JP3963998B2 - 原子発振器 - Google Patents

原子発振器 Download PDF

Info

Publication number
JP3963998B2
JP3963998B2 JP9821497A JP9821497A JP3963998B2 JP 3963998 B2 JP3963998 B2 JP 3963998B2 JP 9821497 A JP9821497 A JP 9821497A JP 9821497 A JP9821497 A JP 9821497A JP 3963998 B2 JP3963998 B2 JP 3963998B2
Authority
JP
Japan
Prior art keywords
light
input window
cavity resonator
excitation light
gas cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9821497A
Other languages
English (en)
Other versions
JPH10284772A (ja
Inventor
裕司 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP9821497A priority Critical patent/JP3963998B2/ja
Publication of JPH10284772A publication Critical patent/JPH10284772A/ja
Application granted granted Critical
Publication of JP3963998B2 publication Critical patent/JP3963998B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、周波数の基準となる標準周波数信号を出力するガスセル型原子発振器に係り、特に小型・簡素にして高い周波数安定度が得られるガスセル型原子発振器に関する。
【0002】
【従来の技術】
ガスセル型原子発振器は、原子固有の共鳴周波数を周波数基準とした極めて安定度の高い発振器である。例として、金属原子にルビジウムを用いた原子発振器の場合では、実用的な2次標準器として通信,放送,航法,GPS衛星等多岐にわたる分野に利用されている。
【0003】
図3はガスセル型原子発振器の基本構成図である。
図3において、電圧制御水晶発振器5の出力(周波数f1 )を周波数合成・逓倍回路4にて周波数合成・逓倍し、原子の共鳴周波数f2 に近いマイクロ波(周波数N・f1 )を発生させる。このマイクロ波を二重共鳴部2に供給すとともに、光源部1から出射された励起光を二重共鳴部2へ照射して、二重共鳴現象を起こさせる。二重共鳴部2からは、周波数合成・逓倍回路4から加えたマイクロ波周波数(N・f1 )と共鳴周波数(f2 )との周波数差( N・f1 −f2 ) に対応した電気信号が出力される。そして、信号処理制御装置3はこの周波数差がゼロになるように電圧制御水晶発振器5の発振周波数を制御する。この電圧制御水晶発振器5の出力(周波数f1 )を標準周波数出力として利用する。
【0004】
図4は従来の原子発振器の二重共鳴部2の構成図である。
従来の二重共鳴部2は、空洞共振器22と、空洞共振器22の中心に配置された金属原子を封入したガスセル21と、励起光を空洞共振器22へ導入するとともに空洞共振器22内のマイクロ波の漏洩を防止するためのカットオフ導波管22bと、カットオフ導波管22bから空洞共振器22へ励起光を採り入れる光入力窓22aと、光入力窓22aとガスセル21を挟んで対極する位置にガスセル21を透過した光を受光しその光強度を電気信号に変換して出力する光電変換素子23と、周波数合成・逓倍回路4から出力されるマイクロ波を空洞共振器22に供給するマイクロ波アンテナ(マイクロ波供給手段)24とを備えている。空洞共振器22の外側にはガスセル21の全長にわたり安定な直流平行磁場を発生する静磁場コイル27と、ガスセル21と空洞共振器22とを加熱・恒温化する恒温ヒータ26と、外部磁場変動を除去する複数の磁気シールド槽25とがある。
【0005】
ここで光・マイクロ波二重共鳴現象について、図5に示すルビジウム原子のエネルギー準位の3準位原子系モデルを例に説明する。
図5(a)に示すように、熱平衡状態におけるルビジウム原子は、基底準位(5S1/2 )の2つの超微細準位(F=1,F=2)に等分に分布している。この時共鳴周波数に合った波長の励起光をルビジウム原子に照射すると、図5(b)に示すように、基底準位の高い超微細準位(5S1/2 ,F=2)にあるルビジウム原子は変化を受けないが、低い超微細準位(5S1/2 ,F=1)にあるルビジウム原子は励起光の光エネルギーを吸収して、励起準位(5P3/2 )に光ポンピングされる。励起準位(5P3/2 )にポンピングされたルビジウム原子は、次の瞬間いま得たエネルギーを自然放出して、基底準位(5S1/2 )の2つの超微細準位(F=1,F=2)に等確率に落ちる。励起光を照射し続けることによりこの過程が繰り返され、ルビジウム原子のほとんどが基底準位の高い超微細準位(5S1/2 ,F=2)に集められ、反転分布の状態となる。
この状態でルビジウム原子固有の共鳴周波数に近いマイクロ波を加えると、図5(c)に示すように、共振によりエネルギーを放出し、基底準位の低い超微細準位(5S1/2 ,F=1)に誘導放出される。低い準位の原子は励起光により、再度励起準位へと光ポンピングされるが、加えられるマイクロ波周波数が共鳴周波数からずれると、誘導放出される原子の数が減り、その結果として低い準位の原子数は減り、光ポンピングがおこらず、したがって光の吸収がおこらない。すなわち、マイクロ波周波数と透過光レベルの関係は図5(d)のようになる。
その結果、ガスセル21を透過した光(透過光)レベルを光電変換素子23で検出し、透過光レベルが常に最小となるようにマイクロ波周波数を制御することにより、原子固有共鳴周波数が持つ極めて安定な周波数が移乗した標準周波数を得ることができる。
【0006】
なお、図4において、通常ガスセル21内には二重共鳴の共鳴スペクトル幅(図5(d)に示す透過光レベルの急峻さ)を狭くするため、緩衝気体として不活性ガスをルビジウムと共に封入する。
【0007】
図3において、光源部1は、キャリアガスとともに原子を封入したランプセルを高周波励振して放電させ、所望波長を含む幅広いスペクトラムを持った放電光を励起光としたランプ励起方式と、コヒーレントな単一スペクトラムの光が得られる半導体レーザ(LaserDiode:以下「LD」と記す。)を励起光としたLD励起方式がある。
【0008】
【発明が解決しようとする課題】
従来のガスセル型原子発振器においては、光源部1がランプ励起方式の場合、励起光をガスセル21全体に照射させることにより光ポンピングを効率良くおこなうため、光入力窓22aの開口径を大きくする必要があった。また、LD励起方式の場合でも、上記と同様の理由により励起光の光束を複合レンズにより太く成形し、光入力窓22aへ導入していた。しかし光入力窓22aの開口径を大きくすると、空洞共振器22の損失が大きくなり共振器のQ値が下がるため、その対策として開口径と同じ径を持つカットオフ導波管22bを付けなければならなかった。
【0009】
ここで、空洞共振器22の光入力窓22aの開口径と最適なカットオフ導波管22bの長さ寸法について考察するための解析モデルを図6に示す。
空洞共振器22の共振長Lは、光入力窓22aの開口径φ2Rc とカットオフ導波管22bの長さLc により、わずかに変化する。空洞共振器22の共振長Lの変化量ΔLは近似的に(1)式で表される。
tan β1 ΔL=K×(ZR /Z0 ×coshα1 c +sinhα1 c )/(ZR /Z0 ×sinhα1 c +coshα1 c ) ………(1)
ここで、
K=[{2(Rc /Rk )×J1 (Rc /Rk ×x1 )}/{(1−(Rc /Rk 2 )×J0(x1)×x1 }]×β1 /α1
β1 =√{(2π/λ)2 −x1 /Rk
α1 =√{(x1 /Rc 2 −(2π/λ)2
1 =3.83171
λは共振波長
0 は特性インピーダンス
k は空洞共振器の内径
0 は次数0のベッセル(Bessel)関数
1 は次数1のベッセル(Bessel)関数である。
また、ZR はカットオフ導波管22bの開口から外方を見たインピーダンスであるが、原子発振器では開口付近にフィルタセル、光電変換素子、レンズなどがあるためにインピーダンスは確定せず、空洞共振器22の共振長Lの変化量ΔLは、複素数(ZR )を考える必要があるため、(1)式の根ΔLは(2)式のように不確定な複素数となる。
ΔL=ΔL' +jΔL'' ………(2)
このように考える時、ZR がいかなる値をとっても共振長Lの実質的な変化量ΔL' は、(3)式の不等式で示される。
1/β1 tan -1{Ktanhα1 c }≦ΔL' <1/β1 tan -1{Kcothα1 c } ………(3)
ここで、ΔL' の下限はZR が零の場合であり、上限はZR が無限大の場合である。この関係より、ZR がどのような値であっても、空洞共振器22の共振長Lの変化量ΔL' は上式の範囲内にあることがわかる。
例えばルビジウムの場合での数値計算例として、空洞共振器22の内径2RK がφ70mmで周波数6.83468GHzの時に、開口径の大きさを変えた場合のカットオフ導波管22bの長さLC に対する変化量ΔL' の上限および下限を図7に示す。図において、実線は上限を、点線は下限をそれぞれ表す。この図から開口径〔RC /RK 〕が小さければ変化量ΔL' が小さいことがわかる。また開口径〔RC /RK 〕を大くしていくとカットオフ導波管22bを長くしなければ、変化量ΔL' すなわち空洞共振器22の共振長Lを確定できない。
