JP3963213B2 - Braided thermoelectric conversion panel - Google Patents

Braided thermoelectric conversion panel Download PDF

Info

Publication number
JP3963213B2
JP3963213B2 JP2002005519A JP2002005519A JP3963213B2 JP 3963213 B2 JP3963213 B2 JP 3963213B2 JP 2002005519 A JP2002005519 A JP 2002005519A JP 2002005519 A JP2002005519 A JP 2002005519A JP 3963213 B2 JP3963213 B2 JP 3963213B2
Authority
JP
Japan
Prior art keywords
heat shield
conductive material
thermoelectric conversion
braided
material body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002005519A
Other languages
Japanese (ja)
Other versions
JP2003209297A (en
Inventor
裕司 高井
直克 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Tokyo Denki University
Original Assignee
National Institute of Information and Communications Technology
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology, Tokyo Denki University filed Critical National Institute of Information and Communications Technology
Priority to JP2002005519A priority Critical patent/JP3963213B2/en
Publication of JP2003209297A publication Critical patent/JP2003209297A/en
Application granted granted Critical
Publication of JP3963213B2 publication Critical patent/JP3963213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱エネルギーを電力に変換する編込み型熱電変換パネルに係り、電力エネルギー産業分野における発電システムの新たな一つとして利用可能な編込み型熱電変換パネルに関する。
【0002】
【従来の技術】
近年、地球環境の保全を年頭に置いた産業・工業開発が積極的に行われており、電力エネルギー分野も例外でなく、環境低負荷型の電力エネルギーの開発・研究がなされている。この種の環境低負荷型の電力エネルギー源としては、従来、太陽光発電、風力発電や張力発電などがある。一方、地球上における数十度程度の僅かな温度差は高エントロピー状態として考えられ、その温度差を直接的にエネルギー源として利用することは困難である。しかしながら、この数十度程度の僅かな温度差は地球上に豊富に存在していると思われる。将来、この様な高エントロピーでかつ低エネルギーな状態をかき集めて、利用度の高い電気エネルギーを作り出す技術は地球上でのエネルギー資源の有効利用のみでなく、宇宙開発でも重要になると考えられる。
【0003】
低温度差による発電としては、ゼーベック効果を利用した熱電発電等が提案されている。つまり、熱エネルギーから起電力を得る熱電変換素子を用いて大電力発生を可能にするものとして、図3に示すように、鉄板11をアコーディオン状に湾曲させた構造のものが考えられている(鉄と鋼Vol.83,No2「低温用鉄系熱電変換素子」参照)。これによれば、湾曲部分12および13にアルミニウムを熱拡散させることで異種金属接合と同様なゼーベック効果を導いている。図3の符号12と13の湾曲部分にそれぞれ高温と低温を形成することで熱起電力が発生する。
【0004】
前記の鉄板を湾曲させた熱電変換素子は、大面積の熱電変換パネルを作成するために有効である。しかしながら、前記の熱電変換素子では、鉄板の重量がそのまま発電パネルの重量となり、建設上における支持方法が困難なものとなる。また、発電の要である熱電対の密度を上げることは、鉄板を湾曲させて製作するものであるため困難になる。
【0005】
また、他の従来技術の熱電変換素子には、図4に示すように、コンスタンタン金属線21とステンレス金属板22を直列に接合する方式のものがある(特開平09-2348487号)。この場合、熱電対を作成する方法は異種の金属線の溶接によるものであり、通常のものである。しかるに、熱電対同士を直列に接続することで、電池に対する充電を容易ならしめる高い電圧を生成可能にしている点に特徴がある。具体的には、図4に示すように、直列に接続された熱電対をガスコンロの周りの金属枠24に配置することで、金属枠の中心に位置するコンロの火炎とステンレス土台との温度差で発電し、センサー用の電池に蓄電することを目的としている。
【0006】
しかしながら、上記の熱電変換素子は、熱電対の直列接続は電圧の上昇に寄与するため、重要であると考えられる。熱電変換素子の設置箇所には、コンロ周辺という火炎熱でかなりの高温領域が存在することと、すぐ近くにステンレス土台という室温に近い低温領域があることにより、温度差を大きくしてセンサー用の電池を充電する発電システムの小型化がなされている。しかるに、上記の方式では、熱エネルギーの豊富な環境で僅かな電力をセンサー用として充電することを目的としているため、熱源に対する熱電対群の接触面積が小さく、大電力の発生用には適しないという問題点がある。
【0007】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に着目してなされたもので、地球上に存在する数〜数十度程度の僅かな温度差、例えば大気と水面もしくは地表面等の温度エネルギーを電力に変換可能にし、温度差が存在する広い面積に配置して効率良く発電することを可能にする編込み型熱電変換パネルを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、前記課題を解決するため、熱電対を構成するそれぞれ異種の第1の導電物質体と第2の導電物質体を互いが電気的絶縁状態になるようにして遮熱体の一方側および他方側とに往復して貫通配置し、該遮熱体の一方側と他方側で第1の導電物質体と第2の導電物質体同士の電気的接続箇所を設けてそれぞれ熱電対を構成し、前記遮熱体の一方側と他方側の温度差により前記遮熱体の一方側で構成された熱電対と他方側で構成された熱電対とで起電力を発生させるようにしたことを特徴とする編込み型熱電変換パネルである。
本発明によれば、第1の導電物質体と第2の導電物質体を遮熱体に貫通配置しており、遮熱体としてエポキシ樹脂等を利用でき、各導電物質体をこの遮熱体に編込みで配設できるので、支持材として要求される硬度や重量等の耐久性と、熱電変換に要求されるゼーベック係数や抵抗率等の特性を同時に良質とする材料の選択が、独立にかつ最適に選択できる。ところで、従来技術で述べた「低温用鉄系熱電変換素子」ではアコーディオン状に湾曲させた鉄板が熱電対と支持材としての作用を兼ねているため、支持材として要求される硬度や重量等に対する耐久性と、熱電変換に要求されるゼーベック係数や抵抗率等の特性を同時に良質とする材料の選択が困難である。これに対して、本発明の編込み型熱電変換パネルでは、支持材にできる遮熱体と熱電対材料の第1の導電物質体および第2の導電物質体を独立にかつ最適に選択することができる。例えば、遮熱体をエポキシ樹脂で形成すれば、軽量なパネルに構成でき、遮熱体で第1の導電物質体および第2の導電物質体の支持体としてエポキシを選択することは従来にない軽量なパネルとして貢献できる。もちろんその他の樹脂で遮熱体を形成することができる。
【0009】
なお、本発明においては、線状の第1の導電物質体(例えば金属線)と第2の導電物質体(例えば金属線)は、パネル状の遮熱体を縫うように往復配置し、かつ、該遮熱体の一方側面および他方側面とで第1の導電物質体と第2の導電物質体とを絡めて電気的接続箇所を形成した、編込み型としたことが好適である。このようにすれば、従来技術で述べた「低温用鉄系熱電変換素子」と比較して熱電対の面密度を上げることができる。また、前記従来技術として述べた特開平09−2348487号公報に記載の技術では熱電対を直列に並べる点では有用であるが、並列接続についてはまったく発想していない。これに対して、本発明において各導電物質体線を編込み式とした編込み式熱電変換パネルとすれば、熱電対の直列接続と共に、熱電対の並列接続を同時に実現できる。したがって、熱電対の直列接続は電圧の上昇に寄与でき、並列接続は電力の上昇に寄与できる。前記公報では熱電対を直列的に接続しているだけであり電圧上昇のみしかできないが、本発明では電力上昇も合わせて図ることができる。
また、本発明においては、遮熱体をパネル状とし、遮熱体の一方側面に熱吸収体を設け、他方側面にフィンなどの冷却器を設けたことが好適である。このようにすれば、遮熱体と第1の導電物質体および第2の導電物質体との熱電対に光を吸収する黒体とを組み合わせることにより、簡単な太陽電池を構成することができる。
【0010】
【発明の実施の形態】
以下、図に基づき本発明の実施の形態を詳細に説明する。
図1は本発明の編込み型熱電変換パネルに係る実施形態の編込み型熱電変換パネルの説明図である。この編込み型熱電変換パネルは異種の金属線を編込み方法により直列・並列に熱電対が配置された熱電変換パネルである。熱電対を構成するのはそれぞれ異種のアルメル線(第1の導電物質体に相当)とクロメル線(第2の導電物質体に相当)であり一般的な熱電対材料として用いられている。
【0011】
図1は、前記編込み型熱電変換パネルの上面視および断面視の説明図であり、網掛け(グレー)で覆って示されているものは支持材としてのエポキシプレート1である。ただし、図1において、(a)はエポキシプレート表面を、(b)は同断面を示しており、アルメル線2は太線で示し、クロメル線3を細線として表記している。
【0012】
また、アルメル線2およびクロメル線3は、エポキシプレート1を貫通してその表面と裏面を縫うように編みこまれるものであり、図1ではアルメル線2およびクロメル線3共に、前記エポキシプレート1の裏面にあるときには破線で示し、表面にあるときには実線で示している。例えば、アルメル線2に注目したときには302で表面にあり、303でエポキシプレート1を表面から裏面に向けて貫通し304で裏面へと縫い込まれる。つまり、符号305で示す縦のライン上にアルメル線2が等間隔で編み込まれることとなる。同様にクロメル線3も支持材のエポキシプレート1に対して編み込まれるが、符号306で示す領域のようにアルメル線2とクロメル線3の結び目ができる。図2に、この結び目の領域を拡大したものである。
【0013】
図2で示すように、アルメル線2(図2中符号41で示す)は、エポキシプレート1に空けられた穴43を通り、裏面から表面に表れ、再び穴44から裏面へ移る。クロメル線3も同様にエポキシプレート1に空けられた穴43を通り、裏面から表面に表れ、再び穴44から裏面へ移る。アルメル線2とクロメル線3の絡み合って交差する箇所46、47においては、一方の交差点46(図2で上側)ではアルメル線2が下に、クロメル線3が上に位置し、他方の交差点47(図2の下側)ではアルメル線2が上に、クロメル線3が下に位置して互いに接する。厳密には、交差点46、47の2点での接合点が形成されるが、実際にはアルメル線2とクロメル線3の各ワイヤーをエポキシプレート1に編み込むと、ワイヤーの太さのために交差点46から交差点47にかけて面で接触する。アルメル線2とクロメル線3を結ぶことによって熱電対としての接触面を作成する。図1では、そのような接触面つまり熱電対(の構造)を支持材であるエポキシプレート1の表面と裏面に多数を作成できる。例えば図1の307、309、311は支持材であるエポキシプレート1の裏面にある熱電対、また、308、310、312は該エポキシプレート1の表面にある熱電対となる。
【0014】
エポキシプレート1は遮熱体であって、エポキシプレート1の一方側と他方側でアロメル線2とクロメル線3同士の電気的接続箇所を設けてそれぞれ熱電対を構成し、前記エポキシプレート1の一方側と他方側の温度差により前記遮熱体の一方側で構成された熱電対と他方側で構成された熱電対とで起電力を発生させるようにしたものである。
詳細には、編込み型熱電変換パネルでは、支持材のエポキシプレート1の表面と裏面で形成された温度差により発電するシステムである。図1において、支持材の表面が高温で、裏面が低温となるような温度差を形成したとすると熱電対のペアは307と308、309と310および311と312にゼーベック効果に伴う起電力が発生する。また、熱電対列308、307、310、309では高温と低温にそれぞれ置かれた熱電対列が交互に配置されており、熱起電力が直列に接続されていることが分かる。この直列的な配置は、電圧を向上させるために有効である。また、熱電対は面内で直列および並列にそれぞれ接続されており、発生した起電力は313と314間に出力される。出力電力量は面内に形成された熱電対の数に比例する。
【0015】
前記実施形態の編込み型変換パネルによれば、単純な動作である線材の編込みにより容易に熱電対を多数配列することができる。また、熱起電力を有効に利用するために必要な直列的および並列的な熱電対の接続を形成することができる。
また、前記実施形態では、第1と第2の導電物質体にはアルメル線とクロメル線を例としてあげたが、本発明の第1と第2の導電物質体はこれらアルメル線とクロメル線に限定されず、熱電対を構成できる二種類の導電物質体であれば他の導電物質体を用いることも本発明の範囲内である。また、第1の導電物質体の第2の導電物質体の使用形態は、線材で用いることに限定されず、構造的に許容されるならば、帯状、板状その他の構造を採ることができる。
【0016】
【発明の効果】
以上説明したとおり、この発明によれば、第1の導電物質体と第2の導電物質体を遮熱体に貫通配置しており、遮熱体としてエポキシ樹脂等を利用でき、各導電物質体をこの遮熱体に編込みで配設できるので、支持材として要求される硬度や重量等の耐久性と、熱電変換に要求されるゼーベック係数や抵抗率等の特性を同時に良質とする材料の選択が、独立にかつ最適に選択できる。
ここで、従来技術で述べた「低温用鉄系熱電変換素子」ではアコーディオン状に湾曲させた鉄板が熱電対と支持材としての作用を兼ねているため、支持材として要求される硬度や重量等に対する耐久性と、熱電変換に要求されるゼーベック係数や抵抗率等の特性を同時に良質とする材料の選択が困難である。これに対して、本発明として述べた編込み型熱電変換パネルでは支持材と熱電対材料を独立にかつ最適に選択することができる。例えば、遮熱体をエポキシ樹脂で形成すれば、軽量なパネルに構成でき、遮熱体で第1の導電物質体および第2の導電物質体の支持体としてエポキシを選択することは従来にない軽量なパネルとして貢献できる。もちろんその他の樹脂で遮熱体を形成することができる。
【図面の簡単な説明】
【図1】本発明の編込み型熱電変換パネルに係る実施形態の編み込み型熱電変換パネルの説明図である。
【図2】結び目の領域を拡大して示す説明図である。
【図3】従来技術の鉄板をアコーディオン状に湾曲させた熱電対構造の説明図である。
【図4】他の従来技術の説明図である。
【符号の説明】
1 エポキシプレート
2 アルメル線
3 クロメル線
46、47 交差点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a braided thermoelectric conversion panel that converts thermal energy into electric power, and relates to a braided thermoelectric conversion panel that can be used as a new power generation system in the field of electric power energy industry.
[0002]
[Prior art]
In recent years, industrial and industrial development has been actively carried out with the preservation of the global environment at the beginning of the year, and the power energy field is no exception, and development and research of environmentally low load type power energy has been made. Conventionally, as this kind of environmentally low load type electric energy source, there are solar power generation, wind power generation, tension power generation and the like. On the other hand, a slight temperature difference of about several tens of degrees on the earth is considered as a high entropy state, and it is difficult to directly use the temperature difference as an energy source. However, this slight temperature difference of several tens of degrees seems to exist abundantly on the earth. In the future, technologies that create such high-entropy and low-energy states and create highly utilized electric energy will be important not only for effective use of energy resources on the earth but also for space development.
[0003]
As power generation by a low temperature difference, thermoelectric power generation using the Seebeck effect has been proposed. That is, as shown in FIG. 3, a structure in which the iron plate 11 is curved in an accordion shape is considered as one that enables large power generation using a thermoelectric conversion element that obtains an electromotive force from thermal energy ( Iron and steel Vol. 83, No. 2 (Refer to “Low-temperature iron-based thermoelectric conversion element”) According to this, the Seebeck effect similar to that of dissimilar metal bonding is introduced by thermally diffusing aluminum in the curved portions 12 and 13. A thermoelectromotive force is generated by forming a high temperature and a low temperature at the curved portions 12 and 13 in FIG.
[0004]
The thermoelectric conversion element obtained by bending the iron plate is effective for producing a large-area thermoelectric conversion panel. However, in the thermoelectric conversion element described above, the weight of the iron plate becomes the weight of the power generation panel as it is, and the supporting method in construction becomes difficult. Further, it is difficult to increase the density of the thermocouple, which is the key to power generation, because it is manufactured by curving an iron plate.
[0005]
As another conventional thermoelectric conversion element, there is a type in which a constantan metal wire 21 and a stainless metal plate 22 are joined in series as shown in FIG. 4 (Japanese Patent Laid-Open No. 09-2348487). In this case, the method of creating the thermocouple is by welding different kinds of metal wires, and is a normal one. However, it is characterized in that a high voltage that facilitates charging of the battery can be generated by connecting the thermocouples in series. Specifically, as shown in FIG. 4, the temperature difference between the flame of the stove located at the center of the metal frame and the stainless steel base by arranging the thermocouples connected in series on the metal frame 24 around the gas stove. It aims to generate electricity and store it in the sensor battery.
[0006]
However, the above-described thermoelectric conversion element is considered to be important because the series connection of thermocouples contributes to an increase in voltage. At the location where the thermoelectric conversion element is installed, there is a fairly high temperature area with flame heat around the stove, and there is a low temperature area near the room temperature called a stainless steel base in the immediate vicinity. The power generation system for charging the battery has been downsized. However, the above method is intended to charge a small amount of electric power for the sensor in an environment rich in thermal energy, and therefore, the contact area of the thermocouple group with the heat source is small and is not suitable for generating large electric power. There is a problem.
[0007]
[Problems to be solved by the invention]
The present invention has been made paying attention to the problems of the prior art described above, and uses a slight temperature difference of several to several tens of degrees existing on the earth, for example, temperature energy of the atmosphere and the water surface or the ground surface as power. It is an object of the present invention to provide a braided thermoelectric conversion panel that can be converted and can be efficiently generated by arranging it over a wide area where there is a temperature difference.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a first side of the heat shield so that the different first and second conductive materials constituting the thermocouple are electrically insulated from each other. And reciprocatingly arranged to and from the other side, and the first and second conductive material bodies are electrically connected on one side and the other side of the heat shield to form thermocouples respectively. The electromotive force is generated by the thermocouple configured on one side of the heat shield and the thermocouple configured on the other side due to the temperature difference between one side and the other side of the heat shield. This is a knitted thermoelectric conversion panel.
According to the present invention, the first conductive material body and the second conductive material body are disposed through the heat shield, and an epoxy resin or the like can be used as the heat shield. Therefore, it is possible to select materials that have high durability, such as hardness and weight required as a support material, and properties such as Seebeck coefficient and resistivity required for thermoelectric conversion. And can be selected optimally. By the way, in the "low-temperature iron-based thermoelectric conversion element" described in the prior art, the iron plate curved in an accordion shape also serves as a thermocouple and a support material. It is difficult to select a material that has good durability and properties such as Seebeck coefficient and resistivity required for thermoelectric conversion. On the other hand, in the braided thermoelectric conversion panel of the present invention, the heat shield that can be used as the support material and the first conductive material body and the second conductive material body of the thermocouple material are independently and optimally selected. Can do. For example, if the heat shield is formed of an epoxy resin, it can be configured as a lightweight panel, and there is no conventional selection of epoxy as a support for the first conductive material body and the second conductive material body in the heat shield. Can contribute as a lightweight panel. Of course, the heat shield can be formed of other resins.
[0009]
In the present invention, the linear first conductive material body (for example, metal wire) and the second conductive material body (for example, metal wire) are reciprocated so as to sew the panel-shaped heat shield, and It is preferable to use a braided type in which the first conductive material body and the second conductive material body are entangled on one side surface and the other side surface of the heat shield to form an electrical connection portion. In this way, the surface density of the thermocouple can be increased as compared with the “low-temperature iron-based thermoelectric conversion element” described in the prior art. Moreover, although the technique described in Japanese Patent Application Laid-Open No. 09-2348487 described as the prior art is useful in that the thermocouples are arranged in series, the parallel connection is not considered at all. On the other hand, in the present invention, if a braided thermoelectric conversion panel in which each conductive material body wire is braided, parallel connection of thermocouples can be realized simultaneously with serial connection of thermocouples. Therefore, the serial connection of thermocouples can contribute to an increase in voltage, and the parallel connection can contribute to an increase in power. In the above publication, only thermocouples are connected in series and only a voltage increase can be achieved. However, in the present invention, an increase in power can also be achieved.
Further, in the present invention, it is preferable that the heat shield is in a panel shape, a heat absorber is provided on one side of the heat shield, and a cooler such as a fin is provided on the other side. In this way, a simple solar cell can be constructed by combining the heat shield and the thermocouple of the first conductive material body and the black body that absorbs light. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram of a braided thermoelectric conversion panel according to an embodiment of the braided thermoelectric conversion panel of the present invention. This braided thermoelectric conversion panel is a thermoelectric conversion panel in which different types of metal wires are arranged in series and in parallel by a braiding method. The thermocouples are composed of different kinds of alumel wires (corresponding to the first conductive material body) and chromel wires (corresponding to the second conductive material body), respectively, and are used as general thermocouple materials.
[0011]
FIG. 1 is an explanatory view of the braided thermoelectric conversion panel in a top view and a cross-sectional view, and an epoxy plate 1 serving as a support material is shown by being shaded (gray). However, in FIG. 1, (a) shows the epoxy plate surface, (b) shows the same cross section, the alumel wire 2 is shown by a bold line, and the chromel wire 3 is shown as a thin line.
[0012]
Further, the alumel wire 2 and the chromel wire 3 are knitted so as to penetrate the epoxy plate 1 and sew the front surface and the back surface of the epoxy plate 1, and both the alumel wire 2 and the chromel wire 3 in FIG. When it is on the back surface, it is indicated by a broken line, and when it is on the front surface, it is indicated by a solid line. For example, when attention is paid to the alumel wire 2, it is on the front surface at 302, penetrates the epoxy plate 1 from the front surface to the back surface at 303, and is sewn onto the back surface at 304. That is, the alumel wires 2 are knitted at equal intervals on the vertical line indicated by reference numeral 305. Similarly, the chromel wire 3 is also knitted to the support epoxy plate 1, but the knot between the alumel wire 2 and the chromel wire 3 can be formed as shown by a region indicated by reference numeral 306. FIG. 2 is an enlarged view of the knot region.
[0013]
As shown in FIG. 2, the alumel wire 2 (indicated by reference numeral 41 in FIG. 2) passes through the hole 43 formed in the epoxy plate 1, appears from the back surface to the front surface, and moves again from the hole 44 to the back surface. Similarly, the chromel wire 3 passes through the hole 43 formed in the epoxy plate 1, appears from the back surface to the front surface, and again moves from the hole 44 to the back surface. At locations 46 and 47 where the alumel line 2 and the chromel line 3 are intertwined and intersected, the alumel line 2 is located below and the chromel line 3 is located above and the other intersection point 47 at one intersection 46 (upper side in FIG. 2). In FIG. 2 (lower side), the alumel wire 2 is located on the upper side and the chromel wire 3 is located on the lower side so as to contact each other. Strictly speaking, junction points at two intersections 46 and 47 are formed, but in reality, when the wires of the alumel wire 2 and the chromel wire 3 are knitted into the epoxy plate 1, the intersection points due to the thickness of the wires. From 46 to the intersection 47, contact is made on the surface. A contact surface as a thermocouple is created by connecting the alumel wire 2 and the chromel wire 3. In FIG. 1, a large number of such contact surfaces, that is, thermocouples (structures) can be formed on the front and back surfaces of the epoxy plate 1 as a support material. For example, 307, 309, and 311 in FIG. 1 are thermocouples on the back surface of the epoxy plate 1 as a support material, and 308, 310, and 312 are thermocouples on the surface of the epoxy plate 1.
[0014]
The epoxy plate 1 is a heat shield, and an electrical connection portion between the alumel wire 2 and the chromel wire 3 is provided on one side and the other side of the epoxy plate 1 to constitute a thermocouple. An electromotive force is generated by a thermocouple configured on one side of the heat shield and a thermocouple configured on the other side due to a temperature difference between the side and the other side.
Specifically, the braided thermoelectric conversion panel is a system that generates electric power by a temperature difference formed between the front surface and the back surface of the epoxy plate 1 as a support material. In FIG. 1, if a temperature difference is formed such that the surface of the support material is hot and the back surface is cold, the thermocouple pairs have electromotive forces associated with the Seebeck effect at 307 and 308, 309 and 310, and 311 and 312. appear. In addition, it can be seen that in the thermocouple arrays 308, 307, 310, and 309, the thermocouple arrays placed at high and low temperatures are alternately arranged, and the thermoelectromotive forces are connected in series. This series arrangement is effective for improving the voltage. The thermocouples are connected in series and in parallel in the plane, and the generated electromotive force is output between 313 and 314. The amount of output power is proportional to the number of thermocouples formed in the plane.
[0015]
According to the braided conversion panel of the above-described embodiment, a large number of thermocouples can be easily arranged by braiding the wire, which is a simple operation. Further, it is possible to form serial and parallel thermocouple connections necessary for effectively using the thermoelectromotive force.
In the above embodiment, the alumel wire and the chromel wire are given as examples of the first and second conductive material bodies. However, the first and second conductive material bodies of the present invention are the alumel wire and the chromel wire. It is not limited, and it is also within the scope of the present invention to use other conductive material bodies as long as they are two types of conductive material bodies that can constitute a thermocouple. In addition, the usage form of the second conductive material body of the first conductive material body is not limited to being used in the wire, and may adopt a belt-like, plate-like or other structure if structurally acceptable. .
[0016]
【The invention's effect】
As described above, according to the present invention, the first conductive material body and the second conductive material body are disposed through the heat shield, and an epoxy resin or the like can be used as the heat shield. Can be installed in this heat shield by weaving, so that the durability and the properties required for the support material and the properties such as Seebeck coefficient and resistivity required for thermoelectric conversion can be improved at the same time. Selection can be made independently and optimally.
Here, in the “low-temperature iron-based thermoelectric conversion element” described in the prior art, since the iron plate curved in an accordion serves both as a thermocouple and a support material, the hardness and weight required for the support material, etc. However, it is difficult to select a material that has high durability and characteristics such as Seebeck coefficient and resistivity required for thermoelectric conversion. On the other hand, in the braided thermoelectric conversion panel described as the present invention, the support material and the thermocouple material can be selected independently and optimally. For example, if the heat shield is formed of an epoxy resin, it can be configured as a lightweight panel, and there is no conventional selection of epoxy as a support for the first conductive material body and the second conductive material body in the heat shield. Can contribute as a lightweight panel. Of course, the heat shield can be formed of other resins.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a braided thermoelectric conversion panel according to an embodiment of the braided thermoelectric conversion panel of the present invention.
FIG. 2 is an explanatory diagram showing an enlarged knot region;
FIG. 3 is an explanatory diagram of a thermocouple structure in which a conventional iron plate is bent in an accordion shape.
FIG. 4 is an explanatory diagram of another prior art.
[Explanation of symbols]
1 Epoxy plate 2 Alumel wire 3 Chromel wire 46, 47 Intersection

Claims (4)

熱電対を構成するそれぞれ異種の第1の導電物質体と第2の導電物質体を互いが電気的絶縁状態になるようにして遮熱体の一方側および他方側とに往復して貫通配置し、該遮熱体の一方側と他方側で第1の導電物質体と第2の導電物質体同士の電気的接続箇所を設けてそれぞれ熱電対を構成し、前記遮熱体の一方側と他方側の温度差により前記遮熱体の一方側で構成された熱電対と他方側で構成された熱電対とで起電力を発生させるようにしたことを特徴とする編込み型熱電変換パネル。The first conductive material body and the second conductive material body, which are different from each other constituting the thermocouple, are reciprocated through one side and the other side of the heat shield so that they are in an electrically insulated state. The first conductive material body and the second conductive material body are provided on one side and the other side of the heat shield to form a thermocouple, respectively, and one side and the other of the heat shield A braided thermoelectric conversion panel characterized in that an electromotive force is generated by a thermocouple configured on one side of the heat shield and a thermocouple configured on the other side due to a temperature difference on the side. 線状の第1の導電物質体と第2の導電物質体は、パネル状の遮熱体を縫うように往復配置し、かつ、該遮熱体の一方側面および他方側面とで第1の導電物質体と第2の導電物質体とを絡めて電気的接続箇所を形成した、編込み型としたことを特徴とする請求項1に記載の編込み型熱電変換パネル。The linear first conductive material body and the second conductive material body are reciprocally arranged so as to sew a panel-shaped heat shield, and the first conductive material is connected to one side and the other side of the heat shield. The braided thermoelectric conversion panel according to claim 1, wherein the braided thermoelectric conversion panel is a braided type in which a material body and a second conductive material body are entangled to form an electrical connection portion. 遮熱体をパネル状をとし、遮熱体の一方側面に熱吸収体を設け、他方側面にフィンなどの冷却器を設けたことを特徴とする請求項1または2に記載の編込み型熱電変換パネル。The braided thermoelectric device according to claim 1 or 2, wherein the heat shield has a panel shape, a heat absorber is provided on one side of the heat shield, and a cooler such as a fin is provided on the other side. Conversion panel. 遮熱体を樹脂絶縁体で構成することを特徴とする請求項1ないし3のうちのいずれか1項に記載の編込み型熱電変換パネル。The braided thermoelectric conversion panel according to any one of claims 1 to 3, wherein the heat shield is made of a resin insulator.
JP2002005519A 2002-01-15 2002-01-15 Braided thermoelectric conversion panel Expired - Fee Related JP3963213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005519A JP3963213B2 (en) 2002-01-15 2002-01-15 Braided thermoelectric conversion panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005519A JP3963213B2 (en) 2002-01-15 2002-01-15 Braided thermoelectric conversion panel

Publications (2)

Publication Number Publication Date
JP2003209297A JP2003209297A (en) 2003-07-25
JP3963213B2 true JP3963213B2 (en) 2007-08-22

Family

ID=27644541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005519A Expired - Fee Related JP3963213B2 (en) 2002-01-15 2002-01-15 Braided thermoelectric conversion panel

Country Status (1)

Country Link
JP (1) JP3963213B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899999B1 (en) 2006-04-13 2008-06-27 Commissariat Energie Atomique THERMOELECTRIC STRUCTURE AND USE OF THE THERMOELECTRIC STRUCTURE FOR FORMING A TEXTILE STRUCTURE
KR101640291B1 (en) * 2010-09-13 2016-07-15 템프로닉스, 인크. Thermoelectric panels, a thermoelectric device and a method for forming a string of thermoelectric elements
US8969703B2 (en) * 2010-09-13 2015-03-03 Tempronics, Inc. Distributed thermoelectric string and insulating panel
CN103635121B (en) 2011-07-06 2016-10-12 坦普罗尼克斯公司 Distributed heat electrical heating and cooling integrated
DE102011115172B4 (en) 2011-09-23 2017-02-16 Werner Neumann Method for producing a textile thermoelectric component, textile thermoelectric components and uses of a textile thermoelectric component
US9638442B2 (en) 2012-08-07 2017-05-02 Tempronics, Inc. Medical, topper, pet wireless, and automated manufacturing of distributed thermoelectric heating and cooling
DE102012018387B4 (en) 2012-09-18 2023-12-28 Evonik Operations Gmbh Method for producing a textile thermoelectric generator
KR20150060798A (en) 2012-09-25 2015-06-03 포레시아 오토모티브 시팅, 엘엘씨 Vehicle seat with thermal device
GB2507316B (en) * 2012-10-26 2015-09-16 Engineered Capabilities Ltd Thermoelectric transducers
JP2016518707A (en) * 2013-03-14 2016-06-23 ウェイク フォレスト ユニバーシティ Thermoelectric device and article and its application
WO2015066518A1 (en) 2013-11-04 2015-05-07 Tempronics, Inc. Design of thermoelectric string, panel, and covers for function and durability
JP2016018867A (en) * 2014-07-08 2016-02-01 株式会社Kri Flexible thermoelectric conversion device
WO2018047882A1 (en) * 2016-09-06 2018-03-15 国立大学法人奈良先端科学技術大学院大学 FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME
US20200119247A1 (en) * 2018-10-11 2020-04-16 Rolls-Royce Corporation Composite thermoelectric material
CN110265539B (en) * 2019-05-28 2023-02-07 广州钰芯传感科技有限公司 Processing method of copper-nickel alloy film thermocouple
GB2625312A (en) * 2022-12-13 2024-06-19 Qinetiq Ltd Thermoacoustic system

Also Published As

Publication number Publication date
JP2003209297A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP3963213B2 (en) Braided thermoelectric conversion panel
Sajid et al. An overview of cooling of thermoelectric devices
Rowe et al. Evaluation of thermoelectric modules for power generation
Haidar et al. Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric generators
Qing et al. Characteristics and parametric analysis of a novel flexible ink-based thermoelectric generator for human body sensor
US20070095379A1 (en) Thermoelectric generator
US7884277B2 (en) Apparatus for the conversion of electromagnetic radiation in electric energy and corresponding process
Crane et al. Progress towards maximizing the performance of a thermoelectric power generator
US20080283110A1 (en) Large scale array of thermoelectric devices for generation of electric power
US8519253B2 (en) Method for converting thermal energy into electrical energy
EP1780811B1 (en) Thermoelectric conversion module
CN101939661A (en) Energy conversion device
JP2006294935A (en) High efficiency and low loss thermoelectric module
WO2005117154A1 (en) High-density integrated type thin-layer thermoelectric module and hybrid power generating system
Sun et al. Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model
US20050236028A1 (en) Heat to cooling converter
Kumar et al. Transient optimization of a segmented variable area leg geometry-based solar thermoelectric generator
JP5775163B2 (en) Thermoelectric conversion element and thermoelectric conversion module using the same
EP0020758A1 (en) Energy production and storage apparatus
WO2002101912A1 (en) Thermoelectric effect device, direct energy conversion system, and energy conversion system
JP4261890B2 (en) Thermoelectric device, direct energy conversion system, energy conversion system
Renge et al. A review on generation of electricity using Peltier module
JP2008270618A (en) Thermoelectric power generation module
JPH0638560A (en) Generator by exhaust gas
JP4253471B2 (en) Energy conversion system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020115

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20020115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees