JP3959124B2 - Method for improving nitriding rate of rare earth-iron magnet alloy - Google Patents

Method for improving nitriding rate of rare earth-iron magnet alloy Download PDF

Info

Publication number
JP3959124B2
JP3959124B2 JP11695594A JP11695594A JP3959124B2 JP 3959124 B2 JP3959124 B2 JP 3959124B2 JP 11695594 A JP11695594 A JP 11695594A JP 11695594 A JP11695594 A JP 11695594A JP 3959124 B2 JP3959124 B2 JP 3959124B2
Authority
JP
Japan
Prior art keywords
rare earth
iron
alloy
magnet
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11695594A
Other languages
Japanese (ja)
Other versions
JPH07316752A (en
Inventor
淳 川本
和俊 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11695594A priority Critical patent/JP3959124B2/en
Publication of JPH07316752A publication Critical patent/JPH07316752A/en
Application granted granted Critical
Publication of JP3959124B2 publication Critical patent/JP3959124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、希土類−鉄磁石用合金の窒化速度を向上させる方法に関し、さらに詳しくは、磁気特性に優れた希土類−鉄−窒素磁石用合金を得るための希土類−鉄磁石用合金の窒化速度を向上させる方法に関する。
【0002】
【従来の技術】
従来より高性能で安価な磁石として希土類−鉄−窒素系磁石が知られている。この磁石は、希土類元素(R)と鉄(Fe)と窒素(N)とを主成分とする。希土類元素には主としてサマリウム(Sm)が用いられるが、必要によって他の希土類元素がこれを一部置換することがある。また、必要によって鉄以外の遷移元素、例えば、コバルト(Co)、ニッケル(Ni)等が鉄を一部置換することがある。
【0003】
更に、磁石の保磁力の向上、生産性の向上、低コスト化等の目的で、アルミニウム(Al)、マンガン(Mn)、クロム(Cr)、ニオビウム(Nb)、モリブデン(Mo)、アンチモン(Sb)、ゲルマニウム(Ge)、ジルコニウム(Zr)、銅(Cu)などのうちの少なくとも1種が合計で5原子量%以下添加されることもある。
【0004】
この希土類−鉄−窒素系磁石は、原料の希土類−鉄系合金を微粉砕し、これを含窒素雰囲気中で窒化処理して希土類−鉄−窒素系磁石用合金とし、更にこの磁石用合金を低融点金属、樹脂等のバインダーと混合して所望の形状に成型し、これを着磁して製造される。
【0005】
この磁石の保磁力の発生機構はニュークリエーションタイプであるため、十分な保磁力を得るためには磁石用合金を特定粒度まで微粉砕しなければならない。また、工業上有利に製造するためには、上記含窒素雰囲気中での窒化処理は、安全かつ短時間で行わなければならない。
【0006】
【発明が解決しようとする課題】
しかし、従来の希土類−鉄系磁石用合金を用いた場合は、窒化処理に時間がかかっていた。これを解決するため、窒化処理におけるガス雰囲気に、水素と窒素との混合ガスや、アンモニアガスを用いる方法が試みられているが、水素は爆発の危険があり、また、アンモニアガスは有毒であり、実用的でない。
【0007】
そこで、本発明は、窒化処理時間が短く、しかも安全な希土類−鉄−窒素磁石の製造に供される希土類−鉄磁石用合金の窒化速度を向上させる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的の達成のため本発明者らは、磁石用合金中にLi、Na、K、Rb、Cs、Ca、Sr、またはBaから選ばれる少なくとも1種の電子供与性の高いアルカリ金属あるいはアルカリ土類金属が特定量添加されることで、窒化処理における窒化速度が向上することを見いだした。
【0009】
即ち、本発明によれば、24〜26重量%の希土類元素と、残部が鉄またはその一部をコバルトで置換したものからなる希土類−鉄合金に、Li、Na、K、Rb、Cs、Ca、SrまたはBaから選ばれる少なくとも1種の元素を0.01〜0.1原子%添加し、希土類−鉄合金中の六方晶系の主相を成長、拡散させるに十分な条件で均質化処理を施した後、水素化処理を行うことを特徴とする希土類−鉄磁石用合金の窒化速度を向上させる方法が提供される。
【0010】
希土類は、Sm、Gd、Tb、及びCeの群から選ばれる少なくとも1種、あるいは、これらの少なくとも1種と、Pr、Nd、Pm、Dy、Ho、Er、Tm、及びYbの群から選ばれる少なくとも1種とからなるものであることが好ましい。特に希土類にSmを用いたものは磁石の磁気特性が高い。希土類の含有量は、磁石用合金中24〜26重量%であることが磁気特性の点で望ましい。
【0011】
鉄は、磁気特性を損なうことなく温度特性を改善する目的で、その一部をCoで置換してもよい。また、保磁力の向上、生産性の向上、および低コスト化のため、Al、Mn、Cr、Nb、Mo、Sb、Ge、Zr、Ni、又はCu等から選ばれる1種以上が、また、不可避的不純物としてSi、Ta等が、全体の3原子%以下含有されていてもよい。
【0012】
窒素は12原子%以上含まれていれば良い。これより少ないと、磁石の磁気特性が劣るからである。
【0013】
また、原料の希土類−鉄合金を製造する方法としては、鋳造法、急冷法、還元拡散法などがあり、特に制限されない。希土類−鉄合金中の六方晶系の主相を窒素処理前に成長、拡散させ、均質化させることが好ましい。この均質化は、例えば鋳造法にて製造した希土類合金粉を10−6トール以下の真空中、あるいは希ガス中で、1060〜1200℃で6時間以上保持すれば良い。
【0014】
磁石用合金中に添加する、Li、Na、K、Rb、Cs、Ca、Sr、またはBaのなかから少なくとも一種類の量は、0.005原子%以上であることが必要である。0.005原子%未満では窒化処理を短くできる効果がないからである。また、0.1原子%を越えると、得られる磁石の磁気特性が低下するので好ましくない。
【0015】
【作用】
一般に窒素雰囲気における希土類−鉄合金の窒化反応では、合金表面上で窒素分子が解離し窒素原子となる反応が律速反応となる。ここで、合金に電子供与性の強いアルカリ金属や、アルカリ土類金属を添加すればその反応速度が向上し、結果として合金の窒化反応の速度も速くなる。なお、合金の窒化処理に先立って合金の水素化処理を行えば、より希土類−鉄合金の窒化反応速度が向上する。
【0016】
【実施例】
以下、本発明を実施例によって、更に具体的に説明する。
【0017】
試料番号1〜17(試料番号1〜13は参考例) ・・・ 高周波溶解により作製した表1の組成をもつ希土類合金塊を、雰囲気調整炉を用いてアルゴン雰囲気中、1100℃で48時間保持し、均質化処理を施した。次にこれを100μm以下にジョークラッシャー、及び、ボールミルで粉砕した。この粉末を再び炉に入れ炉内温度を480℃とし、窒素雰囲気中でこの温度に所定時間保持した。次に冷却後の粉末をボールミルで更に平均粒径5μmまで微粉砕し、試料とした。
【0018】
試料番号18〜23 ・・・ 均質化処理後に、250℃、4時間の水素化処理を行った以外は試料番号1〜17と同様の方法で試料を作製した。
【0019】
各試料の磁気特性は、振動試料型磁力計を用いて測定した。試料番号1〜13、18〜21は本発明の実施例、試料番号14〜17、22、23は従来例である。なお、表中、合金の組成は、((SmFe17100−x+M100−yで表したときのMのx、Nのyの値を、磁気特性のうち磁化は4πIs(kG)、保磁力はiHc(kOe)を示した。結果を表1に示す。
【0020】
【表1】

Figure 0003959124
【0021】
以上より、本発明の磁石用合金は、12時間以下の短い窒化処理によっても優れた磁気特性を有することがわかる。なお、磁気特性のうち、磁化は12kG以上、保磁力は6kOe以上あれば十分である。
【0022】
【発明の効果】
本発明によれば、磁石用合金は、危険な水素やアンモニアガスを高温で取り扱うことなく、窒素ガスのみでも実用上十分短い窒化処理時間で得られ、磁気特性に優れる磁石の製造に用いることができる。[0001]
[Industrial application fields]
The present invention relates to a method for improving the nitriding rate of a rare earth-iron magnet alloy, and more specifically, the nitriding rate of a rare earth-iron magnet alloy for obtaining a rare earth-iron-nitrogen magnet alloy having excellent magnetic properties. It relates to a method of improving.
[0002]
[Prior art]
Rare earth-iron-nitrogen based magnets are known as high performance and inexpensive magnets. This magnet has rare earth elements (R), iron (Fe), and nitrogen (N) as main components. Samarium (Sm) is mainly used as the rare earth element, but other rare earth elements may be partially substituted if necessary. Further, if necessary, transition elements other than iron, for example, cobalt (Co), nickel (Ni), etc. may partially replace iron.
[0003]
Furthermore, for the purpose of improving the coercive force of the magnet, improving productivity, and reducing costs, aluminum (Al), manganese (Mn), chromium (Cr), niobium (Nb), molybdenum (Mo), antimony (Sb ), Germanium (Ge), zirconium (Zr), copper (Cu), or the like may be added in a total amount of 5 atomic% or less.
[0004]
This rare earth-iron-nitrogen based magnet is obtained by pulverizing a raw rare earth-iron based alloy and nitriding it in a nitrogen-containing atmosphere to form a rare earth-iron-nitrogen based magnet alloy. It is manufactured by mixing with a binder such as a low-melting-point metal or resin and molding it into a desired shape and magnetizing it.
[0005]
Since the generation mechanism of the coercive force of this magnet is a new creation type, in order to obtain a sufficient coercive force, the magnet alloy must be finely pulverized to a specific particle size. Moreover, in order to produce industrially advantageous, the nitriding treatment in the nitrogen-containing atmosphere must be performed safely and in a short time.
[0006]
[Problems to be solved by the invention]
However, when a conventional rare earth-iron-based magnet alloy is used, the nitriding treatment takes time. In order to solve this problem, attempts have been made to use a mixed gas of hydrogen and nitrogen or ammonia gas as the gas atmosphere in the nitriding treatment. However, hydrogen has a risk of explosion, and ammonia gas is toxic. Not practical.
[0007]
Therefore, an object of the present invention is to provide a method for improving the nitriding rate of a rare earth-iron magnet alloy used for the production of a safe rare earth-iron-nitrogen magnet with a short nitriding time.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the inventors of the present invention have proposed that at least one alkali metal or alkaline earth having at least one electron donating property selected from Li, Na, K, Rb, Cs, Ca, Sr, or Ba in the magnet alloy. It has been found that the addition of a specific amount of a similar metal improves the nitriding rate in the nitriding treatment.
[0009]
That is, according to the present invention, Li, Na, K, Rb, Cs, Ca is added to a rare earth-iron alloy composed of 24 to 26% by weight of a rare earth element and the balance of iron or a part thereof replaced with cobalt. , Sr or Ba at least one element selected from 0.01 to 0.1 atomic% , and homogenization treatment under conditions sufficient to grow and diffuse the hexagonal main phase in the rare earth-iron alloy A method for improving the nitriding rate of the alloy for rare earth-iron magnets is provided, which is characterized by performing a hydrogenation treatment after the above.
[0010]
Rare earth is selected from at least one, or a group of the at least one of these, Pr, Nd, Pm, Dy , Ho, Er, Tm, and Yb is selected Sm, Gd, Tb, and from the group of Ce It is preferably composed of at least one. In particular, a magnet using Sm as a rare earth has high magnetic properties. The rare earth content is preferably 24 to 26% by weight in the magnet alloy from the viewpoint of magnetic properties.
[0011]
Iron may be partially substituted with Co for the purpose of improving temperature characteristics without impairing magnetic characteristics. In addition, in order to improve coercivity, improve productivity, and reduce costs, one or more selected from Al, Mn, Cr, Nb, Mo, Sb, Ge, Zr, Ni, Cu, or the like, As an inevitable impurity, Si, Ta, or the like may be contained in an amount of 3 atomic% or less.
[0012]
Nitrogen should just be contained 12 atomic% or more. This is because if the amount is less than this, the magnetic properties of the magnet are inferior.
[0013]
In addition, as a method for producing a raw material rare earth-iron alloy , there are a casting method, a rapid cooling method, a reduction diffusion method, and the like, and there is no particular limitation. It is preferable that the hexagonal main phase in the rare earth-iron alloy is grown, diffused and homogenized before the nitrogen treatment. For this homogenization, for example, the rare earth alloy powder produced by a casting method may be held at 1060 to 1200 ° C. for 6 hours or more in a vacuum of 10 −6 torr or less or in a rare gas.
[0014]
The amount of at least one of Li, Na, K, Rb, Cs, Ca, Sr, or Ba added to the magnet alloy needs to be 0.005 atomic% or more. This is because if it is less than 0.005 atomic%, there is no effect of shortening the nitriding treatment. On the other hand, if it exceeds 0.1 atomic%, the magnetic properties of the resulting magnet will be unfavorable.
[0015]
[Action]
In general, in a nitriding reaction of a rare earth-iron alloy in a nitrogen atmosphere, a reaction in which nitrogen molecules dissociate on the alloy surface to form nitrogen atoms is a rate-limiting reaction. Here, if an alkali metal or alkaline earth metal having a strong electron donating property is added to the alloy, the reaction rate is improved, and as a result, the rate of the nitriding reaction of the alloy is also increased. If the alloy is hydrogenated prior to the nitriding of the alloy, the nitriding rate of the rare earth-iron alloy is further improved.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0017]
Sample Nos. 1 to 17 (Sample Nos. 1 to 13 are reference examples) ... Rare earth alloy ingots having the composition shown in Table 1 prepared by high-frequency melting were held at 1100 ° C for 48 hours in an argon atmosphere using an atmosphere adjustment furnace And homogenized. Next, this was pulverized to 100 μm or less with a jaw crusher and a ball mill. This powder was put again into the furnace, the furnace temperature was 480 ° C., and this temperature was maintained for a predetermined time in a nitrogen atmosphere. Next, the cooled powder was further pulverized to a mean particle size of 5 μm with a ball mill to prepare a sample.
[0018]
Sample Nos. 18 to 23: Samples were prepared in the same manner as Sample Nos. 1 to 17 except that hydrogenation treatment was performed at 250 ° C. for 4 hours after the homogenization treatment.
[0019]
The magnetic properties of each sample were measured using a vibrating sample magnetometer. Sample numbers 1 to 13 and 18 to 21 are examples of the present invention, and sample numbers 14 to 17, 22, and 23 are conventional examples. In the table, the composition of the alloy, ((Sm 2 Fe 17) 100-x + M x) 100-y N of M when expressed in y x, y values of N, the magnetization of the magnetic properties 4πIs (kG) and the coercive force were iHc (kOe). The results are shown in Table 1.
[0020]
[Table 1]
Figure 0003959124
[0021]
From the above, it can be seen that the magnet alloy of the present invention has excellent magnetic properties even by a short nitriding treatment for 12 hours or less. Of the magnetic properties, it is sufficient that the magnetization is 12 kG or more and the coercive force is 6 kOe or more.
[0022]
【The invention's effect】
According to the present invention , the magnet alloy can be obtained in practically sufficiently short nitriding time using only nitrogen gas without handling dangerous hydrogen and ammonia gas at high temperature, and can be used for producing a magnet having excellent magnetic properties. it can.

Claims (1)

24〜26重量%の希土類元素と、残部が鉄またはその一部をコバルトで置換したものからなる希土類−鉄合金に、Li、Na、K、Rb、Cs、Ca、SrまたはBaから選ばれる少なくとも1種の元素を0.01〜0.1原子%添加し、希土類−鉄合金中の六方晶系の主相を成長、拡散させるに十分な条件で均質化処理を施した後、水素化処理を行うことを特徴とする希土類−鉄磁石用合金の窒化速度を向上させる方法。A rare earth-iron alloy composed of 24-26% by weight of a rare earth element and the balance of iron or a part of which is substituted with cobalt, at least selected from Li, Na, K, Rb, Cs, Ca, Sr or Ba One element is added in an amount of 0.01 to 0.1 atomic% , a homogenization treatment is performed under conditions sufficient to grow and diffuse a hexagonal main phase in the rare earth-iron alloy, and then a hydrogenation treatment. A method for improving the nitriding rate of a rare earth-iron magnet alloy.
JP11695594A 1994-05-30 1994-05-30 Method for improving nitriding rate of rare earth-iron magnet alloy Expired - Fee Related JP3959124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11695594A JP3959124B2 (en) 1994-05-30 1994-05-30 Method for improving nitriding rate of rare earth-iron magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11695594A JP3959124B2 (en) 1994-05-30 1994-05-30 Method for improving nitriding rate of rare earth-iron magnet alloy

Publications (2)

Publication Number Publication Date
JPH07316752A JPH07316752A (en) 1995-12-05
JP3959124B2 true JP3959124B2 (en) 2007-08-15

Family

ID=14699877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11695594A Expired - Fee Related JP3959124B2 (en) 1994-05-30 1994-05-30 Method for improving nitriding rate of rare earth-iron magnet alloy

Country Status (1)

Country Link
JP (1) JP3959124B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105369162A (en) * 2015-12-16 2016-03-02 常熟市凯波冶金建材机械设备厂 Anti-explosion gas turbine housing

Also Published As

Publication number Publication date
JPH07316752A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
EP0126802B1 (en) Process for producing of a permanent magnet
US6506265B2 (en) R-Fe-B base permanent magnet materials
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP2001189206A (en) Permanent magnet
JP2023509225A (en) Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw material and manufacturing method
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JPH06275414A (en) Nd-fe-b based permanent magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2000114017A (en) Permanent magnet and material thereof
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JPH0316761B2 (en)
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPH01219143A (en) Sintered permanent magnet material and its production
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP3959124B2 (en) Method for improving nitriding rate of rare earth-iron magnet alloy
US4952252A (en) Rare earth-iron-boron-permanent magnets
JPH06207204A (en) Production of rare earth permanent magnet
JPH0146575B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPH0316763B2 (en)
WO2023054035A1 (en) Rare earth magnet material, and magnet
JPH0535211B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees