JP3957259B2 - Reflective layer for optical information recording medium and optical information recording medium - Google Patents

Reflective layer for optical information recording medium and optical information recording medium Download PDF

Info

Publication number
JP3957259B2
JP3957259B2 JP2000402557A JP2000402557A JP3957259B2 JP 3957259 B2 JP3957259 B2 JP 3957259B2 JP 2000402557 A JP2000402557 A JP 2000402557A JP 2000402557 A JP2000402557 A JP 2000402557A JP 3957259 B2 JP3957259 B2 JP 3957259B2
Authority
JP
Japan
Prior art keywords
thin film
alloy
reflectance
information recording
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000402557A
Other languages
Japanese (ja)
Other versions
JP2001357559A (en
Inventor
隆 大西
勝寿 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000402557A priority Critical patent/JP3957259B2/en
Priority to TW090124552A priority patent/TWI236672B/en
Priority to KR10-2001-0062482A priority patent/KR100478374B1/en
Publication of JP2001357559A publication Critical patent/JP2001357559A/en
Application granted granted Critical
Publication of JP3957259B2 publication Critical patent/JP3957259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐硫化性、更にはディスク基板(ポリカーボネート基板等)及びディスクを構成する他の薄膜に対する密着性(以下、「基板等に対する密着性」で代表させる場合がある)にも優れた光情報記録媒体用反射層(光ディスク用反射層)、光情報記録媒体及び光情報記録媒体の反射層用スパッタリングターゲットに関するものである。本発明の反射層は高い反射率をも有している為、CD−RW、DVD−RAM、DVD−RW、DVD+RW等の相変化型光ディスク(繰返し記録・再生が可能な光ディスク);CD−R、DVD−R等の追記型光ディスク等に好適に用いられる。
【0002】
【従来の技術】
光ディスクには幾つかの種類があるが、ディスクに直接記録することができる記録可能領域を備えた光記録媒体の代表例としては、相変化型ディスク及び追記型ディスクが挙げられる。
【0003】
このうち相変化型の光ディスクは、レーザー光のパワーと照射時間をコントロールし、記録薄膜層に結晶相と非晶質相の2相状態を形成することによりデータを記録し、両相の反射率変化を検出することによりデータの検出(再生)を行うものである。この記録再生方式では繰返し記録・再生が可能であり、かかる方式を採用する光ディスクとしては、CD−RW、DVD−RAM、DVD−RW、DVD+RW等が挙げられる。
【0004】
上記相変化型の光ディスクは、基板と、該基板上に誘電体薄膜層、記録薄膜層、反射薄膜層、及び保護膜層等の各種薄膜層が積層してなるものである。このうち反射薄膜層は放熱薄膜層を兼ねていることから、当該反射薄膜層用材料には、反射率、熱伝導率、熱衝撃に対する耐久性、耐食性、基板等に対する密着性等の諸特性が良好であることが要求されている。特に高密度記録においては、記録密度向上の観点から、反射放熱層の熱伝導率が大きいことが不可欠である。ところが、かかる要求特性を満足する反射層用材料は未だ提供されていないのが実情である。
【0005】
例えば反射薄膜層材料として汎用されているAl合金は、記録再生に使用されるレーザー波長(780nm、650nm)に対し、比較的高い反射率及び耐食性(化学的耐食性)を有しているが、反射率の点では未だ不充分であり、また熱伝導率が低いという欠点も抱えている。従って、Al合金を反射薄膜層に使用したのでは、当該反射層に要求される諸特性を具備させることは困難であり、その結果、ディスクの構造や設計に制約が生じるという不具合があった。
【0006】
そこでAl合金に代わり、Au,Ag,Cuを反射薄膜用材料として使用することが提案されているが、夫々以下に掲げる問題を抱えている。例えば純AuまたはAuを主成分とする合金では、高反射率、高耐食性及び高熱伝導率を達成することができるが、Auは極めて高価であり、実用的でない。一方、純Ag若しくは純Cu、またはAg若しくはCuを主成分とする合金は安価であるが、いずれも耐食性に劣るという欠点を抱えている。また、純CuまたはCuを主成分とする合金では、耐食性、特に耐酸化性に劣るという問題があり、その結果、ディスクの信頼性(耐久性)低下を招く恐れがある。更に純AgまたはAgを主成分とする合金では耐食性、なかでも耐硫化性に劣るという問題がある。
【0007】
このうち最後に掲げた耐硫化性は、相変化型、追記型(後記する)のいずれの光ディスクにおいても要求される特性である。上記相変化型の光ディスクでは、誘電体薄膜層と反射薄膜層は直接接する様になっている。このうち誘電体薄膜には、一般にZnS−SiO2膜が使用されている為、反射薄膜層に純AgまたはAgを主成分とする合金を使用すると、長期間の使用により当該誘電体薄膜中のSと反射薄膜中のAgが界面で反応してAgSが生成される。その結果、反射薄膜層に要求される種々の特性が劣化し、最終的にディスクの記録再生特性が著しく損なわれてしまう。
【0008】
また、上記Au,Ag,Cuの各材料を用いたときには、いずれも基板等に対する密着性に劣るという問題もある。光ディスクの反射放熱層は繰返し記録に伴い、ヒートサイクルによる熱的衝撃により、当該反射放熱層の界面と接している他の薄膜と付着力が低下する。その結果、実効的な熱伝導の低下や熱伝導のムラが生じ、最終的にはジッター等が増加し、ディスクの記録再生特性が著しく劣化する様になってしまう。
【0009】
一方、追記型光ディスクは、レーザー光のパワーにより記録薄膜層(有機色素層)の色素を発熱・変質させ、グルーブ(基板に予め刻まれている溝)を変形させることによりデータを記録し、変形箇所の反射率と未変形箇所の反射率との差を検出することによりデータの検出(再生)を行うものである。この記録再生方式では、一度記録されたデーターが書換えられないこと(一回限りの記録と繰返し再生)が特徴であり、かかる方式を採用する光ディスクとしては、CD−R、DVD−R等が挙げられる。
【0010】
そして、前記相変化型ディスクに見られたのと同様の問題が、追記型ディスクの反射薄膜層においても生じている。
【0011】
上記追記型の光ディスクでは、反射薄膜層用材料として、Au又はAuを主成分とする合金が汎用されている。これらの材料は、記録再生に使用されるレーザー波長(780nm、650nm)に対し、有機色素層が存在しても70%以上の高反射率を達成することができる。しかしながらAuは極めて高価であり、コスト上昇の主な原因となっている。
【0012】
そこで、上記材料に代わり、Ag,Cu,Alを反射薄膜材料として用いることが提案されている。ところが純Ag、純Cuを主成分とする合金では、前述の如く耐食性に劣るという欠点がある。また、純AgまたはAgを主成分とする合金では、耐食性、特に耐硫化性が問題となる。追記型の光ディスクは相変化型の光ディスクと異なり、ZnS−SiO2を主成分とする誘電体薄膜層は存在しないが、有機色素層中にS添加材料を使用する場合がある。かかる場合には、記録薄膜層と反射薄膜層が直接接することになるから、当該反射薄膜中のAgがSと反応して硫化し、その結果、反射率が低下し、最終的にディスクの記録再生特性が著しく劣化する恐れがある。また、純Al若しくはAlを主成分とする合金では反射率が低く、有機色素層が存在すると70%以上の高反射率を達成することができないという問題もある。
【0013】
この様に相変化型、追記型のいずれにおいても、光ディスクの反射薄膜層には、反射率、熱伝導率、熱衝撃に対する耐久性、耐食性、及び基板等に対する密着性の諸特性に優れることが要求されるにもかかわらず、これらの要求特性全てを満足する金属薄膜層は未だ提供されていない。
【0014】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その目的は、高反射率を有することは勿論のこと、特に耐硫化性に優れており、更にはディスク基板(ポリカーボネート基板等)及びディスクを構成する他の薄膜に対する密着性も良好な新規な光情報記録媒体用反射層、光情報記録媒体、及び光情報記録媒体の反射層用スパッタリングターゲットを提供することにある。
【0015】
【課題を解決する為の手段】
上記課題を解決し得た本発明の光情報記録媒体用反射層は、Znを1.5%以上含有するAg基合金で構成されているところに要旨を有するものである。ここで、上記Ag基合金が、更にCu,Ti,Nd,W,Mo,Sn,およびGeよりなる群から選択される少なくとも1種の元素を合計で0.5〜5%含有するものは基板等に対する密着性が高めらるので好ましい態様であり;また、上記Ag基合金が、更にCu,Ni,Au,Y,およびNdよりなる群から選択される少なくとも1種の元素を合計で0.5〜3%含有するものは反射特性及び耐酸化性が高められるので好ましい態様である。
【0016】
また、上記光情報記録媒体用反射層を備えた光情報記録媒体、及び上記Ag基合金で構成された光情報記録媒体の反射層用スパッタリングターゲットも本発明の範囲内に包含される。
【0017】
【発明の実施の形態】
本発明者らは、光情報記録媒体用反射層に要求される諸特性のうち、特に耐硫化性、更にはディスク基板(ポリカーボネート基板等)及びディスクを構成する他の薄膜に対する密着性をも向上させるべく鋭意検討してきた。前述した通り、従来の反射層材料では、相変化型の光ディスクにおいて耐食性(特に耐硫化性)の向上を目指してAl合金を;追記型の光ディスクにおいて、反射率及び耐食性(特に化学的安定性)の向上を目指して純Auまたは純Agを使用しているが、所望の特性は未だ得られていないからである。
【0018】
具体的には本発明者らは、Agに種々の元素を添加して作製したAg基合金スパッタリングターゲットを用い、スパッタリング法により種々の成分組成からなるAg基合金薄膜を形成し、反射薄膜層としての特性を評価した。その結果、所定量のZnを含有するAg基合金薄膜は耐硫化性に極めて優れること;更に上記Ag−Zn合金において、Cu,Ni,Au,Y,及びNdよりなる群から選択される少なくとも1種の元素を添加すると、反射特性及び耐食性(特に耐酸化性)が一層向上すること;また、上記Ag−Zn合金において、Cu,Ti,Nd,W,Mo,Sn,及びGeよりなる群から選択される少なくとも1種の元素を添加すると密着性が著しく向上することを見出し、本発明を完成した。
【0019】
一般に反射率は、Agに合金元素を添加すると、純Agの場合に比べ、減少する傾向にある。しかしながら、本発明の如く合金の成分組成や添加量を適切に調整した場合には、反射率の減少を許容可能範囲内に制御することができるのみならず、従来に比べ、耐硫化性や密着性等の諸特性を高水準で達成し得ることができたのである。
【0020】
以下、本発明の光情報記録媒体用反射層を構成する要件について説明する。
【0021】
まず、本発明の反射層は、Znを1.5%以上含有するAg基合金で構成されている。即ち、本発明の最重要ポイントは、Ag基合金にZnを1.5%以上添加すると耐硫化性が著しく向上することを明らかにしたところにある。
【0022】
本発明者らの検討結果によれば、まず、Ag−Zn合金薄膜では、Zn添加量が多いほど耐硫化性は向上することが明らかになった。詳細にはZn添加量が0〜1.5%の範囲では、Zn量が多いほど耐硫化性も向上し、Zn添加による耐硫化性上昇効果が極めて顕著に見られるが、上記効果はZn添加量が1.5%を超えると鈍化し始め、5%を超えると殆ど飽和する為、これ以上添加しても経済的に無駄である。但し、反射特性との関係を考慮するとその上限を5%(より好ましくは3%)に定めることが好ましい。Ag−Zn合金薄膜の反射率を調べると、Zn添加量が多いほど反射率は小さくなる傾向にあるからである(後記する実施例を参照)。従って、高い反射率を維持しつつ、更に優れた耐硫化性も確保する為には、Znの添加量を1.5〜5%の範囲に制御することが好ましい。
【0023】
尚、従来の光情報記録媒体用反射層においても、Ag−Zn基合金を用いた例はある。しかしながら、本発明の如くZnを所定量添加することにより耐硫化性が高められるという認識までは、いずれの内容を精査しても全くない。
【0024】
例えば特開平10-11799には、光反射層としてAgを主成分とする光記録媒体が開示されている。但し、当該公報を精査しても、Znは不純物であるという認識しかなく、「反射率を低下させない」という大原則に基づき、添加量を定めたに過ぎない。また、特開平11−154354には、反射放熱層にAg及びCuを添加し、更にはZnを添加し得る光記録媒体が開示されている。上記公報では、Znの添加によりAg−Cu基反射放熱層の耐食性が改善される旨の記載はあるが、更にもう一歩踏み込んで、本発明の如くZnが耐硫化性の改善に有効であるという認識までは示唆すらされていない。
【0025】
この様に光情報記録媒体の分野において、耐硫化性向上の目的でZnを添加することが有効であるという知見は従来知られておらず、本発明者らによって始めて見出されたものであり、この点に本発明の技術的意義が存在する。
【0026】
尚、本発明では、光情報記録媒体用反射層に要求される基本特性[即ち、反射率及び耐食性(耐酸化性)]の更なる向上を目的として、更に、Cu,Ni,Au,Y,Ndよりなる群から選択される少なくとも1種の元素を合計で0.5〜3%(より好ましくは0.5〜2%)含有することが好ましい。これら元素の合計添加量が0.5%未満では上記作用が十分発揮されず、一方、上記元素の合計添加量が3%を超えると、逆に当該作用が低下し、光情報記録媒体用反射層としての性能が劣化下してしまう。
【0027】
尚、各元素の好ましい添加量は、上記元素間で効果発現領域が異なる為、若干相違する。具体的には、Cu:0.5〜2%、Ni:0.5〜2%、Au:0.5〜1.5%、Y:1〜3%、Nd:1〜3%の範囲内に制御することが推奨される。上記範囲内では、純Ag薄膜を用いたのと同程度の高反射率を維持できるからである。
【0028】
尚、上記元素は単独で若しくは2種以上併用しても良いが、少なくともAuを添加することが推奨される。Auは添加量が多くなるにつれ、特に耐硫化性が向上することが実験により明らかになったからである。しかしながらAuは高価であり、多量の添加はコスト上昇を招くことを考慮すれば、前述の如く0.5〜1.5%の範囲内に制御することが好ましく、これにより、所望の特性を、最小限の費用で発揮させることができる。
【0029】
更に本発明では、基板等に対する密着性の向上を目的として、上記Ag−Zn基合金において、更にCu,Ti,Nd,W,Mo,Sn,及びGeよりなる群から選択される少なくとも1種の元素を合計で0.5〜3%(より好ましくは0.5〜2%)の範囲で添加することが好ましい。これら元素の合計添加量が0.5%未満では上記作用が十分発揮されず、一方、上記元素の合計添加量が3%を超えると、逆に当該作用が低下し、光情報記録媒体用反射層としての性能が劣化下してしまう。
【0030】
尚、各元素の好ましい添加量は、上記元素間で効果発現領域が異なる為、若干相違する。具体的には、Cu:0.5〜3%、Ti:0.5〜2.0%、Nd:1.0〜3.0%、W:0.5〜1.0%、Mo:0.5〜1.0%、Sn:0.5〜2.0%、Ge:0.5〜3.0%の範囲内に制御することが推奨される。
【0031】
本発明の光情報記録媒体用反射層は、上記成分を含有し、残部Agであるが、更に本発明の作用を損なわない範囲で、上記成分以外の他の成分を添加しても良い。例えば硬度向上等の特性付与を目的として、Pd,Pt等の貴金属や遷移元素(前述したものを除く)を積極的に添加しても良い。また、O2,N2等のガス成分や、溶解原料であるAg−Zn基合金に予め含まれている不純物が含まれていても構わない。
【0032】
本発明では、上記成分組成からなるAg基合金はスパッタリング法により形成されたものであることが推奨される。本発明に用いられる元素[耐硫化性向上元素(Zn),密着性向上元素(Cu,Ti,Nd,W,Mo,Sn,Ge)、反射特性及び耐酸化性向上元素(Cu,Ni,Y,Nd)]は、平衡状態ではAgに対する固溶限が極めて小さい(尚、Auは全率固溶する)が、スパッタリング法により形成された薄膜では、スパッタリング法固有の気相急冷によって非平衡固溶が可能になる為、その他の薄膜形成法でAg基合金薄膜を形成した場合に比べ、上記合金元素がAgマトリックス中に均一に存在し、その結果、耐硫化性や密着性が著しく向上するからである。
【0033】
また、スパッタリングの際には、スパッタリングターゲット材として、溶解・鋳造法で作製したAg基合金(以下、「溶製Ag基合金ターゲット材」という)を使用することが好ましい。かかる溶製Ag基合金ターゲット材は組織的に均一であり、また、スパッタ率及び出射角度が均一な為、成分組成が均一なAg基合金薄膜(反射金属層)が安定して得られる結果、より高性能の光ディスクが製作されるからである。尚、上記溶製Ag基合金ターゲット材の酸素含有量を100ppm以下に制御すれば、膜形成速度を一定に保持し易くなり、Ag基合金薄膜膜の酸素量も低くなる為、当該Ag基合金薄膜の反射率及び耐食性(特に耐硫化性)を著しく高めることが可能になる。
【0034】
以下実施例に基づいて本発明を詳述する。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。
【0035】
【実施例】
実施例1
本実施例では、各種Ag二元基合金薄膜の反射率、及び高温高湿試験前後の反射率変化量を調べた。
【0036】
まず、表1に示す種々の成分組成からなるAg二元基合金ターゲット(各種合金元素を2.0%含有)を用い、DCマグネトロンスパッタリングにより、透明ポリカーボネート樹脂基板(基板サイズ:直径50mm、厚さ1mm)上に厚さ1000Åの各種Ag二元基合金薄膜(反射薄膜層)を形成した試料を作製した。次に、上記試料について、測定波長:800〜200nmの範囲における反射率(分光反射率)を測定した。反射率は反射薄膜層側から測定した。表1に、各種Ag基合金薄膜における、波長800nmの反射率及び波長390nmの反射率を併記する。
【0037】
【表1】

Figure 0003957259
【0038】
表より、No.1〜11のAg二元基合金はいずれも波長800nmで90%以上、波長390nmで70%以上の高い反射率を示し、No.12〜17のAg二元基合金と同程度の優れた反射率を有することが分かった。このうちSn,Cu,Ni,Au,Y,Ndの各元素を添加したAg二元基合金は、特に初期反射率(スパッタリングで成膜した直後の薄膜の反射率)が高かった。
【0039】
次に上記試料を用い、環境加速(負荷)試験として高温高湿試験(温度80℃、湿度90%RHにて48時間実施)を行い、反射薄膜層の耐食性(耐酸化性)を評価した。具体的には、高温高湿試験終了後の各試料について反射薄膜層の反射率(分光反射率)を測定し、試験前後の反射率の差(即ち、試験終了後の反射率の減少量)を算出することにより耐食性(耐酸化性)を評価した。表2に、各種Ag基合金薄膜を高温高湿試験に付したときの、波長800nmの反射率変化量及び波長390nmの反射率変化量を示す。
【0040】
【表2】
Figure 0003957259
【0041】
実験に供した試料のうち、特にZn,Ti,Cu,Ni,Au,Y,Ndの各元素を含有するAg基合金は反射率の減少量が少なく、耐食性(耐酸化性)に極めて優れることが分かる。
【0042】
尚、上記表1及び表2の結果を勘案すると、高反射率及び高耐食性(高耐酸化性)の確保という観点からすれば、特に、Ag−Cu基、Ag−Ni基、Ag−Au基、Ag−Y基、Ag−Nd基各合金薄膜の使用が好ましいことが分かる。
【0043】
実施例2
本実施例では、Ag二元基合金薄膜中の合金添加量を種々変化させたときの初期反射率及び高温高湿試験前後の反射率変化量を調べた。
【0044】
まず、実施例1のなかで特に反射率及び耐食性の点で優れている各種薄膜、即ち、Ag−Cu基、Ag−Ni基、Ag−Au基、Ag−Y基、Ag−Nd基の5種の薄膜について、合金元素の添加量を変化させつつ、測定波長800〜200nmの範囲における反射率(分光反射率)を測定した。反射率は反射薄膜層側から測定した。図1に、合金添加量と波長700nmにおける初期反射率の関係を示す。
【0045】
図1より、いずれのAg基合金薄膜についても、合金元素添加量が0〜1%の範囲では初期反射率が約99%以上と、純Ag薄膜と同程度若しくはそれ以上の極めて高い反射率を有していた。尚、合金元素添加量が1%を超えると初期反射率は徐々に低下し始めるが、5%添加しても約95%以上の高い初期反射率を維持していた。
【0046】
次に上記試料について、実施例1と同様の方法により反射薄膜層の耐食性(耐酸化性)を評価し、耐食性と合金元素添加量の関係を調べた。図2に、高温高湿試験前後のAg基合金薄膜について、波長700nmの反射率と合金元素添加量との関係を示す。
【0047】
図2より、いずれのAg基合金薄膜も純Agに比べ、反射率の減少量が小さくなることから、合金化により、耐食性(耐酸化性)が向上することが分かる。尚、耐食性は合金元素添加量が1%付近で最大となり、添加量が1%を超えると概ね低下する傾向にあるが、合金の種類によっては3%以上添加すると、純Agに比べて耐食性が低下するものも見られたことを考慮すれば、合金元素添加量は0.5〜3%の範囲内に制御することが好ましい。
【0048】
実施例3
本実施例では、各種Ag二元基合金薄膜について硫化水素(H2S)雰囲気暴露試験を実施し、耐硫化性を評価した。
【0049】
まず、表3に示す各種Ag二元基合金ターゲット(合金元素を2.0%含有)を用い、実施例1と同様の方法により種々のAg二元基合金薄膜(反射薄膜層)を形成した試料を作製した後、測定波長800〜200nmの範囲における反射率(分光反射率)を測定した。次に、上記試料について、環境加速試験として硫化水素雰囲気暴露試験[雰囲気:大気+H2S(50ppm)、温度50℃、湿度90%RH]を実施し、反射薄膜層の耐硫化性を評価した。具体的には、試験終了後の試料について反射薄膜層の反射率(分光反射率)を測定し、試験前後の反射率の差(即ち、試験終了後の反射率の減少量)を算出することにより耐硫化性を評価した。表3に、硫化水素雰囲気暴露試験前後のAg基合金薄膜について、波長800nmの反射率変化量及び波長390nmの反射率変化量を併記する。
【0050】
【表3】
Figure 0003957259
【0051】
表3より、Znを含有するAg基合金薄膜(No.1)は、他のAg基合金薄膜に比べ、反射率減少量が最も少ないことから、Ag−Zn基合金は耐硫化性に極めて優れていることが分かる。
【0052】
実施例4
本実施例では、Ag−Zn合金薄膜を硫化水素雰囲気暴露試験に付し、反射率変化量を調べた。
【0053】
まず、実施例1と同様の方法により、Zn添加量を種々変化させたAg−Zn二元基合金薄膜(反射薄膜層)を形成した試料を作製した後、測定波長800〜200nmの範囲における反射率(分光反射率)を測定した。図3に、Zn添加量と波長700nmにおける初期反射率の関係を示す。
【0054】
図3より、Ag−Zn合金薄膜では、Zn添加量の増加に伴い、初期反射率は低下する傾向にあるが、Znを5%添加しても85%以上の高い反射率を有していた。
【0055】
次に上記試料について、実施例3と同様の方法により反射薄膜層の耐硫化性を評価し、耐硫化性とZn添加量の関係を調べた。図4に、硫化水素雰囲気暴露試験前後のAg−Zn合金薄膜について、波長700nmの反射率減少量とZn添加量との関係を示す。
【0056】
図4より、Zn添加量の増加に伴い、反射率減少量は徐々に減少していくことから、Znの添加により耐硫化性は向上することが分かる。詳細には、Zn添加量が0〜1.5%では、Zn添加による耐硫化性向上効果は極めて顕著に見られるが、当該効果は、Zn添加量が1.5%を超えると鈍化し始め、5%を超えると殆ど飽和した。
【0057】
以上、図3〜図4の結果を勘案すると、Ag−Zn合金薄膜中のZn添加量を1.5〜5%の範囲に制御すれば、高い初期反射率を維持しつつ、しかも耐硫化性も向上することが分かった。
【0058】
実施例5
本実施例では、パターニングテストにより各種Ag基合金薄膜の密着性を評価した。
【0059】
まず、実施例1と同様の方法により表4に示す各種Ag二元基合金薄膜(反射薄膜層)を形成した試料を作製した。次に、上記試料全面を、フォトリソグラフィー及びウェットエッチングにより幅10μmのストライプ形状に加工し、加工後のストライプパターンの剥離の有無を光学顕微鏡で観察することにより、密着性を評価した。その結果を表4に示す。
【0060】
【表4】
Figure 0003957259
【0061】
表4のうちCu,Ti,W,Mo,Sn,Ge,Ndの各成分を含有するAg二元基合金では、基板全面にわたって剥離は一切認められず、密着性に極めて優れることが分かる。
【0062】
実施例6
本実施例では、ピーリングテストにより各種Ag基合金薄膜の密着性を評価した。
【0063】
まず、実施例5の試料のうち密着性が良好であると認められた試料について、使用する樹脂基板の大きさを、基板サイズ:12.7×12.7mmに変化させたこと以外は実施例5と同様にして各種Ag二元基合金薄膜を形成した試料を作製した。次に、上記試料についてピーリングテストを実施し、剥離時の荷重(引張強度)を測定することにより密着性を定量的に評価した。具体的には、試料の基板側と薄膜側に夫々金属製治具を貼付けて固定し、両金属製治具について、引張試験機により引張試験を行い、薄膜と基板が界面から剥離される時点の荷重(引張強度)を測定する。尚、金属製治具の貼付固定には通常、接着剤が使用されるが、本実施例では、接着時に熱がかかることを避ける為、接着剤として、常温硬化タイプの2液性エポキシ樹脂を使用した。また、比較の為に、他の元素を含有するAg二元基合金薄膜についても同様に試験した。これらの結果を表5に示す。
【0064】
【表5】
Figure 0003957259
【0065】
表5のうち前記実施例5より密着性良好と認められたNo.1〜7のAg二元基合金は、いずれも引張強度が90kgf/cm2以上と極めて高い密着性を示している。これに対し、他のAg二元基合金では、いずれも引張強度が低く、密着性に劣っていた。
【0066】
この様にピーリングテストの結果からも、Ag−Cu基、Ag−Ti基、Ag−W基、Ag−Mo基、Ag−Sn基、Ag−Ge基、Ag−Nd基の各合金基は密着性に極めて優れることが確認された。
【0067】
実施例7
表6に示す種々のAg四元基合金ターゲットを用い、実施例6と同様にして厚さ1000ÅのAg−3.0%Zn−0.85%Sn−1.0%Auの四元基合金薄膜(反射薄膜層)を形成した試料を作製した。尚、上記Ag四元基合金ターゲットには下記3種類のターゲットを使用した。
(1)真空溶解法で作製したAg−3.0%Zn−0.85%Sn−1.0%Au四元基合金
(2)粉末冶金法で作製したAg−3.0%Zn−0.85%Sn−1.0%Au四元基合金
(3)薄膜の組成がAg−3.0%Zn−0.85%Sn−1.0%Au合金となる様に調整したモザイク状ターゲット(純Agターゲット上にAn,Sn,Auのチップ:板状小片を埋込んだ複合型ターゲット)
【0068】
上記試料について、実施例1と同様にして初期反射率を測定すると共に、高温高湿試験(温度80℃、湿度90%RH)を実施し、試験前後の反射率減少量を算出することにより反射薄膜層の耐食性(耐酸化性)を評価した。得られた結果を表6に示す。
【0069】
【表6】
Figure 0003957259
【0070】
表6より、上記(1)〜(3)の各種ターゲットを使用して成膜したAg四元基合金薄膜はいずれも、初期反射率が高く、しかも反射率変化量は小さかった。なかでも上記(1)のターゲットではその傾向が顕著に見られたことから、当該溶製Ag基合金スパッタリングターゲットの使用が最も適していることが分かる。
【0071】
尚、本実施例と同様の実験を、Ag−Zn合金に、Cu,Ti,Nd,W,Mo,Sn,Geの少なくとも1種;Cu,Ni,Au,Y,Ndの少なくとも1種を添加した試料についても実施しており、その結果、表6と同様の効果が得られたことを確認している。
【0072】
実施例8
本実施例では、Ag−Zn基合金に第三成分を添加した三元基合金薄膜の初期反射率、耐食性(耐酸化性)及び耐硫化性を調べた。
【0073】
具体的には、実施例1と同様の方法により、図5に示す各種Ag三元基合金薄膜(第三成分として、Cu,Y,Ni,Nd,Auの各元素を0〜6%の範囲で変化させて添加したもの)を形成した試料を作製し、各種合金薄膜と初期反射率との関係を調べた。図5に、第三成分の添加量と波長700nmの初期反射率との関係を示す。
【0074】
図5より、いずれの合金においても、第三成分の添加により反射率は徐々に低下する傾向が見られるが、当該第三成分を5%添加した場合であっても85%以上の高い反射率を維持することができた。従って、第三成分として上記元素の添加は有用であることが分かる。
【0075】
次に、上記試料について、実施例1と同様の方法により反射層薄膜の耐食性(耐酸化性)を評価した。図6に、高温高湿試験前後の波長700mmにおける反射率変化量と、第三成分の添加量との関係を示す。
【0076】
図6より、上記第三成分を添加したとしても反射率減少量は変化しないか非常に小さいことから、第三成分の添加により耐食性(耐酸化性)は向上することが分かった。
【0077】
更に、上記試料について、実施例3と同様の方法により反射薄膜層の耐硫化性を評価した。図7に、硫化水素雰囲気暴露試験前後の波長700mmにおける反射率減少量と第三成分の添加量との関係を示す。
【0078】
図7より、第三成分の添加に伴い、Ag三元基合金の反射率減少量は徐々に減少していることから、上記三元基合金にするとAg−3%Znの2元基合金に比べ、耐食性(耐酸化性)が向上することが分かる。尚、その効果は元素の種類によって異なり、第三成分がAuのときに耐硫化性向上効果が最も顕著に見られ、次いで、Y,Nd,Ni,Cuの順に向上効果が認められた。
【0079】
実施例9
本実施例では、Ag三元基合金薄膜の密着性を評価した。
【0080】
具体的には実施例1と同様の方法により、表7に示す各種Ag三元基合金薄膜を形成した試料を作製した後、実施例5と同様の方法により、パターニングテストによる密着性試験を実施した。表7に、上記Ag三元基合金薄膜に対するストライプパターンの剥離状況を併記する。
【0081】
【表7】
Figure 0003957259
【0082】
表7より、Cu,Ti,W,Mo,Sn,Ge,Ndの各元素を添加したAg基合金薄膜では、基板全面にわたって剥離は一切認められず、密着性に極めて優れていることが分かる。
【0083】
実施例10
本実施例では、実施例9とは別の評価方法により、Ag三元基合金薄膜の密着性を評価した。
【0084】
具体的には実施例1と同様の方法により、図8に示す各種Ag−Zn−Xの三元基合金薄膜(Xは、Ti,W,Mo,Sn,Ge,Ndの各元素)を形成した試料を作製した後、実施例6と同様の方法によりピーリングテストを実施し、密着性を定量的に評価した。その結果を図8に併記する。
【0085】
図8より、第三元素の添加に伴い、Ag基合金の密着強度(剥離する際の引張強度)は増加し、Ag−Zn二元基合金及び純Agに比べ、密着性が向上することが分かった。密着性上昇作用はTiが最も大きく、次いで、W,Sn,Nd,Mo,Geの順に見られた。
【0086】
【発明の効果】
本発明の光情報記録媒体用反射層は上記の様に構成されているので、高反射率を有することは勿論のこと、特に耐硫化性に優れており、更にはディスク基板(ポリカーボネート基板等)及びディスクを構成する他の薄膜に対する密着性も良好であることから、光情報記録媒体(相変化型および追記型光ディスク)の性能や信頼性を格段に高めることができた。また、本発明のスパッタリングターゲットは、上記光情報記録媒体用反射層をスパッタリングにより形成するときに好適に使用され、形成される反射薄膜層の成分組成が安定しやすくなるというメリットの他、耐硫化性、反射率、密着性等の諸特性にも優れた反射薄膜層が効率よく得られるというメリットも奏する。
【図面の簡単な説明】
【図1】図1は、実施例2のAg基合金反射薄膜層について、合金元素添加量と初期反射率の関係を示すグラフである。
【図2】図2は、実施例2のAg基合金反射薄膜層について、合金元素添加量と反射率減少量の関係を示すグラフである。
【図3】図3は、実施例4のAg基合金反射薄膜層について、Zn添加量と初期反射率の関係を示すグラフである。
【図4】図4は、実施例4のAg基合金反射薄膜層について、Zn添加量と反射率減少量の関係を示すグラフである。
【図5】図5は、実施例8のAg−Zn合金反射薄膜層について、第三成分の添加量と初期反射率の関係を示すグラフである。
【図6】図6は、実施例8のAg−Zn合金反射薄膜層について、第三成分の添加量と反射率減少量の関係を示すグラフである。
【図7】図7は、実施例8のAg−Zn合金反射薄膜層について、第三成分の添加量と反射率減少量の関係を示すグラフである。
【図8】図8は、実施例10のAg−Zn合金反射薄膜層について、第三成分の添加量と引張強度の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is excellent in sulfidation resistance and also in adhesion to a disk substrate (polycarbonate substrate, etc.) and other thin films constituting the disk (hereinafter, may be represented by “adhesion to the substrate”). The present invention relates to a reflection layer for an information recording medium (reflection layer for an optical disk), an optical information recording medium, and a sputtering target for a reflection layer of the optical information recording medium. Since the reflective layer of the present invention also has a high reflectivity, phase-change optical discs (optical discs capable of repeated recording and reproduction) such as CD-RW, DVD-RAM, DVD-RW, and DVD + RW; CD-R It is suitably used for write-once optical discs such as DVD-R.
[0002]
[Prior art]
There are several types of optical disks, but typical examples of optical recording media having a recordable area that can be directly recorded on the disk include a phase change disk and a write-once disk.
[0003]
Among these, the phase change type optical disc records the data by controlling the power and irradiation time of the laser beam and forming a two-phase state of a crystalline phase and an amorphous phase on the recording thin film layer, and the reflectance of both phases. Data is detected (reproduced) by detecting a change. In this recording / reproducing method, repetitive recording / reproducing is possible, and examples of the optical disc adopting this method include CD-RW, DVD-RAM, DVD-RW, DVD + RW, and the like.
[0004]
The phase change optical disk is formed by laminating a substrate and various thin film layers such as a dielectric thin film layer, a recording thin film layer, a reflective thin film layer, and a protective film layer on the substrate. Among these, since the reflective thin film layer also serves as a heat dissipation thin film layer, the reflective thin film layer material has various characteristics such as reflectance, thermal conductivity, durability against thermal shock, corrosion resistance, and adhesion to a substrate. It is required to be good. Particularly in high-density recording, it is essential that the thermal conductivity of the reflective heat radiation layer is large from the viewpoint of improving the recording density. However, the actual situation is that a reflective layer material satisfying such required characteristics has not yet been provided.
[0005]
For example, Al alloys that are widely used as reflective thin film layer materials have relatively high reflectivity and corrosion resistance (chemical corrosion resistance) with respect to laser wavelengths (780 nm and 650 nm) used for recording and reproduction. In terms of rate, it is still inadequate and has the disadvantage of low thermal conductivity. Therefore, when an Al alloy is used for the reflective thin film layer, it is difficult to provide various characteristics required for the reflective layer, and as a result, there is a problem that the structure and design of the disk are restricted.
[0006]
Therefore, it has been proposed to use Au, Ag, or Cu as the reflective thin film material instead of the Al alloy, but each has the following problems. For example, pure Au or an alloy containing Au as a main component can achieve high reflectivity, high corrosion resistance, and high thermal conductivity, but Au is extremely expensive and impractical. On the other hand, pure Ag or pure Cu, or an alloy containing Ag or Cu as a main component is inexpensive, but all have a drawback of poor corrosion resistance. In addition, pure Cu or an alloy containing Cu as a main component has a problem that it is inferior in corrosion resistance, in particular, oxidation resistance, and as a result, there is a risk of lowering the reliability (durability) of the disk. Furthermore, pure Ag or an alloy containing Ag as a main component has a problem that it is inferior in corrosion resistance, in particular, sulfidation resistance.
[0007]
Of these, the resistance to sulfidation listed last is a characteristic required for both optical disks of phase change type and write-once type (described later). In the phase change type optical disk, the dielectric thin film layer and the reflective thin film layer are in direct contact with each other. Of these, the dielectric thin film is generally ZnS-SiO. 2 Since the film is used, if the reflective thin film layer is made of pure Ag or an alloy containing Ag as a main component, S in the dielectric thin film reacts with Ag in the reflective thin film at the interface over a long period of use. AgS is generated. As a result, various characteristics required for the reflective thin film layer are deteriorated, and finally the recording / reproducing characteristics of the disk are significantly impaired.
[0008]
Further, when each of the above Au, Ag, and Cu materials is used, there is a problem that the adhesion to the substrate or the like is inferior. The reflective heat-dissipation layer of the optical disk is reduced in adhesion with other thin films that are in contact with the interface of the reflective heat-dissipation layer due to thermal shock caused by the heat cycle with repeated recording. As a result, effective heat conduction is reduced and unevenness in heat conduction occurs, eventually increasing jitter and the like, and the recording / reproducing characteristics of the disk are significantly deteriorated.
[0009]
On the other hand, write-once optical discs record data by deforming the grooves (grooves preliminarily carved in the substrate) by heating and altering the dye in the recording thin film layer (organic dye layer) by the power of the laser beam. Data is detected (reproduced) by detecting the difference between the reflectance of the part and the reflectance of the undeformed part. This recording / reproducing system is characterized in that data once recorded is not rewritten (one-time recording and repetitive reproduction). CD-R, DVD-R, and the like are listed as optical disks that employ this system. It is done.
[0010]
A problem similar to that seen in the phase change type disk also occurs in the reflective thin film layer of the write once type disk.
[0011]
In the recordable optical disc, Au or an alloy containing Au as a main component is widely used as a material for the reflective thin film layer. These materials can achieve a high reflectance of 70% or more with respect to the laser wavelength (780 nm, 650 nm) used for recording and reproduction even in the presence of an organic dye layer. However, Au is extremely expensive and is a main cause of cost increase.
[0012]
Therefore, it has been proposed to use Ag, Cu, Al as a reflective thin film material instead of the above materials. However, an alloy containing pure Ag and pure Cu as a main component has a disadvantage that it is inferior in corrosion resistance as described above. In addition, pure Ag or an alloy containing Ag as a main component has a problem of corrosion resistance, particularly sulfidation resistance. Write-once optical discs differ from phase change optical discs in that they are ZnS-SiO. 2 However, there is a case where an S-added material is used in the organic dye layer. In such a case, since the recording thin film layer and the reflective thin film layer are in direct contact with each other, Ag in the reflective thin film reacts with S to be sulfided. There is a risk that the reproduction characteristics are significantly deteriorated. Further, pure Al or an alloy containing Al as a main component has a low reflectivity, and there is a problem that a high reflectivity of 70% or more cannot be achieved when an organic dye layer is present.
[0013]
As described above, in both the phase change type and the write-once type, the reflective thin film layer of the optical disk has excellent properties such as reflectance, thermal conductivity, durability against thermal shock, corrosion resistance, and adhesion to the substrate. Despite this requirement, a metal thin film layer that satisfies all of these required properties has not yet been provided.
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its object is not only to have a high reflectivity, but also to excellent sulfidation resistance, and further to disc substrates (polycarbonate substrates, etc.) and discs. An object of the present invention is to provide a novel reflective layer for an optical information recording medium, an optical information recording medium, and a sputtering target for the reflective layer of the optical information recording medium, which have good adhesion to the other thin films to be formed.
[0015]
[Means for solving the problems]
The reflective layer for an optical information recording medium of the present invention that can solve the above problems has a gist in that it is composed of an Ag-based alloy containing 1.5% or more of Zn. Here, the Ag-based alloy further contains at least one element selected from the group consisting of Cu, Ti, Nd, W, Mo, Sn, and Ge in a total amount of 0.5 to 5%. The Ag-based alloy further contains at least one element selected from the group consisting of Cu, Ni, Au, Y, and Nd in a total amount of 0.8. What contains 5 to 3% is a preferable embodiment since reflection characteristics and oxidation resistance are improved.
[0016]
Moreover, the optical information recording medium provided with the said reflection layer for optical information recording media, and the sputtering target for reflection layers of the optical information recording medium comprised with the said Ag base alloy are also included in the scope of the present invention.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Among the various properties required for the reflective layer for optical information recording media, the present inventors have improved sulfidation resistance, and also improved adhesion to disk substrates (polycarbonate substrates, etc.) and other thin films constituting the disk. We have been studying hard to make it happen. As described above, in the conventional reflective layer material, Al alloy is used to improve the corrosion resistance (especially sulfidation resistance) in the phase change type optical disk; the reflectivity and corrosion resistance (especially chemical stability) in the write-once type optical disk. This is because pure Au or pure Ag is used in order to improve the above, but the desired characteristics have not yet been obtained.
[0018]
Specifically, the present inventors formed an Ag-based alloy thin film having various component compositions by a sputtering method using an Ag-based alloy sputtering target prepared by adding various elements to Ag, and used as a reflective thin film layer. The characteristics were evaluated. As a result, the Ag-based alloy thin film containing a predetermined amount of Zn is extremely excellent in sulfidation resistance; and in the Ag-Zn alloy, at least one selected from the group consisting of Cu, Ni, Au, Y, and Nd When the seed element is added, reflection characteristics and corrosion resistance (particularly oxidation resistance) are further improved; in the Ag—Zn alloy, from the group consisting of Cu, Ti, Nd, W, Mo, Sn, and Ge. The inventors have found that the adhesion is remarkably improved by adding at least one selected element, thereby completing the present invention.
[0019]
In general, the reflectance tends to decrease when an alloy element is added to Ag, compared to the case of pure Ag. However, when the alloy composition and addition amount are appropriately adjusted as in the present invention, not only the decrease in reflectance can be controlled within an allowable range, but also the resistance to sulfuration and adhesion compared to conventional ones. Various characteristics such as sex could be achieved at a high level.
[0020]
Hereinafter, the requirements constituting the reflective layer for an optical information recording medium of the present invention will be described.
[0021]
First, the reflective layer of the present invention is composed of an Ag-based alloy containing 1.5% or more of Zn. That is, the most important point of the present invention is that it has been clarified that when 1.5% or more of Zn is added to the Ag-based alloy, the sulfidation resistance is remarkably improved.
[0022]
According to the examination results of the present inventors, first, it has been clarified that in the Ag—Zn alloy thin film, the sulfidation resistance is improved as the Zn addition amount is increased. Specifically, when the amount of Zn added is in the range of 0 to 1.5%, the sulfur resistance improves as the amount of Zn increases, and the effect of increasing the sulfur resistance due to the addition of Zn is very remarkable. When the amount exceeds 1.5%, it starts to slow down, and when it exceeds 5%, it is almost saturated. However, considering the relationship with the reflection characteristics, the upper limit is preferably set to 5% (more preferably 3%). This is because when the reflectance of the Ag-Zn alloy thin film is examined, the reflectance tends to decrease as the Zn addition amount increases (see examples described later). Therefore, it is preferable to control the addition amount of Zn in the range of 1.5 to 5% in order to secure a further excellent sulfidation resistance while maintaining a high reflectance.
[0023]
In addition, there is an example in which an Ag—Zn-based alloy is used in a conventional reflective layer for an optical information recording medium. However, until the recognition that the addition of a predetermined amount of Zn as in the present invention can improve the sulfidation resistance, none of the details has been scrutinized.
[0024]
For example, Japanese Patent Laid-Open No. 10-11799 discloses an optical recording medium mainly composed of Ag as a light reflecting layer. However, even if the gazette is scrutinized, there is only recognition that Zn is an impurity, and the addition amount is merely determined based on the principle of “does not lower the reflectance”. Japanese Patent Laid-Open No. 11-154354 discloses an optical recording medium in which Ag and Cu can be added to the reflective heat radiation layer, and further Zn can be added. In the above publication, there is a description that the addition of Zn improves the corrosion resistance of the Ag-Cu-based reflective heat dissipation layer. However, as described in the present invention, Zn is effective in improving the sulfide resistance. Even recognition is not even suggested.
[0025]
Thus, in the field of optical information recording media, the knowledge that it is effective to add Zn for the purpose of improving sulfidation resistance has not been known so far and has been found for the first time by the present inventors. In this respect, the technical significance of the present invention exists.
[0026]
In the present invention, in order to further improve the basic characteristics required for the reflective layer for optical information recording media [that is, reflectance and corrosion resistance (oxidation resistance)], Cu, Ni, Au, Y, It is preferable to contain a total of 0.5 to 3% (more preferably 0.5 to 2%) of at least one element selected from the group consisting of Nd. When the total addition amount of these elements is less than 0.5%, the above-described effect is not sufficiently exhibited. On the other hand, when the total addition amount of the above-described elements exceeds 3%, the above-described effect is lowered, and the reflection for optical information recording media The performance as a layer deteriorates.
[0027]
In addition, the preferable addition amount of each element is slightly different because the effect expression region is different among the elements. Specifically, Cu: 0.5 to 2%, Ni: 0.5 to 2%, Au: 0.5 to 1.5%, Y: 1 to 3%, Nd: 1 to 3% It is recommended to control it. This is because, within the above range, the same high reflectivity as when using a pure Ag thin film can be maintained.
[0028]
The above elements may be used alone or in combination of two or more, but it is recommended to add at least Au. This is because it has been clarified through experiments that the resistance to sulfidation is improved as the amount of Au increases. However, considering that Au is expensive and adding a large amount leads to an increase in cost, it is preferable to control within the range of 0.5 to 1.5% as described above. It can be demonstrated at a minimum cost.
[0029]
Furthermore, in the present invention, for the purpose of improving the adhesion to the substrate or the like, in the Ag-Zn base alloy, at least one selected from the group consisting of Cu, Ti, Nd, W, Mo, Sn, and Ge is further provided. It is preferable to add the elements in a total range of 0.5 to 3% (more preferably 0.5 to 2%). When the total addition amount of these elements is less than 0.5%, the above-described effect is not sufficiently exhibited. On the other hand, when the total addition amount of the above-described elements exceeds 3%, the above-described effect is lowered, and the reflection for optical information recording media The performance as a layer deteriorates.
[0030]
In addition, the preferable addition amount of each element is slightly different because the effect expression region is different among the elements. Specifically, Cu: 0.5 to 3%, Ti: 0.5 to 2.0%, Nd: 1.0 to 3.0%, W: 0.5 to 1.0%, Mo: 0 It is recommended to control within a range of 0.5 to 1.0%, Sn: 0.5 to 2.0%, and Ge: 0.5 to 3.0%.
[0031]
The reflective layer for an optical information recording medium of the present invention contains the above-mentioned components and is the balance Ag. However, other components than the above-described components may be added as long as the effects of the present invention are not impaired. For example, a precious metal such as Pd or Pt or a transition element (excluding those described above) may be positively added for the purpose of imparting characteristics such as hardness improvement. O 2 , N 2 The impurities contained in advance in the gas component such as the above, or the Ag—Zn-based alloy that is the melting raw material may be included.
[0032]
In the present invention, it is recommended that the Ag-based alloy having the above component composition is formed by a sputtering method. Elements used in the present invention [sulfide resistance improving element (Zn), adhesion improving elements (Cu, Ti, Nd, W, Mo, Sn, Ge), reflection characteristics and oxidation resistance improving elements (Cu, Ni, Y) , Nd)] has a very small solid solubility limit with respect to Ag in the equilibrium state (where Au is completely solid-solved), but in a thin film formed by sputtering, non-equilibrium solids are formed by vapor-phase quenching inherent to sputtering. Therefore, compared to the case where an Ag-based alloy thin film is formed by other thin film forming methods, the above alloy elements are uniformly present in the Ag matrix, and as a result, the sulfidation resistance and adhesion are significantly improved. Because.
[0033]
In sputtering, it is preferable to use an Ag-based alloy produced by a melting / casting method (hereinafter referred to as “melted Ag-based alloy target material”) as a sputtering target material. Such a melted Ag-based alloy target material is structurally uniform, and since the sputtering rate and the emission angle are uniform, an Ag-based alloy thin film (reflective metal layer) having a uniform composition can be stably obtained. This is because a higher performance optical disc is manufactured. In addition, if the oxygen content of the melted Ag-based alloy target material is controlled to 100 ppm or less, the film formation rate can be easily maintained, and the oxygen content of the Ag-based alloy thin film is also reduced. The reflectance and corrosion resistance (especially sulfidation resistance) of the thin film can be significantly increased.
[0034]
The present invention is described in detail below based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.
[0035]
【Example】
Example 1
In this example, the reflectance of various Ag binary base alloy thin films and the amount of change in reflectance before and after the high temperature and high humidity test were examined.
[0036]
First, a transparent polycarbonate resin substrate (substrate size: diameter 50 mm, thickness) was obtained by DC magnetron sputtering using an Ag binary alloy target (containing 2.0% of various alloy elements) having various component compositions shown in Table 1. 1 mm) on which various types of Ag binary base alloy thin films (reflection thin film layers) having a thickness of 1000 mm were formed. Next, the reflectance (spectral reflectance) in the measurement wavelength range of 800 to 200 nm was measured for the sample. The reflectance was measured from the reflective thin film layer side. Table 1 shows the reflectance at a wavelength of 800 nm and the reflectance at a wavelength of 390 nm in various Ag-based alloy thin films.
[0037]
[Table 1]
Figure 0003957259
[0038]
From the table, No. Nos. 1 to 11 have high reflectivity of 90% or more at a wavelength of 800 nm and 70% or more at a wavelength of 390 nm. It was found to have excellent reflectivity comparable to 12-17 Ag binary alloys. Among these, the Ag binary alloy to which each element of Sn, Cu, Ni, Au, Y, and Nd was added had particularly high initial reflectivity (reflectance of a thin film immediately after film formation by sputtering).
[0039]
Next, using the sample, a high temperature and high humidity test (implemented at a temperature of 80 ° C. and a humidity of 90% RH for 48 hours) was performed as an environmental acceleration (load) test, and the corrosion resistance (oxidation resistance) of the reflective thin film layer was evaluated. Specifically, the reflectance (spectral reflectance) of the reflective thin film layer is measured for each sample after completion of the high-temperature and high-humidity test, and the difference in reflectance before and after the test (that is, the amount of decrease in reflectance after the completion of the test). The corrosion resistance (oxidation resistance) was evaluated by calculating Table 2 shows the change in reflectance at a wavelength of 800 nm and the change in reflectance at a wavelength of 390 nm when various Ag-based alloy thin films are subjected to a high-temperature and high-humidity test.
[0040]
[Table 2]
Figure 0003957259
[0041]
Among the samples used in the experiment, Ag-based alloys containing each element of Zn, Ti, Cu, Ni, Au, Y, and Nd have a small reduction in reflectance and extremely excellent corrosion resistance (oxidation resistance). I understand.
[0042]
In view of the results in Tables 1 and 2, particularly from the viewpoint of ensuring high reflectivity and high corrosion resistance (high oxidation resistance), Ag-Cu group, Ag-Ni group, Ag-Au group are particularly preferable. It can be seen that it is preferable to use each of the alloy thin films of Ag, Y— and Ag—Nd.
[0043]
Example 2
In this example, the initial reflectance when the amount of alloy addition in the Ag binary alloy thin film was changed variously and the amount of reflectance change before and after the high temperature and high humidity test were examined.
[0044]
First, various thin films that are particularly excellent in reflectance and corrosion resistance in Example 1, that is, Ag-Cu group, Ag-Ni group, Ag-Au group, Ag-Y group, Ag-Nd group 5 About the seed thin film, the reflectance (spectral reflectance) in the measurement wavelength range of 800 to 200 nm was measured while changing the addition amount of the alloy element. The reflectance was measured from the reflective thin film layer side. FIG. 1 shows the relationship between the alloy addition amount and the initial reflectance at a wavelength of 700 nm.
[0045]
From FIG. 1, for any Ag-based alloy thin film, the initial reflectivity is about 99% or more in the range where the alloy element addition amount is 0 to 1%, and an extremely high reflectivity equivalent to or higher than that of the pure Ag thin film. Had. Incidentally, when the alloying element addition amount exceeds 1%, the initial reflectance starts to gradually decrease, but even when 5% is added, a high initial reflectance of about 95% or more is maintained.
[0046]
Next, with respect to the above samples, the corrosion resistance (oxidation resistance) of the reflective thin film layer was evaluated in the same manner as in Example 1, and the relationship between the corrosion resistance and the alloy element addition amount was examined. FIG. 2 shows the relationship between the reflectance at a wavelength of 700 nm and the added amount of alloy elements for the Ag-based alloy thin film before and after the high temperature and high humidity test.
[0047]
From FIG. 2, it can be seen that the corrosion resistance (oxidation resistance) is improved by alloying because any Ag-based alloy thin film has a smaller decrease in reflectivity than pure Ag. Incidentally, the corrosion resistance becomes maximum when the alloy element addition amount is around 1%, and generally tends to decrease when the addition amount exceeds 1%. However, depending on the type of the alloy, when 3% or more is added, the corrosion resistance is higher than that of pure Ag. Considering that some decrease was observed, the alloy element addition amount is preferably controlled within the range of 0.5 to 3%.
[0048]
Example 3
In this example, hydrogen sulfide (H 2 S) An atmosphere exposure test was conducted to evaluate the resistance to sulfidation.
[0049]
First, various Ag binary base alloy thin films (reflective thin film layers) were formed in the same manner as in Example 1 using various Ag binary base alloy targets (containing 2.0% of alloy elements) shown in Table 3. After preparing the sample, the reflectance (spectral reflectance) in the measurement wavelength range of 800 to 200 nm was measured. Next, hydrogen sulfide atmosphere exposure test [atmosphere: air + H] 2 S (50 ppm), a temperature of 50 ° C., and a humidity of 90% RH] were carried out to evaluate the resistance to sulfidation of the reflective thin film layer. Specifically, the reflectivity (spectral reflectivity) of the reflective thin film layer is measured for the sample after the test is completed, and the difference in reflectivity before and after the test (that is, the decrease in reflectivity after the test is completed) is calculated. Was used to evaluate sulfidation resistance. Table 3 shows the reflectance change amount at a wavelength of 800 nm and the reflectance change amount at a wavelength of 390 nm for Ag-based alloy thin films before and after the hydrogen sulfide atmosphere exposure test.
[0050]
[Table 3]
Figure 0003957259
[0051]
From Table 3, since the Ag-based alloy thin film (No. 1) containing Zn has the least amount of decrease in reflectance compared to other Ag-based alloy thin films, the Ag-Zn-based alloy is extremely excellent in sulfidation resistance. I understand that
[0052]
Example 4
In this example, the Ag—Zn alloy thin film was subjected to a hydrogen sulfide atmosphere exposure test, and the change in reflectance was examined.
[0053]
First, after preparing a sample on which an Ag—Zn binary base alloy thin film (reflection thin film layer) with various addition amounts of Zn was changed by the same method as in Example 1, reflection in a measurement wavelength range of 800 to 200 nm was performed. The rate (spectral reflectance) was measured. FIG. 3 shows the relationship between the Zn addition amount and the initial reflectance at a wavelength of 700 nm.
[0054]
As shown in FIG. 3, the Ag—Zn alloy thin film has a high reflectance of 85% or more even when 5% of Zn is added, although the initial reflectance tends to decrease as the amount of Zn added increases. .
[0055]
Next, with respect to the above samples, the sulfur resistance of the reflective thin film layer was evaluated by the same method as in Example 3, and the relationship between the sulfur resistance and the amount of Zn added was examined. FIG. 4 shows the relationship between the amount of decrease in reflectance at a wavelength of 700 nm and the amount of Zn added for Ag—Zn alloy thin films before and after the hydrogen sulfide atmosphere exposure test.
[0056]
As can be seen from FIG. 4, as the Zn addition amount increases, the reflectivity decrease amount gradually decreases, so that the addition of Zn improves the sulfidation resistance. Specifically, when the Zn addition amount is 0 to 1.5%, the effect of improving the sulfidation resistance due to the Zn addition is very remarkable, but the effect starts to slow down when the Zn addition amount exceeds 1.5%. When it exceeded 5%, it was almost saturated.
[0057]
As described above, considering the results of FIGS. 3 to 4, if the amount of Zn added in the Ag—Zn alloy thin film is controlled to be in the range of 1.5 to 5%, high initial reflectance is maintained and sulfidation resistance is maintained. Was also found to improve.
[0058]
Example 5
In this example, the adhesion of various Ag-based alloy thin films was evaluated by a patterning test.
[0059]
First, samples in which various Ag binary base alloy thin films (reflective thin film layers) shown in Table 4 were formed by the same method as in Example 1 were prepared. Next, the entire surface of the sample was processed into a stripe shape having a width of 10 μm by photolithography and wet etching, and the adhesion was evaluated by observing the presence or absence of peeling of the stripe pattern after processing with an optical microscope. The results are shown in Table 4.
[0060]
[Table 4]
Figure 0003957259
[0061]
In Table 4, it can be seen that the Ag binary alloy containing each component of Cu, Ti, W, Mo, Sn, Ge, and Nd does not show any peeling over the entire surface of the substrate and is extremely excellent in adhesion.
[0062]
Example 6
In this example, the adhesion of various Ag-based alloy thin films was evaluated by a peeling test.
[0063]
First, with respect to the sample of which the adhesion was recognized to be good among the samples of Example 5, the size of the resin substrate to be used was changed to the substrate size: 12.7 × 12.7 mm. In the same manner as in Example 5, samples with various Ag binary alloy thin films formed thereon were produced. Next, a peeling test was performed on the sample, and the adhesion was quantitatively evaluated by measuring the load (tensile strength) at the time of peeling. Specifically, a metal jig is affixed and fixed to the substrate side and the thin film side of the sample, respectively, and a tensile test is performed on both metal jigs by a tensile tester, and the thin film and the substrate are peeled off from the interface. Measure the load (tensile strength). Note that an adhesive is usually used for attaching and fixing a metal jig. However, in this embodiment, a two-part epoxy resin of room temperature curing type is used as an adhesive in order to avoid heat during bonding. used. For comparison, Ag binary base alloy thin films containing other elements were similarly tested. These results are shown in Table 5.
[0064]
[Table 5]
Figure 0003957259
[0065]
In Table 5, No. 5 was found to have better adhesion than Example 5. 1-7 Ag binary base alloys all have a tensile strength of 90 kgf / cm 2 The above shows extremely high adhesion. On the other hand, all other Ag binary alloys had low tensile strength and poor adhesion.
[0066]
Thus, from the results of the peeling test, the alloy groups of Ag—Cu group, Ag—Ti group, Ag—W group, Ag—Mo group, Ag—Sn group, Ag—Ge group, and Ag—Nd group are closely adhered. It was confirmed that it was extremely excellent in performance.
[0067]
Example 7
Using various Ag quaternary alloy targets shown in Table 6, similarly to Example 6, a quaternary alloy of Ag-3.0% Zn-0.85% Sn-1.0% Au having a thickness of 1000 mm A sample on which a thin film (reflection thin film layer) was formed was prepared. In addition, the following three types of targets were used for the Ag quaternary alloy target.
(1) Ag-3.0% Zn-0.85% Sn-1.0% Au quaternary base alloy produced by vacuum melting method
(2) Ag-3.0% Zn-0.85% Sn-1.0% Au quaternary alloy produced by powder metallurgy
(3) Mosaic target adjusted so that the composition of the thin film is an Ag-3.0% Zn-0.85% Sn-1.0% Au alloy (An, Sn, Au chips on a pure Ag target: Composite type target with a small plate embedded)
[0068]
For the above sample, the initial reflectance was measured in the same manner as in Example 1, and a high-temperature and high-humidity test (temperature 80 ° C., humidity 90% RH) was performed to calculate the reflectance reduction amount before and after the test. The corrosion resistance (oxidation resistance) of the thin film layer was evaluated. The results obtained are shown in Table 6.
[0069]
[Table 6]
Figure 0003957259
[0070]
From Table 6, all the Ag quaternary alloy thin films formed using the various targets of (1) to (3) above had high initial reflectivity, and the reflectivity change amount was small. Especially, since the tendency was noticeable in the target (1), it can be seen that the use of the molten Ag-based alloy sputtering target is most suitable.
[0071]
In addition, an experiment similar to the present example was performed by adding at least one of Cu, Ti, Nd, W, Mo, Sn, and Ge; and at least one of Cu, Ni, Au, Y, and Nd to the Ag—Zn alloy. As a result, it was confirmed that the same effect as in Table 6 was obtained.
[0072]
Example 8
In this example, the initial reflectance, corrosion resistance (oxidation resistance), and sulfidation resistance of a ternary base alloy thin film obtained by adding a third component to an Ag—Zn base alloy were examined.
[0073]
Specifically, various Ag ternary alloy thin films shown in FIG. 5 (the elements of Cu, Y, Ni, Nd, and Au as the third component are in the range of 0 to 6% by the same method as in Example 1. Samples were formed, and the relationship between various alloy thin films and initial reflectivity was examined. FIG. 5 shows the relationship between the added amount of the third component and the initial reflectance at a wavelength of 700 nm.
[0074]
From FIG. 5, in any alloy, the reflectance tends to gradually decrease with the addition of the third component, but even when 5% of the third component is added, a high reflectance of 85% or more. Could be maintained. Therefore, it turns out that addition of the said element as a 3rd component is useful.
[0075]
Next, the corrosion resistance (oxidation resistance) of the reflective layer thin film was evaluated for the above samples by the same method as in Example 1. FIG. 6 shows the relationship between the amount of change in reflectance at a wavelength of 700 mm before and after the high-temperature and high-humidity test and the added amount of the third component.
[0076]
From FIG. 6, it was found that even when the third component was added, the amount of decrease in reflectance did not change or was very small, so that the addition of the third component improved the corrosion resistance (oxidation resistance).
[0077]
Further, with respect to the above samples, the sulfidation resistance of the reflective thin film layer was evaluated by the same method as in Example 3. FIG. 7 shows the relationship between the amount of decrease in reflectivity at a wavelength of 700 mm before and after the hydrogen sulfide atmosphere exposure test and the added amount of the third component.
[0078]
As shown in FIG. 7, the reflectance reduction amount of the Ag ternary alloy gradually decreases with the addition of the third component. Therefore, when the above ternary alloy is used, the Ag-3% Zn binary alloy is changed. In comparison, it can be seen that the corrosion resistance (oxidation resistance) is improved. The effect differs depending on the type of element. When the third component is Au, the effect of improving the sulfidation resistance is most noticeable, and then the improvement effect is observed in the order of Y, Nd, Ni, and Cu.
[0079]
Example 9
In this example, the adhesion of the Ag ternary alloy thin film was evaluated.
[0080]
Specifically, after preparing samples on which various Ag ternary alloy thin films shown in Table 7 were formed by the same method as in Example 1, an adhesion test by a patterning test was performed by the same method as in Example 5. did. Table 7 also shows the stripping pattern peeling state for the Ag ternary alloy thin film.
[0081]
[Table 7]
Figure 0003957259
[0082]
From Table 7, it can be seen that in the Ag-based alloy thin film to which each element of Cu, Ti, W, Mo, Sn, Ge, and Nd was added, no peeling was observed over the entire surface of the substrate, and the adhesion was extremely excellent.
[0083]
Example 10
In this example, the adhesion of the Ag ternary alloy thin film was evaluated by an evaluation method different from that in Example 9.
[0084]
Specifically, various Ag—Zn—X ternary alloy thin films (X is each element of Ti, W, Mo, Sn, Ge, and Nd) shown in FIG. 8 are formed by the same method as in Example 1. After producing the prepared sample, a peeling test was performed by the same method as in Example 6 to quantitatively evaluate the adhesion. The results are also shown in FIG.
[0085]
From FIG. 8, with the addition of the third element, the adhesion strength (tensile strength at the time of peeling) of the Ag-based alloy increases, and the adhesion is improved as compared with the Ag—Zn binary alloy and pure Ag. I understood. The effect of increasing the adhesion was greatest for Ti, followed by W, Sn, Nd, Mo, and Ge.
[0086]
【The invention's effect】
Since the reflective layer for an optical information recording medium of the present invention is configured as described above, it has not only high reflectivity but also excellent resistance to sulfidation, and moreover a disk substrate (polycarbonate substrate or the like). In addition, since the adhesion to other thin films constituting the disc is also good, the performance and reliability of the optical information recording medium (phase change type and write once type optical disc) can be remarkably improved. Moreover, the sputtering target of the present invention is suitably used when the reflective layer for optical information recording media is formed by sputtering. In addition to the merit that the component composition of the formed reflective thin film layer is easily stabilized, the anti-sulfurization There is also an advantage that a reflective thin film layer having excellent properties such as properties, reflectance and adhesion can be obtained efficiently.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of alloy element added and the initial reflectivity for the Ag-based alloy reflective thin film layer of Example 2. FIG.
FIG. 2 is a graph showing the relationship between the alloy element addition amount and the reflectance reduction amount for the Ag-based alloy reflective thin film layer of Example 2.
FIG. 3 is a graph showing the relationship between the Zn addition amount and the initial reflectance for the Ag-based alloy reflective thin film layer of Example 4.
FIG. 4 is a graph showing the relationship between the Zn addition amount and the reflectance reduction amount for the Ag-based alloy reflective thin film layer of Example 4.
FIG. 5 is a graph showing the relationship between the added amount of the third component and the initial reflectance for the Ag—Zn alloy reflective thin film layer of Example 8.
FIG. 6 is a graph showing the relationship between the added amount of the third component and the reflectance reduction amount for the Ag—Zn alloy reflective thin film layer of Example 8.
FIG. 7 is a graph showing the relationship between the added amount of the third component and the reflectance reduction amount for the Ag—Zn alloy reflective thin film layer of Example 8.
8 is a graph showing the relationship between the added amount of the third component and the tensile strength of the Ag—Zn alloy reflective thin film layer of Example 10. FIG.

Claims (3)

Znを1.5〜5%(原子%の意味、以下同じ)含有すると共に、Cu,Ni,Au,Y,およびNdよりなる群から選択される少なくとも1種の元素を合計で0.5〜3%含有するAg基合金で構成されていることを特徴とする光情報記録媒体用反射層。The Zn 1.5 to 5% (atomic% meanings, following the same) 0.5 which has free, Cu, Ni, Au, Y, and at least one element selected from the group consisting of Nd in total A reflective layer for an optical information recording medium, comprising an Ag-based alloy containing 3%. 前記Ag基合金が、更にTi,W,Mo,Sn,およびGeよりなる群から選択される少なくとも1種の元素を合計で0.5〜5%含有するものである請求項1に記載の光情報記録媒体用反射層。  The light according to claim 1, wherein the Ag-based alloy further contains at least one element selected from the group consisting of Ti, W, Mo, Sn, and Ge in a total amount of 0.5 to 5%. Reflective layer for information recording media. 請求項1または2に記載の光情報記録媒体用反射層を備えた光情報記録媒体。  An optical information recording medium comprising the reflective layer for an optical information recording medium according to claim 1.
JP2000402557A 2000-04-12 2000-12-28 Reflective layer for optical information recording medium and optical information recording medium Expired - Lifetime JP3957259B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000402557A JP3957259B2 (en) 2000-04-12 2000-12-28 Reflective layer for optical information recording medium and optical information recording medium
TW090124552A TWI236672B (en) 2000-12-28 2001-10-04 Reflective layer for optical data recording medium, optical data recording medium, and sputtering target for reflective layer of optical data recording medium
KR10-2001-0062482A KR100478374B1 (en) 2000-12-28 2001-10-10 Reflection layers for optical storage media, optical storage media and sputtering targets for reflection layer of optical storage media

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-111310 2000-04-12
JP2000111310 2000-04-12
JP2000402557A JP3957259B2 (en) 2000-04-12 2000-12-28 Reflective layer for optical information recording medium and optical information recording medium

Publications (2)

Publication Number Publication Date
JP2001357559A JP2001357559A (en) 2001-12-26
JP3957259B2 true JP3957259B2 (en) 2007-08-15

Family

ID=26589988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000402557A Expired - Lifetime JP3957259B2 (en) 2000-04-12 2000-12-28 Reflective layer for optical information recording medium and optical information recording medium

Country Status (1)

Country Link
JP (1) JP3957259B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316837B2 (en) * 2000-07-21 2008-01-08 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
WO2002077317A1 (en) * 2001-03-16 2002-10-03 Ishifuku Metal Industry Co., Ltd. Sputtering target material
US7514037B2 (en) * 2002-08-08 2009-04-07 Kobe Steel, Ltd. AG base alloy thin film and sputtering target for forming AG base alloy thin film
JP4671579B2 (en) * 2002-12-16 2011-04-20 株式会社アルバック Ag alloy reflective film and method for producing the same
US20060188386A1 (en) * 2003-03-13 2006-08-24 Akifumi Mishima Silver alloy sputtering target for forming reflective layer of optical recording media
CN100446102C (en) * 2003-05-16 2008-12-24 三菱麻铁里亚尔株式会社 Silver alloy sputtering target for forming reflection layer of optical recording medium
SG171485A1 (en) * 2009-11-24 2011-06-29 Autium Pte Ltd Tarnish-resistant silver alloy
JP6198177B2 (en) * 2013-07-19 2017-09-20 三菱マテリアル株式会社 Ag alloy sputtering target
JP5975186B1 (en) 2015-02-27 2016-08-23 三菱マテリアル株式会社 Ag alloy sputtering target and method for producing Ag alloy film

Also Published As

Publication number Publication date
JP2001357559A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
KR100445083B1 (en) Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium
TWI327602B (en) Silver alloy reflective film, sputtering target therefor, and optical information recording medium using the same
JP3365762B2 (en) Reflective layer or translucent reflective layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium
JP4377861B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
US9177594B2 (en) Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
TWI336471B (en) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
EP1607954B1 (en) Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
JP4527624B2 (en) Optical information medium having Ag alloy reflective film
JP2007035104A (en) Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM AND Ag ALLOY SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM
JP2006054032A5 (en)
JP3957259B2 (en) Reflective layer for optical information recording medium and optical information recording medium
JP3924308B2 (en) Ag alloy sputtering target for forming Ag alloy reflective film for read-only optical information recording medium for laser marking
JP3494044B2 (en) Optical information recording medium and information recording device
TWI381377B (en) Optical information recording media
JP4306988B2 (en) Information recording medium
KR100478374B1 (en) Reflection layers for optical storage media, optical storage media and sputtering targets for reflection layer of optical storage media
JP2003030901A (en) Aluminum alloy for forming reflecting film in optical recording disk
JPWO2006004025A1 (en) Optical recording medium and manufacturing method thereof
JP2002269828A (en) Optical information recording medium
JPH06131700A (en) Optical recording medium
JP2003027158A (en) Gold alloy for forming optical recording disk reflection film
JP2003317317A (en) Optical information recording medium and information recording device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3957259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

EXPY Cancellation because of completion of term