JP3956726B2 - Hermetic scroll compressor and its application equipment - Google Patents

Hermetic scroll compressor and its application equipment Download PDF

Info

Publication number
JP3956726B2
JP3956726B2 JP2002059926A JP2002059926A JP3956726B2 JP 3956726 B2 JP3956726 B2 JP 3956726B2 JP 2002059926 A JP2002059926 A JP 2002059926A JP 2002059926 A JP2002059926 A JP 2002059926A JP 3956726 B2 JP3956726 B2 JP 3956726B2
Authority
JP
Japan
Prior art keywords
drive shaft
scroll
lubricating oil
supply hole
oil supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002059926A
Other languages
Japanese (ja)
Other versions
JP2003254267A (en
Inventor
敬 森本
定幸 山田
秀信 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002059926A priority Critical patent/JP3956726B2/en
Publication of JP2003254267A publication Critical patent/JP2003254267A/en
Application granted granted Critical
Publication of JP3956726B2 publication Critical patent/JP3956726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は業務用、家庭用、車両用等に使用される空気調和装置、あるいは冷蔵庫などに用いられる密閉型スクロール圧縮機に関するものである。
【0002】
【従来の技術】
従来の密閉型スクロール圧縮機について図9、図10を用いて説明する。図9は従来の密閉型スクロール圧縮機の構成を示す縦断面図。図10は図9の要部拡大断面図でaが圧縮機停止時、bが圧縮機運転時の状態を示すものであり、圧縮機停止時に潤滑油溜りの潤滑油が吸い上げられないようにするための機構を説明している。
【0003】
図9において1は密閉容器1であり、圧縮機構2、電動機3、電動機3の回転力を圧縮機構2に伝達するための駆動軸4とを収納し、底部に潤滑油溜り5が形成されている。圧縮機構2は渦巻きラップを有する旋回スクロール6と固定スクロール7を対向して組み合わせ、固定スクロール7とフレーム8とで旋回スクロール6の鏡板を旋回運動が可能な隙間を有して挟み込んで保持された構成である。
【0004】
吸入冷媒ガスは固定スクロール7の鏡板外周から半径方向に貫通して設けた吸入管9より吸入され、固定スクロール7と旋回スクロール6とにより形成される圧縮室10の外周より圧縮室内に流入する。旋回スクロール6は自転防止機構11によって自転を防止され、駆動軸4に形成された偏心部により旋回軸受け12を介して駆動されて旋回運動を行い、圧縮室10を順次中心方向に移送し吸入冷媒ガスを圧縮し、吐出口13よりリード弁14を介して第1吐出室15へ吐出する。その後、圧縮された高圧ガスはフレーム8内の第1下降用連通路16を通り、隔壁17と圧縮機構2と電動機3に囲まれた第2吐出室18を経て、電動機3内の第2下降用連通路19を通り下降する。さらに、電動機3外周に設けられた第1上昇用通路20を通り電動機3を冷却した後、図示されていない圧縮機構2外周の第2上昇用通路を経て吐出管21より機外へ圧送される。この間、吐出ガス中の潤滑油は遠心分離、衝突を繰り返して分離されて潤滑油溜り5に滴下する。
【0005】
また、駆動軸4はフレーム8に固定した主軸受け22と密閉容器下部に配置された副軸受け23で軸支され、電動機3の駆動力により回転する。フレーム8と旋回スクロール6と固定スクロール7との間に形成された背圧室24は、後述のように吸入圧力と吐出圧力の中間の圧力に維持されており、これにより旋回スクロール6を固定スクロール7に押しつける構造となっている。なお、背圧室24を中間圧力に保持する手段として、駆動軸4に設けた潤滑油溝とフレーム8に設けた旋回スクロール6背面の背圧仕切り帯および旋回スクロール6内に設けた減圧弁との組み合わせで、これを実現している例もある。
【0006】
駆動軸4は軸方向に貫通する給油孔25を有し、さらに主軸受け22および旋回軸受12との摺動部にはそれぞれ軸表面長手方向に微少通路26が設けられている。また、駆動軸4は主軸受け22に対向する微少通路26と給油孔25とを連通する貫通孔28を有し、主軸受け22には貫通孔28の開口部と対向する位置に周方向の潤滑油溝29が設けられ、オイルシール作用により高圧ガスの侵入が防止されている。
【0007】
さらに駆動軸4の下方部分には給油孔25と軸表面とを連通する貫通孔34が設けられている。貫通孔34の軸表面開口に対向する位置には間隙をもって質量Mの蓋体30が弾性体31により固定されている。蓋体30は直径Dの貫通孔34を閉塞できるよう直径D以上の球状体である。なお、蓋体30は球状体に限らず貫通孔34を閉塞できる形状であればよい。この蓋体30には駆動軸4に対しておおよそ180度対向する位置に連結体33によって質量mの錘体32が連結されている。ここでは弾性体31、蓋体30、連結体33、錘体32はほぼ同一面上に配置されているが、弾性体31を駆動軸4の軸方向に沿う形状にしたり、蓋体30と錘体32が同一面上に配置されない等色々な配置が可能である。
【0008】
蓋体30と錘体32との関係について図10を用いて説明すると以下のようになる。蓋体30と錘体32は、駆動軸4の回転中心に対して蓋体30の重心までの距離をR、錘体32の重心までの距離をrとすると、MR<mrなる関係が成立するよう構成されている。また、圧縮機が停止した状態では貫通孔34と蓋体30の間には間隙があり、給油孔25と吐出ガス雰囲気の空間とは連通した状態となるように配置されている。
【0009】
駆動軸4が角速度ωで回転しているとした場合、蓋体30にかかる遠心力はMRω2、錘体32にかかる遠心力はmrω2となり、蓋体30と錘体32にかかる遠心力を比べると、MR<mr関係が成立しているので錘体32にかかる遠心力の方が大きくなる。その結果連結体33に引かれ、弾性体31に固定された蓋体30は貫通孔34に押しあてられる。実際にはこの時、停止時に比べてRは小さくなり、rは大きくなるため、蓋体30がさらに押しあてられる方向に作用する。したがって弾性体30を適度に選択することにより、低速運転時から高速運転時まで蓋体30を安定して貫通孔34に押しあてることが可能となる。この場合、貫通孔34は蓋体30に閉塞されて、給油孔25と吐出ガス雰囲気の空間とは連通することはない。
【0010】
圧縮機運転中の潤滑油の供給については、貫通孔34は蓋体30に閉塞されているため次のようになる。駆動軸4の下端は潤滑油溜り5内に浸漬され、給油孔25と貫通孔28と微少通路26によって背圧室24と潤滑油溜り5は導通している。また、潤滑油溜り5は吐出圧力となっているが、微少通路26により減圧されて、背圧室24は吐出圧力と吸入圧力の中間の圧力である中間圧力に保たれている。したがって、潤滑油は吐出圧力のかかった潤滑油溜り5と背圧室24との差圧力によって主軸受け22と旋回軸受け12に供給され、各軸受けを潤滑したのち背圧室24に供給される。背圧室24に溜まった潤滑油は背圧制御弁27を介して圧縮室10へ導かれ、圧縮機構2のシールと摺動部分の潤滑を行った後、吐出ガスとともに排出される。
【0011】
次に圧縮機が運転を停止した場合、リード弁14によって吐出口13が閉じられるために圧縮室10は吸入圧力と等しくなる。一方、背圧室24には吐出圧力のかかった潤滑油溜り5から給油孔25、貫通孔28、微少通路26を介して潤滑油が流入しようとする。
しかしながら前述のように貫通孔34により給油孔25と吐出ガス雰囲気の空間とが連通した状態となっているので、貫通孔34より吐出ガスが先に流入しようとするため潤滑油の流入は抑制される。そして、背圧室24に充満した吐出ガスは背圧制御弁27を介して吸入側へ流れる。この結果、圧縮機停止時に油溜りの潤滑油が背圧室から吸入側へと流入することを防止でき、潤滑油溜り5の潤滑油が急激に減少することない。また、リード弁27が取り付けてあるために旋回スクロール6の逆転現象も起こらない。
【0012】
以上従来の技術に関して縦型スクロール圧縮機を例に挙げて説明したが、本発明にかかる技術は、駆動軸の端部に接続された給油管の先端を潤滑油溜りに浸漬し、潤滑油を差圧給油方式で供給する横型のスクロール圧縮機でも実施可能な技術である。
【0013】
このように従来の技術のスクロール圧縮機は、比較的簡易な構造で圧縮機停止時の潤滑油の流出を防止したものである。
【0014】
【発明が解決しようとする課題】
しかしながら上記従来の構成によれば、弾性体と蓋体と連結体と錘体を電動機の内側に構成する必要があり、電気絶縁性を保持するための絶縁距離がとりにくいといった課題や、高速運転時の耐久性確保のためにこれらの構成部品が大型化してしまうといった課題を有していた。
【0015】
本発明はこのような従来の課題を解決するものであり、運転停止時に旋回スクロールが逆転することなく、かつ潤滑油溜りの潤滑油が吸入側へ過剰に流入するのを防止し、少ない点数かつ簡易構造にして加工性および組立生産性が高い密閉型スクロール圧縮機を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために本願第1の手段は、給油孔の背圧室側端部以外の場所に径大部を設け、前記径大部内に給油孔を閉塞可能な形状の蓋体を径方向移動自在に収納してなり、前記径大部を駆動軸回転中心に対して偏心して配置し、前記径大部を駆動軸の軸心に対して45度以下の角度をもって配置してなるものであり、蓋体に対して径大部の大きさを僅かに大きくすれば良いので蓋体と径大部壁面との隙間を小さくすることが可能となり、圧縮機の運転停止時に確実に潤滑油とともに蓋体が給油孔側へ移動することができるものである。
【0017】
本願第2の手段は、第1の手段において焼結形成された蓋体を用いるものであり、より複雑な形状の蓋体が必要である場合においても実施が容易となるものである。
【0018】
本願第3の手段は、第1の手段において弾性材料からなる蓋体を用いるものであり、蓋体の給油孔に対する密着性が向上すると同時に蓋体が径大部内で踊った場合にも騒音が出にくいというものである。
【0019】
本願第4の手段は、第1の手段において、樹脂やアルミなどの比重の小さな材料からなる蓋体を用いるものであり、蓋体が潤滑油によって流されやすくなり圧縮機の運転停止時に確実に潤滑油とともに蓋体が給油孔側へ移動することができるものである。
【0020】
本願第5の手段は、第1の手段において、比重が潤滑油よりも小さな蓋体を用いるものであり、給油孔と径大部が縦方向に配置された縦型スクロール圧縮機においては蓋体が潤滑油の流れに加えて更に浮力によっても給油孔に向かって付勢されるため圧縮機の運転停止時に確実に蓋体が給油孔側へ移動することができるものである。
【0021】
本願第6の手段は、第1の手段において蓋体の内部に空洞を形成するものであり、これにより耐潤滑油、冷媒性や耐磨耗性などの特性を犠牲にすることなく、比重の小さな材料を蓋体に使用したのと同様な効果を得ることができる。
【0022】
本願第7の手段は、駆動軸の主軸受との摺動部かつ電動機側端部近傍に給油孔と駆動軸外周面とを連通する貫通孔を設け、前記貫通孔の駆動軸外周面側開口を、圧縮機が運転中に圧縮応力により駆動軸が一方向に押し付けられることによって発生する軸受隙間が最小となる周方向位置の近傍に配置してなるものである。このような構成により、圧縮機運転中は貫通孔が軸受隙間最小部近傍に位置するのでオイルシール作用によって閉塞された状態となり潤滑油が差圧により供給され、停止時には軸受隙間最小部がなくなるので貫通孔は軸受け隙間の範囲内で間隙をもって吐出ガス雰囲気の空間と連通するので差圧が作用しなくなって潤滑油の供給が停止するものである。
【0023】
本願第8の手段は、第1乃至第7の手段による密閉型スクロール圧縮機を空気調和装置や冷蔵庫に使用したものであり、低騒音で信頼性が高く、かつコストの安い空気調和装置や冷蔵庫を実現できるものである。
【0024】
【発明の実施の形態】
以下本発明の実施の形態について図1から図8を参照して説明する。図1と図6において図9と同一符号の部分は従来の技術と同一もしくは同等の部分を示しているため、その構成および作用関係については説明を省略する。
【0025】
(実施の形態1)
図1は本発明の一実施の形態におけるスクロール圧縮機の縦断面図、図2及び図3は図1における駆動軸先端の拡大縦断面図であり図2は運転時、図3は運転停止直後の状態を示したものである。
【0026】
図1において、駆動軸4内には給油孔25が、駆動軸4の各軸受け部には軸表面に軸長手方向に微少通路26が設けられている。主軸受け22には微少通路26に連通した給油孔25との貫通孔28が対向する位置に潤滑油溝29が設けられ、オイルシール作用により高圧ガスの侵入が防止されている。さらに、駆動軸4の下端は潤滑油溜り5内に浸漬されて、給油孔25と貫通孔29と微少通路26によって背圧室24と潤滑油溜り5は導通している。
【0027】
また、潤滑油溜り5は吐出圧力となっているが、微少通路26により減圧されて、背圧室24は吐出圧力と吸入圧力の中間の圧力である中間圧力に保たれている。したがって、潤滑油は吐出圧力のかかった潤滑油溜り5と背圧室24との差圧力によって上主軸受け22と旋回軸受け12に供給され、各軸受けを潤滑したのち背圧室24に供給される。背圧室24に溜まった潤滑油は背圧制御弁27を介して圧縮室10へ導かれ、圧縮機構2のシールと摺動部分の潤滑を行った後、吐出ガスとともに排出される。
【0028】
さらに、駆動軸4の下端には給油孔25連通した給油孔25より大なる径大部a35が設けられており、径大部a35は駆動軸4の回転中心に対して、偏心配置されている。径大部a35内部には給油孔25を十分閉塞可能な大きさの蓋体b36が運動自在に配置されている。蓋体b36が給油孔25を確実に閉塞できるためには、給油孔25に対してある程度の大きさの空間が必要になってくる。蓋体bは異物除去用のメッシュが含まれる給油口38の端面により径大部a35内に保持されている。本実施の形態において蓋体b36は球状体であるが、形状は球状体に限らず給油孔25を閉塞できる形状であればどんなものでもよい。
【0029】
この構成において圧縮機が運転された場合について図2を用いて説明する。駆動軸4が回転している状態では、蓋体b36は遠心力により径大部壁面の偏心側に押しつけられ、径大部a35と給油孔25は連通した状態に保たれる。
【0030】
次に、圧縮機が運転を停止した場合について図3を用いて説明する。駆動軸4が回転を停止すると、蓋体b36には遠心力が作用しなくなり、運動自在の状態となる。また、圧縮機構側については、リード弁14によって吐出口13は閉じられるために密閉空間10は吸入圧力と等しくなる。一方、背圧室24は給油孔25と貫通給油孔29と微少通路26により、吐出圧力のかかった潤滑油溜り5から潤滑油が流入しようとする。しかしながら潤滑油とともに蓋体b36が給油孔25側へ移動し、給油孔25が閉塞されるために多量の潤滑油が背圧室24に流入することは防止できる。また、リード弁14により旋回スクロール6の逆転現象も発生しない。
【0031】
本実施の形態においては、従来の技術のように潤滑油の流出防止用の構成部品が大型化することもなく、構成部品点数についても削減することができる。さらに加工性、組立生産性についても高めることができる。
【0032】
さらに、図4において駆動軸4の下端に給油孔25と連通した給油孔25より大なる径大部b40が設けられている。径大部b40は駆動軸4の回転中心に対して45度以下の角度をもって構成されている。径大部b40内部には実施の形態1と同様に、給油孔25を十分閉塞可能な大きさの蓋体c41が運動自在に配置されている。蓋体c41は異物除去用のメッシュが含まれる給油口38の端面により径大部b40内に保持されている。本実施の形態において蓋体c41は球状体であるが、形状は球状体に限らず給油孔25を閉塞できる形状であればよい。
【0033】
図4、図5に示すように、圧縮機が運転中の時と運転を停止した時の動作、作用については実施の形態1と同様である。しかしながら実施の形態1にくらべて、蓋体c41に遠心力を十分作用させようと蓋体c41を出来るだけ駆動軸4の外側に配置しても、蓋体c41と径大部壁面との間隙を小さく構成することができる。この結果、蓋体c41が潤滑油とともに確実に給油孔25側へ移動することができ、実施の形態1より潤滑油の流出防止効果を高めることができる。
【0034】
本実施の形態においては、蓋体b36、c41は一般的に普及している鋼球のような球状体で構成されている例を挙げている。しかしながら径大部a35、b40を作るための加工上の制約から、給油孔25を閉塞する蓋体b36、c41の形状として球状体が最適でない場合も考えられる。このような場合、蓋体b36、c41の形状は複雑な形状となることが予想される。しかしながら蓋体b36、c41を焼結形成品や樹脂成形品とすることで、これを実現することが容易になり、より有効な潤滑油の流出防止効果を発揮することができる。
【0035】
また、本実施の形態においてより有効に流出防止効果を実現しようとした場合、蓋体b36、c41の潤滑油の流れに対する追従性を良くする必要が生じる。その実施の形態として、アルミ材や樹脂材等の軽比重材で蓋体b36、c41を構成する例が挙げられる。蓋体b36、c41は圧縮機の運転停止時に潤滑油の流れで給油孔25側へ移動するため、その質量が小さいほどその追従性は有利になる。
【0036】
蓋体b36、c41を焼結形成した場合や軽比重材を用いて追従性を改善した場合の効果としては、潤滑油溜り5の潤滑油の機外への持ち出しを抑えることができ信頼性の高いスクロール圧縮機を提供できることが挙げられる。
【0037】
上記の実施の形態において蓋体b36、c41が給油孔25に衝突する際に衝撃音が発生するが、蓋体に樹脂材やゴムなどの弾性材料を用いた場合、その騒音を低減することができる。また、ゴムなどの弾性材料を用いた場合には騒音を低減させることができるばかりではなく、給油孔に対して変形しながら密着するので潤滑油の漏れを完全になくすことができる。
【0038】
スクロール圧縮機が上記説明したように縦型の場合には給油孔の下に径大部が配置されることになるがこのような場合、蓋体の比重が潤滑油よりも小さければ停止時に浮力によって蓋体が給油孔に押し付けられる力が加わるのでより確実に潤滑油の流出を防止できる。なお、蓋体の材料として潤滑油よりも比重の大きなものを使用した場合でも蓋体の内部に空洞を形成することにより同様の効果を得ることができる。
【0039】
以上説明した実施の形態においては、径大部を駆動軸の反圧縮機構側端部に設けた構成であったが、別体の構成部品を用いる等して駆動軸中間部分の内部に径大部を配置することも可能であり、この場合においても作用および効果としては同様である。
【0040】
(実施の形態
図6において、駆動軸4の給油孔25に連通する径方向の貫通孔b37が設けられている。さらに貫通孔b37の反給油孔25側の開口部39は、スクロール圧縮機が運転中に圧縮負荷により主軸受け22と駆動軸4との軸受け隙間がおおよそ最小となる方向に配置されている。駆動軸4が圧縮負荷の変動や駆動軸4自体のたわみやその他の要因により主軸受け22の中で傾きを持った場合、当然のことながら軸受け隙間が最小となる方向は異なる。以上の点も考慮に入れて、開口部39は設けられている。開口部39の軸長手方向の位置については、主軸受け22の反圧縮機構側の端部近傍(図中では下端近傍)に設けられている。
【0041】
この構成で圧縮機が運転された場合について図7を用いて説明する。図7、図8については説明のため軸受け隙間を実際より拡大して描いている。主軸受け22と駆動軸4との軸受け隙間がおおよそ最小となる位置に貫通孔b37の開口部39が設けられているため、潤滑油の油膜によるオイルシール作用によって開口部39はほぼ閉塞された状態にある。したがって、給油孔25と連通した貫通孔b37より吐出ガス雰囲気の高圧ガスが流入することはない。さらに開口部39は主軸受け22の下端近傍に設けられており、主軸受け22自体の潤滑状態に影響を及ぼす可能性は少ない。したがって従来の技術で説明したように、潤滑油は差圧力により供給される。この場合の潤滑油の供給については実施の形態1と同様であり、説明は省略する。
【0042】
一方、圧縮機が停止した場合について図8を用いて説明する。駆動軸4の回転は止まり、駆動軸4は主軸受け22との軸受け隙間の範囲で間隙をもって保持される。したがって、開口部39は吐出ガス雰囲気の空間に開口する結果となり、給油孔25は貫通孔b37で吐出ガス雰囲気の空間と連通することになる。開口部39は主軸受け22の下端近傍に設けられているため、容易に吐出ガスが貫通孔b37に流入することができる。
【0043】
一方で潤滑油溜り5の潤滑油は実施の形態1で説明したように、背圧室24へ流出しはじめる。しかしながら潤滑油が背圧室24に流出するよりも貫通孔b37から高圧吐出ガスが流入する方が早く、潤滑油の流出は抑制される。その結果、潤滑油溜り5の潤滑油が吸入側へ流出するのを防ぎ、潤滑油の急激な減少は発生せず、機外へ潤滑油が持ち出されることも防止できる。また、リード弁27が取り付けてあるため、旋回スクロール6の逆転現象も発生しない。
【0044】
本実施の形態では駆動軸に貫通孔を設けるだけで特別な部品を用いることなく停止時の潤滑油流出を防止することができ、加工性および組立生産性がさらに向上できる利点がある。
【0045】
なお、実施の形態1および実施の形態2では縦型スクロール圧縮機を例に挙げたが、駆動軸4の端部が給油管により接続された形態をとり潤滑油溜り5内に浸漬され、潤滑油を差圧給油方式で供給する横型のスクロール圧縮機でも実施可能な技術である。
【0046】
【発明の効果】
本発明によれば上記説明で明らかなように、運転停止時に旋回スクロールが逆転することなく、かつ潤滑油溜りの潤滑油が吸入側へ流出するのを防止することができる。また、潤滑油が機外へ持ち出されることを抑えられることから、信頼性の高い密閉型スクロール圧縮機を提供することができる。さらに従来の技術よりも構成部品点数を削減でき、しかも簡易構造にして加工性および組立生産性がさらに高まった密閉型スクロール圧縮機を提供することができる。
【図面の簡単な説明】
【図1】 本発明実施の形態1におけるスクロール圧縮機の縦断面図
【図2】 本発明実施の形態1におけるスクロール圧縮機運転時の要部拡大断面図
【図3】 本発明実施の形態1におけるスクロール圧縮機停止時の要部拡大断面図
【図4】 本発明実施の形態におけるスクロール圧縮機運転時の要部拡大断面図
【図5】 本発明実施の形態におけるスクロール圧縮機停止時の要部拡大断面図
【図6】 本発明実施の形態におけるスクロール圧縮機の縦断面図
【図7】 本発明実施の形態におけるスクロール圧縮機運転時の要部拡大断面図
【図8】 本発明実施の形態におけるスクロール圧縮機停止時の要部拡大断面図
【図9】 従来のスクロール圧縮機の縦断面図
【図10】 (a)従来のスクロール圧縮機停止時の要部拡大縦断面図
(b)従来のスクロール圧縮機運転時の要部拡大縦断面図
【符号の説明】
1 密閉容器
2 圧縮機構
3 電動機
4 駆動軸
5 潤滑油溜り
6 旋回スクロール
7 固定スクロール
8 フレーム
9 吸入管
10 圧縮室
11 自転防止機構
12 旋回軸受け
13 吐出口
14 リード弁
15 第1吐出室
16 第1下降用連通路
17 隔壁
18 第2吐出室
19 第2下降用連通路
20 第1上昇用連通路
21 吐出管
22 主軸受け
23 副軸受
24 背圧室
25 給油孔
26 微少通路
27 背圧制御弁
28 貫通孔
29 潤滑油溝
30 蓋体
31 弾性体
32 錘体
33 連結体
34 貫通孔a
35 径大部a
36 蓋体b
37 貫通孔b
38 給油口
39 開口部
40 径大部b
41 蓋体c
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-conditioning apparatus used for business use, home use, vehicle use, etc., or a hermetic scroll compressor used in a refrigerator or the like.
[0002]
[Prior art]
A conventional hermetic scroll compressor will be described with reference to FIGS. FIG. 9 is a longitudinal sectional view showing a configuration of a conventional hermetic scroll compressor. FIG. 10 is an enlarged cross-sectional view of the main part of FIG. 9, in which a is when the compressor is stopped, and b is when the compressor is operating, so that the lubricating oil in the lubricating oil pool is not sucked up when the compressor is stopped. The mechanism for this is described.
[0003]
In FIG. 9, reference numeral 1 denotes an airtight container 1 that houses a compression mechanism 2, an electric motor 3, and a drive shaft 4 for transmitting the rotational force of the electric motor 3 to the compression mechanism 2, and a lubricating oil reservoir 5 is formed at the bottom. Yes. The compression mechanism 2 is a combination of the orbiting scroll 6 having a spiral wrap and the fixed scroll 7 facing each other, and the end plate of the orbiting scroll 6 is sandwiched and held between the fixed scroll 7 and the frame 8 with a gap capable of orbiting movement. It is a configuration.
[0004]
The suction refrigerant gas is sucked from a suction pipe 9 provided in a radial direction from the outer periphery of the end plate of the fixed scroll 7 and flows into the compression chamber from the outer periphery of the compression chamber 10 formed by the fixed scroll 7 and the orbiting scroll 6. The orbiting scroll 6 is prevented from rotating by an anti-rotation mechanism 11 and is driven by an eccentric portion formed on the drive shaft 4 via the orbiting bearing 12 to perform an orbiting motion. The gas is compressed and discharged from the discharge port 13 to the first discharge chamber 15 via the reed valve 14. After that, the compressed high-pressure gas passes through the first lowering communication passage 16 in the frame 8, passes through the second discharge chamber 18 surrounded by the partition wall 17, the compression mechanism 2, and the electric motor 3, and then the second lowering in the electric motor 3. It goes down through the communication passage 19. Further, after cooling the electric motor 3 through the first ascending passage 20 provided on the outer periphery of the electric motor 3, it is pumped out of the apparatus through the discharge pipe 21 through the second ascending passage on the outer periphery of the compression mechanism 2 (not shown). . During this time, the lubricating oil in the discharged gas is separated by repeated centrifugal separation and collision and dropped into the lubricating oil reservoir 5.
[0005]
The drive shaft 4 is supported by a main bearing 22 fixed to the frame 8 and a sub-bearing 23 arranged at the lower part of the hermetic container, and is rotated by the driving force of the electric motor 3. The back pressure chamber 24 formed between the frame 8, the orbiting scroll 6 and the fixed scroll 7 is maintained at a pressure intermediate between the suction pressure and the discharge pressure, as will be described later. 7 is a structure to press. As means for maintaining the back pressure chamber 24 at an intermediate pressure, a lubricating oil groove provided in the drive shaft 4, a back pressure partition band on the back of the orbiting scroll 6 provided in the frame 8, and a pressure reducing valve provided in the orbiting scroll 6, There is also an example in which this is realized by a combination.
[0006]
The drive shaft 4 has an oil supply hole 25 penetrating in the axial direction, and a small passage 26 is provided in the longitudinal direction of the shaft surface at the sliding portion between the main bearing 22 and the swivel bearing 12. Further, the drive shaft 4 has a through hole 28 that communicates the minute passage 26 facing the main bearing 22 and the oil supply hole 25, and the main bearing 22 has a circumferential lubrication at a position facing the opening of the through hole 28. An oil groove 29 is provided to prevent high pressure gas from entering due to the oil sealing action.
[0007]
Further, a lower portion of the drive shaft 4 is provided with a through hole 34 that communicates the oil supply hole 25 with the shaft surface. A lid 30 having a mass M is fixed by an elastic body 31 with a gap at a position facing the axial surface opening of the through hole 34. The lid 30 is a spherical body having a diameter D or more so that the through hole 34 having the diameter D can be closed. The lid body 30 is not limited to a spherical body, but may be any shape that can close the through hole 34. A weight body 32 having a mass m is connected to the lid body 30 by a connecting body 33 at a position facing the drive shaft 4 at approximately 180 degrees. Here, the elastic body 31, the lid body 30, the coupling body 33, and the weight body 32 are disposed on substantially the same plane. However, the elastic body 31 may be shaped along the axial direction of the drive shaft 4 or the lid body 30 and the weight body. Various arrangements such as the body 32 not being arranged on the same plane are possible.
[0008]
The relationship between the lid body 30 and the weight body 32 will be described with reference to FIG. The relation of MR <mr is established between the lid 30 and the weight 32, where R is the distance to the center of gravity of the lid 30 relative to the center of rotation of the drive shaft 4, and r is the distance to the center of gravity of the weight 32. It is configured as follows. In addition, when the compressor is stopped, there is a gap between the through hole 34 and the lid 30, and the oil supply hole 25 and the space of the discharge gas atmosphere are in communication with each other.
[0009]
When the driving shaft 4 has to be rotating at an angular velocity omega, the centrifugal force MRomega 2 according to the lid 30, the centrifugal force applied to the weight element 32 is Mromega 2, and the centrifugal force exerted on the cover 30 and the weight member 32 In comparison, since the MR <mr relationship is established, the centrifugal force applied to the weight body 32 becomes larger. As a result, the lid body 30 pulled by the connecting body 33 and fixed to the elastic body 31 is pressed against the through hole 34. Actually, at this time, R becomes smaller than r when stopped, and r becomes larger, so that it acts in a direction in which the lid 30 is further pressed. Therefore, by appropriately selecting the elastic body 30, the lid body 30 can be stably pressed against the through hole 34 from the low speed operation to the high speed operation. In this case, the through-hole 34 is closed by the lid body 30, and the oil supply hole 25 and the space of the discharge gas atmosphere do not communicate with each other.
[0010]
Regarding the supply of the lubricating oil during the operation of the compressor, since the through hole 34 is closed by the lid body 30, it is as follows. The lower end of the drive shaft 4 is immersed in the lubricating oil reservoir 5, and the back pressure chamber 24 and the lubricating oil reservoir 5 are electrically connected by the oil supply hole 25, the through hole 28, and the minute passage 26. Further, although the lubricating oil reservoir 5 is at the discharge pressure, the pressure is reduced by the minute passage 26, and the back pressure chamber 24 is maintained at an intermediate pressure which is an intermediate pressure between the discharge pressure and the suction pressure. Therefore, the lubricating oil is supplied to the main bearing 22 and the orbiting bearing 12 by the differential pressure between the lubricating oil reservoir 5 and the back pressure chamber 24 to which the discharge pressure is applied, and is supplied to the back pressure chamber 24 after lubricating each bearing. Lubricating oil accumulated in the back pressure chamber 24 is guided to the compression chamber 10 via the back pressure control valve 27, lubricates the seal and the sliding portion of the compression mechanism 2, and is discharged together with the discharge gas.
[0011]
Next, when the operation of the compressor is stopped, the discharge port 13 is closed by the reed valve 14, so that the compression chamber 10 becomes equal to the suction pressure. On the other hand, the lubricating oil tends to flow into the back pressure chamber 24 from the lubricating oil reservoir 5 to which the discharge pressure is applied through the oil supply hole 25, the through hole 28, and the minute passage 26.
However, since the oil supply hole 25 and the space of the discharge gas atmosphere are in communication with each other through the through hole 34 as described above, the discharge gas tends to flow in first through the through hole 34, so that the inflow of lubricating oil is suppressed. The Then, the discharge gas filled in the back pressure chamber 24 flows to the suction side via the back pressure control valve 27. As a result, the lubricating oil in the oil reservoir can be prevented from flowing from the back pressure chamber to the suction side when the compressor is stopped, and the lubricating oil in the lubricating oil reservoir 5 does not decrease rapidly. Further, since the reed valve 27 is attached, the reverse rotation phenomenon of the orbiting scroll 6 does not occur.
[0012]
As described above, the vertical scroll compressor has been described as an example with respect to the conventional technology. However, the technology according to the present invention immerses the tip of the oil supply pipe connected to the end of the drive shaft in the lubricating oil reservoir, and supplies the lubricating oil. This is a technique that can be implemented even with a horizontal scroll compressor that supplies by a differential pressure lubrication system.
[0013]
As described above, the conventional scroll compressor has a relatively simple structure and prevents outflow of lubricating oil when the compressor is stopped.
[0014]
[Problems to be solved by the invention]
However, according to the above-described conventional configuration, it is necessary to configure the elastic body, the lid body, the coupling body, and the weight body inside the motor, and there is a problem that it is difficult to take an insulation distance for maintaining electrical insulation, and high speed operation In order to ensure durability at the time, there was a problem that these component parts would be enlarged.
[0015]
The present invention solves such a conventional problem, and prevents the turning scroll from reversing when the operation is stopped and prevents the lubricating oil in the lubricating oil pool from flowing excessively into the suction side, and reduces the number of points. An object of the present invention is to provide a hermetic scroll compressor having a simple structure and high workability and assembly productivity.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the first means of the present application is to provide a large-diameter portion at a location other than the back pressure chamber side end portion of the oil supply hole, and a lid body having a shape capable of closing the oil supply hole in the large-diameter portion. The large-diameter portion is arranged eccentrically with respect to the drive shaft rotation center, and the large-diameter portion is arranged at an angle of 45 degrees or less with respect to the axis of the drive shaft. It is only necessary to slightly increase the size of the large diameter portion with respect to the lid body, so that the gap between the lid body and the large diameter wall surface can be reduced, and the lubricating oil can be reliably supplied when the compressor is stopped. At the same time, the lid can move toward the oil supply hole.
[0017]
The second means of the present application uses the lid formed by sintering in the first means, and is easy to implement even when a lid with a more complicated shape is required.
[0018]
The third means of the present application uses a lid made of an elastic material in the first means, and the adhesion of the lid to the oil supply hole is improved, and at the same time, noise is generated even when the lid dances within the large diameter portion. It is hard to come out.
[0019]
The fourth means of the present application uses a lid made of a material having a small specific gravity, such as resin or aluminum , in the first means, and the lid is easily washed away by the lubricating oil, so that it is ensured when the compressor is stopped. The lid can move to the oil supply hole side together with the lubricating oil.
[0020]
The fifth means of the present application uses a lid body having a specific gravity smaller than that of the lubricating oil in the first means, and the lid body in the vertical scroll compressor in which the oil supply hole and the large diameter portion are arranged in the vertical direction. However, in addition to the flow of the lubricating oil, the buoyancy force also biases the oil toward the oil supply hole, so that the lid can surely move toward the oil supply hole when the compressor is stopped.
[0021]
The sixth means of the present application is to form a cavity inside the lid body in the first means, so that the specific gravity can be increased without sacrificing characteristics such as anti-lubricating oil, refrigerant and wear resistance. The same effect as when a small material is used for the lid can be obtained.
[0022]
The seventh means of the present application is provided with a through hole communicating with the oil supply hole and the outer peripheral surface of the drive shaft in the vicinity of the sliding portion of the drive shaft with the main bearing and the end on the electric motor side, and the drive shaft outer peripheral surface side opening of the through hole. Are arranged in the vicinity of the circumferential position where the bearing gap generated when the drive shaft is pressed in one direction by the compressive stress during the operation of the compressor is minimized. With such a configuration, the through hole is located near the bearing gap minimum part during compressor operation, so that the oil seal function closes the lubricating oil and is supplied by the differential pressure. Since the through hole communicates with the space of the discharge gas atmosphere with a gap within the range of the bearing gap, the differential pressure does not act and the supply of the lubricating oil stops.
[0023]
The eighth means of the present application uses the hermetic scroll compressor according to the first to seventh means for an air conditioner or refrigerator, and is an air conditioner or refrigerator that is low in noise, highly reliable, and low in cost. Can be realized.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and FIG. 6, the same reference numerals as those in FIG. 9 indicate the same or equivalent parts as those in the prior art, and the description of the configuration and operational relationship thereof will be omitted.
[0025]
(Embodiment 1)
1 is a longitudinal sectional view of a scroll compressor according to an embodiment of the present invention, FIGS. 2 and 3 are enlarged longitudinal sectional views of a driving shaft tip in FIG. 1, FIG. 2 is during operation, and FIG. This shows the state.
[0026]
In FIG. 1, an oil supply hole 25 is provided in the drive shaft 4, and a minute passage 26 is provided on the shaft surface of each bearing portion of the drive shaft 4 in the longitudinal direction of the shaft. The main bearing 22 is provided with a lubricating oil groove 29 at a position where the through hole 28 is opposed to the oil supply hole 25 communicating with the minute passage 26, and the high pressure gas is prevented from entering by the oil seal action. Further, the lower end of the drive shaft 4 is immersed in the lubricating oil reservoir 5, and the back pressure chamber 24 and the lubricating oil reservoir 5 are electrically connected by the oil supply hole 25, the through hole 29 and the minute passage 26.
[0027]
Further, although the lubricating oil reservoir 5 is at the discharge pressure, the pressure is reduced by the minute passage 26, and the back pressure chamber 24 is maintained at an intermediate pressure which is an intermediate pressure between the discharge pressure and the suction pressure. Accordingly, the lubricating oil is supplied to the upper main bearing 22 and the swivel bearing 12 by the differential pressure between the lubricating oil reservoir 5 to which the discharge pressure is applied and the back pressure chamber 24, and is supplied to the back pressure chamber 24 after lubricating each bearing. . Lubricating oil accumulated in the back pressure chamber 24 is guided to the compression chamber 10 via the back pressure control valve 27, lubricates the seal and the sliding portion of the compression mechanism 2, and is discharged together with the discharge gas.
[0028]
Further, a large diameter portion a35 larger than the oil supply hole 25 communicating with the oil supply hole 25 is provided at the lower end of the drive shaft 4, and the large diameter portion a35 is eccentrically arranged with respect to the rotation center of the drive shaft 4. . Inside the large diameter portion a35, a lid b36 having a size capable of sufficiently closing the oil supply hole 25 is movably disposed. In order for the lid b <b> 36 to reliably close the oil supply hole 25, a certain amount of space is required with respect to the oil supply hole 25. The lid b is held in the large-diameter portion a35 by the end face of the oil filler port 38 including a foreign substance removing mesh. In the present embodiment, the lid b36 is a spherical body, but the shape is not limited to a spherical body, and any shape may be used as long as the oil supply hole 25 can be closed.
[0029]
A case where the compressor is operated in this configuration will be described with reference to FIG. In the state where the drive shaft 4 is rotating, the lid b36 is pressed against the eccentric side of the large-diameter wall surface by centrifugal force, and the large-diameter portion a35 and the oil supply hole 25 are kept in communication.
[0030]
Next, the case where the compressor stops operating will be described with reference to FIG. When the drive shaft 4 stops rotating, the centrifugal force is not applied to the lid b36, and the movable body 4 becomes movable. On the compression mechanism side, since the discharge port 13 is closed by the reed valve 14, the sealed space 10 becomes equal to the suction pressure. On the other hand, in the back pressure chamber 24, the lubricating oil tends to flow from the lubricating oil reservoir 5 to which the discharge pressure is applied by the oil supply hole 25, the through oil supply hole 29 and the minute passage 26. However, it is possible to prevent a large amount of lubricating oil from flowing into the back pressure chamber 24 because the lid b36 moves to the oil supply hole 25 side together with the lubricating oil and the oil supply hole 25 is closed. Further, the reversing phenomenon of the orbiting scroll 6 does not occur due to the reed valve 14.
[0031]
In the present embodiment, the number of components for preventing outflow of lubricating oil is not increased as in the prior art, and the number of components can be reduced. Furthermore, processability and assembly productivity can be improved.
[0032]
Further, in FIG. 4, a large diameter portion b <b> 40 larger than the oil supply hole 25 communicating with the oil supply hole 25 is provided at the lower end of the drive shaft 4. The large-diameter portion b40 is configured with an angle of 45 degrees or less with respect to the rotation center of the drive shaft 4. A lid c41 having a size that can sufficiently close the oil supply hole 25 is movably disposed in the large-diameter portion b40, as in the first embodiment. The lid c41 is held in the large-diameter portion b40 by the end face of the oil filler port 38 including a foreign matter removing mesh. In the present embodiment, the lid body c41 is a spherical body, but the shape is not limited to the spherical body, and may be any shape as long as the oil supply hole 25 can be closed.
[0033]
As shown in FIGS. 4 and 5, the operation and action when the compressor is in operation and when the operation is stopped are the same as those in the first embodiment. However, even if the lid c41 is arranged outside the drive shaft 4 as much as possible so that the centrifugal force acts on the lid c41 as compared with the first embodiment, the gap between the lid c41 and the large-diameter wall surface is kept. It can be made small. As a result, the lid body c41 can be reliably moved to the oil supply hole 25 side together with the lubricating oil, and the effect of preventing the lubricating oil from flowing out can be enhanced as compared with the first embodiment.
[0034]
In the present embodiment, the lids b36 and c41 are examples that are formed of spherical bodies such as steel balls that are generally popular. However, due to processing restrictions for making the large diameter portions a35 and b40, it may be considered that the spherical body is not optimal as the shape of the lids b36 and c41 that close the oil supply hole 25. In such a case, the shapes of the lids b36 and c41 are expected to be complicated shapes. However, if the lids b36 and c41 are made of a sintered product or a resin molded product, this can be easily realized, and a more effective lubricating oil outflow prevention effect can be exhibited.
[0035]
Further, in the present embodiment, when the effect of preventing the outflow is more effectively realized, it is necessary to improve the followability of the lids b36 and c41 with respect to the flow of the lubricating oil. As an embodiment thereof, there is an example in which the lids b36 and c41 are made of a light specific gravity material such as an aluminum material or a resin material. Since the lids b36 and c41 move to the oil supply hole 25 side by the flow of the lubricating oil when the operation of the compressor is stopped, the followability becomes more advantageous as the mass thereof becomes smaller.
[0036]
As an effect when the lid bodies b36 and c41 are formed by sintering or when the followability is improved by using a light specific gravity material, it is possible to suppress the take-out of the lubricating oil from the lubricating oil reservoir 5 to the outside of the machine. It is mentioned that a high scroll compressor can be provided.
[0037]
In the above embodiment, an impact sound is generated when the lids b36 and c41 collide with the oil supply hole 25. When an elastic material such as a resin material or rubber is used for the lid, the noise can be reduced. it can. Further, when an elastic material such as rubber is used, not only the noise can be reduced, but also the oil supply hole can be deformed and brought into close contact with each other, so that the leakage of the lubricating oil can be completely eliminated.
[0038]
If the scroll compressor is a vertical type as described above, a large diameter portion will be arranged under the oil supply hole. In such a case, if the specific gravity of the lid is smaller than that of the lubricating oil, the buoyancy during stopping As a result, a force that presses the lid against the oil supply hole is applied, so that the outflow of the lubricating oil can be prevented more reliably. Even when a material having a specific gravity greater than that of the lubricating oil is used as the material of the lid, the same effect can be obtained by forming a cavity inside the lid.
[0039]
In the embodiment described above, the large-diameter portion is provided at the end of the drive shaft on the side opposite to the compression mechanism, but the large-diameter portion is provided inside the intermediate portion of the drive shaft by using a separate component. It is also possible to arrange the parts, and in this case as well, the operation and effect are the same.
[0040]
(Embodiment 2 )
In FIG. 6, a radial through hole b 37 communicating with the oil supply hole 25 of the drive shaft 4 is provided. Further, the opening 39 on the side of the counter oil supply hole 25 of the through hole b37 is arranged in a direction in which the bearing clearance between the main bearing 22 and the drive shaft 4 is approximately minimized by the compression load during operation of the scroll compressor. When the drive shaft 4 has an inclination in the main bearing 22 due to fluctuations in the compression load, deflection of the drive shaft 4 itself, and other factors, the direction in which the bearing clearance is minimized is naturally different. The opening 39 is provided in consideration of the above points. About the position of the axial direction of the opening part 39, it is provided in the edge part vicinity (the lower end vicinity in the figure) of the main bearing 22 by the side of the anti-compression mechanism.
[0041]
A case where the compressor is operated in this configuration will be described with reference to FIG. In FIGS. 7 and 8, for the sake of explanation, the bearing gap is illustrated in an enlarged manner. Since the opening 39 of the through hole b37 is provided at a position where the bearing clearance between the main bearing 22 and the drive shaft 4 is substantially minimized, the opening 39 is almost closed by the oil seal action of the lubricating oil film. It is in. Accordingly, the high-pressure gas in the discharge gas atmosphere does not flow from the through hole b37 communicating with the oil supply hole 25. Further, the opening 39 is provided in the vicinity of the lower end of the main bearing 22, and there is little possibility of affecting the lubrication state of the main bearing 22 itself. Therefore, as explained in the prior art, the lubricating oil is supplied by differential pressure. The supply of lubricating oil in this case is the same as that in the first embodiment, and a description thereof is omitted.
[0042]
On the other hand, the case where the compressor is stopped will be described with reference to FIG. The rotation of the drive shaft 4 stops, and the drive shaft 4 is held with a gap in the range of the bearing gap with the main bearing 22. Therefore, the opening 39 results in opening into the discharge gas atmosphere space, and the oil supply hole 25 communicates with the discharge gas atmosphere space through the through hole b37. Since the opening 39 is provided near the lower end of the main bearing 22, the discharge gas can easily flow into the through hole b37.
[0043]
On the other hand, the lubricating oil in the lubricating oil reservoir 5 begins to flow out into the back pressure chamber 24 as described in the first embodiment. However, the flow of the high-pressure discharge gas from the through hole b37 is faster than the flow of the lubricating oil into the back pressure chamber 24, and the outflow of the lubricating oil is suppressed. As a result, it is possible to prevent the lubricating oil in the lubricating oil reservoir 5 from flowing out to the suction side, to prevent a sudden decrease in the lubricating oil, and to prevent the lubricating oil from being taken out of the machine. Further, since the reed valve 27 is attached, the reverse rotation phenomenon of the orbiting scroll 6 does not occur.
[0044]
In the present embodiment, there is an advantage that lubricating oil can be prevented from flowing out at the time of stopping without using a special part only by providing a through hole in the drive shaft, and the workability and assembly productivity can be further improved.
[0045]
In the first and second embodiments , the vertical scroll compressor is taken as an example. However, the end of the drive shaft 4 is connected by an oil supply pipe and immersed in the lubricating oil reservoir 5 for lubrication. This is a technique that can be implemented even with a horizontal scroll compressor that supplies oil by a differential pressure oiling system.
[0046]
【The invention's effect】
According to the present invention, as is apparent from the above description, the orbiting scroll does not reverse when the operation is stopped, and the lubricating oil in the lubricating oil reservoir can be prevented from flowing out to the suction side. Further, since it is possible to prevent the lubricant from being taken out of the machine, a highly reliable hermetic scroll compressor can be provided. Furthermore, it is possible to provide a hermetic scroll compressor that can reduce the number of components compared to the prior art and that has a simple structure and further improved workability and assembly productivity.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a scroll compressor according to Embodiment 1 of the present invention. FIG. 2 is an enlarged sectional view of a main part during operation of the scroll compressor according to Embodiment 1 of the present invention. when the scroll compressor is stopped in the scroll compressor stop of a main portion enlarged sectional view the present invention; FIG enlarged sectional view when the scroll compressor operation in the first embodiment [Fig. 5] embodiment 1 of the present invention embodiment in enlarged sectional view vertical sectional view of a scroll compressor in Figure 6 the second embodiment of the present invention embodiment [7] the present invention enlarged sectional view when the scroll compressor operation in a second embodiment of FIG. 8 FIG. 9 is an enlarged cross-sectional view of a main part when the scroll compressor is stopped in Embodiment 2 of the present invention. FIG. 9 is a vertical cross-sectional view of a conventional scroll compressor. Surface view (b Enlarged longitudinal sectional view when a conventional scroll compressor operation EXPLANATION OF REFERENCE NUMERALS
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 3 Electric motor 4 Drive shaft 5 Lubricating oil pool 6 Orbiting scroll 7 Fixed scroll 8 Frame 9 Suction pipe 10 Compression chamber 11 Rotation prevention mechanism 12 Orbit bearing 13 Discharge port 14 Reed valve 15 1st discharge chamber 16 1st Lowering communication path 17 Bulkhead 18 Second discharge chamber 19 Second lowering communication path 20 First rising communication path 21 Discharge pipe 22 Main bearing 23 Sub bearing 24 Back pressure chamber 25 Oil supply hole 26 Small passage 27 Back pressure control valve 28 Through hole 29 Lubricating oil groove 30 Lid body 31 Elastic body 32 Weight body 33 Connection body 34 Through hole a
35 large diameter part a
36 Lid b
37 Through hole b
38 Refueling port 39 Opening 40 Large diameter b
41 Lid c

Claims (8)

底部に潤滑油溜りを形成する密閉容器内部に駆動軸により連結された電動機とスクロール圧縮機構とを収納し、
前記スクロール圧縮機構は旋回スクロールとこれを旋回運動可能に挟持する固定スクロールとフレームとを備え、前記フレームには駆動軸を軸支する主軸受が設けられ、前記旋回スクロールと固定スクロールはそれぞれの鏡板に形成した渦巻きラップを互いに噛み合わせて圧縮室を形成し、前記旋回スクロール鏡板の背面と前記フレームにて形成される背圧室に圧縮機構が吐出した気体を減圧供給して前記背圧室を吸入圧力よりも高く吐出圧力よりも低い中間圧力とすることで旋回スクロールと固定スクロールとを密着させてなり、
前記駆動軸の内部には軸方向に貫通する給油孔を備え、前記潤滑油溜りと背圧室は前記給油孔を介して連通されてなり、潤滑油溜りに加わる吐出圧力と背圧室の中間圧力との差圧力により前記駆動軸の軸受け部および前記スクロール圧縮機構の摺動部に給油するスクロール圧縮機であって、
前記給油孔の背圧室側端部以外の場所に径方向断面が給油孔よりも大なる部分(以下“径大部”と呼ぶ)を設け、前記径大部内に給油孔を閉塞可能な形状の蓋体を径方向移動自在に収納し、前記径大部が駆動軸回転中心に対して偏心して配置され、前記径大部が駆動軸の軸心に対して45度以下の角度をもって配置されてなることを特徴とする密閉型スクロール圧縮機。
A motor and a scroll compression mechanism connected to each other by a drive shaft are housed in a sealed container that forms a lubricating oil reservoir at the bottom,
The scroll compression mechanism includes an orbiting scroll, a fixed scroll that holds the orbiting scroll so that the orbiting movement is possible, and a frame, and a main bearing that supports a drive shaft is provided on the frame. The swirl wraps formed on each other are meshed with each other to form a compression chamber. By making the intermediate pressure higher than the suction pressure and lower than the discharge pressure, the orbiting scroll and the fixed scroll are brought into close contact,
An oil supply hole penetrating in the axial direction is provided inside the drive shaft, and the lubricating oil reservoir and the back pressure chamber are communicated with each other via the oil supply hole. A scroll compressor for supplying oil to a bearing portion of the drive shaft and a sliding portion of the scroll compression mechanism by a differential pressure from the pressure,
A portion having a radial cross section larger than that of the oil supply hole (hereinafter referred to as “large diameter portion”) is provided at a location other than the back pressure chamber side end of the oil supply hole, and the oil supply hole can be closed in the large diameter portion. The large-diameter portion is disposed eccentrically with respect to the drive shaft rotation center, and the large-diameter portion is disposed at an angle of 45 degrees or less with respect to the drive shaft axis. hermetic scroll compressor characterized by comprising Te.
請求項1記載のスクロール圧縮機であって、蓋体が焼結形成されてなることを特徴とする密閉型スクロール圧縮機。 2. The scroll compressor according to claim 1 , wherein the lid body is formed by sintering. 請求項1記載のスクロール圧縮機であって、蓋体が弾性材料からなることを特徴とする密閉型スクロール圧縮機。 2. The scroll compressor according to claim 1 , wherein the lid is made of an elastic material. 請求項1記載のスクロール圧縮機であって、蓋体が潤滑油よりも比重の小さな材料からなることを特徴とする密閉型スクロール圧縮機。 2. The scroll compressor according to claim 1 , wherein the lid is made of a material having a specific gravity smaller than that of the lubricating oil. 請求項1記載のスクロール圧縮機であって、蓋体の内部に空洞を有することを特徴とする密閉型スクロール圧縮機。 The scroll compressor according to claim 1 , wherein the lid has a cavity inside the lid. 底部に潤滑油溜りを形成する密閉容器内部に駆動軸により連結された電動機とスクロール圧縮機構とを収納し、
前記スクロール圧縮機構は旋回スクロールとこれを旋回運動可能に挟持する固定スクロールとフレームとを備え、前記フレームには駆動軸を軸支する主軸受が設けられ、前記旋回スクロールと固定スクロールはそれぞれの鏡板に形成した渦巻きラップを互いに噛み合わせて圧縮室を形成し、前記旋回スクロール鏡板の背面と前記フレームにて形成される背圧室に圧縮機構が吐出した気体を減圧供給して前記背圧室を吸入圧力よりも高く吐出圧力よりも低い中間圧力とすることで旋回スクロールと固定スクロールとを密着させてなり、
前記駆動軸の内部には軸方向に貫通する給油孔を備え、前記潤滑油溜りと背圧室は前記給油孔を介して連通されてなり、潤滑油溜りに加わる吐出圧力と背圧室の中間圧力との差圧力により前記駆動軸の軸受け部および前記スクロール圧縮機構の摺動部に給油するスクロール圧縮機であって、
駆動軸の主軸受との摺動部かつ電動機側端部近傍に給油孔と駆動軸外周面とを連通する貫通孔を設け、前記貫通孔の駆動軸外周面側開口は、圧縮機が運転中に主軸受けと駆動軸との軸受隙間が最小となる周方向位置の近傍に配置されてなることを特徴とする密閉型スクロール圧縮機。
A motor and a scroll compression mechanism connected to each other by a drive shaft are housed in a sealed container that forms a lubricating oil reservoir at the bottom,
The scroll compression mechanism includes an orbiting scroll, a fixed scroll that holds the orbiting scroll so that the orbiting movement is possible, and a frame, and a main bearing that supports a drive shaft is provided on the frame. The swirl wraps formed on each other are meshed with each other to form a compression chamber. By making the intermediate pressure higher than the suction pressure and lower than the discharge pressure, the orbiting scroll and the fixed scroll are brought into close contact,
An oil supply hole penetrating in the axial direction is provided inside the drive shaft, and the lubricating oil reservoir and the back pressure chamber are communicated with each other via the oil supply hole. A scroll compressor for supplying oil to a bearing portion of the drive shaft and a sliding portion of the scroll compression mechanism by a differential pressure from the pressure,
A through hole that communicates the oil supply hole with the outer peripheral surface of the drive shaft is provided in the vicinity of the sliding portion of the drive shaft with the main bearing and the end on the motor side, and the drive shaft outer peripheral surface side opening of the through hole is in operation by the compressor The hermetic scroll compressor is characterized in that it is disposed in the vicinity of a circumferential position where the bearing clearance between the main bearing and the drive shaft is minimized.
請求項1乃至6のいずれか1項に記載の密閉型スクロール圧縮機を有することを特徴とする空気調和装置。An air conditioner comprising the hermetic scroll compressor according to any one of claims 1 to 6 . 請求項1乃至6のいずれか1項に記載の密閉型スクロール圧縮機を有することを特徴とする冷蔵庫。A refrigerator comprising the hermetic scroll compressor according to any one of claims 1 to 6 .
JP2002059926A 2002-03-06 2002-03-06 Hermetic scroll compressor and its application equipment Expired - Fee Related JP3956726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059926A JP3956726B2 (en) 2002-03-06 2002-03-06 Hermetic scroll compressor and its application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059926A JP3956726B2 (en) 2002-03-06 2002-03-06 Hermetic scroll compressor and its application equipment

Publications (2)

Publication Number Publication Date
JP2003254267A JP2003254267A (en) 2003-09-10
JP3956726B2 true JP3956726B2 (en) 2007-08-08

Family

ID=28669442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059926A Expired - Fee Related JP3956726B2 (en) 2002-03-06 2002-03-06 Hermetic scroll compressor and its application equipment

Country Status (1)

Country Link
JP (1) JP3956726B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329530B2 (en) * 2003-12-24 2009-09-09 パナソニック株式会社 Scroll compressor
FR2919688B1 (en) * 2007-08-02 2013-07-26 Danfoss Commercial Compressors SPIRAL REFRIGERATOR COMPRESSOR WITH VARIABLE SPEED
FR2969226B1 (en) * 2010-12-16 2013-01-11 Danfoss Commercial Compressors SPIRAL REFRIGERATING COMPRESSOR
FR2969228B1 (en) 2010-12-16 2016-02-19 Danfoss Commercial Compressors SPIRAL REFRIGERATING COMPRESSOR
FR2969227B1 (en) * 2010-12-16 2013-01-11 Danfoss Commercial Compressors SPIRAL REFRIGERATING COMPRESSOR
KR101692570B1 (en) * 2012-02-16 2017-01-03 한온시스템 주식회사 Scroll compressor
CN105899808B (en) * 2014-01-08 2017-12-12 三菱电机株式会社 Rotary compressor
JP6036780B2 (en) 2014-09-30 2016-11-30 株式会社豊田自動織機 Compressor

Also Published As

Publication number Publication date
JP2003254267A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP4286175B2 (en) Compressor
EP1471258B1 (en) Electric compressor
JPWO2005038254A1 (en) Scroll compressor
CN101663485A (en) Compressor and oil supplying structure therefor
JP3956726B2 (en) Hermetic scroll compressor and its application equipment
US7281913B2 (en) Compressor including integrally formed separation tube and seal bolt
JP2006299806A (en) Scroll compressor
US6599110B2 (en) Scroll-type compressor with lubricant provision
JP4848202B2 (en) Scroll compressor
JPH07167069A (en) Scroll type compressor
JP5421725B2 (en) Scroll type fluid device
JP6633305B2 (en) Scroll compressor
JP5209279B2 (en) Scroll compressor
WO2016016917A1 (en) Scroll compressor
JP2006090180A (en) Hermetic compressor
JP4974974B2 (en) Hermetic rotary compressor
JP4232349B2 (en) Scroll compressor
JPH11182469A (en) Scroll compressor
WO2023214562A1 (en) Compressor
JP2002195177A (en) Scroll compressor
WO2021020346A1 (en) Compressor
JP3913072B2 (en) Scroll compressor
WO2006129617A1 (en) Scroll compressor
JP4301120B2 (en) Scroll compressor
KR100323543B1 (en) Friction Reduction Device for Rotary Compressor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees