使用できる触媒粒子を大量生成させるのに有効である。その際、スプレーノズルの形状、原料液の粘度、表面張力、密度などにより噴霧角度、液滴径を制御することが重要である。
The raw material liquid is prepared by dissolving a transition metal compound in an organic compound. As a method for generating droplets of the raw material liquid, a method of spraying using a spray nozzle as shown in FIG. 3 is suitable.
It is desirable to raise the temperature of the raw material droplets as quickly as possible to the temperature of the reaction zone of the reactor set to be equal to or higher than the decomposition temperature of the organic compound. In general, the decomposition temperature of transition metal compounds is lower than the decomposition temperature of organic compounds, so if the temperature is slow, metal particles are generated by the decomposition of transition metal compounds before the growth of carbon fibers, and these particles collide. This is because the particles grow until they do not function as a catalyst. Promptly supplying raw material droplets to a high temperature region by a spray nozzle is effective for producing a large amount of catalyst particles that can be used for carbon fiber growth. At that time, it is important to control the spray angle and the droplet diameter based on the shape of the spray nozzle, the viscosity of the raw material liquid, the surface tension, the density, and the like.

具体的には原料溶液の噴霧角度は3〜30度が好ましく、5〜25度がより好ましい。ここで噴霧角度とは図1に示すようにノズル先端部を頂点として原料液滴が広がる角度θ(頂角)を意味する。噴霧角度が30度を超えると液滴が温度の低い反応壁面に衝突し易く、高温部に飛来しない液滴の昇温速度が遅くなり、有効な触媒粒子数が減少し、炭素繊維の分岐が少なくなってしまう。3度未満では高温部を通過してしまう液滴が増え原料の反応率が低下し炭素繊維の収率が減少してしまう。   Specifically, the spray angle of the raw material solution is preferably 3 to 30 degrees, and more preferably 5 to 25 degrees. Here, the spray angle means an angle θ (vertical angle) at which the raw material droplet spreads with the nozzle tip as the apex as shown in FIG. When the spray angle exceeds 30 degrees, the droplets easily collide with the reaction wall having a low temperature, the temperature rising rate of the droplets that do not fly to the high temperature part is slowed, the number of effective catalyst particles is reduced, and the carbon fibers are branched. It will decrease. If it is less than 3 degree | times, the droplet which passes a high temperature part will increase, the reaction rate of a raw material will fall, and the yield of carbon fiber will reduce.

また、原料液滴径は5μm以上であることが望ましい。好ましくは5〜300μm、より好ましくは10〜100μmである。原料液滴径が5μm以上未満では気化する速度が早いため液滴が高温部まで飛来せず、液滴の昇温速度が遅くなり、有効な触媒粒子数が減少するため炭素繊維の分岐が少なくなり、300μmを超えると原料の加熱に時間がかかり、原料の反応率が低下する。なお、ここで液滴径は、反応管外で噴霧ノズルに空気を流通させ噴霧を行い、2本のレーザー光を交差させ、干渉縞を通過した粒子により生じた散乱光を一定距離離れた受光器で感知した時の位相差から粒子径を算出するドップラー法により測定した平均径の値である。   The raw material droplet diameter is desirably 5 μm or more. Preferably it is 5-300 micrometers, More preferably, it is 10-100 micrometers. If the raw material droplet diameter is less than 5 μm, the vaporization rate is fast, so the droplets do not fly to the high temperature part, the droplet heating rate is slow, and the number of effective catalyst particles decreases, so the number of carbon fiber branches is small. When the thickness exceeds 300 μm, it takes time to heat the raw material, and the reaction rate of the raw material decreases. Here, the droplet diameter is determined by passing the air through the spray nozzle outside the reaction tube, spraying, intersecting the two laser beams, and receiving the scattered light generated by the particles passing through the interference fringes at a certain distance. It is the value of the average diameter measured by the Doppler method for calculating the particle diameter from the phase difference when it is sensed by a vessel.

液滴径、噴霧角度が所定の範囲内であればノズルの形状は特に限定されないが、液滴径、噴霧角度が容易に調整できる構造のものが望ましい。
具体的には、多重管方式、1流体方式、2流体方式(反応液とキャリヤガスをノズル内で混合する内部混合方式あるいはノズル外で混合する外部混合方式)等の構造のものが使用できる。多重管構造、2流体方式等の構造が特に望ましい。2流体方式のものでは原料液供給量、気体供給量により液滴径を制御出来、ノズル部の構造により噴霧角度を制御することができる。
The shape of the nozzle is not particularly limited as long as the droplet diameter and the spray angle are within a predetermined range, but it is desirable that the droplet diameter and the spray angle can be easily adjusted.
Specifically, a multi-tube method, a one-fluid method, a two-fluid method (an internal mixing method in which a reaction liquid and a carrier gas are mixed in a nozzle, or an external mixing method in which mixing is performed outside a nozzle) can be used. A multi-tube structure, a two-fluid structure, etc. are particularly desirable. In the two-fluid system, the droplet diameter can be controlled by the raw material supply amount and the gas supply amount, and the spray angle can be controlled by the structure of the nozzle portion.

多重管構造のものとしては、図2(A)及び(B)に具体的例の縦断面図を示すような2重管構造(図2(A))、3重管構造(図2(B))のものが使用できる。原料液の噴霧角度を制御するために、反応管(1)に供給する少なくともキャリヤガス(3)の一部を反応液(4)を供給する管以外から供給することが望ましい。2重管構造において内管(5)から原料液(4)とキャリヤガス(3)を送り、外管(6)からキャリヤガス(3)を送り、外管(6)からの水素(3)の供給量を多くすることにより噴霧角度を容易に調整することができる。また2重管構造で、噴霧面(8)において内管は外管より長くても短くてもよく、好ましくは内管が外管より長いものを用いた方が噴霧角度の調整が容易である。2重管構造のノズル(2)では、内管の径は好ましくは0.01〜2mm、さらに好ましくは0.1〜0.5mm、外管と内管外径の隙間(d)は好ましくは0.01〜2mm、さらに好ましくは0.1〜0.5mmとする。内管の径及び外管と内管外径の隙間が2mmを超えると噴霧が正常に行われずに触媒粒子が成長して繊維が生成しないことがあり、また内管の径及び外管と内管外径の隙間が0.01mm未満だと原料及びキャリヤガスの供給量を多くできないため生産性が低くなる。   As the multi-tube structure, a double-pipe structure (FIG. 2 (A)) and a triple-pipe structure (FIG. 2 (B) as shown in FIGS. )) Can be used. In order to control the spray angle of the raw material liquid, it is desirable to supply at least a part of the carrier gas (3) supplied to the reaction tube (1) from other than the tube supplying the reaction solution (4). In the double pipe structure, the raw material liquid (4) and the carrier gas (3) are sent from the inner pipe (5), the carrier gas (3) is sent from the outer pipe (6), and hydrogen (3) from the outer pipe (6) is sent. The spray angle can be easily adjusted by increasing the supply amount. In addition, in the spray tube (8), the inner tube may be longer or shorter than the outer tube, and the spray angle is more easily adjusted if the inner tube is longer than the outer tube. . In the double pipe structure nozzle (2), the diameter of the inner pipe is preferably 0.01 to 2 mm, more preferably 0.1 to 0.5 mm, and the gap (d) between the outer pipe and the outer diameter of the inner pipe is preferably 0.01 to 2 mm. Preferably, the thickness is 0.1 to 0.5 mm. If the diameter of the inner tube and the gap between the outer tube and the outer diameter of the inner tube exceed 2 mm, spraying may not be performed normally and catalyst particles may grow and fibers may not be generated. If the gap of the outer diameter of the pipe is less than 0.01 mm, the feed rate of the raw material and carrier gas cannot be increased, resulting in low productivity.

また、3重管構造においては、最内管(5)と外管(6)よりキャリヤガス(3)を供給し、中間の管(7)より原料液を供給する。この場合、最内管と外管からのキャリヤガス供給速度を調整することにより噴霧角度を容易に3〜30度の範囲に調整することができる。3重管構造で、噴霧面(8)において最内管、中管、外管は全て同じ長さでなくてもよく長短があってもよい。好ましくは中管が最外管より長いものを用いた方が噴霧角度の調整が容易である。最内管(5)の径は、2重管構造の場合と同様に好ましくは0.01〜2mm、さらに好ましくは0.1〜0.5mmで、外管(6)と中管(7)及び中管と最内管の隙間は2重管構造の場合と同様に好ましくは0.01〜2mm、さらに好ましくは0.1〜0.5mmである。   In the triple pipe structure, the carrier gas (3) is supplied from the innermost pipe (5) and the outer pipe (6), and the raw material liquid is supplied from the intermediate pipe (7). In this case, the spray angle can be easily adjusted to a range of 3 to 30 degrees by adjusting the carrier gas supply speed from the innermost tube and the outer tube. In the triple tube structure, the innermost tube, the middle tube, and the outer tube on the spray surface (8) may not all be the same length, and may be longer or shorter. Preferably, the spray angle can be adjusted more easily when the inner tube is longer than the outermost tube. The diameter of the innermost tube (5) is preferably 0.01 to 2 mm, more preferably 0.1 to 0.5 mm, as in the case of the double tube structure. The outer tube (6), the middle tube (7), and the middle tube The gap between the inner pipes is preferably 0.01 to 2 mm, more preferably 0.1 to 0.5 mm, as in the case of the double pipe structure.

液滴径は、一般に噴霧液の粘度、表面張力、密度により変化する。原料液に増粘剤や界面活性剤などを添加することにより、所望の液滴径に制御することができる。
原料液の粘度が上昇すると、一般に液滴径が大きくなるので、増粘剤を添加することにより、高温の反応域に原料液滴が飛来することになる。増粘剤としては原料の有機化合物よりも粘度が高くかつ原料の有機化合物に融解するものであれば特に限定されないが、具体的には、鉱物油、植物油、植物脂、パラフィン、脂肪酸(オレイン酸、リノール酸等)、脂肪アルコール(デカノール、オクタノール等)、ポリマー(ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール)などが用いられる。
The droplet diameter generally varies depending on the viscosity, surface tension, and density of the spray liquid. By adding a thickener, a surfactant or the like to the raw material liquid, it is possible to control to a desired droplet diameter.
When the viscosity of the raw material liquid increases, the droplet diameter generally increases, and therefore, by adding a thickener, the raw material droplets fly into the high temperature reaction zone. The thickener is not particularly limited as long as it has a higher viscosity than the raw organic compound and melts into the raw organic compound. Specifically, mineral oil, vegetable oil, vegetable fat, paraffin, fatty acid (oleic acid) , Linoleic acid, etc.), fatty alcohols (decanol, octanol, etc.), polymers (polyvinyl alcohol, polyethylene glycol, polypropylene glycol) and the like are used.

界面活性剤としては、カチオン界面活性剤、アニオン界面活性剤、非イオン系界面活性剤、両性界面活性剤を用いることができる。好ましい界面活性剤として、Cn2n+1SO3M(n=8〜16、M=Na,K,Li,N(CH34)、Cn2n+1SO4M(n=8〜16、M=Na,K,Li,N(CH34)、(Cn2n+12COOCH2COOCHSO3M(n=8〜16、M=Na,K,Li,N(CH34)、Cn2n+1N(CH33X(n=8〜15、X=Br,Cl,I)、Cn2n+1N(CH32CH2COO(n=8〜15)、Cn2n+1CHOHCH2OH(n=8〜15)、Cn2n+1(OC24mHCH2OH(n=8〜15、m=3〜8)などが挙げられる。 As the surfactant, a cationic surfactant, an anionic surfactant, a nonionic surfactant, or an amphoteric surfactant can be used. Preferred surfactants include C n H 2n + 1 SO 3 M (n = 8 to 16, M = Na, K, Li, N (CH 3 ) 4 ), C n H 2n + 1 SO 4 M (n = 8~16, M = Na, K, Li, n (CH 3) 4), (C n H 2n + 1) 2 COOCH 2 COOCHSO 3 M (n = 8~16, M = Na, K, Li, n (CH 3 ) 4 ), C n H 2n + 1 N (CH 3 ) 3 X (n = 8-15, X = Br, Cl, I), C n H 2n + 1 N (CH 3 ) 2 CH 2 COO (n = 8~15), C n H 2n + 1 CHOHCH 2 OH (n = 8~15), C n H 2n + 1 (OC 2 H 4) m HCH 2 OH (n = 8~15, m = 3-8) and the like.

遷移金属の触媒としての活性の発現と、維持のために原料及び触媒を熱分解帯域に供給するために、少なくとも水素ガスをはじめとする還元性のガスを含むキャリヤガスを用いる。キャリヤガスの量は炭素源の有機化合物1.0モルに対して1〜100モル部が適当である。   In order to develop the activity of the transition metal as a catalyst and to supply the raw material and the catalyst to the thermal decomposition zone for maintenance, a carrier gas containing at least a reducing gas such as hydrogen gas is used. The amount of carrier gas is suitably 1 to 100 mole parts per 1.0 mole of organic compound as a carbon source.

キャリヤガスを反応管内に導入する場所は特に限定されないが、図3に示すように、原料液噴霧口以外に少なくても1カ所、好ましくは4カ所から水素ガスを供給することにより、反応管内のガスの流れを乱すと、反応壁面からの熱移動を促進し、収率が向上する。   The place where the carrier gas is introduced into the reaction tube is not particularly limited, but as shown in FIG. 3, by supplying hydrogen gas from at least one, preferably four, other than the raw material liquid spraying port, Disturbing the gas flow promotes heat transfer from the reaction wall and improves the yield.

反応炉は、通常縦型の電気炉を使用する。反応炉温度は800〜1300℃、好ましくは1000〜1300℃である。所定の温度に昇温した反応炉へ、原料液とキャリヤガスを供給し反応させて炭素繊維を得る。   As the reaction furnace, a vertical electric furnace is usually used. The reactor temperature is 800-1300 ° C, preferably 1000-1300 ° C. A raw material liquid and a carrier gas are supplied to a reaction furnace heated to a predetermined temperature and reacted to obtain carbon fibers.

このようにして得られた炭素繊維は、揮発分除去及び黒鉛化のために熱処理を行うことが好ましい。揮発分除去は反応炉で製造した分岐状繊維を含む炭素繊維を回収し、アルゴンガスなどの非酸化性雰囲気下で、800℃〜1500℃に加熱焼成して行われる。次いで、さらに非酸化性雰囲気下で、2000〜3000℃に加熱して黒鉛化する。この黒鉛化処理のときに、結晶化促進元素を炭素結晶にドープ(少量を添加)して結晶性を高める。結晶化促進元素としてはホウ素が好ましい。なお、黒鉛化した微細な炭素繊維は表面が緻密なベーサルプレーン(六角網目構造の平面)で覆われているので、ホウ素をドーピングするためには結晶があまり発達していない1500℃以下で熱処理された炭素繊維を用いるのが好ましい。結晶性の低い炭素繊維を用いてもホウ素をドープする(ホウ素化処理)ときに黒鉛化温度まで加熱処理されるので、結晶性の高い炭素繊維を得ることができる。   The carbon fibers thus obtained are preferably subjected to heat treatment for removing volatiles and graphitization. The devolatilization is performed by collecting carbon fibers including branched fibers produced in a reaction furnace and heating and firing them at 800 ° C. to 1500 ° C. in a non-oxidizing atmosphere such as argon gas. Next, it is further graphitized by heating to 2000 to 3000 ° C. in a non-oxidizing atmosphere. During this graphitization treatment, the crystallinity is enhanced by doping the carbon crystal with a crystallization promoting element (adding a small amount). Boron is preferred as the crystallization promoting element. The fine graphitized carbon fiber is covered with a dense basal plane (a hexagonal network plane), so it is heat-treated at 1500 ° C or less, where crystals are not well developed for boron doping. It is preferable to use carbon fiber. Even when carbon fibers with low crystallinity are used, heat treatment is performed up to the graphitization temperature when boron is doped (boronation treatment), so that carbon fibers with high crystallinity can be obtained.

炭素に対するホウ素のドーピング量は一般に5質量%以下であり、0.1〜5質量%のホウ素換算量をドープすることによって効果的に炭素繊維の結晶性を高めることができる。この量になるように結晶化促進化合物として、元素状ホウ素またはホウ素化合物(例えば、酸化ホウ素(B23)、炭化ホウ素(B4C)、ホウ酸エステル、ホウ酸(H3BO3)またはその塩、有機ホウ素化合物)を炭素繊維に加える。反応率を考慮すると炭素量に対してホウ素化合物はホウ素換算で0.1〜5質量%添加すればよい。ただし、ホウ素は熱処理における繊維の結晶化の際に存在すればよく、高結晶化した後の高温処理等によってホウ素が揮散し、添加量よりも濃度が低くなっても構わないので、処理後の繊維中の残留ホウ素(B)量としては概ね0.01質量%以上であれば良い。 The doping amount of boron with respect to carbon is generally 5% by mass or less, and the crystallinity of the carbon fiber can be effectively increased by doping a boron equivalent amount of 0.1 to 5% by mass. As the crystallization promoting compound so as to be in this amount, elemental boron or a boron compound (for example, boron oxide (B 2 O 3 ), boron carbide (B 4 C), boric acid ester, boric acid (H 3 BO 3 ) Or a salt thereof, an organic boron compound) is added to the carbon fiber. In consideration of the reaction rate, the boron compound may be added in an amount of 0.1 to 5% by mass in terms of boron with respect to the amount of carbon. However, boron may be present at the time of crystallization of the fiber in the heat treatment, and boron may be volatilized by high temperature treatment after high crystallization, and the concentration may be lower than the added amount. The amount of residual boron (B) in the fiber may be approximately 0.01% by mass or more.

ホウ素を炭素の結晶内または炭素繊維表面に導入するために必要な処理温度は2000℃以上、好ましくは2300℃以上である。加熱温度が2000℃未満ではホウ素と炭素の反応性が低いのでホウ素の導入が難しい。熱処理の雰囲気は非酸化性の雰囲気、好ましくはアルゴン等の希ガス雰囲気である。熱処理時間が長すぎると焼結が進行して収率が低下するので、中心部の温度が目標温度に達した後にこの温度に1時間以下保持する程度でよい。   The treatment temperature required to introduce boron into the carbon crystal or the carbon fiber surface is 2000 ° C. or higher, preferably 2300 ° C. or higher. When the heating temperature is less than 2000 ° C., the reactivity between boron and carbon is low, so it is difficult to introduce boron. The atmosphere for the heat treatment is a non-oxidizing atmosphere, preferably a rare gas atmosphere such as argon. If the heat treatment time is too long, the sintering proceeds and the yield decreases. Therefore, after the temperature of the central portion reaches the target temperature, it may be maintained at this temperature for 1 hour or less.

本発明の方法で得られる炭素繊維は分岐度が高く、強固な繊維のネットワークを形成しやすいので、樹脂等のマトリックス中に少量添加しただけで導電性、熱伝導性が向上する。本発明で得られる炭素繊維を圧密体にしたときの比抵抗も強固な繊維ネットワークのため低い値を示す。また、本発明で得られる炭素繊維は嵩密度が低く、繊維の毛玉が強固ではなく、樹脂等と混合した場合、分散性が良いという特徴がある。   Since the carbon fiber obtained by the method of the present invention has a high degree of branching and tends to form a strong fiber network, conductivity and thermal conductivity can be improved by adding a small amount to a matrix such as a resin. The specific resistance when the carbon fiber obtained in the present invention is consolidated is also low because of the strong fiber network. Further, the carbon fiber obtained by the present invention has a low bulk density, the fiber pills are not strong, and are characterized by good dispersibility when mixed with a resin or the like.

本発明において、炭素繊維の繊維径及び分岐度は、炭素繊維を電子顕微鏡で観察して求められる。分岐度は視野内の全繊維長ΣLと全分岐点数bを計測し、分岐度=b/ΣLとして算出している。すなわち、繊維単位長さ当たりの分岐点の個数を表わす。本発明の炭素繊維は分岐度が0.15個/μm以上であることを特徴とする。好ましくは、分岐度が0.15個/μm以上10個/μm以下がよい。より好ましくは0.15個/μm以上1個/μm以下がよい。分岐度が0.15個/μm未満では1質量%程度の少量添加の場合に電気伝導性が殆ど向上しない。さらに、このような分岐度を有する炭素繊維を炭素繊維全体の10質量%以上含有することが電気伝導性の向上の点からより好ましい。   In the present invention, the fiber diameter and the degree of branching of the carbon fiber are determined by observing the carbon fiber with an electron microscope. The branching degree is calculated by measuring the total fiber length ΣL and the total branching point number b in the field of view, and the branching degree = b / ΣL. That is, it represents the number of branch points per fiber unit length. The carbon fiber of the present invention has a branching degree of 0.15 pieces / μm or more. Preferably, the degree of branching is 0.15 / μm or more and 10 / μm or less. More preferably, it is 0.15 / μm or more and 1 / μm or less. When the degree of branching is less than 0.15 / μm, the electrical conductivity is hardly improved when a small amount of about 1% by mass is added. Furthermore, it is more preferable that the carbon fiber having such a degree of branching is contained in an amount of 10% by mass or more based on the total carbon fiber from the viewpoint of improvement in electrical conductivity.

従来の気化法では分岐が殆ど存在しない炭素繊維が得られ、また従来の気相法炭素繊維(VGCF)では分岐度が0.15個/μm未満のものしか得られないため、これらの炭素繊維では少量添加の場合に電気伝導性が殆ど向上しない。   The conventional vaporization method yields carbon fibers with almost no branching, and the conventional vapor grown carbon fiber (VGCF) can only have a degree of branching of less than 0.15 / μm. In the case of addition, the electrical conductivity is hardly improved.

本発明の炭素繊維は嵩密度が0.025g/cm3以下であることをも特徴とする。好ましくは、嵩密度が0.01g/cm3以上0.025g/cm3以下がよい。ここで、炭素繊維の嵩密度は、再現性を向上させるために、製造した繊維を1000℃で15分間アルゴン雰囲気中で加熱した後、振動機で1分間振動させた試料1gを100mlメスシリンダーに入れ、ミクロスパチュラを挿入し1分間試験管タッチミキサーで振動撹拌した後、10回手で撹拌し、ミクロスパチュラを抜き出し、再び試験管タッチミキサーで1分間振動し、試料の体積を測定し、試料の質量と体積から算出した値である。
従来の気化法による炭素繊維の嵩密度は0.03g/cm3程度であり、また従来の気相法炭素繊維(VGCF)の嵩密度は0.04g/cm3程度であり、共に少量添加の場合に電気伝導性が殆ど向上しない。
The carbon fiber of the present invention is also characterized by a bulk density of 0.025 g / cm 3 or less. Preferably, the bulk density is 0.01 g / cm 3 or more and 0.025 g / cm 3 or less. Here, in order to improve the reproducibility, the bulk density of the carbon fiber is such that the manufactured fiber is heated in an argon atmosphere at 1000 ° C. for 15 minutes and then vibrated for 1 minute with a vibrator. Insert the micro spatula, vibrate and stir with a test tube touch mixer for 1 minute, stir by hand 10 times, extract the micro spatula, vibrate again with the test tube touch mixer for 1 minute, measure the volume of the sample, It is a value calculated from the mass and volume of.
The bulk density of carbon fiber by the conventional vaporization method is about 0.03 g / cm 3 , and the bulk density of the conventional vapor-grown carbon fiber (VGCF) is about 0.04 g / cm 3. Electrical conductivity is hardly improved.

本発明の炭素繊維の比抵抗の測定方法は、炭素繊維が繊維状であるため、それを嵩密度0.8g/cm3に圧密したときの圧密体の比抵抗を測定している。比抵抗は0.025Ωcm以下であることが望ましい。それを超えた場合では、1質量%程度の少量添加の場合に電気伝導性が殆ど向上しない。
炭素繊維の繊維径は特に限定されないが、電気伝導性の向上効果から1〜500nm程度であることが好ましい。更に好ましくは5〜200nmの繊維径を有することが好ましい。
In the method for measuring the specific resistance of the carbon fiber of the present invention, since the carbon fiber is fibrous, the specific resistance of the compact is measured when the carbon fiber is compacted to a bulk density of 0.8 g / cm 3 . The specific resistance is preferably 0.025 Ωcm or less. In the case of exceeding this, the electrical conductivity is hardly improved when a small amount of about 1% by mass is added.
The fiber diameter of the carbon fiber is not particularly limited, but is preferably about 1 to 500 nm from the effect of improving electrical conductivity. More preferably, it has a fiber diameter of 5 to 200 nm.

本発明で得られる炭素繊維は、高い分岐度に基づいて高い電気伝導性、熱伝導性等を有するので、樹脂、金属、セラミックス等のマトリックスと混合して複合材料とすることにより、マトリックスの導電性、熱伝導性等を向上させることができる。   The carbon fiber obtained in the present invention has high electrical conductivity, thermal conductivity, etc. based on a high degree of branching. Therefore, by mixing with a matrix of resin, metal, ceramics, etc., a composite material can be obtained. Property, thermal conductivity, etc. can be improved.

複合材料に用いられる樹脂としては、熱可塑性、熱硬化性いずれも用いることができる。例えば、ポリエチレン(PE)、ポリプロピレン、ナイロン、ウレタン、ポリアセタール、ポリフェニレンスルフィド、ポリスチレン、ポリカーボネート、ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリオキシベンゾイル、ポリエーテルエーテルケトン、ポリエーテルイミド、テフロン(登録商標)、珪素樹脂、酢酸セルロース樹脂、ABS樹脂、AES樹脂、ABMS樹脂、AAS樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、キシレン樹脂、ジアリルフタレート樹脂、エポキシ樹脂、アニリン樹脂、フラン樹脂などである。   As the resin used for the composite material, both thermoplastic and thermosetting can be used. For example, polyethylene (PE), polypropylene, nylon, urethane, polyacetal, polyphenylene sulfide, polystyrene, polycarbonate, polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polysulfone, polyethersulfone, polyimide, polyoxybenzoyl, polyetherether Ketone, polyetherimide, Teflon (registered trademark), silicon resin, cellulose acetate resin, ABS resin, AES resin, ABMS resin, AAS resin, phenol resin, urea resin, melamine resin, xylene resin, diallyl phthalate resin, epoxy resin, Aniline resin, furan resin and the like.

セラミックスのマトリックスとしては、例えば、酸化アルミニウム、ムライト、酸化珪素、酸化ジルコニウム、炭化珪素、窒化珪素などが挙げられる。
金属としては、金、銀、アルミニウム、鉄、マグネシウム、鉛、銅、タングステン、チタン、ニオブ、ハフニウム、並びにこれらの合金及び混合物が挙げられる。
Examples of the ceramic matrix include aluminum oxide, mullite, silicon oxide, zirconium oxide, silicon carbide, and silicon nitride.
Metals include gold, silver, aluminum, iron, magnesium, lead, copper, tungsten, titanium, niobium, hafnium, and alloys and mixtures thereof.

以下、実施例及び比較例により本発明を説明するが、本発明は下記の記載により限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention, this invention is not limited by the following description.

実施例1:
フェロセン0.83kgと硫黄0.059kgをベンゼン14kgに溶解し原料液(原料液中のフェロセン5.5質量%、硫黄0.39質量%)を調製した。縦型加熱炉(1)(内径370mm、長さ2000mm)の頂部に原料供給ノズル(2)(スプレーノズル)(スプレーイングシステム製SU11)を取り付けた図3に示す反応炉(1)系内に窒素ガスを流通し、酸素ガスを追い出した後、水素ガスを流通し、系内を水素ガス雰囲気に置換した。その後、反応器の昇温を開始し1250℃まで温度を上げた。ポンプで原料供給ノズルより原料液を130g/min、水素ガスを20L/min、反応管上部フランジ(9)より水素ガスを400L/min流通した。原料液の噴霧角度は21度、平均噴霧液滴径は30μmであった。この状態で1時間反応させ、炭素繊維を得た。得られた炭素繊維の嵩密度は0.021g/cm3であった。嵩密度0.8g/cm3に圧縮したときの比抵抗が0.0236Ωcmであった。
Example 1:
Ferrocene 0.83 kg and sulfur 0.059 kg were dissolved in benzene 14 kg to prepare a raw material liquid (5.5 mass% ferrocene and 0.39 mass% sulfur in the raw material liquid). In the reactor (1) system shown in FIG. 3, a raw material supply nozzle (2) (spray nozzle) (SU11 manufactured by Spraying System) is attached to the top of the vertical heating furnace (1) (inner diameter 370 mm, length 2000 mm). Nitrogen gas was circulated and oxygen gas was expelled, then hydrogen gas was circulated and the system was replaced with a hydrogen gas atmosphere. Thereafter, the temperature of the reactor was started to rise to 1250 ° C. The raw material liquid was circulated from the raw material supply nozzle by a pump at 130 g / min, hydrogen gas at 20 L / min, and hydrogen gas at 400 L / min from the reaction tube upper flange (9). The spray angle of the raw material liquid was 21 degrees, and the average spray droplet diameter was 30 μm. It was made to react for 1 hour in this state, and carbon fiber was obtained. The obtained carbon fiber had a bulk density of 0.021 g / cm 3 . The specific resistance when compressed to a bulk density of 0.8 g / cm 3 was 0.0236 Ωcm.

生成した炭素繊維を電子顕微鏡で観察したところ、平均繊維径約80nmであった。分岐度を測定すると0.3個/μmであった。得られた炭素繊維の質量を測定したところ、炭化回収率(得られた炭素繊維の質量/供給したベンゼンの質量)は55%であった。   When the produced | generated carbon fiber was observed with the electron microscope, it was an average fiber diameter of about 80 nm. The degree of branching was measured to be 0.3 / μm. When the mass of the obtained carbon fiber was measured, the carbonization recovery rate (mass of obtained carbon fiber / mass of supplied benzene) was 55%.

実施例2:
実施例1で得られた気相法炭素繊維を1000℃で15分間焼成した後に2800℃で15分黒鉛化処理したものを、ニーダーを用いてポリアセタール中に分散させコンパウンドを作製した。樹脂に対し気相法炭素繊維は5質量%添加した。コンパウンドを熱プレスで成形し、4端子法で体積固有抵抗を測定したところ300Ωcmであった。
Example 2:
The vapor-grown carbon fiber obtained in Example 1 was calcined at 1000 ° C. for 15 minutes and then graphitized at 2800 ° C. for 15 minutes, and dispersed in polyacetal using a kneader to prepare a compound. 5 mass% of vapor grown carbon fiber was added to the resin. The compound was molded by hot pressing, and its volume resistivity was measured by a four-terminal method. As a result, it was 300 Ωcm.

実施例3:
縦型加熱炉(内径370mm、長さ2000mm)の頂部に図2(A)の構成の2重管原料供給ノズルを取り付けた図3に示す反応炉(1)系内に窒素ガスを流通し、酸素ガスを追い出した後、水素ガスを流通し、系内を水素ガス雰囲気に置換した。その後、反応器の昇温を開始し1250℃まで温度を上げた。
ポンプで原料供給ノズル内管(5)より原料液(フェロセン含量4.5質量%、硫黄含量0.32質量%のベンゼン溶液)を50g/min、水素ガスを5L/min、ノズル外管(6)より水素ガスを10L/min、反応管上部フランジ(9)より水素ガスを200L/min流通した。原料液の噴霧角度は26度、平均噴霧液滴径は30μmであった。この状態で1時間反応させ、炭素繊維を得た。得られた炭素繊維の嵩密度は0.022g/cm3であった。嵩密度0.8g/cm3に圧縮したときの比抵抗が0.027Ωcmであった。生成した炭素繊維を電子顕微鏡で観察したところ、平均繊維径約100nmであった。分岐度を測定すると0.3個/μmであった。得られた炭素繊維の質量を測定したところ、炭化回収率(炭素繊維の質量/供給したベンゼンの質量)は60%であった。
Example 3:
Nitrogen gas was circulated in the reaction furnace (1) system shown in FIG. 3 in which a double-pipe raw material supply nozzle having the structure shown in FIG. 2 (A) was attached to the top of a vertical heating furnace (inner diameter 370 mm, length 2000 mm). After expelling the oxygen gas, hydrogen gas was circulated and the system was replaced with a hydrogen gas atmosphere. Thereafter, the temperature of the reactor was started to rise to 1250 ° C.
50 g / min of raw material liquid (benzene solution with ferrocene content of 4.5% by mass and sulfur content of 0.32% by mass), 5 L / min of hydrogen gas, and hydrogen gas from nozzle outer tube (6) 10 L / min, hydrogen gas was circulated through the reaction tube upper flange (9) at 200 L / min. The spray angle of the raw material liquid was 26 degrees, and the average spray droplet diameter was 30 μm. It was made to react for 1 hour in this state, and carbon fiber was obtained. The obtained carbon fiber had a bulk density of 0.022 g / cm 3 . The specific resistance when compressed to a bulk density of 0.8 g / cm 3 was 0.027 Ωcm. When the produced | generated carbon fiber was observed with the electron microscope, it was an average fiber diameter of about 100 nm. The degree of branching was measured to be 0.3 / μm. When the mass of the obtained carbon fiber was measured, the carbonization recovery rate (mass of carbon fiber / mass of supplied benzene) was 60%.

実施例4:
縦型加熱炉(内径130mm、長さ2000mm)の頂部に図2(A)の構成の2重管原料供給ノズルを取り付けた図3に示す反応炉(1)系内に窒素ガスを流通し、酸素ガスを追い出した後、水素ガスを流通し、系内を水素ガス雰囲気に置換した。その後、反応器の昇温を開始し1250℃まで温度を上げた。
Example 4:
Nitrogen gas was circulated in the reaction furnace (1) system shown in FIG. 3 in which a double-pipe raw material supply nozzle having the configuration shown in FIG. 2 (A) was attached to the top of a vertical heating furnace (inner diameter 130 mm, length 2000 mm). After expelling the oxygen gas, hydrogen gas was circulated and the system was replaced with a hydrogen gas atmosphere. Thereafter, the temperature of the reactor was started to rise to 1250 ° C.

ポンプで原料供給ノズル内管(5)より原料液(フェロセン含量7質量%、硫黄含量0.5質量%のベンゼン溶液)を18g/min、水素ガスを5L/min、ノズル外管(6)より水素ガスを10L/min、反応管上部フランジ(9)より水素ガスを450L/min流通した。原料液の噴霧角度は26度、平均噴霧液滴径は20μmであった。この状態で1時間反応させ、炭素繊維を得た。得られた炭素繊維の嵩密度は0.049g/cm3であった。嵩密度0.8g/cm3に圧縮したときの比抵抗が0.042Ωcmであった。
生成した炭素繊維を電子顕微鏡で観察したところ、平均繊維径約9nmであった。分岐度を測定すると0.2個/μmであった。得られた炭素繊維の質量を測定したところ、炭化回収率(得られた炭素繊維の質量/供給したベンゼンの質量)は15%であった。
18 g / min of raw material liquid (benzene solution with a ferrocene content of 7 mass% and a sulfur content of 0.5 mass%) from the inner pipe (5) of the raw material supply nozzle by a pump, 5 L / min of hydrogen gas, and hydrogen gas from the nozzle outer pipe (6) 10 L / min, hydrogen gas was circulated through the reaction tube upper flange (9) at 450 L / min. The spray angle of the raw material liquid was 26 degrees, and the average spray droplet diameter was 20 μm. It was made to react for 1 hour in this state, and carbon fiber was obtained. The obtained carbon fiber had a bulk density of 0.049 g / cm 3 . The specific resistance when compressed to a bulk density of 0.8 g / cm 3 was 0.042 Ωcm.
When the produced | generated carbon fiber was observed with the electron microscope, it was an average fiber diameter of about 9 nm. The degree of branching was 0.2 / μm. When the mass of the obtained carbon fiber was measured, the carbonization recovery rate (the mass of the obtained carbon fiber / the mass of the supplied benzene) was 15%.

実施例5:
フェロセン1kgと硫黄0.05kgとポリプロピレングリコール(D−400日本油脂製、分子量:400、分解温度:290℃)0.5kgをベンゼン13.5kgに溶解し、原料液(原料液中のフェロセン7質量%、硫黄0.4質量%、ポリプロピレングリコール3質量%)を調整した。縦型加熱炉(1)(内径370mm、長さ2000mm)の頂部に原料供給ノズル(2)(スプレーノズル;スプレーイングシステム製SU11)を取り付けた図3に示す反応炉(1)系内に窒素ガスを流通し、酸素ガスを追い出した後、水素ガスを流通し、系内を水素ガス雰囲気に置換した。その後反応器の昇温を開始し、1250℃まで温度を上げた。ポンプで原料供給ノズルより原料液を230g/min、水素ガスを20L/min、反応管上部フランジ(9)より水素ガスを400L/min流通した。原料液の噴霧角度は21度、平均噴霧液滴径は40μmであった。この状態で1時間反応させ、炭素繊維を得た。得られた炭素繊維の嵩密度は0.024g/cm3であった。嵩密度0.8g/cm3に圧縮したときの比抵抗は0.024Ωcmであった。
Example 5:
1 kg of ferrocene, 0.05 kg of sulfur and 0.5 kg of polypropylene glycol (D-400 manufactured by NOF Corporation, molecular weight: 400, decomposition temperature: 290 ° C.) are dissolved in 13.5 kg of benzene, and the raw material liquid (7% by mass of ferrocene in the raw material liquid, sulfur 0.4 mass%, polypropylene glycol 3 mass%) was adjusted. Nitrogen is introduced into the reactor (1) shown in FIG. 3 in which a raw material supply nozzle (2) (spray nozzle; SU11 manufactured by Spraying System) is attached to the top of a vertical heating furnace (1) (inner diameter 370 mm, length 2000 mm). After the gas was circulated and the oxygen gas was expelled, the hydrogen gas was circulated and the system was replaced with a hydrogen gas atmosphere. Thereafter, the temperature of the reactor was increased, and the temperature was increased to 1250 ° C. The raw material liquid was circulated from the raw material supply nozzle by a pump at 230 g / min, hydrogen gas at 20 L / min, and the reaction tube upper flange (9) at 400 L / min. The spray angle of the raw material liquid was 21 degrees, and the average spray droplet diameter was 40 μm. It was made to react for 1 hour in this state, and carbon fiber was obtained. The obtained carbon fiber had a bulk density of 0.024 g / cm 3 . The specific resistance when compressed to a bulk density of 0.8 g / cm 3 was 0.024 Ωcm.

生成した炭素繊維を電子顕微鏡で観察したところ、平均繊維径約80nmであった。分岐度を測定すると、0.4個/μmであった。得られた炭素繊維の執拗を測定したところ、炭化回収率(得られた炭素繊維の質量/供給したベンゼンの質量)は57%であった。   When the produced | generated carbon fiber was observed with the electron microscope, it was an average fiber diameter of about 80 nm. When the degree of branching was measured, it was 0.4 / μm. When persistence of the obtained carbon fiber was measured, carbonization recovery rate (mass of obtained carbon fiber / mass of supplied benzene) was 57%.

比較例1:
縦型加熱炉(内径370mm、長さ2000mm)の頂部に2流体式ホロコーン原料供給ノズルを取り付けた図4に示した装置を用いて炭素繊維を製造した。系内に窒素ガスを流通し、酸素ガスを追い出した後、水素ガスを流通し、系内を水素ガス雰囲気に置換した。その後、反応器の昇温を開始し1250℃まで温度を上げた。
Comparative Example 1:
Carbon fibers were produced using the apparatus shown in FIG. 4 in which a two-fluid type hollow cone raw material supply nozzle was attached to the top of a vertical heating furnace (inner diameter: 370 mm, length: 2000 mm). Nitrogen gas was circulated in the system and oxygen gas was expelled, then hydrogen gas was circulated and the system was replaced with a hydrogen gas atmosphere. Thereafter, the temperature of the reactor was started to rise to 1250 ° C.

ポンプで原料供給ノズルより原料液(フェロセン含量5.5質量%、硫黄含量0.39質量%のベンゼン溶液)を130g/min、水素ガスを20L/min流通した。原料液の噴霧角度は60度であった。この状態で1時間反応させ、炭素繊維を得た。得られた炭素繊維の嵩密度は0.04g/cm3であった。嵩密度0.8g/cm3に圧縮したときの比抵抗が0.03Ωcmであった。 A raw material liquid (a benzene solution having a ferrocene content of 5.5% by mass and a sulfur content of 0.39% by mass) was passed through a raw material supply nozzle by a pump at 130 g / min and hydrogen gas at 20 L / min. The spray angle of the raw material liquid was 60 degrees. It was made to react for 1 hour in this state, and carbon fiber was obtained. The obtained carbon fiber had a bulk density of 0.04 g / cm 3 . The specific resistance when compressed to a bulk density of 0.8 g / cm 3 was 0.03 Ωcm.

生成した炭素繊維を電子顕微鏡で観察したところ、平均繊維径約150nmであった。分岐度を測定すると0.13個/μmであった。得られた炭素繊維の質量を測定したところ、炭化回収率(得られた炭素繊維の質量/供給したベンゼンの質量)は60%であった。   When the produced carbon fiber was observed with an electron microscope, the average fiber diameter was about 150 nm. The degree of branching was measured to be 0.13 pieces / μm. When the mass of the obtained carbon fiber was measured, the carbonization recovery rate (the mass of the obtained carbon fiber / the mass of the supplied benzene) was 60%.

比較例2:
比較例1で得られた気相法炭素繊維を1000℃で15分焼成後に2800℃で15分黒鉛化処理したものを、ニーダーを用いてポリアセタール中に分散させコンパウンドを作製した。樹脂に対し気相法炭素繊維は5質量%添加した。コンパウンドを熱プレスで成形し、4端子法で体積固有抵抗を測定したところ100Ωcmであった。
Comparative Example 2:
The vapor-grown carbon fiber obtained in Comparative Example 1 was calcined at 1000 ° C. for 15 minutes and then graphitized at 2800 ° C. for 15 minutes, and dispersed in polyacetal using a kneader to prepare a compound. 5 mass% of vapor grown carbon fiber was added to the resin. The compound was molded by hot pressing, and its volume resistivity was measured by a four-terminal method.

原料溶液噴霧角度の説明図である。It is explanatory drawing of a raw material solution spray angle. (A)は、発明の方法で使用する原料供給2重管例の構造を示す縦断面図であり、(B)は、同じく原料供給3重管例の構造を示す縦断面図である。(A) is a longitudinal cross-sectional view which shows the structure of the raw material supply double pipe | tube example used with the method of invention, (B) is a longitudinal cross-sectional view which similarly shows the structure of the raw material supply triple pipe | tube example. キャリヤ水素ガスを原料液噴霧口以外から反応管内に導入する1例を示す。An example of introducing the carrier hydrogen gas into the reaction tube from other than the raw material liquid spray port is shown. 比較例1で使用した気相法炭素繊維製造装置の概略断面図である。2 is a schematic cross-sectional view of a vapor grown carbon fiber production apparatus used in Comparative Example 1. FIG.

符号の説明Explanation of symbols

1.反応管(反応炉)
2.原料供給ノズル(スプレーノズル)
3.水素(キャリヤガス)
4.反応液(原料液)
5.内管
6.外管
7.中管
8.噴霧面
9.反応管上部フランジ
d 外管と内管外径の隙間
1. Reaction tube (reactor)
2. Raw material supply nozzle (spray nozzle)
3. Hydrogen (carrier gas)
4). Reaction liquid (raw material liquid)
5). Inner pipe 6. Outer tube 7. Middle tube 8. Spray surface 9. Upper flange of reaction tube d Clearance between outer tube and outer diameter of inner tube

Claims (17)

分岐度が0.15個/μm以上であり、嵩密度が0.025g/cm 3 以下である気相法炭素繊維。 Vapor grown carbon fiber having a degree of branching of 0.15 pieces / μm or more and a bulk density of 0.025 g / cm 3 or less . 分岐度0.15個/μm以上の炭素繊維を10質量%以上含むことを特徴とする気相法炭素繊維。   A vapor grown carbon fiber characterized by containing 10% by mass or more of carbon fiber having a degree of branching of 0.15 / μm or more. 嵩密度0.8g/cm3に圧縮したときの比抵抗が0.025Ωcm以下である請求項1または2に記載の気相法炭素繊維。 The vapor grown carbon fiber according to claim 1 or 2 , wherein the specific resistance when compressed to a bulk density of 0.8 g / cm 3 is 0.025 Ωcm or less. 繊維径が1〜500nmである請求項1または2に記載の気相法炭素繊維。 The vapor grown carbon fiber according to claim 1 or 2 , wherein the fiber diameter is 1 to 500 nm. 炭素源と遷移金属化合物を含む原料液を反応域に噴霧し熱分解反応させて炭素繊維を製造する方法において、3〜30度の噴霧角度で原料溶液を噴霧し、分岐度が0.15個/μm以上であり、嵩密度が0.025g/cm 3 以下である気相法炭素繊維を得ることを特徴とする気相法炭素繊維の製造方法。 In a method for producing a carbon fiber by spraying a raw material liquid containing a carbon source and a transition metal compound into a reaction zone and causing a thermal decomposition reaction, the raw material solution is sprayed at a spray angle of 3 to 30 degrees, and the degree of branching is 0.15. A method for producing vapor grown carbon fiber, characterized by obtaining vapor grown carbon fiber having a bulk density of 0.025 g / cm 3 or less . 原料噴霧液の平均液滴径が5μm以上である請求項5に記載の気相法炭素繊維の製造方法。 6. The method for producing vapor grown carbon fiber according to claim 5, wherein the raw material spray liquid has an average droplet diameter of 5 [mu] m or more. 多重管ノズルより原料液とキャリヤガスを反応管内に供給する請求項5または6に記載の気相法炭素繊維の製造方法。 The method for producing vapor grown carbon fiber according to claim 5 or 6 , wherein the raw material liquid and the carrier gas are supplied into the reaction tube from a multi-tube nozzle. 多重管の内一つの管から原料液を供給し、他の管からキャリヤガスのみを供給する請求項に記載の気相法炭素繊維の製造方法。 The method for producing vapor grown carbon fiber according to claim 7 , wherein the raw material liquid is supplied from one of the multiple tubes and only the carrier gas is supplied from the other tube. 2重管の内管より原料液とキャリヤガスを供給し、外管よりキャリヤガスを供給する請求項8に記載の気相法炭素繊維の製造方法。 The method for producing vapor grown carbon fiber according to claim 8, wherein the raw material liquid and the carrier gas are supplied from the inner pipe of the double pipe and the carrier gas is supplied from the outer pipe. 3重管で最内管と外管よりキャリヤガスを供給し、中間の管より原料液のみを供給する請求項8に記載の気相法炭素繊維の製造方法。 The method for producing vapor-grown carbon fiber according to claim 8, wherein a carrier gas is supplied from an innermost tube and an outer tube in a triple tube, and only a raw material liquid is supplied from an intermediate tube. 炭素源と遷移金属化合物を含む原料液が、さらに界面活性剤及び/または増粘剤を含む原料液である請求項に記載の気相法炭素繊維の製造方法。 The method for producing vapor grown carbon fiber according to claim 5 , wherein the raw material liquid containing a carbon source and a transition metal compound is a raw material liquid further containing a surfactant and / or a thickener. 回収した炭素繊維を、さらに非酸化性雰囲気下で、800℃〜1500℃に加熱焼成し、次いで非酸化性雰囲気下で2000〜3000℃に加熱して黒鉛化処理する請求項に記載の気相法炭素繊維の製造方法。 6. The gas according to claim 5 , wherein the recovered carbon fiber is further calcined by heating to 800 to 1500 ° C. in a non-oxidizing atmosphere and then heated to 2000 to 3000 ° C. in a non-oxidizing atmosphere. A method for producing a phase carbon fiber. 回収した炭素繊維へ結晶化促進化合物としてホウ素、酸化ホウ素、炭化ホウ素、ホウ酸エステル、ホウ酸またはその塩、及び有機ホウ素化合物からなる群から選択される少なくとも一種であるホウ素化合物を、ホウ素換算で0.1〜5質量%ドープした後、加熱して黒鉛化処理する請求項12に記載の気相法炭素繊維の製造方法。 Boron compound, which is at least one selected from the group consisting of boron, boron oxide, boron carbide, boric acid ester, boric acid or salt thereof, and organic boron compound as a crystallization promoting compound to the recovered carbon fiber, in terms of boron The method for producing vapor grown carbon fiber according to claim 12 , wherein 0.1 to 5% by mass is doped, followed by heating to perform graphitization. 請求項1乃至のいずれかに記載の気相法炭素繊維を含有する複合材料。 A composite material containing the vapor grown carbon fiber according to any one of claims 1 to 4 . 請求項5乃至13のいずれかに記載の方法で製造した気相法炭素繊維を含有する複合材料。 A composite material containing vapor grown carbon fiber produced by the method according to claim 5 . 請求項1乃至のいずれかに記載の気相法炭素繊維を含有する樹脂組成物。 The resin composition containing the vapor grown carbon fiber according to any one of claims 1 to 4 . 請求項5乃至13のいずれかに記載の方法で製造した気相法炭素繊維を含有する樹脂組成物。 The resin composition containing the vapor grown carbon fiber manufactured by the method according to any one of claims 5 to 13 .
JP2003379663A 2002-11-11 2003-11-10 Vapor grown carbon fiber, production method and use thereof Expired - Fee Related JP3964381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379663A JP3964381B2 (en) 2002-11-11 2003-11-10 Vapor grown carbon fiber, production method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002327192 2002-11-11
JP2003379663A JP3964381B2 (en) 2002-11-11 2003-11-10 Vapor grown carbon fiber, production method and use thereof

Publications (2)

Publication Number Publication Date
JP2004176244A JP2004176244A (en) 2004-06-24
JP3964381B2 true JP3964381B2 (en) 2007-08-22

Family

ID=32716120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379663A Expired - Fee Related JP3964381B2 (en) 2002-11-11 2003-11-10 Vapor grown carbon fiber, production method and use thereof

Country Status (1)

Country Link
JP (1) JP3964381B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719421B1 (en) * 2004-08-31 2007-05-18 가부시키가이샤 붓산 나노테크 겐큐쇼 Carbon fibrous structure
JP3776111B1 (en) * 2004-08-31 2006-05-17 株式会社物産ナノテク研究所 Carbon fiber structure
US7897536B2 (en) * 2004-09-17 2011-03-01 National Institute Of Advanced Industrial Science And Technology Nanocapsule-type structure
KR101225528B1 (en) 2004-09-22 2013-01-23 쇼와 덴코 가부시키가이샤 Vapor phase method for producing carbon nanotube
WO2006041186A1 (en) * 2004-10-12 2006-04-20 Showa Denko K.K Resin composition containing vapor grown carbon fiber and use thereof
JP3850427B2 (en) * 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 Carbon fiber bonded body and composite material using the same
JP2006310154A (en) * 2005-04-28 2006-11-09 Bussan Nanotech Research Institute Inc Transparent conductive film and coating composition for the transparent conductive film
JP2007115854A (en) * 2005-10-19 2007-05-10 Bussan Nanotech Research Institute Inc Electromagnetic wave absorber
JP2007115495A (en) * 2005-10-19 2007-05-10 Bussan Nanotech Research Institute Inc Electron emission source
JP2007119931A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Synthetic fiber
JP2007119532A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Electroconductive coating material
JP2007119522A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Fluororesin molded product
JP2007122927A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Conductive sheet
JP2007119647A (en) * 2005-10-28 2007-05-17 Bussan Nanotech Research Institute Inc Composite material
JP2007119693A (en) * 2005-10-31 2007-05-17 Bussan Nanotech Research Institute Inc Colored polymer composition
JP2007138338A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Composite material
JP4570553B2 (en) 2005-11-18 2010-10-27 保土谷化学工業株式会社 Composite material
JP4847106B2 (en) * 2005-11-18 2011-12-28 保土谷化学工業株式会社 Carbon fiber structure
JP2007138039A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Recycled composite material
JP5054915B2 (en) * 2005-11-21 2012-10-24 保土谷化学工業株式会社 Method for producing carbon fiber structure
JP4847164B2 (en) * 2006-03-09 2011-12-28 保土谷化学工業株式会社 Fine carbon fiber structure
JP4224083B2 (en) 2006-06-15 2009-02-12 日精樹脂工業株式会社 Method for producing composite metal material and method for producing composite metal molded product
US10167555B2 (en) * 2014-08-18 2019-01-01 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
KR102396506B1 (en) * 2020-07-30 2022-05-12 한국과학기술연구원 Method for recycling fiber reinforced composite material through single depolymerization and fiber material with enhanced conductivity recovered therefrom

Also Published As

Publication number Publication date
JP2004176244A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3964381B2 (en) Vapor grown carbon fiber, production method and use thereof
US20090275696A1 (en) Vapor Grown Carbon Fiber, and Production Method and Use Thereof
US10640378B2 (en) Induction-coupled plasma synthesis of boron nitrade nanotubes
Seo et al. Thermal plasma synthesis of nano-sized powders
Ivanov et al. Catalytic production and purification of nanotubules having fullerene-scale diameters
JP4579061B2 (en) Vapor grown carbon fiber, method for producing the same, and composite material containing carbon fiber
AU2010236807B2 (en) Method for producing solid carbon by reducing carbon oxides
US9676627B2 (en) Growth of silicon and boron nitride nanomaterials on carbon fibers by chemical vapor deposition
WO2010090624A1 (en) Boron nitride nanotube fibrils and yarns
JP2007527844A (en) Single-walled, multilayered, functionalized and doped carbon nanotubes, and composites thereof
Guo et al. Hierarchically structured polymer-derived ceramic fibers by electrospinning and catalyst-assisted pyrolysis
Chen et al. Synthesis of bamboo-like 3C-SiC nanowires with good luminescent property via nano-ZrO2 catalyzed chemical vapor deposition technique
Liu et al. Formation mechanisms of Si3N4 microstructures during silicon powder nitridation
CN106835497B (en) Multi-level nano-structure silicon carbide or silicon nitride fiber felt and preparation method thereof
He et al. Large-scale synthesis of SiC/PyC core-shell structure nanowires via chemical liquid-vapor deposition
Varadan et al. Synthesis of carbon nanocoils by microwave CVD
CN103145129A (en) Method for preparing silicon carbide nano-fibre
Liu et al. Facile growth of oriented SiC nanowires arrays on carbon fiber cloth via CVD
US9779850B2 (en) Process for synthesizing carbon nanotubes on multiple supports
Louis et al. Carbon nanofibers grown over graphite supported Ni catalyst: relationship between octopus-like growth mechanism and macro-shaping
Bechelany et al. Chemical surface transformation of SiC-based nanocables
Bai et al. A novel method for preparing preforms of porous alumina and carbon nanotubes by CVD
KR101016086B1 (en) Synthesis method of carbon nano wire rod
Sadeghian et al. Synthesis optimisation and characterisation of multiwalled carbon nanotubes produced by spray pyrolysis of hexane
Li et al. Microstructure and graphitic crystallinity of vapor-grown carbon nanofibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3964381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160601

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees