JP3957521B2 - Oxidation catalyst and oxidation method and apparatus using the same - Google Patents

Oxidation catalyst and oxidation method and apparatus using the same Download PDF

Info

Publication number
JP3957521B2
JP3957521B2 JP2002032685A JP2002032685A JP3957521B2 JP 3957521 B2 JP3957521 B2 JP 3957521B2 JP 2002032685 A JP2002032685 A JP 2002032685A JP 2002032685 A JP2002032685 A JP 2002032685A JP 3957521 B2 JP3957521 B2 JP 3957521B2
Authority
JP
Japan
Prior art keywords
oxidation
oxidation catalyst
gas
catalyst
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002032685A
Other languages
Japanese (ja)
Other versions
JP2002320854A (en
Inventor
正和 岡
愼一 矢野
直樹 浅賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2002032685A priority Critical patent/JP3957521B2/en
Publication of JP2002320854A publication Critical patent/JP2002320854A/en
Application granted granted Critical
Publication of JP3957521B2 publication Critical patent/JP3957521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
本発明は、酸化触媒並びにそれを用いた酸化方法及び装置に係り、特にエッチング排ガス中に含まれる一酸化炭素の酸化処理のために用いる酸化触媒に関する。
【0002】
【従来の技術】
酸化触媒は、自動車の排ガス、ボイラーなどの工場排ガス、その他に含まれる人体及び環境に有害なガスを、酸化処理することにより無害な物質とする浄化処理に用いられている。
また、酸化触媒として白金、パラジウム、ロジウムなどの貴金属をアルミナ、活性炭、シリカまたはゼオライトなどの担体に担持させた触媒やCuO、MnO2 を含有する触媒は高活性を示し、これらの触媒の多くは既に市販されて多様な分野で使用されている。
【0003】
【発明が解決しようとする課題】
半導体の製造にはパーフルオロカーボン等のガスがエッチングガスとして用いられ、その排ガスはエッチャント、エッチング生成物、副生物を含むが、その中には一酸化炭素も含まれている。一酸化炭素の許容濃度は50ppmの為、その基準値以下となるように一酸化炭素を二酸化炭素に酸化処理する必要があり、この目的にも酸化触媒が使用されている。
【0004】
このような半導体用のエッチャントとしては、そのエッチング能力が高いことからフルオロカーボン系のガスが多く用いられ、他の物質(例えば酸素ガス)と混合するなどして多くの半導体工場で用いられている。このようなフルオロカーボン系のエッチャントを用いた場合、エッチング排ガス中にはエッチャントとしてのフルオロカーボン系ガス(C26,C48など)が残存するほか、反応生成物、副生物としてもフルオロカーボン系ガス(例えば、C24)が含まれ、また酸性成分(例えば、HF,COF2,SiF4)と一酸化炭素も含まれている。
【0005】
このようなエッチング処理排ガス中に含まれる一酸化炭素を酸化処理する場合、熱分解性フルオロカーボン(例えば、C24,CH22)や酸性成分(例えば、HF,COF2)を含むために、酸化触媒の劣化が著しく、短時間で一酸化炭素濃度が許容濃度以上となり長期間の使用に耐えないという問題がある。
そこで、本発明はこのような熱分解性フルオロカーボンや酸性成分を含むガスの処理に用いても劣化が少なく、長時間の使用が可能な酸化触媒を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、鋭意検討した結果、フッ素化率が30〜95%であるアルミナ担体に貴金属を担持してなることを特徴とする酸化触媒が熱分解性フルオロカーボンや酸性成分を含むガスの酸化処理に用いても劣化の少ない長寿命の酸化触媒であることを見出し、本発明を完成したものである。
【0007】
また、本発明はフッ素化率が30〜95%であるアルミナ担体に貴金属を担持してなる酸化触媒を用いることを特徴とする酸化方法も提供する。
また、本発明は上記のような酸化触媒を用いる一酸化炭素除害装置も提供する。
【0008】
【発明の実施の形態】
本発明で用いる酸化触媒は、貴金属を担持するアルミナ担体が30〜95%の範囲内でフッ素化されている以外、従来の貴金属を担持したアルミナ担体からなる酸化触媒と同様のものでよい。
アルミナ担体のフッ素化方法も特に限定されないが、好適には貴金属を担持したアルミナ担体からなる酸化触媒をフッ化水素により処理することでアルミナをフッ素化する方法を採用することができる。このフッ素化処理としては、具体的には、必要に応じて窒素ガスなどの不活性ガスをキャリアーとした1〜100%濃度のフッ化水素をアルミナに対して250〜400℃の温度で接触させればよい。フッ化水素で処理する場合、空間速度100〜10000Hr-1の範囲が好ましい。その他、フッ素ガスでもフッ素化は可能であり、またフッ酸溶液に浸漬することによりフッ素化する方法も可能である。
【0009】
本発明において用いるアルミナのフッ素化率は、30〜95%の範囲内である。フッ素化率がこれより小さいと、酸化触媒の劣化防止の効果が少なく、また95%を超えると担体のフッ素化が難しくなることや、フッ素化された触媒の構造が破壊されるためかどうかは定かではないが、活性あるいは強度が低下する傾向がある。好ましくはフッ素化率が60〜80%の範囲内でフッ素化を行うことで触媒の最適化を行うことができる。なお、本発明において、アルミナのフッ素化率とはアルミニウム元素を基準としてフッ素化と酸化の割合をいう。アルミナ(Al2O3: M.W.=102)が2倍モルのフッ化アルミニウム(2AlF3: M.W.=168)に全部変化した時を100%として算出して、以下の式により求めるものとする。
【数1】

Figure 0003957521
(式中、Bは処理後の重量、Aは処理前の重量を表す。)
【0010】
触媒担体は一般的に表面積の大きいものが用いられ、本発明の酸化触媒に用いられるアルミナは、表面積が大きいγ―アルミナが好ましいが、特に限定されるものではない。また粒状、顆粒状、ハニカム状などのアルミナを、使用することができる。
本発明で用いる酸化触媒の金属は酸化触媒能があることが知られている貴金属、例えば白金、パラジウム、ロジウム、銀、金、及び貴金属と他の金属との混合物が用いられ、白金を用いることが好ましい。アルミナ担体に対する貴金属の担持量は、限定されないが、触媒を基準にして0.01〜10質量%が一般的である。貴金属の担持量が0.01質量%より少ないと触媒の活性が十分に発揮できなくなり、10質量%を超えると経済的ではない。触媒の選択は処理の内容、処理ガスの種類などに応じて行えばよい。貴金属を担持する方法としては、一般的には含浸法が最も操作が容易でありよく用いられるが、共沈法、混練法、ゾルゲル法等の他の担持方法で行うことも可能であり、担持方法は特に限定されない。
アルミナへの貴金属の担持とフッ素化処理はいずれを先に行ってもよいが、貴金属を担持してからフッ素化処理する方が触媒を安定的に製造できるため好ましい。
【0011】
本発明の酸化触媒を用いて酸化処理を行う方法は、上記の酸化触媒を用いる以外は従来の方法と同様の方法を用いることができる。なお、本発明において「酸化」とは物質と酸素を反応させ、酸素化合物を生成する反応をいう。
本発明は、特にエッチング排ガス中に含まれる一酸化炭素の酸化処理に向けられており、一酸化炭素の酸化処理に好適な方法であり、一酸化炭素濃度が30vol%以下、好ましくは10vol%以下の一酸化炭素の酸化処理に適している。このとき、酸素は必要に応じて加えればよいが、コスト面から空気を用いることが好ましい。処理温度は一般的に100〜350℃の範囲内、さらには150〜300℃の範囲内が好ましい。一酸化炭素を含む被処理ガスの処理速度としては、一般的には空間速度10000Hr-1以下が好ましい。
【0012】
さらに、本発明の酸化触媒及び一酸化炭素酸化処理方法は、特に一酸化炭素の他にフルオロカーボン系ガス、特に熱分解性のフルオロカーボン系ガス、あるいは酸性ガスを含むガスの酸化処理において好適である。このような触媒を劣化させる成分を含むガスの処理においても、本発明の酸化触媒と酸化処理方法によれば、酸化触媒の劣化が抑制されて極めて長時間にわたって使用できる効果がある。このような触媒を劣化させる成分としては、限定するわけではないが、例えば、C2F4,CHF3,CH2F2,C2HF3などの熱分解性フルオロカーボン,HF,COF2,SiF4等の酸性ガスを挙げることができる。なお、従来「フロン」という用語がクロロフルオロカーボンの一般名として用いられ、さらにフッ素を含むハロゲン化炭化水素の総称としても用いられている。本明細書において用語「フルオロカーボン」とは、従来のフロンを含み、パーフルオロカーボン、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボンなどの化合物をいう。用語「熱分解性フルオロカーボン」とは上記フルオロカーボン系ガスの中で、加熱することにより自己分解又は重合する化合物をいう。従って、本発明は、このような触媒を劣化させる可能性の高い熱分解性フルオロカーボンや酸性ガスを一酸化炭素と共に含むフルオロカーボン系のエッチング排ガスの酸化処理にとりわけ好適であり、排ガス中に含まれるC2F4等の熱分解性フルオロカーボンも同時に酸化処理することもできる。
また本発明の酸化触媒を用いて酸化処理された排ガス中には、HFなどの酸性ガスが含まれる場合があるが、これらは例えば活性炭等の吸着剤やアルカリスクラバーを用いることにより比較的容易に除去することが可能である。
本発明の酸化触媒は、上記の如く、従来酸化触媒を用いて行われている酸化処理のいずれにも使用できるが、特にエッチング排ガス中に含まれる一酸化炭素の酸化処理に好適に使用でき、この目的のため本発明は上記の酸化触媒を使用した一酸化炭素除害装置をも提供する。
一酸化炭素除害装置のシステムは、(1)一酸化炭素酸化工程(手段)、(2)酸性成分除去工程(手段)により構成される。酸化工程(1)では除害対象物質である一酸化炭素を酸化処理し、許容濃度以下とする。その後、酸性成分除去工程(2)でフッ化水素等の酸分を除去する。
【0013】
【実施例】
以下に実施例を用いて本発明をさらに説明するが、本発明がこの例に限定されるわけではないことは明らかである。
実施例
(触媒の調製)
粒径φ3x3mm, Pt濃度0.5質量%, 比表面積150m2/g, 細孔容積0.32cm3/gである日揮化学製のPt/Al2O3触媒41.33gをSUS製反応管に入れて、N2希釈したHF 濃度10モル%のガスでフッ素化処理を実施した。このとき処理温度は350℃で、SV(空間速度)が1000hr-1であり、12hr処理をして、フッ素化Pt/Al2O3触媒(白金の担持率としては0.5質量%)を得た。処理後の重量は60.45gで、これによりフッ素化率を計算すると71.5%であった。
また同様の方法を用いることにより、Pt1.0質量%/Al2O3、Pd0.5質量%/Al2O3、Au1.0質量%/Al2O3をそれぞれ調整した。
(CO酸化例)
上記の如く調製した触媒を用いて、下記の組成を有するCO含有ガスを、常圧流通式反応装置を用い、反応温度270℃、空間速度10000hr-1の条件で、酸化して試験を行った。被処理ガスは、フルオロカーボン系エッチャントを用いて半導体をエッチングした排ガスであり、下記の組成を有していたが、C4F8,CH2F2,CO及びO2はエッチャント成分、C2F4,SiF4及びHFは反応生成物あるいは副生物である。
【0014】
C2F4 200ppm
SiF4 5000ppm
HF 1000ppm
C4F8 5000ppm
CH2F2 5000ppm
CO 5000ppm
O2 30000ppm
N2 バランス
この酸化反応を開始してから、定期的に、即ち、10時間、100時間、300時間および1000時間後に、反応器の入り口及び出口のガスの組成をガスクロマトグラフィーで分析した。COとC2F4についての結果を成分の分解率として下記に示す。
【0015】
【表1】
Figure 0003957521
【0016】
表に見られるように、本発明の酸化触媒は1000時間経過した後もCOを酸化する能力を維持しており、同時にC2F4を分解することができることがわかる。
比較例
Pt0.5質量%/Al2O3(日揮化学製)、ポプカライト(日産化学製)、MnO220質量%/CuOおよびMnO220質量%/Al2O3について、下記の組成を有するCO含有ガスを、常圧流通式反応装置を用い、空間速度10000hr-1の条件で、酸化する試験を行った。
【0017】
C2F4 200ppm
HF 1000ppm
CO 5000ppm
O2 15%
N2 バランス
この酸化反応を開始してから、定期的に反応器の入り口及び出口のガスの組成をガスクロマトグラフィーで分析した。結果を下記に示す。
【0018】
【表2】
Figure 0003957521
【0019】
表に見られるように、従来の酸化触媒は、熱分解性フルオロカーボン(C2F4)や酸性成分(HF)を含むCO含有ガスを酸化処理すると、実施例と比較して短時間で触媒が劣化している。特に、比較例では、熱分解性フルオロカーボンの量は実施例より顕著に少なく、反応温度も実施例より低いにもかかわらず、実施例より早い時間にCOの酸化能が低下し、許容濃度以上となることがわかる。
【0020】
【発明の効果】
本発明によれば、熱分解性フルオロカーボン(C2F4など)や酸性成分(HFなど)を含むCO含有ガスを酸化処理しても長時間劣化のない優れた酸化触媒が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxidation catalyst and an oxidation method and apparatus using the same, and more particularly to an oxidation catalyst used for oxidation treatment of carbon monoxide contained in etching exhaust gas.
[0002]
[Prior art]
Oxidation catalysts are used in purification treatments that are harmful to human bodies and the environment, such as automobile exhaust gases, boiler exhaust gases, and other gases that are harmful to the human body and the environment by oxidizing them.
In addition, catalysts with noble metals such as platinum, palladium, and rhodium supported on supports such as alumina, activated carbon, silica, or zeolite as catalysts for oxidation, and catalysts containing CuO and MnO 2 show high activity, and many of these catalysts Already marketed and used in various fields.
[0003]
[Problems to be solved by the invention]
A gas such as perfluorocarbon is used as an etching gas for manufacturing semiconductors, and the exhaust gas contains an etchant, an etching product, and a by-product, and carbon monoxide is also included therein. Since the allowable concentration of carbon monoxide is 50 ppm, it is necessary to oxidize carbon monoxide to carbon dioxide so as to be below the reference value, and an oxidation catalyst is also used for this purpose.
[0004]
As such an etchant for a semiconductor, a fluorocarbon-based gas is often used because of its high etching ability, and is used in many semiconductor factories by mixing with other substances (for example, oxygen gas). When such a fluorocarbon-based etchant is used, a fluorocarbon-based gas (C 2 F 6 , C 4 F 8, etc.) as an etchant remains in the etching exhaust gas, and the reaction product and by-product are also fluorocarbon-based. Gas (for example, C 2 F 4 ) is included, and acidic components (for example, HF, COF 2 , SiF 4 ) and carbon monoxide are also included.
[0005]
When carbon monoxide contained in such an etching exhaust gas is oxidized, it contains a thermally decomposable fluorocarbon (for example, C 2 F 4 , CH 2 F 2 ) and an acidic component (for example, HF, COF 2 ). In addition, there is a problem that the oxidation catalyst is remarkably deteriorated and the carbon monoxide concentration exceeds the allowable concentration in a short time and cannot be used for a long time.
Accordingly, an object of the present invention is to provide an oxidation catalyst that can be used for a long time with little deterioration even when used in the treatment of a gas containing such a pyrolytic fluorocarbon or an acidic component.
[0006]
[Means for Solving the Problems]
As a result of intensive investigations to achieve the above object, the present invention provides an oxidation catalyst comprising a noble metal supported on an alumina support having a fluorination rate of 30 to 95%. The present invention has been completed by finding that it is a long-life oxidation catalyst with little deterioration even when used for oxidation treatment of a gas containing an acidic component.
[0007]
The present invention also provides an oxidation method characterized by using an oxidation catalyst comprising a noble metal supported on an alumina carrier having a fluorination rate of 30 to 95%.
The present invention also provides a carbon monoxide abatement apparatus using the above oxidation catalyst.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The oxidation catalyst used in the present invention may be the same as the conventional oxidation catalyst composed of an alumina carrier carrying a noble metal, except that the alumina carrier carrying a noble metal is fluorinated within a range of 30 to 95%.
A method for fluorinating the alumina carrier is not particularly limited, but a method of fluorinating alumina by treating an oxidation catalyst composed of an alumina carrier carrying a noble metal with hydrogen fluoride can be employed. Specifically, as the fluorination treatment, hydrogen fluoride having a concentration of 1 to 100% using an inert gas such as nitrogen gas as a carrier is brought into contact with alumina at a temperature of 250 to 400 ° C. as necessary. Just do it. When treating with hydrogen fluoride, a space velocity in the range of 100-10000 Hr −1 is preferred. In addition, fluorination is possible with fluorine gas, and a method of fluorination by immersing in a hydrofluoric acid solution is also possible.
[0009]
The fluorination rate of alumina used in the present invention is in the range of 30 to 95%. If the fluorination rate is smaller than this, the effect of preventing the deterioration of the oxidation catalyst is small, and if it exceeds 95%, it is difficult to fluorinate the support, or whether the structure of the fluorinated catalyst is destroyed. Although not certain, there is a tendency for activity or strength to decrease. Preferably, the catalyst can be optimized by performing fluorination within a range of fluorination rate of 60 to 80%. In the present invention, the fluorination rate of alumina refers to the ratio of fluorination and oxidation based on the aluminum element. The time when all the alumina (Al 2 O 3 : MW = 102) is changed to double moles of aluminum fluoride (2AlF 3 : MW = 168) is calculated as 100%, and is calculated by the following formula.
[Expression 1]
Figure 0003957521
(In the formula, B represents the weight after treatment, and A represents the weight before treatment.)
[0010]
A catalyst carrier having a large surface area is generally used, and the alumina used in the oxidation catalyst of the present invention is preferably γ-alumina having a large surface area, but is not particularly limited. Further, granular, granular, honeycomb-like alumina can be used.
The metal of the oxidation catalyst used in the present invention is a noble metal known to have an oxidation catalyst ability, such as platinum, palladium, rhodium, silver, gold, and a mixture of a noble metal and another metal, and platinum is used. Is preferred. The amount of noble metal supported on the alumina carrier is not limited, but is generally 0.01 to 10% by mass based on the catalyst. If the loading amount of the noble metal is less than 0.01% by mass, the activity of the catalyst cannot be exhibited sufficiently, and if it exceeds 10% by mass, it is not economical. The selection of the catalyst may be performed according to the content of processing, the type of processing gas, and the like. As a method for supporting a noble metal, the impregnation method is generally the easiest to operate and is often used, but it can also be performed by other supporting methods such as a coprecipitation method, a kneading method, a sol-gel method, The method is not particularly limited.
Either the loading of the noble metal on the alumina and the fluorination treatment may be performed first, but it is preferable to carry the fluorination treatment after the noble metal is loaded because the catalyst can be stably produced.
[0011]
As a method for performing the oxidation treatment using the oxidation catalyst of the present invention, a method similar to the conventional method can be used except that the above oxidation catalyst is used. In the present invention, “oxidation” refers to a reaction in which a substance reacts with oxygen to produce an oxygen compound.
The present invention is particularly directed to oxidation treatment of carbon monoxide contained in etching exhaust gas, and is a method suitable for the oxidation treatment of carbon monoxide, and the carbon monoxide concentration is 30 vol% or less, preferably 10 vol% or less. Suitable for oxidation treatment of carbon monoxide. At this time, oxygen may be added as necessary, but air is preferably used from the viewpoint of cost. The treatment temperature is generally preferably in the range of 100 to 350 ° C, more preferably in the range of 150 to 300 ° C. In general, the treatment speed of the gas to be treated containing carbon monoxide is preferably a space velocity of 10,000 Hr −1 or less.
[0012]
Furthermore, the oxidation catalyst and the carbon monoxide oxidation treatment method of the present invention are particularly suitable for oxidation treatment of a gas containing a fluorocarbon gas, particularly a thermally decomposable fluorocarbon gas, or an acid gas in addition to carbon monoxide. Even in the treatment of such a gas containing a component that degrades the catalyst, the oxidation catalyst and the oxidation treatment method of the present invention have an effect that the deterioration of the oxidation catalyst is suppressed and the catalyst can be used for a very long time. Examples of components that deteriorate such a catalyst include, but are not limited to, pyrolytic fluorocarbons such as C 2 F 4 , CHF 3 , CH 2 F 2 , and C 2 HF 3 , HF, COF 2 , and SiF. An acidic gas such as 4 can be mentioned. Conventionally, the term “fluorocarbon” is used as a general name for chlorofluorocarbons, and is also used as a general term for halogenated hydrocarbons containing fluorine. In this specification, the term “fluorocarbon” refers to compounds such as perfluorocarbon, hydrofluorocarbon, hydrochlorofluorocarbon, etc., including conventional fluorocarbons. The term “thermally decomposable fluorocarbon” refers to a compound that self-decomposes or polymerizes by heating in the fluorocarbon-based gas. Therefore, the present invention is particularly suitable for the oxidation treatment of fluorocarbon-based etching exhaust gas containing a pyrolytic fluorocarbon or acid gas that has a high possibility of deteriorating such a catalyst together with carbon monoxide, and C contained in the exhaust gas. Thermally decomposable fluorocarbons such as 2 F 4 can be oxidized at the same time.
In addition, the exhaust gas oxidized using the oxidation catalyst of the present invention may contain an acidic gas such as HF, which can be relatively easily obtained by using an adsorbent such as activated carbon or an alkali scrubber. It is possible to remove.
As described above, the oxidation catalyst of the present invention can be used for any of the oxidation treatments conventionally performed using an oxidation catalyst, but can be particularly suitably used for the oxidation treatment of carbon monoxide contained in etching exhaust gas, For this purpose, the present invention also provides a carbon monoxide abatement apparatus using the above oxidation catalyst.
The system of the carbon monoxide abatement apparatus is configured by (1) a carbon monoxide oxidation step (means) and (2) an acidic component removal step (means). In the oxidation step (1), carbon monoxide, which is a target for detoxification, is oxidized to a concentration below the allowable concentration. Thereafter, an acid component such as hydrogen fluoride is removed in the acidic component removing step (2).
[0013]
【Example】
The present invention will be further described below with reference to examples, but it is clear that the present invention is not limited to these examples.
Example (Preparation of catalyst)
Put 41.33 g of Pt / Al 2 O 3 catalyst (manufactured by JGC) having a particle size of φ3x3 mm, Pt concentration of 0.5 mass%, specific surface area of 150 m 2 / g, and pore volume of 0.32 cm 3 / g into a SUS reaction tube 2 Fluorination treatment was performed with diluted HF concentration of 10 mol% gas. At this time, the treatment temperature was 350 ° C., the SV (space velocity) was 1000 hr −1 , and the treatment was performed for 12 hr to obtain a fluorinated Pt / Al 2 O 3 catalyst (platinum support rate of 0.5 mass%). . The weight after treatment was 60.45 g, and the fluorination rate was calculated to be 71.5%.
Further, by using the same method, Pt1.0 wt% / Al 2 O 3, Pd0.5 wt% / Al 2 O 3, Au1.0 wt% / Al 2 O 3 were adjusted respectively.
(Example of CO oxidation)
Using the catalyst prepared as described above, a test was conducted by oxidizing a CO-containing gas having the following composition at a reaction temperature of 270 ° C. and a space velocity of 10,000 hr −1 using a normal pressure flow reactor. . The gas to be treated was an exhaust gas obtained by etching a semiconductor using a fluorocarbon-based etchant, and had the following composition, but C 4 F 8 , CH 2 F 2 , CO, and O 2 were etchant components, C 2 F 4 , SiF 4 and HF are reaction products or by-products.
[0014]
C 2 F 4 200ppm
SiF 4 5000ppm
HF 1000ppm
C 4 F 8 5000ppm
CH 2 F 2 5000ppm
CO 5000ppm
O 2 30000ppm
N 2 balance The gas composition at the inlet and outlet of the reactor was analyzed by gas chromatography periodically, ie after 10 hours, 100 hours, 300 hours and 1000 hours after the start of this oxidation reaction. The results for CO and C 2 F 4 are shown below as component decomposition rates.
[0015]
[Table 1]
Figure 0003957521
[0016]
As can be seen from the table, the oxidation catalyst of the present invention maintains the ability to oxidize CO even after 1000 hours and can simultaneously decompose C 2 F 4 .
Comparative example
About Pt 0.5% by mass / Al 2 O 3 (manufactured by JGC), Popcalite (manufactured by Nissan Chemical), MnO 2 20% by mass / CuO and MnO 2 20% by mass / Al 2 O 3 having CO A test was conducted in which the gas was oxidized using a normal pressure flow reactor at a space velocity of 10000 hr −1 .
[0017]
C 2 F 4 200ppm
HF 1000ppm
CO 5000ppm
O 2 15%
N 2 balance After starting this oxidation reaction, the composition of the gas at the inlet and outlet of the reactor was periodically analyzed by gas chromatography. The results are shown below.
[0018]
[Table 2]
Figure 0003957521
[0019]
As can be seen from the table, when the conventional oxidation catalyst oxidizes a CO-containing gas containing pyrolytic fluorocarbon (C 2 F 4 ) or acidic component (HF), the catalyst can be obtained in a shorter time than in the examples. It has deteriorated. In particular, in the comparative example, the amount of the thermally decomposable fluorocarbon is significantly smaller than that of the example, and although the reaction temperature is lower than that of the example, the oxidation ability of CO is lowered at an earlier time than the example, I understand that
[0020]
【The invention's effect】
The present invention provides an excellent oxidation catalyst that does not deteriorate for a long time even when a CO-containing gas containing a pyrolytic fluorocarbon (such as C 2 F 4 ) or an acidic component (such as HF) is oxidized.

Claims (7)

フッ素化率が30〜95%であるアルミナ担体に貴金属を担持してなることを特徴とする、フルオロカーボン系エッチャントを用いたエッチング排ガス中の一酸化炭素を酸化する酸化触媒。 An oxidation catalyst for oxidizing carbon monoxide in an etching exhaust gas using a fluorocarbon-based etchant , wherein a noble metal is supported on an alumina carrier having a fluorination rate of 30 to 95%. 前記貴金属が白金、パラジウム、ロジウム、銀および金からなる群から選ばれる少なくとも一種である請求項1記載の酸化触媒。The noble metal is platinum, palladium, rhodium, the oxidation catalyst according to claim 1, wherein at least one selected from the group consisting of silver and gold. 前記貴金属が白金である請求項1または2に記載の酸化触媒。  The oxidation catalyst according to claim 1 or 2, wherein the noble metal is platinum. フッ素化率が30〜95%であるアルミナ担体に貴金属を担持してなる酸化触媒を用いることを特徴とする、フルオロカーボン系エッチャントを用いたエッチング排ガス中の一酸化炭素を酸化する酸化方法。 An oxidation method for oxidizing carbon monoxide in an etching exhaust gas using a fluorocarbon-based etchant, wherein an oxidation catalyst comprising a noble metal supported on an alumina carrier having a fluorination rate of 30 to 95% is used . 前記貴金属が白金、パラジウム、ロジウム、銀および金からなる群から選ばれる少なくとも一種である請求項4記載の酸化方法。The noble metal is platinum, palladium, rhodium, oxidizing method according to claim 4, wherein at least one selected from the group consisting of silver and gold. 前記貴金属が白金である請求項4または5に記載の酸化方法。  The oxidation method according to claim 4 or 5, wherein the noble metal is platinum. 請求項1〜3のいずれかに記載の酸化触媒を用いることを特徴とする一酸化炭素除害装置。  A carbon monoxide abatement apparatus using the oxidation catalyst according to any one of claims 1 to 3.
JP2002032685A 2001-02-22 2002-02-08 Oxidation catalyst and oxidation method and apparatus using the same Expired - Fee Related JP3957521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032685A JP3957521B2 (en) 2001-02-22 2002-02-08 Oxidation catalyst and oxidation method and apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-47072 2001-02-22
JP2001047072 2001-02-22
JP2002032685A JP3957521B2 (en) 2001-02-22 2002-02-08 Oxidation catalyst and oxidation method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2002320854A JP2002320854A (en) 2002-11-05
JP3957521B2 true JP3957521B2 (en) 2007-08-15

Family

ID=26609917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032685A Expired - Fee Related JP3957521B2 (en) 2001-02-22 2002-02-08 Oxidation catalyst and oxidation method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP3957521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102387596B1 (en) * 2018-12-26 2022-04-18 코오롱인더스트리 주식회사 Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
JP7337542B2 (en) * 2019-05-14 2023-09-04 三菱重工業株式会社 hydrogen combustion catalyst

Also Published As

Publication number Publication date
JP2002320854A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US6069291A (en) Catalytic process for the decomposition of perfluoroalkanes
EP0885648B1 (en) A treatment method for decomposing fluorine compounds, and apparatus and use of a catalyst therefor
US6673326B1 (en) Catalytic processes for the reduction of perfluorinated compounds and hydrofluorocarbons
WO1992019366A1 (en) Method of oxidative decomposition of organic halogen compound
EP0793995A1 (en) A method for treating gas containing organohalogen compounds, and catalyst for decomposing the organohalogen compounds
JP2002224565A (en) Agent and method for decomposing fluorocarbon
JP2002253967A (en) Nitrous oxide decomposing catalyst, manufacturing method therefor and method of decomposing nitrous oxide
US6509511B1 (en) Process for the conversion of perfluoroalkanes, a catalyst for use therein and a method for its preparation
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
JP2005254232A (en) Catalyst for decomposition of n2o in ostwald method
JP3957521B2 (en) Oxidation catalyst and oxidation method and apparatus using the same
JP2976041B2 (en) How to remove organic halides
JPH0947661A (en) Process and catalyst for purifying exhaust gas
JP3113903B2 (en) Nitrogen oxide remover
JPH06182203A (en) Catalyst for decomposition of nitrous oxide
CN1192820C (en) Dxidation catalyst and Oxidation method and appts. using same
JP2006142160A (en) Catalyst for decomposition of nitrous oxide and method of decomposing nitrous oxide using it
US20110318932A1 (en) Pyrolysis Methods, Catalysts, and Apparatuses for Treating and/or Detecting Gas Contaminants
JPH06218232A (en) Purifying method for nitrous oxide containing waste gas
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JPH10286439A (en) Decomposing method of fluorine-containing compound
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JPH10305229A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide
JP5448465B2 (en) Method for treating exhaust gas containing aliphatic halogenated hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160518

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees