JP3956794B2 - Parallel operation current detector for uninterruptible power supply and current detection method - Google Patents

Parallel operation current detector for uninterruptible power supply and current detection method Download PDF

Info

Publication number
JP3956794B2
JP3956794B2 JP2002230724A JP2002230724A JP3956794B2 JP 3956794 B2 JP3956794 B2 JP 3956794B2 JP 2002230724 A JP2002230724 A JP 2002230724A JP 2002230724 A JP2002230724 A JP 2002230724A JP 3956794 B2 JP3956794 B2 JP 3956794B2
Authority
JP
Japan
Prior art keywords
power supply
uninterruptible power
switch
current transformer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002230724A
Other languages
Japanese (ja)
Other versions
JP2004072928A (en
Inventor
一喜 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002230724A priority Critical patent/JP3956794B2/en
Publication of JP2004072928A publication Critical patent/JP2004072928A/en
Application granted granted Critical
Publication of JP3956794B2 publication Critical patent/JP3956794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、直送給電回路または無停電電源装置が並列運転する際に必要とする電流を検出する装置と、その電流検出方法に関する。
【0002】
【従来の技術】
複数の無停電電源装置を並列運転する場合に、各無停電電源装置がその出力電流を均等に分担する必要があることは周知である。そのために、並列運転中の各無停電電源装置の出力電流を別個に計測し、これらを合計し、この合計値を運転台数で割り算する手順の計算回路を設ける。また、並列運転中に故障などで無停電電源装置の運転台数が変化すれば、運転を継続している無停電電源装置の分担電流も変化するが、分担電流の計算がこのような状況の変化に速やかに対応できるようにしておく必要もある。更に、このようにして得られた平均電流値を目標値にして、各無停電電源装置はその出力電流を目標値に一致させるべく制御をするのであるから、この平均電流値は正しくなければならない。
【0003】
図4は直送切り換え回路バックアップ方式無停電電源装置の電流検出の従来例を示した回路図である。図示のように、無停電電源装置2と直送給電回路3とは無瞬断切り換え装置4を介して並列に接続されていて、保守用開閉器7を介して母線1に接続される。この母線1には、図示は省略しているが、同じ構成の無停電電源装置を複数接続することで、並列運転を行う。
【0004】
無瞬断切り換え装置4は交流スイッチ4Aと直送用開閉器4Bと出力用開閉器4Cで構成されていて、通常は交流スイッチ4Aと直送用開閉器4Bはオフで出力用開閉器4Cをオンにすることで、無停電電源装置2が保守用開閉器7を介して母線1へ交流電力を供給するのであるが、このときの無停電電源装置2の出力と直送給電回路3の出力は同期状態を維持しているから、無停電電源装置2が故障したり過電流になれば、即座に交流スイッチ4Aをオンにして、母線1への交流電力の供給を、無瞬断で且つショックを生じることなしで、無停電電源装置2から直送給電回路3へ切り換えることができる。直送給電回路3の給電中は無停電電源装置2が直送給電回路3ど同期した電圧を発生してスタンバイしており、切り換え指令に従って直送給電回路3から無停電電源装置2への電力の切り換えが無瞬断でなされる。
【0005】
複数の無停電電源装置2が並列運転しているとき、各無停電電源装置2の出力電流を均等化する必要がある。そこで保守用開閉器7の回路に設けた主変流器6が検出する電流を、他の無停電電源装置の主変流器6が検出する電流と共に電流加算器41へ入力してこれらの合計電流を計算する。一方で出力用開閉器4Cのオン信号を他の無停電電源装置の出力用開閉器4Cのオン信号と共に運転台数カウンタ42へ入力することで、並列運転中の無停電電源装置の台数を求める。除算器43は合計電流値を運転台数で除算することで1台当たりの平均電流を計算する。制御装置8はこの平均電流を指令値にして、出力変流器5が検出する当該無停電電源装置2の出力電流をこの平均電流に一致させる制御を行う。並列運転中の各無停電電源装置は、すべてがこの平均電流を指令値にした制御を行うから、全無停電電源装置を同一出力電流で運転させることができる。
【0006】
また、図示は省略しているけれども、直送給電回路3で給電しているときの合計電流を電流加算器41で知ることができるし、直送用開閉器4Bがオンしている台数から、自動または手動で直送給電回路の1回路当たりの平均電流を知ることもできる。
【0007】
【発明が解決しようとする課題】
図4に図示の従来例回路において、無停電電源装置の並列運転中は除算器43が各無停電電源装置へ電流指令値を与えるのであるが、平均電流を算出する各回路が誤動作して正しい電流指令値が得られないと、すべての無停電電源装置が制御不能状態に陥る危険があるが、それにもかかわらず、算出した電流指令値が正しいか否かを確認できない不具合を生じる。
【0008】
また、例えば3回路並列で給電中の直送給電回路の1回路当たりの出力電流が100Aであって、スタンバイしている無停電電源装置の1台当たりの電流容量が120Aであるとすると、3回路並列の直送給電回路から3台並列の無停電電源装置へ切り換わるときは全く問題無いが、故障などのためにスタンバイしている無停電電源装置が2台しかない場合は、1台が150Aの電流を分担することになって過電流になるから、再び直送給電回路からの給電に戻ってしまう不具合を生じる。すなわち従来設備では、並列運転中の無停電電源装置の一台当たりの平均電流の算出はできても、直送給電回路の1回路あたりの平均電流の算出や、スタンバイ状態にある無停電電源装置が並列運転したならば分担することになるであろう1台当たりの平均電流を予測できない不具合があった。
【0009】
そこでこの発明の目的は、並列運転中の無停電電源装置の電流指令値となる平均電流を二重に算出して相互チェックを可能にすると共に、直送給電回路の平均電流と、スタンイ状態にある無停電電源装置が並列運転する際の平均電流が算出できるようにすることにある。
【0010】
【課題を解決するための手段】
前記の目的を達成するために、この発明の無停電電源装置の並列運転電流検出装置とその電流検出方法は、
直送給電回路の出力側に備えた直送用開閉器と、無停電電源装置の出力側に備えた出力用開閉器とを結合し、この結合点と母線との間に保守用開閉器を設けて直送切り換え回路バックアップ方式無停電電源装置を構成し、これの複数組を母線に接続することで構成される無停電電源装置の並列運転装置において、
前記出力用開閉器の回路の電流を検出する出力変流器と、該出力変流器の二次巻線に直接または補助変流器を介して接続してその入力信号を所望のレベルの信号に変換する第1信号変換器と、前記保守用開閉器の回路の電流を検出する第1変流器と第2変流器と、該第1変流器の二次巻線に接続して、前記出力用開閉器と前記保守用開閉器の両者がオンで且つ前記無停電電源装置が運転状態のときにオンとなる第1スイッチと、該第1スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第1スイッチの出力側とを接続する第1スイッチ接続線と、前記第1変流器の二次巻線に抵抗を介して接続する第1補助変流器と、該第1補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第2信号変換器と、前記第2変流器の二次巻線に接続して、前記直送用開閉器または前記出力用開閉器のいずれかがオンで且つ前記保守用開閉器がオンのときにオンとなる第2スイッチと、該第2スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第2スイッチの出力側とを接続する第2スイッチ接続線と、この第2変流器の二次巻線に接続して、前記無停電電源装置が運転状態のときにオンとなる第3スイッチと、該第3スイッチの出力側に、抵抗を介して接続する第2補助変流器と、該第2補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第信号変換器と、前記第2変流器の二次巻線に接続して、この二次巻線の電圧が所定値を越えると導通して当該二次巻線を短絡する半導体素子と、を備える。
【0012】
前記第2信号変換器の出力信号と比較するべき並列運転中の無停電電源装置1台当たりの平均出力電流信号は、直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第2変流器を設置し、並列運転中の各無停電電源装置のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、並列運転中の各無停電電源装置に属する前記第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から検出する。
【0013】
直送給電回路から無停電電源装置へ切り換わったときに並列運転となるべき台数の無停電電源装置1台当たりの平均出力電流信号は、直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第2変流器を設置し、並列運転中の各直送給電回路のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、動作中の各無停電電源装置に属する第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から検出する。
【0014】
【発明の実施の形態】
図1は本発明の第1実施例を表した回路図であるが、この第1実施例回路に記載している主回路部分である母線1,無停電電源装置2,直送給電回路3,無瞬断切り換え装置4,出力変流器5,主変流器6および保守用開閉器7の名称・用途・機能は、図4で既述の従来例回路と同じであるから、同じ部分の説明は省略する。
【0015】
この第1実施例回路では、主変流器6の二次巻線に第1変流器11と第2変流器21を設置しているが、これら第1変流器11と第2変流器21の代わりに主変流器6と同種の変流器を保守用開閉器7の回路に挿入しても同じである。この第1変流器11の二次巻線には抵抗15を介して第1補助変流器16を設置するが、この第1補助変流器16の二次巻線には信号変換器としての第1電流電圧変換器17を接続する。さらに第1変流器11の二次巻線には第1スイッチ12を設け、この第1スイッチ12の出力側に接続した第1スイッチ接続線13が、他の無停電電源装置に設けている第1スイッチ12の出力側に接続されている。ここで第1スイッチ12は、出力用開閉器4Cと保守用開閉器7とがオンで且つ無停電電源装置2が動作中のときにオンとなる。第1スイッチ12がオンすると、第1電流電圧変換器17には並列運転中の無停電電源装置の出力電流の1台当たりの平均値が現れる。また出力用開閉器4Cの二次巻線に設けた出力補助変流器31の二次巻線に第3電流電圧変換器32を接続すると無停電電源装置2の出力電流を検出できる。よって制御装置8において、第1補助変流器16の出力(無停電電源装置の平均電流)を指令値にして、第3電流電圧変換器32の出力ある無停電電源装置2の出力電流を指令値に一致させる制御が行える。
【0016】
なお第1スイッチ12をオフにすれば、保守用開閉器7の回路の電流を検出できる。
主変流器6の二次巻線に設けた第2変流器21の二次巻線には、第3スイッチ24と抵抗25を介して第2補助変流器26が設置されており、この第2補助変流器26の二次巻線には信号変換器としての第2電流電圧変換器27を接続している。更に第2変流器21の二次巻線には第2スイッチ22を設け、この第2スイッチ22の出力側に接続した第2スイッチ接続線23が、他の無停電電源装置に設けている第2スイッチ22の出力側に接続されている。よって第2スイッチ22と第3スイッチ24をオンにすれば、前述と同様に第2電流電圧変換器27は並列運転中の無停電電源装置の1台当たりの平均電流を検出するから、第2電流電圧変換器27の出力と第1電流電圧変換器17の出力とを比較し、両者に差異があれば、いずれかの回路に異常ありと判定できる。すなわち電流指令値が正しいか否かを知ることができる。
【0017】
第2スイッチ22は、直送用開閉器4Bまたは出力用開閉器4Cの何れかがオンで、且つ保守用開閉器7がオンのときにオンする。また第3スイッチ24は、無停電電源装置2が動作中(動作中とは出力用開閉器4Cをオンにすれば電力を供給できる状態)のときにオンとなる。従って、例えば各直送給電回路が電力供給中ならば、第2電流電圧変換器27が検出する電流は、動作中の無停電電源装置の台数に対応した1台当たりの平均電流である。すなわち直送給電回路の3回路が運転中で、これを無停電電源装置へ切り換えたときに、運転できるのが2台の無停電電源装置であるならば、直送給電回路の3回路分の電流を2台の無停電電源装置で受け持つときの1台当たりの電流を検出する。よって無停電電源装置に故障機があるときに、過電流になるか否かを判断できる。
【0018】
図2は本発明の第2実施例を表した回路図であって、平均電流を検出する回路であるが、この図2は2台の無停電電源装置の平均電流を検出する場合である。
この図2において、中央より左側が1号機で、右側が2号機であるとする。1号機のみが単独で運転しているときは、スイッチ34はオンするがスイッチ39はオフであるから、接続線30には電流は流れない。このとき定電流源31(図1の第1変流器11に対応)の出力は、補助変変流器32を介して信号変換器33で表示される。
【0019】
ここで2号機も運転するとスイッチ39もオンするから、定電流源31の出力と定電流源36の出力に差異があっても、接続線30にはこの差を解消する方向の電流が流れ、信号変換器33と38は、定電流源31と定電流源36の出力を平均した値を表示する。
図3は図1の電流検出部を複線で示して本発明の第3実施例を表した回路図であるが、各符号とその名称・用途・機能は、図1と同じであるから、これらの説明は省略しその動作の説明を行う。
【0020】
無停電電源装置が運転中は第1スイッチ12はオンであるが、他機と並列運転していなければ、第1スイッチ接続線13は他機とつながらないから、第1電流電圧変換器17は自機の出力電流が表示される。また他機と並列運転していれば、図2で既述の動作で平均電流が得られるから、この平均電流を自機の出力電流の目標値にして、自機の出力電流を制御する。更に直送給電回路で運転中ならば第1スイッチ12はオフとなるから、自己の直送給電回路の電流が第1電流電圧変換器17から得られる。
【0021】
更に、無停電電源装置が運転中で他機と並列運転中ならば第2スイッチ22と第3スイッチ24が共にオンであるから、第2電流電圧変換器27は並列運転中の無停電電源装置の平均電流を計測する。これのとき第1電流電圧変換器17も平均電流を計測するから両者は同じ値であるが、もしも値が異なるときはなんらかの以上が発生して、電流指令値が正しくない恐れがあると判断できる。
【0022】
また複数の直送給電回路が電力を送出中にスタンバイして、いつでも電力を送出できる状態にある無停電電源装置のみが第3スイッチ24をオンにするから、例えば直送給電回路が3回路でそれぞれが100Aを出力している場合でも、スタンバイしている無停電電源装置が2台ならば、100A×3÷2=150Aなる計算を行って、3回路の直送給電回路から2台の無停電電源装置に切り換わったときに、無停電電源装置の1台分の電流値を第2電流電圧変換器27が表示する。よって直送給電回路から無停電電源装置へ切り換わったときに、無停電電源装置が過電流になる恐れの有無を、予め知ることができる。
【0023】
【発明の効果】
直送切り換え回路バックアップ方式無停電電源装置の複数組を並列運転する場合に、本発明では無停電電源装置の電流目標値となる1台当たりの平均電流を別個の回路で算出するから、両者を比較することで電流指令値に異常があるか否かを判断できるという効果が得られる。また、直送給電回路の運転回路数よりもスタンバイしている無停電電源装置の台数が少ない場合は、直送給電回路から無停電電源装置へ切り換えた場合に無停電電源装置が過電流になる恐れがあるが、本発明では無停電電源装置の1台分分担すべき電流を予め知ることができるように回路を構成しているので、無停電電源装置側へ切り換えた途端に無停電電源装置が過電流になって、再び直送給電回路へ切り換わってしまうような不具合を未然に防止できる効果も得られる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を表した回路図
【図2】 本発明の第2実施例を表した回路図
【図3】 図1の電流検出部を複線で示して本発明の第3実施例を表した回路図
【図4】 直送切り換え回路バックアップ方式無停電電源装置の電流検出の従来例を示した回路図
【符号の説明】
1 母線
2 無停電電源装置
3 直送給電回路
4 無瞬断切り換え装置
4A 交流スイッチ
4B 直送用開閉器
4C 出力用開閉器
5 出力変流器
6 主変流器
7 保守用開閉器
8 制御装置
11 第1変流器
12 第1スイッチ
13 第1スイッチ接続線
16 第1補助変流器
17 第1電流電圧変換器
21 第2変流器
22 第2スイッチ
23 第2スイッチ接続線
24 第3スイッチ
26 第2補助変流器
27 第2電流電圧変換器
28 短絡ダイオード
31 出力補助変流器
32 第3電流電圧変換器
41 電流加算器
42 運転台数カウンタ
43 除算器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for detecting a current required when a direct feed power supply circuit or an uninterruptible power supply operates in parallel, and a method for detecting the current.
[0002]
[Prior art]
When a plurality of uninterruptible power supply devices are operated in parallel, it is well known that each uninterruptible power supply device must share its output current equally. For this purpose, a calculation circuit for the procedure of separately measuring the output currents of the uninterruptible power supply devices in parallel operation, summing them, and dividing the total value by the number of operating units is provided. In addition, if the number of uninterruptible power supply units changes due to a failure during parallel operation, the shared current of the uninterruptible power supply unit that continues to operate also changes. It is also necessary to be able to respond promptly. Furthermore, the average current value obtained in this way is used as a target value, and each uninterruptible power supply is controlled so that its output current matches the target value. Therefore, this average current value must be correct. .
[0003]
FIG. 4 is a circuit diagram showing a conventional example of current detection in a direct transmission switching circuit backup type uninterruptible power supply. As shown in the figure, the uninterruptible power supply 2 and the direct feed circuit 3 are connected in parallel via an uninterruptible switching device 4 and connected to the bus 1 via a maintenance switch 7. Although not shown in the figure, the bus 1 is connected in parallel by connecting a plurality of uninterruptible power supply devices having the same configuration.
[0004]
The uninterruptible switching device 4 is composed of an AC switch 4A, a direct switch 4B, and an output switch 4C. Normally, the AC switch 4A and the direct switch 4B are turned off and the output switch 4C is turned on. Thus, the uninterruptible power supply 2 supplies AC power to the bus 1 via the maintenance switch 7. At this time, the output of the uninterruptible power supply 2 and the output of the direct feed circuit 3 are in a synchronized state. Therefore, if the uninterruptible power supply 2 breaks down or becomes overcurrent, the AC switch 4A is immediately turned on, and the supply of AC power to the bus 1 is uninterrupted and generates a shock. It is possible to switch from the uninterruptible power supply 2 to the direct feed circuit 3 without any trouble. During the feeding of the direct power feeding circuit 3, the uninterruptible power supply 2 generates a voltage synchronized with the direct feeding power circuit 3 and is in a standby state, and the power switching from the direct feeding power circuit 3 to the uninterruptible power supply 2 is performed according to the switching command. Made without interruption.
[0005]
When a plurality of uninterruptible power supply devices 2 are operating in parallel, it is necessary to equalize the output current of each uninterruptible power supply device 2. Therefore, the current detected by the main current transformer 6 provided in the circuit of the maintenance switch 7 is input to the current adder 41 together with the current detected by the main current transformer 6 of the other uninterruptible power supply, and the sum of these currents. Calculate the current. On the other hand, by inputting the ON signal of the output switch 4C together with the ON signal of the output switch 4C of another uninterruptible power supply to the operating number counter 42, the number of uninterruptible power supplies in parallel operation is obtained. The divider 43 calculates the average current per unit by dividing the total current value by the number of operating units. The control device 8 uses the average current as a command value, and performs control to match the output current of the uninterruptible power supply 2 detected by the output current transformer 5 with the average current. Since each uninterruptible power supply unit in parallel operation performs control with this average current as a command value, all uninterruptible power supply units can be operated with the same output current.
[0006]
Although not shown in the figure, the total current when power is fed by the direct feed circuit 3 can be known by the current adder 41, and from the number of direct feed switches 4B turned on automatically or It is also possible to know the average current per circuit of the direct feed circuit manually.
[0007]
[Problems to be solved by the invention]
In the conventional circuit shown in FIG. 4, the divider 43 gives a current command value to each uninterruptible power supply unit during parallel operation of the uninterruptible power supply units, but each circuit that calculates the average current malfunctions and is correct. If the current command value cannot be obtained, there is a risk that all uninterruptible power supplies fall into an uncontrollable state, but nevertheless, there is a problem that it cannot be confirmed whether or not the calculated current command value is correct.
[0008]
For example, assuming that the output current per circuit of a direct power feeding circuit that is feeding power in parallel in three circuits is 100 A, and the current capacity per unit of an uninterruptible power supply in standby is 120 A, three circuits There is no problem when switching from a parallel direct power supply circuit to three parallel uninterruptible power supply units, but if there are only two uninterruptible power supply units on standby due to a failure, etc., one unit is 150A. Since the current is shared and the overcurrent occurs, a problem of returning to the power feeding from the direct feed power supply circuit occurs again. That is, in the conventional equipment, even if the average current per unit of uninterruptible power supply units in parallel operation can be calculated, the average current per circuit of the direct power feeding circuit or the uninterruptible power supply unit in the standby state can be calculated. There was a problem that the average current per unit that would be shared if operated in parallel could not be predicted.
[0009]
Accordingly an object of this invention is to allow the mutual check by calculating the average current as a current command value of the uninterruptible power supply in parallel operation to double the average current of the direct power supply circuit, Stan Ba Yi state It is to be able to calculate the average current when the uninterruptible power supply devices in the above are operated in parallel.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the parallel operation current detection device and the current detection method of the uninterruptible power supply according to the present invention include:
Connect the direct switch provided on the output side of the direct feed circuit and the output switch provided on the output side of the uninterruptible power supply, and provide a maintenance switch between this connection point and the bus. In the parallel operation device of the uninterruptible power supply configured by configuring the direct transfer switching circuit backup method uninterruptible power supply and connecting multiple sets of these to the bus,
An output current transformer for detecting the current of the circuit of the output switch, and a signal of a desired level connected to the secondary winding of the output current transformer directly or via an auxiliary current transformer A first signal converter for converting to a first current transformer, a first current transformer for detecting a current of the circuit of the maintenance switch, a second current transformer, and a secondary winding of the first current transformer; A first switch that is turned on when both the output switch and the maintenance switch are on and the uninterruptible power supply is in operation; the output side of the first switch; A first switch connection line connecting the output side of each first switch belonging to the power failure power supply, a first auxiliary current transformer connected to the secondary winding of the first current transformer via a resistor, A second signal converter connected to the secondary winding of the first auxiliary current transformer to convert the input signal into a signal of a desired level; A second switch that is connected to the secondary winding of the two current transformers and that is turned on when either the direct feed switch or the output switch is on and the maintenance switch is on; A second switch connection line connecting the output side of the second switch and the output side of each second switch belonging to each of the other uninterruptible power supplies, and connected to the secondary winding of the second current transformer A third switch that is turned on when the uninterruptible power supply is in operation, a second auxiliary current transformer that is connected to the output side of the third switch via a resistor, and the second auxiliary current transformer. A third signal converter connected to the secondary winding of the current transformer to convert the input signal into a signal of a desired level, and connected to the secondary winding of the second current transformer, A semiconductor element that conducts when the voltage of the wire exceeds a predetermined value and short-circuits the secondary winding.
[0012]
The average output current signal per uninterruptible power supply unit in parallel operation to be compared with the output signal of the second signal converter is the direct feed power supply circuit of the direct feed switching circuit backup type uninterruptible power supply unit and the uninterruptible power supply unit. A second current transformer is installed in the circuit combined with the output circuit, and the secondary windings of each second current transformer belonging to each uninterruptible power supply unit in parallel operation are connected by the second switch connection line. In addition, a second auxiliary current transformer is connected to each of the secondary windings of the second current transformer belonging to each uninterruptible power supply unit in parallel operation through a resistor, and the second auxiliary current transformer Detection is from a third signal converter connected separately to each of the secondary windings.
[0013]
The average output current signal per unit of uninterruptible power supply units that should be operated in parallel when switching from the direct feed circuit to the uninterruptible power supply unit is the same as that of the direct feed circuit of the direct transfer switching circuit backup type uninterruptible power supply unit. A second current transformer is installed in a circuit that is coupled with the output circuit of the power failure power supply, and the secondary windings of each second current transformer belonging to each of the direct power feeding circuits in parallel operation are connected to the second switch. A second auxiliary current transformer is connected to each of the secondary windings of the second current transformer belonging to each uninterruptible power supply in operation via a resistor, and the second auxiliary current transformer From a third signal converter connected separately to each of the secondary windings.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. The main circuit portion described in the circuit of the first embodiment is a bus 1, an uninterruptible power supply 2, a direct feed circuit 3, and The names, applications, and functions of the instantaneous interruption switching device 4, the output current transformer 5, the main current transformer 6, and the maintenance switch 7 are the same as those of the conventional circuit described above with reference to FIG. Is omitted.
[0015]
In the circuit of the first embodiment, the first current transformer 11 and the second current transformer 21 are installed in the secondary winding of the main current transformer 6, but the first current transformer 11 and the second current transformer 21 are provided. It is the same even if a current transformer of the same type as the main current transformer 6 is inserted in the circuit of the maintenance switch 7 instead of the current transformer 21. A first auxiliary current transformer 16 is installed in the secondary winding of the first current transformer 11 via a resistor 15. The secondary winding of the first auxiliary current transformer 16 is provided as a signal converter. The first current-voltage converter 17 is connected. Further, a first switch 12 is provided in the secondary winding of the first current transformer 11, and a first switch connection line 13 connected to the output side of the first switch 12 is provided in another uninterruptible power supply. It is connected to the output side of the first switch 12. Here, the first switch 12 is turned on when the output switch 4C and the maintenance switch 7 are on and the uninterruptible power supply 2 is operating. When the first switch 12 is turned on, an average value per unit of the output current of the uninterruptible power supply unit in parallel operation appears in the first current-voltage converter 17. Further, when the third current-voltage converter 32 is connected to the secondary winding of the output auxiliary current transformer 31 provided in the secondary winding of the output switch 4C, the output current of the uninterruptible power supply 2 can be detected. Therefore, in the control device 8, the output of the first auxiliary current transformer 16 (average current of the uninterruptible power supply device) is used as a command value, and the output current of the uninterruptible power supply 2 that is the output of the third current-voltage converter 32 is calculated. Control to match the command value can be performed.
[0016]
If the first switch 12 is turned off, the circuit current of the maintenance switch 7 can be detected.
In the secondary winding of the second current transformer 21 provided in the secondary winding of the main current transformer 6, a second auxiliary current transformer 26 is installed via a third switch 24 and a resistor 25. A second current-voltage converter 27 as a signal converter is connected to the secondary winding of the second auxiliary current transformer 26. Further, the secondary winding of the second current transformer 21 is provided with a second switch 22, and a second switch connection line 23 connected to the output side of the second switch 22 is provided in another uninterruptible power supply. It is connected to the output side of the second switch 22. Therefore, if the second switch 22 and the third switch 24 are turned on, the second current-voltage converter 27 detects the average current per unit of uninterruptible power supply units in parallel operation as described above. If the output of the current-voltage converter 27 and the output of the first current-voltage converter 17 are compared and there is a difference between them, it can be determined that there is an abnormality in any of the circuits. That is, it can be known whether or not the current command value is correct.
[0017]
The second switch 22 is turned on when either the direct switch 4B or the output switch 4C is on and the maintenance switch 7 is on. Further, the third switch 24 is turned on when the uninterruptible power supply 2 is in operation (in operation, a state where power can be supplied by turning on the output switch 4C). Therefore, for example, if each direct feed power supply circuit is supplying power, the current detected by the second current-voltage converter 27 is an average current per unit corresponding to the number of uninterruptible power supply units in operation. That is, if three circuits of the direct power feeding circuit are in operation and are switched to the uninterruptible power supply, if two uninterruptible power supplies can be operated, the current for the three circuits of the direct power feeding circuit is The current per unit when it is handled by two uninterruptible power supplies is detected. Therefore, it can be determined whether or not there is an overcurrent when the uninterruptible power supply has a fault device.
[0018]
FIG. 2 is a circuit diagram showing a second embodiment of the present invention, which is a circuit for detecting an average current. FIG. 2 shows a case in which the average current of two uninterruptible power supplies is detected.
In FIG. 2, it is assumed that the left side from the center is Unit 1 and the right side is Unit 2. When only Unit 1 is operating alone, the switch 34 is turned on but the switch 39 is turned off, so that no current flows through the connection line 30. At this time, the output of the constant current source 31 (corresponding to the first current transformer 11 in FIG. 1) is displayed by the signal converter 33 via the auxiliary current transformer 32.
[0019]
Here, when Unit 2 is also operated, the switch 39 is also turned on. Therefore, even if there is a difference between the output of the constant current source 31 and the output of the constant current source 36, a current in a direction to eliminate this difference flows through the connection line 30. The signal converters 33 and 38 display values obtained by averaging the outputs of the constant current source 31 and the constant current source 36.
FIG. 3 is a circuit diagram showing the third embodiment of the present invention by showing the current detection unit of FIG. 1 with double lines, but since the reference numerals, names, uses, and functions are the same as those in FIG. The explanation of the operation will be omitted.
[0020]
During operation the uninterruptible power supply has a first switch 12 is turned on, if not parallel OPERATION other machines, since the first switch connecting line 13 is not connected to other apparatus, the first current-voltage converter 17 The output current of your machine is displayed. If the operation is performed in parallel with another machine, the average current can be obtained by the operation described above with reference to FIG. 2. Therefore, the output current of the own machine is controlled by setting the average current as a target value of the output current of the own machine. Furthermore, since the first switch 12 is turned off when the direct feed power supply circuit is operating, the current of the direct feed power supply circuit can be obtained from the first current-voltage converter 17.
[0021]
Furthermore, since the second switch 22 and the third switch 24 are both on when the uninterruptible power supply is in operation and in parallel operation with other units, the second current-voltage converter 27 is connected to the uninterruptible power supply in parallel operation. Measure the average current. At this time, since the first current-voltage converter 17 also measures the average current, both are the same value. However, if the values are different, it can be determined that there is a risk that the current command value may be incorrect if some value occurs. .
[0022]
In addition, since only the uninterruptible power supply that is in a state where a plurality of direct power feeding circuits are in a power standby state and can send power at any time turns on the third switch 24, for example, each of the three direct power feeding circuits includes three circuits. Even if 100A is output, if there are two uninterruptible power supplies in standby, calculate 100A x 3/2 = 150A and calculate 2 uninterruptible power supplies from 3 direct feed circuits. When switching to, the second current-voltage converter 27 displays the current value for one uninterruptible power supply. Therefore, it is possible to know in advance whether or not the uninterruptible power supply may become overcurrent when the direct power supply circuit is switched to the uninterruptible power supply.
[0023]
【The invention's effect】
When multiple sets of direct transmission switching circuit backup type uninterruptible power supply units are operated in parallel, the present invention calculates the average current per unit, which is the current target value of the uninterruptible power supply unit, in a separate circuit. effect that can determine whether there is an abnormality in the current command value by. In addition, if the number of uninterruptible power supply units that are in standby is smaller than the number of operating circuits of the direct power supply circuit, the uninterruptible power supply unit may become overcurrent when switching from the direct power supply circuit to the uninterruptible power supply unit. the case, since one minute of uninterruptible power supply in the present invention is a circuit to be able to know in advance the current to be shared, the uninterruptible power supply as soon as switched to the uninterruptible power supply side It is also possible to prevent an inconvenience such that the overcurrent is switched to the direct feed circuit again.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a circuit diagram showing a second embodiment of the present invention. FIG. 3 shows the current detection unit of FIG. Circuit diagram showing the third embodiment [FIG. 4] Circuit diagram showing a conventional example of current detection of the direct-switching circuit backup type uninterruptible power supply [description of symbols]
1 Busbar 2 Uninterruptible Power Supply 3 Direct Power Supply Circuit 4 Uninterruptible Switching Device 4A AC Switch 4B Direct Switch 4C Output Switch 5 Output Current Transformer 6 Main Current Transformer 7 Maintenance Switch 8 Controller 11 1 current transformer 12 first switch 13 first switch connection line 16 first auxiliary current transformer 17 first current voltage converter 21 second current transformer 22 second switch 23 second switch connection line 24 third switch 26 second 2 Auxiliary current transformer 27 Second current-voltage converter 28 Short-circuit diode 31 Output auxiliary current transformer 32 Third current-voltage converter 41 Current adder 42 Number of operating counters 43 Divider

Claims (4)

直送給電回路の出力側に備えた直送用開閉器と、無停電電源装置の出力側に備えた出力用開閉器とを結合し、この結合点と母線との間に保守用開閉器を設けて直送切り換え回路バックアップ方式無停電電源装置を構成し、これの複数組を母線に接続することで構成される無停電電源装置の並列運転装置において、
前記出力用開閉器の回路の電流を検出する出力変流器と、
該出力変流器の二次巻線に直接または補助変流器を介して接続してその入力信号を所望のレベルの信号に変換する第1信号変換器と、
前記保守用開閉器の回路の電流を検出する第1変流器と第2変流器と、
該第1変流器の二次巻線に接続して、前記出力用開閉器と前記保守用開閉器の両者がオンで且つ前記無停電電源装置が運転状態のときにオンとなる第1スイッチと、
該第1スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第1スイッチの出力側とを接続する第1スイッチ接続線と、
前記第1変流器の二次巻線に抵抗を介して接続する第1補助変流器と、
該第1補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第2信号変換器と、
前記第2変流器の二次巻線に接続して、前記直送用開閉器または前記出力用開閉器のいずれかがオンで且つ前記保守用開閉器がオンのときにオンとなる第2スイッチと、
該第2スイッチの出力側と、他の各無停電電源装置に属するそれぞれの第2スイッチの出力側とを接続する第2スイッチ接続線と、
この第2変流器の二次巻線に接続して、前記無停電電源装置が運転状態のときにオンとなる第3スイッチと、
該第3スイッチの出力側に、抵抗を介して接続する第2補助変流器と、
該第2補助変流器の二次巻線に接続してその入力信号を所望のレベルの信号に変換する第3信号変換器と、
前記第2変流器の二次巻線に接続して、この二次巻線の電圧が所定値を越えると導通して当該二次巻線を短絡する半導体素子と、
を備えることを特徴とする無停電電源装置の並列運転電流検出装置。
Connect the direct switch provided on the output side of the direct feed circuit and the output switch provided on the output side of the uninterruptible power supply, and provide a maintenance switch between this connection point and the bus. In the parallel operation device of the uninterruptible power supply configured by configuring the direct transfer switching circuit backup method uninterruptible power supply and connecting multiple sets of these to the bus,
An output current transformer for detecting a current of a circuit of the output switch;
A first signal converter connected to the secondary winding of the output current transformer directly or via an auxiliary current transformer to convert the input signal to a signal of a desired level;
A first current transformer and a second current transformer for detecting a current in a circuit of the maintenance switch;
A first switch connected to the secondary winding of the first current transformer and turned on when both the output switch and the maintenance switch are on and the uninterruptible power supply is in operation. When,
A first switch connection line connecting the output side of the first switch and the output side of each first switch belonging to each other uninterruptible power supply;
A first auxiliary current transformer connected via a resistor to the secondary winding of the first current transformer;
A second signal converter connected to the secondary winding of the first auxiliary current transformer to convert the input signal to a signal of a desired level;
A second switch connected to the secondary winding of the second current transformer and turned on when either the direct-feed switch or the output switch is on and the maintenance switch is on When,
A second switch connection line connecting the output side of the second switch and the output side of each second switch belonging to each of the other uninterruptible power supply devices;
A third switch connected to the secondary winding of the second current transformer and turned on when the uninterruptible power supply is in operation;
A second auxiliary current transformer connected to the output side of the third switch via a resistor;
A third signal converter connected to the secondary winding of the second auxiliary current transformer to convert the input signal into a signal of a desired level;
A semiconductor element connected to the secondary winding of the second current transformer and conducting when the voltage of the secondary winding exceeds a predetermined value to short-circuit the secondary winding;
A parallel operation current detecting device for an uninterruptible power supply, comprising:
請求項1に記載の無停電電源装置の並列運転電流検出装置において、
前記保守用開閉器の回路の電流を検出する第1変流器と第2変流器は、当該保守用開閉器の回路に設けた主変流器の二次巻線に接続することを特徴とする無停電電源装置の並列運転電流検出装置。
In the parallel operation current detection device of the uninterruptible power supply according to claim 1,
The first current transformer and the second current transformer that detect a current of the maintenance switch circuit are connected to a secondary winding of a main current transformer provided in the maintenance switch circuit. An uninterruptible power supply parallel operating current detector.
直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第1変流器および第2変流器を設置し、
並列運転中の各無停電電源装置のそれぞれに属する各第1変流器の二次巻線同士を第1スイッチ接続線で接続すると共に、各第1変流器の二次巻線のそれぞれに抵抗を介して第1補助変流器を接続し、
該第1補助変流器の二次巻線のそれぞれに別個に接続した第2信号変換器から、並列運転中の無停電電源装置1台当たりの電流目標値となる平均出力電流信号を検出し、
並列運転中の各無停電電源装置のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、並列運転中の各無停電電源装置に属する前記第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、
該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から、前記第2信号変換器の出力信号と比較するべき並列運転中の無停電電源装置1台当たりの平均出力電流信号を検出することを特徴とする無停電電源装置の並列運転電流検出方法。
The first current transformer and the second current transformer are installed in a circuit that combines the direct feed power supply circuit of the direct feed switching circuit backup method uninterruptible power supply and the output circuit of the uninterruptible power supply,
The secondary windings of the respective first current transformers belonging to the respective uninterruptible power supply units in parallel operation are connected to each other by the first switch connection line, and the secondary windings of the respective first current transformers are connected to each other. Connect the first auxiliary current transformer through a resistor,
An average output current signal serving as a current target value per uninterruptible power supply unit in parallel operation is detected from a second signal converter separately connected to each secondary winding of the first auxiliary current transformer. ,
The secondary windings of the respective second current transformers belonging to the respective uninterruptible power supply units in parallel operation are connected to each other by the second switch connection line, and the second belonging to each uninterruptible power supply unit in parallel operation. A second auxiliary current transformer is connected to each of the secondary windings of the current transformer through a resistor;
Per uninterruptible power supply unit in parallel operation to be compared with the output signal of the second signal converter from a third signal converter separately connected to each of the secondary windings of the second auxiliary current transformer An average output current signal of the uninterruptible power supply is detected.
直送切り換え回路バックアップ方式無停電電源装置の直送給電回路と無停電電源装置の出力回路とを結合した回路に第2変流器を設置し、
並列運転中の各直送給電回路のそれぞれに属する各第2変流器の二次巻線同士を第2スイッチ接続線で接続すると共に、動作中の各無停電電源装置に属する第2変流器の二次巻線のそれぞれに抵抗を介して第2補助変流器を接続し、
該第2補助変流器の二次巻線のそれぞれに別個に接続した第3信号変換器から、直送給電回路から無停電電源装置へ切り換わったときに並列運転となるべき台数の無停電電源装置1台当たりの平均出力電流信号を検出することを特徴とする無停電電源装置の並列運転電流検出方法。
The second current transformer is installed in the circuit that combines the direct power feeding circuit of the direct transmission switching circuit backup method uninterruptible power supply and the output circuit of the uninterruptible power supply,
The secondary windings of the second current transformers belonging to the respective direct power feeding circuits in parallel operation are connected to each other by the second switch connection line, and the second current transformers belonging to the uninterruptible power supply units in operation A second auxiliary current transformer is connected to each of the secondary windings of the
The number of uninterruptible power supplies to be operated in parallel when the third signal converter connected to each of the secondary windings of the second auxiliary current transformer is switched from the direct feed circuit to the uninterruptible power supply. A parallel operation current detection method for an uninterruptible power supply, wherein an average output current signal per device is detected.
JP2002230724A 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method Expired - Lifetime JP3956794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230724A JP3956794B2 (en) 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230724A JP3956794B2 (en) 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method

Publications (2)

Publication Number Publication Date
JP2004072928A JP2004072928A (en) 2004-03-04
JP3956794B2 true JP3956794B2 (en) 2007-08-08

Family

ID=32016690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230724A Expired - Lifetime JP3956794B2 (en) 2002-08-08 2002-08-08 Parallel operation current detector for uninterruptible power supply and current detection method

Country Status (1)

Country Link
JP (1) JP3956794B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527064B2 (en) * 2006-01-16 2010-08-18 東芝三菱電機産業システム株式会社 Uninterruptible power supply system
CN103701199B (en) * 2013-12-25 2015-11-18 施耐德万高(天津)电气设备有限公司 A kind of switching control system in parallel falling protection with cyclization choosing
CN112099438B (en) * 2020-09-14 2021-10-29 南京简睿捷软件开发有限公司 Machine tool energy-saving control method and device based on current signals

Also Published As

Publication number Publication date
JP2004072928A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US7888821B2 (en) Apparatus and method for powering load center circuits with an auxiliary power source
US7834486B1 (en) Apparatus and method for powering load center circuits with an auxiliary power source
JP2006246616A (en) Uninterruptible power supply
US9667097B2 (en) System and method for maintaining proper phase neutral wiring in a power system
KR102499207B1 (en) Selective parallel running method for measuring/control devices
JP3956794B2 (en) Parallel operation current detector for uninterruptible power supply and current detection method
JPH08289485A (en) Uninterruptible power supply
US10361639B1 (en) Power supply apparatus
US20210119475A1 (en) Uninterruptible power supply
JP2010273405A (en) Uninterruptible power supply system
JP7088702B2 (en) Power supply circuit and power supply method
KR102018235B1 (en) DC power automatic switcher
CN114094692A (en) Power supply system and method of transformer substation equipment
JP4778625B2 (en) Uninterruptible power supply system
KR101821091B1 (en) Automatic load transfer switch system and automatic load transfer switching method using the same
JP5324151B2 (en) Uninterruptible power supply system
JPH01222635A (en) Uninterruptible power supply equipment
RU2215355C1 (en) No-break power installation for railway automatic-control systems
US20050207082A1 (en) Dual bus static tie switch
JPH10304598A (en) Power source switching equipment
JP2003087998A (en) Uninterruptible standby power supply system in normal use
JPH08205426A (en) Uninterruptible stabilized power supply
US9130399B2 (en) Arrangement for an uninterruptible power supply
US9124128B2 (en) Arrangement for an uninterruptible power supply
JPH04275038A (en) Power supply changeover method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3956794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term