例えば2RC をφ35mmとした場合にRC /RK =0.5となり、この時のカットオフ導波管22bの最適長さ(最も短く、かつ、空洞共振器22の共振長Lが確定する)LC は図7より20mm以上となる。
【0010】
ところで、小型化のためにカットオフ導波管22bを用いないで、光入力窓22aの開口径を小さくすると励起光のガスセル21への照射面積が減り、最適な光ポンピングができないことになる。
【0011】
近年原子発振器は、より小型化、高性能化が求められている。小型化のためにはカットオフ導波管22bを付けないことが望ましい。しかし、カットオフ導波管22bを付けないことによる空洞共振器22の損失(Q値の低下)を補うためにはマイクロ波電力を多く供給しなければならなくなり、今度はマイクロ波電力の安定性が原子発振器の性能に大きく係わってくる。また前述の解析より、光入力窓22a付近にインピーダンス変化があると、空洞共振器22のQ値が変化してしまうため安定度が劣化する。通常、空洞共振器22の共振長Lは固定であるため、外部インピーダンスの影響による空洞共振器22の実効的な共振長の変動量を補正することは不可能である。
高性能化を目指す場合には、カットオフ導波管22bを付けることにより空洞共振器22のQ値を上げることが望ましいが、小型化と相反する結果となる。カットオフ導波管22bを付けて、かつ、小型化するために、最外郭の磁気シールド槽25の光入力側をカットオフ導波管22bの管端面に合わせることも考えられるが、磁気シールド槽25の励起光を入力する窓の開口径が大きくなることによる外部磁場の漏れ込み増加と、空洞共振器22を温度安定化する際に周囲温度の変動が直接カットオフ導波管22bから熱伝導されてしまう問題が生じてしまい、やはり原子発振器の性能の劣化を招く。
【0012】
本発明の目的は、前述の光入力窓22aとカットオフ導波管22bの問題点を解決し、小型で高性能な原子発振器を実現することである。
【0013】
【課題を解決するための手段】
前述の課題を解決するために、光源部と光入力窓との間の励起光の光路上にレンズを備えることとし、該レンズによって励起光の光束の径を変え、光入力窓を励起光が通過するときには光束の径を小さくし、光入力窓を通過した後は光束の径が大きくなるようにした。すなわち、本発明の原子発振器は、励起光を発生する光源部と、金属原子を封入したガスセルと、該ガスセルを内蔵し、かつ、前記励起光を導入する光入力窓、マイクロ波供給手段及び該光入力窓から導入されて前記ガスセルを透過した励起光を受光し電気信号に変換する光電変換素子を有しており、前記励起光とマイクロ波とを受けて光・マイクロ波二重共鳴を起こさせる空洞共振器とを含み、該光・マイクロ波二重共鳴が起きた際に生じる共鳴周波数を検出して周波数の基準に用いる原子発振器において、
前記光源部は半導体レーザを用いており、
前記光源部と前記光入力窓との間の前記励起光の光路上で、かつ前記空洞共振器の外側で、前記光入力窓の近傍に配置されており、前記半導体レーザから出射した励起光を通過し、該励起光が前記光入力窓を通過した後にその光束が次第に広がるようにするレンズ(28)を備えた。
【0014】
【作用】
レンズで励起光の光束の径を小さくして光入力窓を通過させることができるから、光入力窓の開口径を小さくできる。光入力窓の開口径が空洞共振器内のマイクロ波電磁界を乱さない程度に小さければ、空洞共振器のQ値が下がることはないので、カットオフ導波管が必要無く、またマイクロ波電力も小さい量で励振がおこなえる。レンズで絞りこまれた励起光は光入力窓通過後に次第に広がり、空洞共振器内部のガスセルへ入射する。このことにより、励起光は損失が無くガスセル全体に照射され、また空洞共振器のQ値が下がらずに最適な励振がおこなえる。
【0015】
【発明の実施の形態】
以下、本発明の原理形態を図1を用いて説明する。図1は、本発明の要部である二重共鳴部2の構成を主に示している。ただし、発明に関連する要部について説明するために、マイクロ波アンテナ24、静磁場コイル26、恒温ヒータ27については説明を省略する。また、原子発振器の構成は図3に示す基本構成と同じであり、光源部1、信号処理制御装置3、周波数合成・逓倍回路4、および電圧制御水晶発振器5は従来と同様であるので、その説明は省略する。なお、この原理形態では、光源部1からは励起光をガスセル21全体に照射できるように、従来の空洞共振器22の光入力窓22aの開口径に合うような径の大きな光束の励起光が出力されている。原理形態の二重共鳴部2は、金属原子を封入したガスセル21を内蔵し、一方の端面に光入力窓22aを有し、対向する他方の端面には光電変換素子23を有する空洞共振器22、該空洞共振器22を覆う磁気シールド槽25、及び該磁気シールド槽25の光入力窓25aに取り付けられたレンズ28を備えている。レンズ28は凸レンズである。破線は励起光の光束を示す。光源部1から出射された励起光の光束はレンズ28によって一旦細くなる。励起光が細くなった部分(この原理形態ではレンズ28の焦点近傍)に光入力窓22aが位置し、励起光が損失せずに該光入力窓22aを通過する。光入力窓22aの開口径は空洞共振器22内のマイクロ波電磁界を乱さない大きさとなっている。例えば空洞共振器22の内径がφ70mmで開口径が5mmとすると光入力窓22aが存在しない場合とほぼ同じであり、光入力窓22aの外近傍に誘電体が存在しても、そのことにより外部インピーダンスは変化しない。光入力窓22aを通過した励起光は次第に広がりながらガスセル21を透過し、光電変換素子23で受光される。励起光が広がることにより、空洞共振器22内の光ポンピングとマイクロ波励振がガスセル21内の金属原子に大きく作用する。この原理形態(図1)ではレンズ28を内側の磁気シールド槽25に配している。通常、外部磁場の影響を除去して高性能化を図るために、磁気シールド槽は2層以上を施すが、レンズ28の焦点距離に合わせて、その最外層近傍にレンズ28を配しても良い。二重共鳴部2の小型化を図るには、レンズ28の焦点距離のできるだけ小さいものを使用するようにすればよい。特に、光源部1にランプセルを用いる場合には、所望の励起波長を抽出するためにガスセル21の光入射側にフィルタセル29を挿入する必要があるが、コヒーレントな単一スペクトラムの光が得られる半導体レーザの場合には、フィルタセル29を挿入する必要がない。また、発明が解決しようとする課題の項で説明した空洞共振器22の寸法を例にとると、空洞共振器22の内径がφ70mmの場合、カットオフ導波管22bの寸法20mm分の小型化が図れるが、小型化を図らずに、その20mm分を、空洞共振器22を光軸方向に伸ばし、ガスセル21を大きくすることに当てれば、光・マイクロ波二重共鳴の作用領域を大きくとることが可能となるので、高性能化の効果が得られる。
【0016】
図2は、本発明の実施の形態を説明するための図で、要部である二重共鳴部2の構成を主に示している。ただし、発明に関連する要部について説明するために、マイクロ波アンテナ24、静磁場コイル26、恒温ヒータ27については省略している。また、光源部1、信号処理制御装置3、周波数合成・逓倍回路4、および電圧制御水晶発振器5については、その説明を省略する。なお、この実施の形態では原理形態と異なり、光源部1にはLDが用いられており、径の小さい光束の励起光が出力されている。従来の原子発振器では、光源部1にLDが用いられている場合は、ガスセル21への照射面積を増すために、光源部1において複合レンズでビーム径を太く成形し、空洞共振器22の光入力窓22aの開口径に合うような径の光束の励起光にして出力していた。第2の実施の形態は、光源部1からの励起光の光束の径が小さいこと、レンズ28に凹レンズを用いてビーム径を広げていること、および、レンズ28はビーム径を広げるだけなので光入力窓22aの開口径を小さくするために、光入力窓22aの近傍に設けられていることを除いて原理形態と同じである。実施の形態では、レンズ1枚を調整することで最適な光ポンピングが行える。このような構造により、マイクロ波電磁界を乱すこと無く二重共鳴現象が最適におこなわれ、またレンズを付けたことによる空洞共振器22の外部のインピーダンスの変化も影響せず、かつ小型化も図れる。
【0017】
【発明の効果】
以上述べたように、本発明の原子発振器は、光源部と光入力窓との間の励起光の光路上にレンズを備えることとし、該レンズによって励起光の光束の径を変え、光入力窓を励起光が通過するときには光束の径を小さくし、光入力窓を通過した後は光束の径が大きくなるようにしたから、小型で高性能な原子発振器が実現できた。詳述すれば、光入力窓を励起光が通過するときには光束の径が小さくなるので、光入力窓の開口径を小さくでき、カットオフ導波管がなくてもマイクロ波電磁界を乱されず、空洞共振器のQ値が向上する。また、光入力窓を通過後励起光が広がるのでガスセルへの照射面積が増し、効率のよい二重共鳴が得られ、原子発振器の性能が向上する。さらに、カットオフ導波管を付けないことにより小型化が図れる。つまり、原子発振器の性能を向上しながら、装置の小型化も達成できる。さらに、空洞共振器の外側で、光入力窓の近傍に配置したレンズ1枚を調整することで最適な光ポンピングが行える。このような構造により、マイクロ波電磁界を乱すこと無く二重共鳴現象が最適におこなわれ、またレンズを付けたことによる空洞共振器22の外部のインピーダンスの変化も影響しない。
【図面の簡単な説明】
【図1】本発明の原理形態の二重共鳴部の構成図である。
【図2】本発明の実施の形態の二重共鳴部の構成図である。
【図3】ガスセル型原子発振器の基本構成図である。
【図4】従来の原子発振器の二重共鳴部の構成図である。
【図5】ルビジウム原子のエネルギー3順位系の説明図である。
【図6】カットオフ導波管を付けた空洞共振器の解析モデルを示す図である。
【図7】カットオフ導波管の長さと空洞共振器の実効的な共振長の変化量との関係を示す図である。

Claims (1)

  1. 励起光を発生する光源部(1)と、
    金属原子を封入したガスセル(21)と、
    該ガスセルを内蔵し、かつ、前記励起光を導入する光入力窓(22a)、マイクロ波供給手(24)及び該光入力窓から導入されて前記ガスセルを透過した励起光を受光し電気信号に変換する光電変換素子(23)を有しており、前記励起光とマイクロ波とを受けて光・マイクロ波二重共鳴を起こさせる空洞共振器(22)とを含み、該光・マイクロ波二重共鳴が起きた際に生じる共鳴周波数を検出して周波数の基準に用いる原子発振器において、
    前記光源部は半導体レーザを用いており、
    前記光源部と前記光入力窓との間の前記励起光の光路上で、かつ前記空洞共振器の外側で、前記光入力窓の近傍に配置されており、前記半導体レーザから出射した励起光を通過し、該励起光が前記光入力窓を通過した後にその光束が次第に広がるようにするレンズ(28)を備えたことを特徴とする原子発振器。
JP9821497A 1997-03-31 1997-03-31 原子発振器 Expired - Fee Related JP3963998B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9821497A JP3963998B2 (ja) 1997-03-31 1997-03-31 原子発振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9821497A JP3963998B2 (ja) 1997-03-31 1997-03-31 原子発振器

Publications (2)

Publication Number Publication Date
JPH10284772A JPH10284772A (ja) 1998-10-23
JP3963998B2 true JP3963998B2 (ja) 2007-08-22

Family

ID=14213733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9821497A Expired - Fee Related JP3963998B2 (ja) 1997-03-31 1997-03-31 原子発振器

Country Status (1)

Country Link
JP (1) JP3963998B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811778B2 (ja) 2003-08-20 2006-08-23 独立行政法人情報通信研究機構 レーザー周波数安定化装置、及びレーザー周波数安定化方法
JP4720635B2 (ja) * 2006-06-14 2011-07-13 エプソントヨコム株式会社 原子発振器、受動形原子発振器、原子発振器の温度制御方法及び受動形原子発振器の温度制御方法
JP2009164331A (ja) * 2008-01-07 2009-07-23 Epson Toyocom Corp 原子発振器および発振デバイス
JP5343356B2 (ja) 2008-01-07 2013-11-13 セイコーエプソン株式会社 原子発振器
JP5375279B2 (ja) 2008-06-18 2013-12-25 セイコーエプソン株式会社 原子発振器
JP5256999B2 (ja) 2008-10-29 2013-08-07 セイコーエプソン株式会社 原子発振器の物理部
JP2012191138A (ja) 2011-03-14 2012-10-04 Seiko Epson Corp ガスセルユニット、原子発振器および電子装置
JP5655647B2 (ja) 2011-03-14 2015-01-21 セイコーエプソン株式会社 ガスセルユニット、原子発振器および電子装置
JP2013030513A (ja) 2011-07-26 2013-02-07 Seiko Epson Corp ガスセルユニットおよび原子発振器
JP6160021B2 (ja) * 2012-02-17 2017-07-12 セイコーエプソン株式会社 原子発振器
JP6263869B2 (ja) * 2013-06-17 2018-01-24 セイコーエプソン株式会社 原子発振器、および電子機器
CN103872574B (zh) * 2014-03-17 2016-11-23 北京大学 一种产生红外2.7微米激光的装置及方法
JP6728867B2 (ja) * 2016-03-28 2020-07-22 セイコーエプソン株式会社 量子干渉装置、原子発振器、および電子機器
CN105762643B (zh) * 2016-04-19 2019-02-19 中国科学院电子学研究所 一种双层结构的碱金属蒸气室

Also Published As

Publication number Publication date
JPH10284772A (ja) 1998-10-23

Similar Documents

Publication Publication Date Title
JP3963998B2 (ja) 原子発振器
US5517157A (en) Evanescent-field interrogator for atomic frequency standards
US5192921A (en) Miniaturized atomic frequency standard
US6265945B1 (en) Atomic frequency standard based upon coherent population trapping
US5327105A (en) Gas cell for a miniaturized atomic frequency standard
JP3515794B2 (ja) 原子周波数標準器
US5657340A (en) Rubidium atomic clock with fluorescence optical pumping and method using same
JP5343356B2 (ja) 原子発振器
EP0093020B1 (en) Miniaturized optical-physics package for an atomic frequency standard
US20110260801A1 (en) Physical section of atomic oscillator
US10707884B2 (en) Atomic oscillator and electronic apparatus
US10756743B2 (en) Atomic oscillator and electronic device
US3395367A (en) System for stabilizing the amplitude of a laser output
JP2009302706A (ja) 原子発振器およびその制御方法
CN110535005B (zh) 基于电磁诱导透明原理的轻小型光电振荡器及低相噪微波信号产生方法
JP2008211138A (ja) ガスセル型原子発振器
JP5407570B2 (ja) 原子発振器
JP2015228461A (ja) 原子共鳴遷移装置、原子発振器、電子機器および移動体
US3537027A (en) Frequency-stabilized single mode ring lasers
JP2017152514A (ja) 量子干渉装置、原子発振器、電子機器、および移動体
US7447249B2 (en) Lighting system
JPH0951270A (ja) 原子周波数標準器
JP2016015363A (ja) 量子干渉装置、原子発振器
JPS5917902B2 (ja) 原子発振器
JPS6428879A (en) Higher harmonic generating solid laser equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees