JP3956509B2 - Regeneration control method of filter material for bath water heater - Google Patents

Regeneration control method of filter material for bath water heater Download PDF

Info

Publication number
JP3956509B2
JP3956509B2 JP29826998A JP29826998A JP3956509B2 JP 3956509 B2 JP3956509 B2 JP 3956509B2 JP 29826998 A JP29826998 A JP 29826998A JP 29826998 A JP29826998 A JP 29826998A JP 3956509 B2 JP3956509 B2 JP 3956509B2
Authority
JP
Japan
Prior art keywords
hot water
water
flow rate
regeneration
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29826998A
Other languages
Japanese (ja)
Other versions
JP2000121150A (en
Inventor
和則 曽根高
裕文 河島
哲郎 青木
一仁 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29826998A priority Critical patent/JP3956509B2/en
Publication of JP2000121150A publication Critical patent/JP2000121150A/en
Application granted granted Critical
Publication of JP3956509B2 publication Critical patent/JP3956509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯と風呂の追いだきができる風呂給湯器に外接続もしくは内蔵できるろ過槽のろ過材を浄化を保持することができる、ろ過材の再生制御方法に関するものである。
【0002】
【従来の技術】
一般的な従来の代表技術として、特開平8−38828号公報の風呂ユニットを図14に示す。符号101は風呂ユニットの全体構成を示し、102は浴槽、104は浴槽102中の湯水を循環しながら浄化する浄化装置、106は浴槽102や図示しないカラン等へ給湯したり、浴槽102への補水や、浴槽102中の湯水の追いだき等を行う自動給湯風呂装置で、浄化装置104は、浴槽102に接続された循環水路110を備え、この循環水路110の途中に、吸込側からの吐出側に向かって、循環ポンプ112,ろ過槽114,生物ろ床槽116、および殺菌装置118が順次配設されている。
【0003】
上記のろ過槽114は、容器内にガラスビーズ等の比較的粒子径の小さな(たとえば、200〜400μm)ろ過材を充填して構成され、髪の毛や垢等の比較的大きな浮遊物を除去(浄化)するようになっている。
【0004】
また120はろ過槽114の逆洗(ろ過材の再生)時に使用される排水路、121〜124は水抜き用の排水路、131〜134は水路切り換え用の電磁式の三方弁、136,137は排水用の電磁式の二方弁で、逆洗指令手段162は、浄化装置104の運転時間を積算し、その積算時間が予め設定された基準時間に達するたびに浄化装置104の逆洗指令信号を出力し、この逆洗指令信号を出力により、浄化装置104の逆洗を実行するものである。
【0005】
ろ過槽114の逆洗では、ろ過槽114の三方弁131を排水路120、他方の三方弁132を排水路121にそれぞれ切り換える。また三方弁133,134は排水路120,122との連通を遮断する状態に保持し、排水弁136,137も閉じた状態に保持する。
【0006】
浴槽102中の湯水が循環水路110の吹込口から吸い込まれて循環ポンプ112によって加圧流出され、この湯水は、排水路121から三方弁132,ろ過槽114,三方弁131、および排水路120を順次通過して外部に排出される。つまり、ろ過槽114には、浄化運転とは逆に下側から上側に向けて湯水が流れ、これによって、内部のろ過材が強制的に攪拌されて洗浄、すなわち、再生される。
【0007】
【発明が解決しようとする課題】
しかしながら,上記構成と制御では、浴槽の湯水を循環ポンプによって、下側から上側に向けて流し、ろ過槽に充填されているろ過材が強制的に攪拌されて洗浄再生される一般的な逆洗洗浄が開示されているだけである。
【0008】
髪の毛や垢等が加圧流出される時に、同時にろ過材(比較的小さな粒子径のガラスビーズや浜砂等)が流出し、ろ過槽上部の三方弁(図14の符号131)にも流出し、三方弁のボール部や弁シール部に傷がつき、シール不良となり浄化循環時、排水路から水漏れが発生し浴槽の湯水が少なくなり循環ポンプが空運転し信頼性が低下したり、特に全自動(水位を検出して自動的に足し湯する機能)場合、湯水が連続供給され、電気やガス、水が不経済となり現在の社会的背景である省資源,省エネルギーに反すること。
【0009】
さらにろ過槽内のろ過材が外部に流出し、充填ろ過材量が徐々に少なくなり、主機能である浄化性能が著しく低下すること等の不具合が生じる。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1手段は、給水および浴槽水を温水に加熱する加熱部と、給水回路に設けられ給水温度を検知する給水水温検知部および給水流量を検知する流量検知部と、給湯回路に設けられ温水温度を検知する給湯水温検知部および給湯流量を制御する給湯水量制御部と、浴槽水循環回路に給湯する給湯弁部および前記給湯弁部の上流に給湯水および浴槽水の流れを検知する水流検知部と、前記浴槽水循環回路に浴槽水の水位を検知する水位検知部、浴槽水を循環する循環ポンプおよび浴槽水の浴槽水温度を検知する浴槽水水温検知部と、さらに浴槽水循環回路として循環回路,浄化回路,排水回路の回路構成を設け、浄化回路にろ過材を有するろ過槽と、ろ過槽の下流側に浄化回路と循環回路を切り換える切換弁A、循環ポンプと給湯弁部との間に浴槽水循環回路と開閉する切換弁B、加熱部とろ過槽との間に浄化回路と循環回路に切り換える切換弁C、排水回路を開閉する切換弁Dを各々配設した構成において、前記ろ過槽のろ過材の再生手段として、切換弁A,切換弁B,切換弁C,切換弁Dをろ過材再生回路に切り換えした後、まず(a)循環ポンプを複数回短時間作動し、次に(b)給湯弁部を開とするとともに、給湯水量制御部で給水流量を少流量制御した後、一定時間給水し、最後に(c)給湯水量制御部で給湯流量を再生流量制御した後、一定時間給水する再生制御手段を設けたものである。
【0011】
上記した第1手段によれば、まず循環ポンプを複数回開閉することによって、ろ過槽に配設しているろ過材を給水水圧で徐々に攪拌し、ろ過材層の表面に堆積している髪の毛や垢を徐々に剥離し、水の通過を均一化させる。さらに浄化していると、ろ過材層内に微小な空気が混入堆積し、この空気が不均一で多量に浮上するとき、ろ過材も同時に浮上させるため、微小な空気を徐々に浮上させ、ろ過材の巻き上げを防止する。
【0012】
次に、上記の水の通過の均一化と空気抜きした後、給湯弁部を開とし、給湯水量制御部で給水流量を少流量制御で一定時間給水することにより、ろ過材の表面の比較的大きな各種堆積物を完全に剥離させ水の通過をより均一化させるとともに、加熱部や排水回路に滞留している空気等を少流量で一定時間給水させることにより、ろ過材の巻き上げを防止する。
【0013】
最後に、再生流量制御した後、一定時間給水することにより、ろ過材表面に付着している比較的小さな堆積物を、ろ過材とろ過材を衝突攪拌させながら再生するとともに、比較的大きな各種堆積物(髪の毛や垢等)を完全にろ過槽から排出させる。この再生流量制御とは、一般的に開示されている(逆洗率120〜130%)とし、一定時間給水とは、ろ過槽の形状やろ過材量により、任意に決定される。
【0014】
【発明の実施の形態】
本発明の第1実施形態は、給水および浴槽水を温水に加熱する加熱部と、給水回路に設けられ給水温度を検知する給水水温検知部および給水流量を検知する流量検知部と、給湯回路に設けられ温水温度を検知する給湯水温検知部および給湯流量を制御する給湯水量制御部と、浴槽水循環回路に給湯する給湯弁部および前記給湯部の上流に給湯水および浴槽水の流れを検知する水流検知部と、前記浴槽水循環回路に浴槽水の推移を検知する水位検知部、浴槽水循環する循環ポンプおよび浴槽水の浴槽水温度を検知する浴槽水水温検知部と、さらに浴槽水循環回路として循環回路,浄化回路,排水回路の回路構成を設け、循環回路にろ過材を有するろ過槽と、ろ過槽の下流側に浄化回路と循環回路を切り換える切換弁A、循環ポンプと給湯弁部との間に浴槽水循環回路を開閉する切換弁B、加熱部とろ過槽との間に浄化回路と循環回路に切り換える切換弁C、排水回路を開閉する切換弁Dを各々配設した構成において、前記ろ過槽のろ過材の再生手段として、切換弁A,切換弁B,切換弁C,切換弁Dをろ過材再生回路に切り換えした後、まず(a)循環ポンプを複数回短時間作動し、次に(b)給湯弁部を開とするとともに、給湯水量制御部で給水流量を少流量制御した後、一定時間給水し、最後に(c)給湯水量制御部で給湯流量を再生流量制御した後、一定時間給水する再生制御手段を有するものである。
【0015】
そして、循環ポンプを複数回短時間作動することによって、ろ過槽に配設しているろ過材を循環ポンプの循環水流で徐々に攪拌し、ろ過材槽の表面に堆積している髪の毛や垢を徐々に剥離し、水の通過を均一化させる。さらに浄化していると、ろ過材層内に微小な空気が堆積し、この空気が不均一で多量に浮上するとき、ろ過材も同時に浮上させるため、微小な空気を徐々に浮上させ、ろ過材の巻き上げを防止し、水の通過の均一化と空気抜きした後、さらにまた少流量で一定時間給水することにより、ろ過材の表面の比較的大きな各種堆積物を完全に剥離させ水の通過をより均一化させるとともに、加熱部や排水回路に滞留している空気等を少流量で一定時間給水させることにより、ろ過材の巻き上げを防止する。再生流量制御した後、一定時間給水することにより、ろ過材表面に付着している比較的小さな堆積物を、ろ過材とろ過材を衝突攪拌させながら再生排出するとともに、比較的大きな各種堆積物(髪の毛や垢等)を完全にろ過槽から排出させことにより、ろ過材の再生と流出がなくなり、切換弁Dへの噛み込みによる水漏れを防止し、さらにろ過材量が減少することなく、安定した浄化性能を保つことができる。
【0016】
本発明の第2の実施形態は、(a)の循環ポンプを複数回短時間作動する前に、浄化回路で浴槽水を一定時間浄化する再生制御手段を有するものである。
【0017】
そして、循環ポンプを複数回短時間作動する前に、浴槽水の汚れをろ過槽でろ過浄化することにより、浴槽水をきれいにし、再浴槽水として入浴することができること、さらに再生水の汚れ成分を無くし、前記再生水によるろ過材の下部が汚染されることがなく、よりろ過材の再生が確実にできる。
【0018】
本発明の第3実施形態は、(b)の給湯弁部を開とするとともに給湯水量制御部で給水流量を少流量制御した後、一定時間給水し、(c)の給湯水量制御部で給湯流量を再生流量制御した後、一定時間給水する間に、(d)として、少流量から再生流量まで徐々に流量を増加する再生制御手段を有するものである。
【0019】
そして、少流量から再生流量まで徐々に流量を増加する再生制御することにより、ろ過材の衝突攪拌時間が長くなり、より水の通過の均一化とろ過材の巻き上げを防止することができ、よりろ過材の再生と流出なくなり、切換弁Dへの噛み込みによる水漏れを防止し、さらにろ過材量が減少することなく、安定した浄化性能を保つことができる。
【0020】
本発明の第4の実施形態は、(a)の給湯弁部が開の場合、加熱部を非加熱制御する再生制御手段を有するものである。
【0021】
そして、給湯弁部が複数回開時に、加熱部を加熱すると、たとえば、加熱源がガスや灯油の場合、点火音と点火用燃焼空気を供給するファン音が騒音となる。また加熱部が電気の場合、加熱用リレー切り替え音が、前記同様騒音となることから、給湯弁部が複数回開閉する主目的は、前記に詳述の如く、ろ過材層の表面の各種堆積物を剥離し、水の通過を均一化するもので、非加熱制御でも十分な性能を得ることができる。
【0022】
本発明の第5の実施形態は、(b)(c)および(d)の給湯弁部が開の場合、加熱部を加熱制御する再生制御手段を有するものである。
【0023】
そして、給湯弁部が開時に、加熱部を加熱し、温水を給水することにより、ろ過材表面に付着した比較的小さな堆積物の剥離を容易にできることから、剥離攪拌時間、すなわち再生制御時間を著しく短縮できる。
【0024】
本発明の第6実施形態は、給湯温水検知部により、加熱部で少なくとも35℃以上に加熱制御する再生制御手段を有するものである。
【0025】
また、ろ過材の再生水の湯温を少なくとも35℃以上に加熱することにより、温水による表面張力が小さくなり、ろ過材層表面の各種堆積物が早く剥離できること、またろ過材層に混入している空気の追い出しが早くなること、さらにろ過材に付着した各種堆積物を再生攪拌して早く剥離できることにより、再生洗浄時間が短縮でき、かつ確実にろ過材を再生することができる。
【0026】
本発明の第7実施形態は、水位検知部もしくは水流検知部のどちらかで、浴槽水が無いと判定した場合は、(a)循環ポンプの複数回短時間作動を停止し、(e)給湯弁部を複数回開閉操作に移行し、(b)の少流量制御、(c)の再生流量制御または、(d)の少流量から再生流量まで徐々に流量を増加、(c)の再生流量制御する再生制御手段を有するものである。
【0027】
そしてまた、浴槽水の残り水が無い、もしくは少ない場合は、再生制御で最も重要であるろ過材の水の通路の均一化と空気の追い出しができなくなり、ろ過材が流出する不具合が生じる。よって水位検知部もしくは水流検知部のどちらかで、浴槽水量を判定し、新たな給湯弁部を複数回開閉操作に移行することにより、ろ過材の水の通路の均一化と空気の追い出しを確実に実施し、ろ過材の流出を防止して、ろ過材を十分に再生することができる。
【0028】
【実施例】
本発明の実施例を図面に基づいて説明する。
【0029】
(実施例1)
図1はふろ給湯器の概略構成、図2はろ過材の再生制御の概略フローチャート、図3は再生制御の概略タイムチャートを示す。
【0030】
図1において、水は水入口より水温センサからなる給湯水温検知部1、水量センサからなる流量検知部2を通り、熱交換器と燃焼バーナからなる加熱部18で熱を吸収して、給湯水量制御部4、給湯センサからなる給湯水温検知部3を通り、湯出口(未符号)より放出される。
【0031】
浴槽水20は、循環ポンプ7により浴槽19に取りつけられた風呂接続アダプタ21,戻り通路22,ふろセンサからなる浴槽水水温検知部8,水位センサからなる水位検知部25,循環ポンプ7,二方弁からなる切換弁B15,水流スイッチからなる水流検知部6,加熱部18,三方弁からなる切換弁C16,三方弁からなる切換弁A14,往き通路23,風呂接続アダプタ21の浴槽水循環回路の循環回路を循環する。また浴槽水20は、循環ポンプ7により浴槽19に取りつけられた風呂接続アダプタ21,戻り通路22,ふろセンサからなる浴槽水水温検知部8,循環ポンプ7,二方弁からなる切換弁B15,水流スイッチからなる水流検知部6,加熱部18,三方弁からなる切換弁C16,ろ過材13(アルミナボール:粒子径0.3〜0.5mmを使用)を配設しているろ過槽12、三方弁からなる切換弁A14,往き通路23、風呂接続アダプタ21の浴槽水循環回路の浄化回路を循環する。
【0032】
一方、浴槽19への給湯は、水は注湯弁からなる給湯弁部5を開くと、水は水入口より水温センサからなる給水水温検知部1,水量センサからなる流量検知部2を通り、熱交換器と燃焼バーナからなる加熱源18で熱を吸収して、給湯水量制御部4,給湯センサからなる給湯水温検知部3,給湯弁部5を通り、給湯機能制御(詳細は省略する)、すなわち二方弁からなる切換弁B15を開制御すると、2回路給湯として、循環ポンプ7,戻り通路22と加熱部18,切換弁C,循環回路9,往き通路を各々通り、浴槽19に取りつけられた風呂接続アダプタ21よりお湯はりされる。一方、二方弁からなる切換弁B15を閉制御すると、1回路給湯として、加熱部18,切換弁C16,循環回路9,往き通路を各々通り、浴槽19に取りつけられた風呂接続アダプタ21よりお湯はりされる。本発明では、詳述しないが、特に全自動の場合、符号は省略しているが、戻り通路22と循環ポンプ7との間に、お湯はり水位(湯量)を検知する水位センサにより、浴槽水20を正確にお湯はり時、自動足し湯する時に用いる。
【0033】
他方、ろ過槽12に配設しているろ過材13を再生(逆洗洗浄とも言う)する場合、2再生制御できる。まず循環ポンプによる複数回短時間作動再生制御は、切換弁B15を開、切換弁C16を循環回路、切換弁A14を浄化回路10、切換弁D17を開に切り換えした後、循環ポンプ7を短時間作動すると、水は、加熱部18,循環回路9,ろ過槽12に配設したろ過材13の下側から上側に浄化回路10を通り、排水回路11に通水される。そして循環ポンプによる複数回短時間設定作動した後循環ポンプ7を停止し、次の給湯弁部を開として、少流量制御と再生流量制御する給湯弁部再生制御は、切換弁B15のみを閉に切り換え、切換弁C16,切換弁A14,切換弁D17をそのまま切り換えないで循環回路9,浄化回路10,排水回路11に、給湯弁部5を開とすると、給湯水量制御部4により、まず少流量制御で一定時間給水し、最後に再生流量で一定時間給水することにより、循環ポンプ7を作動させると、水流検知部6,加熱部18,循環回路9,ろ過槽12に配設したろ過材13の下側から上側に浄化回路10を通り、排水回路11に通水される。
【0034】
図2,図3は、本発明の第一の実施例の再生制御手段のフローチャートおよびタイムチャートを示し、リモコン24による手動操作で説明する。リモコン24の再生SWを「ON」すると、各種切換弁(A,B,C,D)が切り換わり、再生回路になると、まず循環ポンプ7が「ON」作動する同時に、循環ポンプ7の「ON」タイマと「ON,OFF」作動回数判定が作動する。次に循環ポンプ7「ON」タイマの設定時間になると、循環ポンプ7が「OFF」すると同時に、循環ポンプ7「OFF」タイマが作動し、前記「ON,OFF」動作回数判定まで繰り返し作動する。
【0035】
上記作動は、請求項範囲の(a)の循環ポンプを複回数短時間作動のもので、特にろ過材の流出防止で最も重要な再生制御手段であることから、まず「ON,OFF」タイマについて詳述する。
【0036】
循環ポンプ7「ON」タイマの好ましい設定時間は、1〜5秒である。1秒以下は、循環ポンプ7「ON」制御の回転安定限界時間、また5秒以上になると、配管長や配管径により、再生流量が大となり、ろ過材13が巻き上げられ、ろ過槽12より流出する場合があることから、一般的な戻り通路22の配管長(3m)と配管径12A(内径φ11.5)で5秒以上で、ろ過材の流出するためには、本発明主者らの検証実験(未開示)では、流速(線速度:LV値)が1cm/secイスーかで、かつろ過材層径長さL1に対し、ろ過材表面からろ過槽の出口(再生時)までの長さL2、すなわちL2/L1の比を7以上にする必要があることから、風呂給湯器の一般的な構成形状内にろ過槽を内蔵でない大きさになってしまうことから、上記で詳述した循環ポンプ7「ON」の好ましい設定時間は、1〜5秒であるが、より好ましい設定時間は、1.5〜3秒である。
【0037】
一方、循環ポンプ7「OFF」タイマの好ましい設定時間は、3〜20秒である。3秒以下では、巻き上げられたろ過材13が、自重で再度ろ過材層までに沈降できずに、浮遊したままで、次の循環ポンプ7「ON」での流量(流速)でさらに巻き上げられ、ろ過材が流出しやすくなる。ろ過材の流出を確実に防止するためには、循環ポンプ7「OFF」の設定時間は、可能な限り長い方がよいが、本発明の目的の1つである、可能な限り短い時間でろ過材の再生を終了させることを考慮すると、20秒以内が望ましいが、より好ましい設定時間は、5〜12秒である。
【0038】
次に、循環ポンプ7「ON,OFF」制御複数回の好ましい回数は、2〜15回である。1回では、ろ過材層表面の各種堆積物(髪の毛や垢等)を剥離することがまたろ過材層に混入している空気を追い出すことができないことと、次に説明する(b)の給湯弁部の開の少流量制御時間を長くする必要があり、可能な限り短い時間でろ過材の再生を終了させることができなくなる。一方、ろ過材の流出を確実に防止するためには、循環ポンプ7「ON,OFF」設定回数が多い方がよいが、可能な限り短い時間でろ過材の再生を終了させることを考慮すると、15回以下が望ましいが、より好ましい設定回数は、5〜10回である。
【0039】
一例ではあるが、ろ過槽12の大きさが内径φ100mm,高さ250mm,ろ過材径0.3〜0.5mmでろ過材高さ60mmの場合、(1)循環ポンプ「ON」設定時間:2秒、(2)「OFF」設定時間:7秒、(3)「ON,OFF」繰り返し回数:8回が最適条件であった。
【0040】
次に、請求項範囲の(b)の給湯弁部を「開」とするとともに、給湯水量制御部で給水流量を少流量制御した後、一定時間給水する再生制御手段を説明する。
【0041】
前記の(a)の循環ポンプを「ON,OFF」複数回短時間作動した後、(b)の給湯弁部を「開」とするとともに、給湯水量制御部で給水流量を少流量制御した後、一定時間給水する再生制御手段に移行する。給湯弁部5を「開」にすると、給湯水量制御部4で予め設定した流量を制御し、水が流れ始める。水は加熱部18,切換弁C16,循環回路9,切換弁A14を通り、ろ過槽12の下側より入り、ろ過材13を少しだけ再生攪拌(浮遊)させながら、前記ろ過材13層表面の各種堆積物である髪の毛や垢等を少しずつ剥離させながら流れ、各種堆積物を浄化装置12の出口より流出させ、切換弁D17に接続している排水回路11に流れる。
【0042】
この時の給湯水量制御部4での好ましい制御流量は、3〜7l/分である。3l/分以下では、ろ過材13層表面の各種堆積物である髪の毛や垢等をほとんど剥離させることができないことから、次に説明する(c)給湯水量制御部で給湯水量を再生流量にした場合、各種堆積物が通水抵抗となり、不均一な流れ、すなわち流速差が生じ、流速が大の部分のろ過材がろ過槽より流出することがあるため、少なくとも3l/分以上が必要である。一方、7l/分以上では、流速が大で、各種堆積物が通水抵抗となり、より不均一な流れとなり、ろ過材が流出しやすくなることから、より好ましい制御流量は、4〜6l/分である。
【0043】
次に、制御流量で流れる好ましい設定時間は、30〜180秒である。30秒以下では、ろ過材13層表面の各種堆積物である髪の毛や垢等をほとんど剥離させることができないことから、次の再生流量時、各種堆積物が通水抵抗となり、不均一な流れとなり、ろ過材が流出しやすくなる。一方、180秒以上では、ろ過材の再生時間が長くなることと、再生使用水量が多くなるなどの課題が発生することから、より好ましい設定時間は、40〜120秒である。
【0044】
前記の一例でのろ過槽構成では、(a)条件に加え、(4)制御流量:4.5l/分、(5)設定時間:75秒が最適条件であった。
【0045】
最後の(c)の給湯水量制御部で給湯流量を再生流量後一定時間給水する再生制御手段を説明する。
【0046】
前記の(b)の少流量制御した後、一定時間給水した後、(c)の給湯水量制御部で給湯流量を再生流量後一定時間給水する再生制御手段に移行する。水回路は(b)と同じであることから説明を省略する。この時の再生流量は、ろ過槽12の大きさにともなう、ろ過材量やろ過材粒子径によって、再生流量は決定される。すなわち、再生流量制御は、一般的に開示されている(逆洗率120〜130%)とし、再生時間は、ろ過槽12の大きさにともなう、ろ過材量やろ過材粒子径によって決定されるが、家庭用浴槽水の浄化に使用する小型のろ過槽では、節水等の観点から5分以内が望ましいと考える。
【0047】
前記の一例でのろ過槽構成では、(a),(b)条件に加え、(6)制御流量:6l/分、設定時間:180秒が最適条件であった。
【0048】
(実施例2)
本発明の実施例2の再生制御手段を図4のフローチャートに基づいて説明する。
【0049】
図4において、リモコン24の再生SWを「ON」すると、各種切換弁A,B,C,Dが浄化回路に切り換えした後、循環ポンプ7が「ON」し、一定時間作動する。設定時間を経過すると、実施例1で詳述した、再生制御手段に移行、すなわち(a)循環ポンプ7を複数回短時間作動、次に(b)給湯弁部を開とし少流量制御、最後に(c)再生流量制御するものである。すなわち(a)循環ポンプ7を複数回短時間作動する前に、浴槽水の汚れ成分をろ過槽でろ過浄化することにより、浴槽水の再入浴はもちろんのこと、再生水の汚れ成分を減少することにより、再生水によるろ過材の下部が汚染されることがなく、よりろ過材の再生が確実にできる。
【0050】
好ましいろ過浄化設定時間は、5〜60分で、循環流量により設定時間は任意に設定する必要があるが、浴槽水の汚れ指数の一つである濁度を、2度以下(水道水基準の上限濁度)にする時間設定が望ましいが、上記一例のろ過槽構成では、(7)ろ過浄化設定時間:10〜30分(循環流量:8l/分が最適条件であった。
【0051】
図示はしていないが、ろ過材が浜砂のような顆粒状の場合、ろ過材を保持するろ床の配設が必要であるが、前記ろ床構成によっては、ろ床の下部に浴槽水の汚れ成分が堆積し、再生機能を著しく低下させることがあり、浴槽水をろ過浄化することにより、ろ床への目詰まりを防止し、再生機能を低下させることがなくなり、再生が十分できる。
【0052】
(実施例3)
本発明の実施例3の再生制御手段を図5のタイムチャートに基づいて説明する。
【0053】
図4において、実施例1に加え、(b)の少流量制御から、(c)の最適再生流量制御との間に、(d)として、(b)の少流量から(c)の再生流量まで徐々に流量を増加する流量制御手段を設けたもので、いっきに再生流量まで流量を増加する制御と比較し、ろ過材の衝突攪拌時間が長くなり、より水の通水が均一化されるとともに、ろ過材の巻き上げを防止し、よりろ過材の流出防止保証が可能となる。前記の一例でのろ過槽構成では、(a),(b)条件に加え、(8)制御流量:0.5l/30秒を複数回(2〜4回)が最適条件であった。
【0054】
(実施例4)
本発明の実施例4の再生制御手段を図6のフローチャートに基づいて説明する。
【0055】
図6において、実施例1の(a)の循環ポンプの複数開短時間作動時、加熱部18を非加熱制御手段としたもので、図2のフローチャートの給湯弁部5の「開」時、加熱禁止制御、たとえばガス点火禁止制御を設けることにより、ろ過材の再生制御手段の騒音を著しく軽減することができる。
【0056】
図7は、同じガス風呂給湯器を用い、(a)循環ポンプの複数開短時間作動時、(1)ガス点火禁止制御、(2)ガス点火制御したものの騒音比較をしたもので、(1)のガス点火禁止制御することにより、明らかに、騒音値が低く、本発明者らの実感音も同様に、騒音が気にならないとの評価である。
【0057】
(実施例5)
本発明の実施例5の再生制御手段の再生時間比較を図8に基づいて説明する。実施例5は、実施例1の(b),(c)の流量制御時に、加熱部18で給水を加熱制御したもので、図8において、(1)加熱制御禁止(給水温度:23℃)、(2)35℃加熱制御(当社風呂設定最低温度)、(3)42℃制御(一般的な給湯温度)、(4)52℃制御(短時間火傷限界温度)の4条件で、実施例1で詳述したろ過槽とろ過材を用い、ろ過材の再生時間を、ろ過槽の入口と出口の差圧(循環ポンプによる循環量を固定:5l/分)を浄化回路で、初期値と再生値が同差圧になる時間をそれぞれ比較したもので、明らかに、加熱制御することにより、ろ過材の再生時間が短くなっている。
【0058】
(実施例6)
本発明の実施例6の再生制御手段の再生時間比較を実施例5の図8に基づいて説明する。
【0059】
実施例6は、実施例5の(b),(c)の給湯弁部の開時に、少なくとも再生水を35℃以上に加熱制御手段を設けたもので、特に加熱部18で、給水を加熱した再生水を使用することにより、温水による表面張力が小さくなり、ろ過材層表面の各種堆積物が早く剥離できること、またろ過材層に混入している空気の追い出しが早くなること、さらにろ過材に付着した各種堆積物を再生攪拌して早く剥離できることにより、再生洗浄時間が短縮でき、かつ確実に、ろ過材を再生することができる。
【0060】
(実施例7)
実施例7は、実施例1に加え、再生制御手段を図9のフローチャートに基づき説明する。
【0061】
図10において、リモコン25の再生SWを「ON」すると、水位検知部25で浴槽水20の残り水「有,無」水位(判定水位設定)を判定し、残り水が「有」と判定すると、実施例1と同様のフローチャートで詳述したように再生制御手段を実行する。一方、残り水が「無」水位を判定すると、(a)の循環ポンプを複数回短時間作動への移行を禁止し、予め設定した(e)の給湯弁部を複数回開閉制御に移行後、次に実施例1で詳述した(b),(c)を再生制御し、再生を終了する。
【0062】
また、(a)の循環ポンプを複数回短時間作動中に、浴槽水が低下し、水位検知部25もしくは水流検知部6により、残り水が「無」水位を判定すると、循環ポンプ7の作動停止し、前記に詳述した予め設定した(e)の給湯弁部を複数回開閉制御に移行後、(b),(c)を再生制御し、再生を終了する。
【0063】
図10の説明では詳述していないが、当然(e)に移行する前に、各種切換弁A,B,C,Dは再生制御回路に切り換えるものである。
【0064】
上記により、浴槽水が無いまたは途中で浴槽水が低下しても、ろ過材の水の通路の均一化と空気の追い出しを確実に実施し、ろ過材の流出を防止して、ろ過材を再生することができる。
【0065】
(e)の給湯弁部の複数回開閉制御について説明する。
給湯弁部5「開」タイマの好ましい設定時間は、0.2〜5秒である。0.2秒以下は、給湯弁部5「開,閉」制御の限界時間、または5秒以上になると、給水水圧により再生流量が大となり、ろ過材13が巻き上げられ、ろ過槽12より流出する場合があることから、給湯弁部5「開」設定タイマを5秒以上でろ過材13の流出を防止するためには、本発明者らの検証実験(未開示)では、実施例1で詳述したように、流量Q/ろ過材層の断面積Sに対する流速(線速度:LV値)が1cm/sec以下で、かつろ過材層長さL1に対し、ろ過材表面からろ過槽の出口(再生時)までの長さL2、すなわちL2/L1の比を7以上にする必要があることから、風呂給湯器の一般的な構成形状内にろ過槽を内蔵できない大きさになってしまうことから、上記で詳述した給湯弁部5「開」タイマの好ましい設定時間は、0.2〜5秒であるが、より好ましい設定時間は、0.5〜3秒である。
【0066】
一方、給湯弁部5「閉」タイマの好ましい設定時間は、3〜20秒である。3秒以下では、給湯弁部5「開」で巻き上げられたろ過材が、自重で再度ろ過材層に沈降できずに、浮遊したままで、次の給湯弁部5「開」での流量(流速)でさらに巻き上げられ、ろ過材が流出しやすくなる。ろ過材の流出を確実に防止するためには、給湯弁部5「閉」の設定時間は、可能な限り長くした方がよいが、本発明の目的の1つである、可能な限り短い時間でろ過材の再生を終了させることを考慮すると、20秒以内が望ましいが、より好ましい設定時間は5〜12秒である。
【0067】
次に、給湯弁部5「開,閉」制御複数回の好ましい回数は、2〜15回である。1回では、ろ過材層表面の各種堆積物(髪の毛や垢等)を剥離することができないこと、またろ過材層に混入している空気を追い出すことができないこと、次に移行する(b)する少流量制御の設定時間を長時間にする必要があり、可能な限り短い時間でろ過材の再生を終了させることができなくなる。一方、ろ過材の流出を確実に防止するためには、給湯弁部5「開,閉」設定回数が多い方がよいが、可能な限り短い時間でろ過材の再生を終了させることを考慮すると15回以内が望ましいが、より好ましい設定回数は5〜10回である。一例でのろ過槽構成では、(9)給湯弁部5「開」設定時間:1.5秒、(10)「閉」設定時間:6秒、(11)「開,閉」繰り返し回数:10回が最適条件であった。
【0068】
【発明の効果】
以上のように、本発明のふろ給湯器用浄化ろ過材の再生方法は、まず循環ポンプを複数回短時間作動することによって、ろ過材を給水水圧で徐々に攪拌し、ろ過材層表面の各種堆積物(髪の毛や垢等)を徐々に剥離し、水の通水を均一化させること、またろ過材層内に混入している空気を徐々に追い出し、空気によるろ過材の巻き上げを防止し、そして少流量制御で一定時間給水することによって、ろ過材層表面の各種堆積物を完全に剥離させるとともに、加熱部や再生水回路に滞留している空気等を徐々に排出し、さらに再生流量制御で一定時間給水することによって、ろ過材表面に付着している比較的小さな堆積物を、ろ過材とろ過材を衝突攪拌させながら排出するとともに、比較的大きな各種堆積物も完全にろ過材から排出させ、ろ過材の再生と流出がなくなり、切換弁へのろ過材の噛み込みによる水漏れを防止し、さらにまたろ過材量が減少することなく、安定した浄化性能を保つことができる。
【0069】
また、循環ポンプを複数回短時間作動する前に、浴槽水をろ過浄化して、再生水とすることにより、浴槽水の再入浴ができること、さらにろ過浄化した再生水を利用することにより、ろ過材へ汚れ成分の付着が軽減され、再生を確実に実施できる。
【0070】
また、少流量制御から再生流量制御まで徐々に流量を増加させることにより、ろ過材の衝突攪拌時間が長くなり、よりろ過材の再生と流出を防止できる。
【0071】
また、給湯弁部開時、非加熱制御することにより、騒音を著しく軽減することができる。
【0072】
また、少流量制御および再生流量制御に加熱制御することにより、温水の表面張力が小さくなることにより、ろ過材表面に付着した比較的小さな堆積物の付着力を低下させ、剥離を容易にできることから、より確実にろ過材の再生と再生制御時間を著しく短縮することができる。
【0073】
また、給水および浴槽水を少なくとも35℃以上に加熱制御して、再生水とすることにより、温水による表面張力が小さくなり、ろ過材層表面の各種堆積物が早く剥離できること、またろ過材層に混入している空気の追い出しが早くできること、さらに、ろ過材に付着した各種堆積物を衝突攪拌して早く剥離できることにより、再生洗浄時間が短縮でき、かつ確実に、ろ過材を再生することができる。
【0074】
さらにまた、浴槽水の残り水を判定することにより、再生回路への強制的な空気の噛み込みによる、空気の巻き上げによる異常なろ過材の流出を防止するとともに、確実にろ過材の水の通路の均一化と空気の追い出しを実施し、ろ過材の流出を防止して、ろ過材を再生することができる。
【0075】
実施例のろ過材は、アルミナボールろ過材であるが、ガラスビーズろ過材,浜砂ろ過材などの顆粒状のろ過材には、すべて適用できる。
【0076】
他方、実施例では詳述していないが、カートリッジフィルタ、すなわち繊維性フィルタ,糸巻きフィルタ,ガラス繊維フィルタやステンレス繊維フィルタ,多孔質セラミックフィルタ等にも、本発明の浄化ろ過材の再生制御方法が有効である。顆粒状ろ過材では、ろ過材の流出が問題であったが、前記フィルタ構成では、流出するものはほとんどないが、特にろ過材を給水水圧で徐々に通水し、ろ過材層の表面に堆積している、各種堆積物(髪の毛や垢等)を徐々に剥離させることにより、水の通過を均一化させることによって、部分的に再生水が通水するのが防止できることから、本発明の再生制御にすることにより、フィルタの再生効率を著しく向上させ、前記フィルタの欠点である再生利用が困難と言われているものを、再生流量制御も合わせ、顆粒状のろ過材よりも大流量再生制御することにより、再生利用することも可能にする優れた再生制御方法である。
【0077】
また、実施例では、リモコンによる手動操作で説明したが、自動再生制御手段、たとえば風呂給湯器の戻り通路に水位センサや水位スイッチ等の排水検知により、自動再生制御する方法、さらにまた浄化運転時間を積算し、予め設定した積算時間になると、再生制御に入る制御方法等でも、本発明の再生制御方法でも当然有効であり、本発明の範囲である。
【図面の簡単な説明】
【図1】本発明のふろ給湯器用ろ過材の再生制御方法の構成図
【図2】本発明の実施例1のふろ給湯器用ろ過材の再生制御方法におけるフローチャート
【図3】同制御方法におけるタイムチャート
【図4】本発明の実施例2のふろ給湯器用ろ過材の再生制御方法におけるフローチャート
【図5】本発明の実施例3のふろ給湯器用ろ過材の再生制御方法におけるフローチャート
【図6】本発明の実施例4のふろ給湯器用ろ過材の再生制御方法におけるフローチャート
【図7】同制御方法における騒音比較図
【図8】本発明の実施例5のふろ給湯器用ろ過材の再生制御方法におけるフローチャート
【図9】本発明の実施例7のふろ給湯器用ろ過材の再生制御方法におけるフローチャート
【図10】従来のふろユニットの構成図
【符号の説明】
1 給水水温検知部
2 流量検知部
3 給湯水温検知部
4 給湯水量制御部
5 給湯弁部
6 水流検知部
7,112 循環ポンプ
8 浴槽水水温検知部
9 循環回路
10 浄化回路
11 排水回路
12,114 ろ過槽
13 ろ過材
14 切換弁A
15 切換弁B
16 切換弁C
17 切換弁D
18 加熱部
19,102 浴槽
20 浴槽水
21 風呂接続アダプタ
22 戻り通路
23 往き通路
24 リモコン
25 水位検出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filter medium regeneration control method capable of maintaining purification of a filter tank that can be externally connected to or built in a bath water heater capable of chasing hot water and bath.
[0002]
[Prior art]
As a general conventional representative technique, a bath unit disclosed in JP-A-8-38828 is shown in FIG. Reference numeral 101 indicates the overall configuration of the bath unit, 102 is a bathtub, 104 is a purifier that circulates and purifies hot water in the bathtub 102, 106 supplies hot water to the bathtub 102, not shown, or the like, or supplies water to the bathtub 102. In addition, an automatic hot water bath apparatus for pursuing hot water in the bathtub 102, the purification device 104 includes a circulation water channel 110 connected to the bathtub 102, and a discharge side from the suction side in the middle of the circulation water channel 110. A circulation pump 112, a filtration tank 114, a biological filter bed tank 116, and a sterilizer 118 are sequentially arranged.
[0003]
The filtration tank 114 is configured by filling a filter medium having a relatively small particle diameter (for example, 200 to 400 μm) such as glass beads in a container to remove (purify) relatively large suspended matters such as hair and dirt. ).
[0004]
Further, 120 is a drainage channel used for backwashing the filter tank 114 (regeneration of the filter medium), 121 to 124 are drainage drainage channels, 131 to 134 are electromagnetic three-way valves for switching the channel, 136,137. Is an electromagnetic two-way valve for drainage, and the backwash command means 162 integrates the operation time of the purification device 104 and every time the accumulated time reaches a preset reference time, the backwash command of the purification device 104 A signal is output, and the backwashing command signal is output to execute the backwashing of the purification device 104.
[0005]
In the backwashing of the filtration tank 114, the three-way valve 131 of the filtration tank 114 is switched to the drainage channel 120, and the other three-way valve 132 is switched to the drainage channel 121. The three-way valves 133 and 134 are held in a state where communication with the drainage channels 120 and 122 is blocked, and the drainage valves 136 and 137 are also held in a closed state.
[0006]
Hot water in the bathtub 102 is sucked in from the inlet of the circulation water passage 110 and pressurized and discharged by the circulation pump 112. This hot water is discharged from the drainage passage 121 through the three-way valve 132, the filtration tank 114, the three-way valve 131, and the drainage passage 120. It passes sequentially and is discharged outside. That is, hot water flows into the filtration tank 114 from the lower side to the upper side as opposed to the purification operation, whereby the internal filter medium is forcibly stirred and washed, that is, regenerated.
[0007]
[Problems to be solved by the invention]
However, in the above-described configuration and control, the general backwashing in which the hot water in the bathtub is caused to flow from the lower side to the upper side by the circulation pump, and the filter medium filled in the filter tank is forcibly stirred and washed and regenerated. Only cleaning is disclosed.
[0008]
At the same time when the hair or dirt is discharged under pressure, the filter medium (glass beads with a relatively small particle diameter, beach sand, etc.) flows out, and also flows out to the three-way valve (reference numeral 131 in FIG. 14) at the top of the filtration tank, The ball part and valve seal part of the three-way valve are damaged, resulting in poor sealing and water leakage from the drainage channel during the purification cycle, so that the hot water in the bathtub is reduced and the circulation pump runs idle, reducing reliability. In the case of automatic (a function that detects water level and automatically adds hot water), hot water is continuously supplied, and electricity, gas, and water become uneconomical, contrary to the current social background of saving resources and energy.
[0009]
Furthermore, the filter medium in the filter tank flows out to the outside, the amount of the filled filter medium gradually decreases, and problems such as significant reduction in the purification performance as the main function occur.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the first means of the present invention includes a heating unit that heats water and bathtub water to warm water, a feed water temperature detection unit that detects a feed water temperature provided in a feed water circuit, and a flow rate that detects a feed water flow rate. A detection unit, a hot water temperature detection unit for detecting a hot water temperature provided in the hot water supply circuit, a hot water amount control unit for controlling the hot water flow rate, a hot water supply valve unit for supplying hot water to the bathtub water circulation circuit, and hot water supply upstream of the hot water supply valve unit and A water flow detection unit for detecting the flow of bathtub water, a water level detection unit for detecting the water level of the bathtub water in the bathtub water circulation circuit, a circulation pump for circulating the bathtub water, and a bathtub water temperature detection unit for detecting the bathtub water temperature of the bathtub water In addition, a circuit configuration of a circulation circuit, a purification circuit, and a drain circuit is provided as a bathtub water circulation circuit, a filtration tank having a filtering material in the purification circuit, and a switching valve that switches the purification circuit and the circulation circuit downstream of the filtration tank A switching valve B that opens and closes the bathtub water circulation circuit between the circulation pump and the hot water supply valve unit, a switching valve C that switches between the purification circuit and the circulation circuit between the heating unit and the filtration tank, and a switching valve D that opens and closes the drain circuit. In each arrangement, the switching valve A, the switching valve B, the switching valve C, and the switching valve D are switched to the filter medium regeneration circuit as a filter medium regeneration means for the filtration tank. It is operated several times for a short time, and then (b) the hot water supply valve part is opened and the hot water supply flow rate control part controls the flow rate of the hot water at a low flow rate, and then water is supplied for a certain period of time, and finally (c) the hot water supply water quantity control part A regeneration control means for supplying water for a predetermined time after controlling the regeneration hot water flow rate is provided.
[0011]
According to the first means described above, by first opening and closing the circulation pump a plurality of times, the filter medium disposed in the filter tank is gradually stirred at the feed water pressure, and the hair deposited on the surface of the filter medium layer Gradually peels off the dirt and makes the passage of water uniform. If the air is further purified, minute air is mixed and deposited in the filter medium layer, and when this air is uneven and rises in large quantities, the filter medium also levitates at the same time. Prevents material from rolling up.
[0012]
Next, after uniformizing the passage of water and bleeding the air, the hot water supply valve part is opened, and the hot water supply amount control part supplies water for a certain period of time with a small flow rate control, so that the surface of the filter medium is relatively large. Various deposits are completely peeled off to make the passage of water more uniform, and the air staying in the heating unit and the drain circuit is supplied at a small flow rate for a certain period of time to prevent the filter material from being rolled up.
[0013]
Finally, after controlling the regeneration flow rate, by supplying water for a certain period of time, relatively small deposits adhering to the surface of the filter medium are regenerated while colliding and stirring the filter medium and the filter medium, and various relatively large deposits Drain things (such as hair and dirt) completely from the filtration tank. This regeneration flow rate control is generally disclosed (backwash rate of 120 to 130%), and the water supply for a certain period of time is arbitrarily determined depending on the shape of the filter tank and the amount of filter medium.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The first embodiment of the present invention includes a heating unit that heats feed water and bathtub water to warm water, a feed water temperature detection unit that detects a feed water temperature provided in a feed water circuit, a flow rate detection unit that detects a feed water flow rate, and a hot water supply circuit. A hot water temperature detector that detects hot water temperature, a hot water amount controller that controls the hot water flow rate, a hot water valve that supplies hot water to the bathtub water circulation circuit, and a water flow that detects the flow of hot water and bathtub water upstream of the hot water portion A detector, a water level detector that detects the transition of bathtub water in the bathtub water circulation circuit, a circulation pump that circulates bathtub water, a bathtub water temperature detector that detects the bathtub water temperature, and a circulation circuit as a bathtub water circulation circuit; A circuit configuration of a purification circuit and a drain circuit, a filtration tank having a filter medium in the circulation circuit, a switching valve A for switching the purification circuit and the circulation circuit downstream of the filtration tank, a circulation pump and a hot water supply valve unit, In the configuration in which a switching valve B that opens and closes the bathtub water circulation circuit, a switching valve C that switches between the purification circuit and the circulation circuit, and a switching valve D that opens and closes the drain circuit are provided between the heating unit and the filtration tank. After switching the switching valve A, the switching valve B, the switching valve C, and the switching valve D to the filter medium regeneration circuit as a means for regenerating the filter medium in the tank, first (a) the circulation pump is operated a plurality of times for a short time, (B) After opening the hot water supply valve unit and controlling the small flow rate of the hot water supply amount by the hot water supply amount control unit, water is supplied for a certain period of time, and finally (c) the hot water supply flow rate control unit regenerates the hot water flow rate, It has a regeneration control means for supplying water for a certain time.
[0015]
Then, by operating the circulation pump a plurality of times for a short time, the filter medium disposed in the filter tank is gradually agitated with the circulation water flow of the circulation pump to remove hair and dirt accumulated on the surface of the filter medium tank. It peels off gradually and makes the passage of water uniform. If the air is further purified, minute air accumulates in the filter medium layer, and when this air is uneven and rises in large quantities, the filter medium also floats at the same time. After the water is made uniform and the air is vented, the water is further supplied at a low flow rate for a certain period of time to completely peel off the relatively large deposits on the surface of the filter medium, thereby preventing the water from passing through. The filter medium is prevented from being rolled up by making it uniform and supplying water or the like remaining in the heating unit or the drain circuit for a certain amount of time with a small flow rate. After controlling the regeneration flow rate, by supplying water for a certain period of time, relatively small deposits adhering to the surface of the filter medium are regenerated and discharged while the filter medium and the filter medium are agitated and collided, and relatively various deposits ( By completely draining hair, dirt, etc.) from the filtration tank, the regeneration and outflow of the filter media are eliminated, water leakage due to biting into the switching valve D is prevented, and the amount of filter media is not reduced and stable. Purification performance can be maintained.
[0016]
The second embodiment of the present invention has a regeneration control means for purifying the bath water for a certain period of time by the purification circuit before operating the circulation pump of (a) a plurality of times for a short time.
[0017]
And before operating the circulation pump several times for a short time, it is possible to clean the bathtub water by filtering and purifying the bathtub water in the filtration tank, and to take a bath as re-tub water, This eliminates the contamination of the lower part of the filter medium by the reclaimed water, and the filter medium can be more reliably regenerated.
[0018]
In the third embodiment of the present invention, the hot water supply valve portion of (b) is opened and the hot water supply amount control unit controls the flow rate of the hot water at a small flow rate, and then water is supplied for a certain period of time, and the hot water supply amount control unit of (c) (D) has a regeneration control means for gradually increasing the flow rate from a small flow rate to a regeneration flow rate while supplying water for a certain period of time after controlling the regeneration flow rate.
[0019]
And by controlling regeneration to gradually increase the flow rate from a small flow rate to a regeneration flow rate, the collision stirring time of the filter medium becomes longer, and it is possible to prevent water from being made more uniform and the filter medium to be wound up more. Regeneration and outflow of the filter medium are prevented, water leakage due to biting into the switching valve D is prevented, and a stable purification performance can be maintained without reducing the amount of the filter medium.
[0020]
The fourth embodiment of the present invention has a regeneration control means for performing non-heating control of the heating section when the hot water supply valve section (a) is open.
[0021]
Then, when the heating unit is heated when the hot water supply valve unit is opened a plurality of times, for example, when the heating source is gas or kerosene, an ignition sound and a fan sound that supplies ignition combustion air become noise. In addition, when the heating unit is electricity, the heating relay switching sound becomes the same noise as described above. Therefore, the main purpose of opening and closing the hot water supply valve unit a plurality of times is, as described in detail above, various deposits on the surface of the filter medium layer. It peels off objects and makes the passage of water uniform, and sufficient performance can be obtained even with non-heating control.
[0022]
In the fifth embodiment of the present invention, when the hot water supply valve portions (b), (c) and (d) are open, there is a regeneration control means for controlling the heating of the heating portion.
[0023]
And, when the hot water supply valve is open, the heating part is heated and hot water is supplied, so that relatively small deposits adhering to the filter medium surface can be easily peeled off. Can be significantly shortened.
[0024]
The sixth embodiment of the present invention has a regeneration control means for controlling the heating to at least 35 ° C. or more by the heating unit by the hot water / hot water detection unit.
[0025]
In addition, heating the reclaimed water temperature of the filter medium to at least 35 ° C or more reduces the surface tension due to the hot water, and various deposits on the surface of the filter medium layer can be peeled off quickly, and is mixed into the filter medium layer. The expelling of air is accelerated, and the various deposits adhering to the filter medium can be regenerated and stirred to peel off quickly, so that the regeneration cleaning time can be shortened and the filter medium can be reliably regenerated.
[0026]
In the seventh embodiment of the present invention, when either the water level detection unit or the water flow detection unit determines that there is no bath water, (a) the operation of the circulation pump is stopped a plurality of times for a short time, and (e) hot water supply The valve is moved to open / close operation multiple times, and the flow rate is gradually increased from the low flow rate control in (b), the regenerative flow rate control in (c), or from the low flow rate to the regenerative flow rate in (d), and the regenerative flow rate in (c). It has a reproduction control means for controlling.
[0027]
Further, when there is no or little remaining water in the bathtub water, it becomes impossible to make the water passage of the filter medium uniform and expel air, which is the most important in regeneration control, resulting in a problem that the filter medium flows out. Therefore, either the water level detection unit or the water flow detection unit determines the amount of water in the bathtub, and the new hot water supply valve unit is moved to open and close multiple times to ensure uniform passage of the filter medium water and expelling air. In this case, the filter medium can be sufficiently regenerated by preventing the filter medium from flowing out.
[0028]
【Example】
Embodiments of the present invention will be described with reference to the drawings.
[0029]
Example 1
FIG. 1 is a schematic configuration of a bath water heater, FIG. 2 is a schematic flowchart of filter medium regeneration control, and FIG. 3 is a schematic time chart of regeneration control.
[0030]
In FIG. 1, water passes through a hot water supply temperature detection unit 1 including a water temperature sensor and a flow rate detection unit 2 including a water amount sensor from a water inlet, and heat is absorbed by a heating unit 18 including a heat exchanger and a combustion burner. The water is discharged from the hot water outlet (unsigned) through the control unit 4 and the hot water temperature detection unit 3 including the hot water sensor.
[0031]
The bathtub water 20 includes a bath connection adapter 21 attached to the bathtub 19 by the circulation pump 7, a return passage 22, a bathtub water temperature detection unit 8 composed of a bath sensor, a water level detection unit 25 composed of a water level sensor, the circulation pump 7, two-way Switching valve B15 consisting of a valve, water flow detection part 6 consisting of a water flow switch, heating part 18, switching valve C16 consisting of a three-way valve, switching valve A14 consisting of a three-way valve, circulation in the bathtub water circulation circuit of the bath connection adapter 21 Cycle through the circuit. The bathtub water 20 includes a bath connection adapter 21 attached to the bathtub 19 by the circulation pump 7, a return passage 22, a bathtub water temperature detector 8 including a bath sensor, a circulation pump 7, a switching valve B 15 including a two-way valve, Water flow detection unit 6 comprising a switch, heating unit 18, switching valve C16 comprising a three-way valve, filter tank 12 provided with a filter medium 13 (alumina ball: particle diameter of 0.3 to 0.5 mm), three-way It circulates in the purification circuit of the bathtub water circulation circuit of the switching valve A14 which consists of a valve, the going-out passage 23, and the bath connection adapter 21.
[0032]
On the other hand, when the hot water supply to the bathtub 19 is opened by the hot water supply valve part 5 consisting of a water pouring valve, the water passes through the flow rate detection part 2 consisting of a water temperature sensor 1 and a water quantity sensor from the water inlet, Heat is absorbed by a heating source 18 including a heat exchanger and a combustion burner, and passes through a hot water supply temperature control unit 4, a hot water supply temperature detection unit 3 including a hot water supply sensor 3, and a hot water supply valve unit 5. That is, when the switching valve B15 composed of a two-way valve is controlled to open, it is attached to the bathtub 19 as a two-circuit hot water supply through the circulation pump 7, the return passage 22 and the heating unit 18, the switching valve C, the circulation circuit 9, and the forward passage. Hot water is poured from the provided bath connection adapter 21. On the other hand, when the switching valve B15 composed of a two-way valve is closed and controlled, hot water is supplied from the bath connection adapter 21 attached to the bathtub 19 through the heating section 18, the switching valve C16, the circulation circuit 9, and the outgoing passage as one-circuit hot water supply. It is stuck. In the present invention, although not described in detail, the sign is omitted particularly in the case of full-automatic operation. However, the water level sensor for detecting the hot water level (the amount of hot water) is provided between the return passage 22 and the circulation pump 7 so that the bath water 20 is used when hot water is added accurately or automatically.
[0033]
On the other hand, when the filter medium 13 disposed in the filter tank 12 is regenerated (also referred to as backwashing cleaning), two regeneration controls can be performed. First, the short-time operation regeneration control by the circulation pump is performed by switching the switching valve B15, switching the switching valve C16 to the circulation circuit, switching the switching valve A14 to the purification circuit 10, and switching the switching valve D17 to open. When activated, the water passes through the purification circuit 10 from the lower side to the upper side of the filter medium 13 disposed in the heating unit 18, the circulation circuit 9, and the filtration tank 12, and is passed through the drain circuit 11. After a short time setting operation by the circulation pump, the circulation pump 7 is stopped, the next hot water supply valve portion is opened, and the hot water supply valve portion regeneration control for controlling the low flow rate and the regenerative flow rate only closes the switching valve B15. When the hot water supply valve unit 5 is opened in the circulation circuit 9, the purification circuit 10, and the drain circuit 11 without switching the switching valve C16, the switching valve A14, and the switching valve D17 as they are, the hot water supply amount control unit 4 first starts to reduce the flow rate. When the circulation pump 7 is operated by supplying water for a certain period of time by control and finally supplying water for a certain period of time at the regeneration flow rate, the filter medium 13 disposed in the water flow detection unit 6, the heating unit 18, the circulation circuit 9, and the filter tank 12. From the lower side to the upper side, the water passes through the purification circuit 10 and passes through the drain circuit 11.
[0034]
2 and 3 show a flowchart and a time chart of the reproduction control means of the first embodiment of the present invention, which will be described by manual operation by the remote controller 24. FIG. When the regeneration SW of the remote control 24 is turned “ON”, various switching valves (A, B, C, D) are switched. When the regeneration circuit is reached, the circulation pump 7 is first turned “ON” and at the same time the circulation pump 7 is turned “ON”. “Timer” and “ON, OFF” activation frequency determination are activated. Next, when the set time of the circulation pump 7 “ON” timer is reached, the circulation pump 7 is turned “OFF”, and at the same time, the circulation pump 7 “OFF” timer is activated, and the operation is repeated until the above-mentioned “ON, OFF” operation count determination.
[0035]
The above-mentioned operation is the one in which the circulating pump of claim (a) is operated several times in a short time, and is the most important regeneration control means especially for preventing the outflow of the filter medium. Detailed description.
[0036]
A preferred setting time for the circulating pump 7 "ON" timer is 1 to 5 seconds. If it is less than 1 second, the rotation stability limit time of the circulation pump 7 “ON” control, and if it is 5 seconds or more, the regenerative flow rate increases due to the pipe length and the pipe diameter, and the filter medium 13 is wound up and flows out from the filter tank 12. Therefore, in order for the filter medium to flow out in 5 seconds or more with the pipe length (3 m) of the general return passage 22 and the pipe diameter 12A (inner diameter φ11.5), In the verification experiment (undisclosed), the flow rate (linear velocity: LV value) is 1 cm / sec, and the length from the filter medium surface to the outlet of the filter tank (regeneration) with respect to the filter medium layer diameter length L1. Since it is necessary to make the ratio L2, that is, the ratio of L2 / L1, 7 or more, the size of the bath water heater becomes a size that does not have a built-in filter tank. The preferred setting time of the circulation pump 7 “ON” is 1 to 5 seconds. There, but more preferable set time is 1.5 to 3 seconds.
[0037]
On the other hand, the preferable setting time of the circulation pump 7 “OFF” timer is 3 to 20 seconds. In 3 seconds or less, the rolled up filter medium 13 cannot be settled down to the filter medium layer again by its own weight, and is further wound up at the flow rate (flow velocity) at the next circulation pump 7 “ON” while floating, The filter medium easily flows out. In order to reliably prevent the outflow of the filter medium, the set time of the circulation pump 7 “OFF” is preferably as long as possible, but it is one of the objects of the present invention, and the filtration is performed in the shortest possible time. In consideration of terminating the regeneration of the material, it is preferably within 20 seconds, but a more preferable setting time is 5 to 12 seconds.
[0038]
Next, the preferable number of times of circulation pump 7 “ON, OFF” control multiple times is 2 to 15 times. It is not possible to peel off various deposits (hair, dirt, etc.) on the surface of the filter medium layer at one time, and it is not possible to expel air mixed in the filter medium layer. It is necessary to lengthen the low flow rate control time for opening the valve portion, and the regeneration of the filter medium cannot be completed in as short a time as possible. On the other hand, in order to reliably prevent the outflow of the filter medium, it is better that the circulating pump 7 “ON, OFF” is set more frequently, but considering that the regeneration of the filter medium is finished in as short a time as possible, Although 15 times or less is desirable, a more preferable setting number is 5 to 10 times.
[0039]
Although it is an example, when the size of the filtration tank 12 is an inner diameter of 100 mm, a height of 250 mm, a filter medium diameter of 0.3 to 0.5 mm, and a filter medium height of 60 mm, (1) Circulation pump “ON” setting time: 2 Second, (2) “OFF” set time: 7 seconds, (3) “ON, OFF” repeat count: 8 times were the optimum conditions.
[0040]
Next, a description will be given of a regeneration control means for supplying water for a certain period of time after the hot water supply valve portion of (b) in the claims is set to “open” and the hot water flow rate control portion controls the flow rate of the hot water at a low flow rate.
[0041]
After the above-described circulation pump (a) is operated “ON, OFF” a plurality of times for a short time, the hot water supply valve part (b) is set to “open”, and the hot water supply amount control part is used to control the small flow rate of the supply water. Then, the process shifts to a regeneration control means for supplying water for a certain time. When the hot water supply valve unit 5 is set to “open”, the flow rate preset by the hot water supply amount control unit 4 is controlled, and water begins to flow. The water passes through the heating unit 18, the switching valve C16, the circulation circuit 9, and the switching valve A14, enters from the lower side of the filtration tank 12, and while the filter medium 13 is slightly regenerated and stirred (floating), Various deposits flow while gradually peeling off hair, dirt, etc., and various deposits flow out from the outlet of the purifier 12 and flow into the drain circuit 11 connected to the switching valve D17.
[0042]
A preferable control flow rate in the hot water supply amount control unit 4 at this time is 3 to 7 l / min. At 3 l / min or less, hair, dirt, etc., which are various deposits on the surface of the filter medium 13 layer, can hardly be peeled off. In this case, various deposits become resistance to water flow, non-uniform flow, that is, flow rate difference occurs, and most of the filter medium may flow out of the filter tank, so at least 3 l / min or more is necessary. . On the other hand, when the flow rate is 7 l / min or more, the flow rate is large, various sediments become resistance to water flow, the flow becomes more uneven, and the filter medium tends to flow out. Therefore, a more preferable control flow rate is 4 to 6 l / min. It is.
[0043]
Next, a preferable set time for flowing at the control flow rate is 30 to 180 seconds. In 30 seconds or less, various deposits on the surface of the filter medium 13 layer, such as hair and dirt, can hardly be peeled off. At the next regeneration flow, the various deposits become resistance to water flow, resulting in uneven flow. , The filter medium is likely to flow out. On the other hand, at 180 seconds or more, problems such as an increase in the regeneration time of the filter medium and an increase in the amount of water used for regeneration occur. Therefore, a more preferable setting time is 40 to 120 seconds.
[0044]
In the filter tank configuration in the above example, (4) control flow rate: 4.5 l / min and (5) set time: 75 seconds were the optimum conditions in addition to (a) conditions.
[0045]
The regeneration control means for supplying the hot water flow rate for a certain period of time after the regeneration flow rate in the last (c) hot water supply amount control unit will be described.
[0046]
After the small flow rate control (b) is performed, water supply is performed for a certain period of time, and then the hot water supply amount control unit (c) shifts to a regeneration control means for supplying the hot water supply flow rate for a certain period of time after the regeneration flow rate. Since the water circuit is the same as (b), description thereof is omitted. The regeneration flow rate at this time is determined by the amount of the filter medium and the particle diameter of the filter medium according to the size of the filter tank 12. That is, the regeneration flow rate control is generally disclosed (backwash rate 120 to 130%), and the regeneration time is determined by the amount of filter medium and the particle diameter of the filter medium according to the size of the filter tank 12. However, in the case of a small filtration tank used for purification of domestic bathtub water, within 5 minutes is desirable from the viewpoint of saving water.
[0047]
In the filter tank configuration in the above example, in addition to the conditions (a) and (b), (6) control flow rate: 6 l / min and set time: 180 seconds were the optimum conditions.
[0048]
(Example 2)
The reproduction control means of Embodiment 2 of the present invention will be described based on the flowchart of FIG.
[0049]
In FIG. 4, when the regeneration SW of the remote controller 24 is “ON”, the various switching valves A, B, C, D are switched to the purification circuit, and then the circulation pump 7 is “ON” and operates for a certain time. When the set time elapses, the process shifts to the regeneration control means described in detail in the first embodiment, that is, (a) the circulation pump 7 is operated a plurality of times for a short time, then (b) the hot water supply valve is opened and the small flow control is performed. (C) The regeneration flow rate is controlled. That is, (a) Before the circulation pump 7 is operated a plurality of times for a short time, the dirt component of the bath water is filtered and purified in the filter tank, so that the bath water is re-bathed and the dirt component of the reclaimed water is reduced. Thus, the lower part of the filter medium is not contaminated by the reclaimed water, and the filter medium can be more reliably regenerated.
[0050]
The preferred filtration and purification setting time is 5 to 60 minutes, and it is necessary to set the setting time arbitrarily according to the circulation flow rate. However, the turbidity, which is one of the soil index of bath water, is 2 degrees or less (on the basis of tap water standards). Although it is desirable to set the time to make the upper limit turbidity, in the above-described example of the filtration tank configuration, (7) Filtration and purification setting time: 10 to 30 minutes (circulation flow rate: 8 l / min) was the optimum condition.
[0051]
Although not shown, when the filter medium is granular like beach sand, it is necessary to install a filter bed to hold the filter medium. Depending on the filter bed configuration, the bath water may be placed at the bottom of the filter bed. Dirt components may accumulate and the regeneration function may be significantly reduced. By filtering and purifying the bath water, clogging of the filter bed is prevented, the regeneration function is not degraded, and regeneration is sufficient.
[0052]
(Example 3)
The reproduction control means of Embodiment 3 of the present invention will be described based on the time chart of FIG.
[0053]
In FIG. 4, in addition to the first embodiment, between the small flow rate control of (b) and the optimal regeneration flow rate control of (c), as (d), the low flow rate of (b) is changed to the regenerative flow rate of (c). Compared with the control to increase the flow rate to the regenerative flow rate at the same time, the collision stirring time of the filter media becomes longer and the water flow becomes more uniform. The filter material can be prevented from being rolled up, and the filter material can be prevented from flowing out more reliably. In the filter tank configuration in the above example, in addition to the conditions (a) and (b), (8) the control flow rate: 0.5 l / 30 seconds multiple times (2 to 4 times) was the optimum condition.
[0054]
Example 4
The reproduction control means of Embodiment 4 of the present invention will be described based on the flowchart of FIG.
[0055]
In FIG. 6, the heating unit 18 is a non-heating control means when the circulating pump of Example 1 (a) is operated for a plurality of short periods of time, and when the hot water supply valve unit 5 of the flowchart of FIG. By providing the heating prohibition control, for example, the gas ignition prohibition control, the noise of the filter medium regeneration control means can be remarkably reduced.
[0056]
FIG. 7 shows a comparison of noises of (1) gas ignition prohibition control and (2) gas ignition control when (a) the circulation pump is operated for a plurality of short periods of time using the same gas bath water heater. ) Gas ignition prohibition control is obviously an evaluation that the noise value is low and that the actual feeling sound of the present inventors is also not concerned about the noise.
[0057]
(Example 5)
A comparison of reproduction times of the reproduction control means according to the fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, the feed water is heated and controlled by the heating unit 18 during the flow rate control of (b) and (c) in the first embodiment. In FIG. 8, (1) heating control is prohibited (feed water temperature: 23 ° C.). , (2) 35 ° C heating control (our bath setting minimum temperature), (3) 42 ° C control (general hot water supply temperature), (4) 52 ° C control (short-term burn limit temperature) Using the filter tank and filter medium detailed in 1 above, the regeneration time of the filter medium, the differential pressure between the inlet and outlet of the filter tank (fixed circulation rate by circulation pump: 5 l / min) in the purification circuit, The time when the regeneration value becomes the same differential pressure is compared. Obviously, the regeneration time of the filter medium is shortened by controlling the heating.
[0058]
(Example 6)
A reproduction time comparison of the reproduction control means according to the sixth embodiment of the present invention will be described with reference to FIG.
[0059]
In Example 6, when the hot water supply valve part of Example 5 (b) and (c) was opened, heating control means was provided to at least reclaimed water at 35 ° C. or higher. In particular, the heating part 18 heated the feed water. By using reclaimed water, the surface tension due to warm water is reduced, and various deposits on the surface of the filter medium layer can be peeled off quickly, and the air mixed in the filter medium layer can be expelled more quickly and adhere to the filter medium. By regenerating and stirring the various deposits that have been regenerated and quickly separated, the regeneration cleaning time can be shortened and the filter medium can be regenerated reliably.
[0060]
(Example 7)
In the seventh embodiment, in addition to the first embodiment, the reproduction control means will be described based on the flowchart of FIG.
[0061]
In FIG. 10, when the regeneration SW of the remote controller 25 is “ON”, the water level detection unit 25 determines the remaining water “presence / absence” water level (determination water level setting) of the bathtub water 20 and determines that the remaining water is “present”. The reproduction control means is executed as detailed in the flowchart similar to the first embodiment. On the other hand, when the remaining water is determined to be “no” water level, the circulation pump of (a) is prohibited from being switched to short-time operation a plurality of times, and the preset hot water supply valve portion of (e) is shifted to the opening and closing control a plurality of times. Next, the reproduction control of (b) and (c) detailed in the first embodiment is performed, and the reproduction is terminated.
[0062]
In addition, when the water in the bathtub drops and the remaining water level is determined to be “no” by the water level detection unit 25 or the water flow detection unit 6 during the short time operation of the circulation pump of (a) a plurality of times, the operation of the circulation pump 7 After stopping and shifting the preset hot water supply valve part (e) described above in detail to open / close control a plurality of times, the regeneration control of (b) and (c) is performed, and the regeneration is terminated.
[0063]
Although not described in detail in the description of FIG. 10, naturally, before switching to (e), the various switching valves A, B, C, and D are switched to the regeneration control circuit.
[0064]
By the above, even if there is no bathtub water or the bathtub water drops in the middle, the filter medium water passage is made uniform and the air expelled reliably, preventing the filter medium from flowing out and regenerating the filter medium can do.
[0065]
The multiple opening / closing control of the hot water supply valve part in (e) will be described.
A preferable setting time of the hot water supply valve unit 5 “open” timer is 0.2 to 5 seconds. When 0.2 seconds or less is reached, the limit time of the hot water supply valve unit 5 “open / close” control, or when 5 seconds or more is reached, the regeneration flow rate becomes large due to the feed water pressure, and the filter medium 13 is wound up and flows out of the filtration tank 12. Therefore, in order to prevent the filtering medium 13 from flowing out in 5 seconds or more in the hot water supply valve unit 5 “open” setting timer, the verification experiment (not disclosed) by the present inventors details in Example 1. As described above, the flow rate Q / flow rate (linear velocity: LV value) with respect to the cross-sectional area S of the filter medium layer is 1 cm / sec or less and the filter medium layer length L1 from the filter medium surface to the outlet of the filter tank ( Since the length L2 (at the time of regeneration), that is, the ratio of L2 / L1 needs to be 7 or more, the size of the bath water heater cannot be built in a general configuration shape. The preferable setting time of the hot water valve part 5 “open” timer detailed above , It is a 0.2 to 5 seconds, and more preferably set time is 0.5 to 3 seconds.
[0066]
On the other hand, the preferable setting time of the hot water supply valve unit 5 “closed” timer is 3 to 20 seconds. In 3 seconds or less, the flow rate at the next hot water supply valve unit 5 “open” is kept floating because the filter medium wound up by the hot water supply valve unit 5 “open” cannot settle again in the filter medium layer by its own weight ( The flow rate is further increased, and the filter medium easily flows out. In order to surely prevent the outflow of the filter medium, the set time of the hot water supply valve section 5 “closed” should be as long as possible, but it is one of the objects of the present invention, as short as possible. In consideration of terminating the regeneration of the filter medium, the time is preferably within 20 seconds, but a more preferable setting time is 5 to 12 seconds.
[0067]
Next, the preferable number of times of the hot water supply valve unit 5 “open / close” control multiple times is 2 to 15 times. At one time, various deposits (hair, dirt, etc.) on the surface of the filter medium layer cannot be peeled off, the air mixed in the filter medium layer cannot be expelled, and the next transition is made (b). It is necessary to set a long time for the small flow rate control to be performed, and the regeneration of the filter medium cannot be completed in as short a time as possible. On the other hand, in order to surely prevent the outflow of the filter medium, it is better that the hot water supply valve unit 5 “open / close” is set more frequently, but considering that the regeneration of the filter medium is completed in as short a time as possible. Although 15 times or less is desirable, the more preferable setting number is 5 to 10 times. In one example of the filtration tank configuration, (9) hot water supply valve section 5 “open” set time: 1.5 seconds, (10) “close” set time: 6 seconds, (11) “open, close” repeat count: 10 Times was the optimal condition.
[0068]
【The invention's effect】
As described above, the method of regenerating the purification filter medium for a hot water heater according to the present invention is to first stir the filtration medium gradually with the feed water pressure by operating the circulation pump a plurality of times for a short time, and thereby various deposits on the surface of the filter medium layer. Gradually peel off objects (hair, dirt, etc.), make water flow uniform, gradually expel air mixed in the filter media layer, prevent the filter media from being rolled up by air, and By supplying water for a certain period of time with a small flow rate control, various deposits on the surface of the filter medium layer are completely peeled off, and the air staying in the heating section and the reclaimed water circuit is gradually discharged, and further, the regenerative flow rate control makes it constant. By supplying water for a long time, relatively small deposits adhering to the surface of the filter medium are discharged while colliding and stirring the filter medium and the filter medium, and various relatively large deposits are completely discharged from the filter medium, Filtration There is no regeneration of the outflow, to prevent water leakage by biting of filtration material into switching valve, without further or amount filtration material is reduced, it is possible to maintain a stable cleaning performance.
[0069]
Moreover, before the circulation pump is operated several times for a short time, the bath water can be filtered and purified to be reclaimed water, so that the bath water can be re-entered, and further, the filtered water can be used to filter media. Adhesion of dirt components is reduced, and regeneration can be performed reliably.
[0070]
Moreover, by gradually increasing the flow rate from the low flow rate control to the regeneration flow rate control, the collision stirring time of the filter medium becomes longer, and regeneration and outflow of the filter medium can be further prevented.
[0071]
Moreover, noise can be remarkably reduced by non-heating control when the hot water supply valve is open.
[0072]
In addition, by controlling the heating to low flow control and regeneration flow control, the surface tension of hot water is reduced, so that the adhesion of relatively small deposits attached to the surface of the filter medium can be reduced and peeling can be facilitated. Thus, it is possible to remarkably shorten the regeneration time and regeneration control time of the filter medium more reliably.
[0073]
In addition, heating water and bath water are heated to at least 35 ° C. and used as reclaimed water, so that the surface tension due to warm water is reduced, and various deposits on the surface of the filter medium layer can be peeled off quickly, and mixed into the filter medium layer. In addition, since the air that has been expelled can be expelled quickly, and the various deposits adhering to the filter medium can be quickly agitated and peeled off, the regeneration cleaning time can be shortened and the filter medium can be reliably regenerated.
[0074]
Furthermore, by determining the remaining water in the bath water, it is possible to prevent abnormal filter medium from flowing out due to air hoisting due to forced air entrainment into the regeneration circuit, and to reliably pass the water in the filter medium. The filter medium can be regenerated by preventing the filter medium from flowing out by homogenizing and purging the air.
[0075]
Although the filter medium of an Example is an alumina ball filter medium, all are applicable to granular filter media, such as a glass bead filter medium and a beach sand filter medium.
[0076]
On the other hand, although not described in detail in the embodiments, the purification filter medium regeneration control method of the present invention is also applied to cartridge filters, that is, fiber filters, thread wound filters, glass fiber filters, stainless fiber filters, porous ceramic filters, and the like. It is valid. In the granular filter medium, the outflow of the filter medium was a problem, but in the above filter configuration, there was almost no outflow, but in particular, the filter medium was gradually passed at the feed water pressure and deposited on the surface of the filter medium layer. Since the various water deposits (hair, dirt, etc.) are gradually peeled off to make the passage of water uniform, it is possible to prevent the reclaimed water from partially passing through. Therefore, the regeneration efficiency of the filter is remarkably improved, and the regeneration of the filter, which is said to be difficult to recycle, is combined with the regeneration flow rate control, and the regeneration rate control is larger than the granular filter medium. Therefore, it is an excellent reproduction control method that enables reproduction.
[0077]
In the embodiment, the manual operation with the remote controller has been described. However, the automatic regeneration control means, for example, the method of performing the automatic regeneration control by detecting the drainage of the water level sensor or the water level switch in the return passage of the bath water heater, and the purification operation time. When the accumulated time reaches a preset integration time, it is natural that either the control method for entering the regeneration control or the regeneration control method of the present invention is effective and within the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a block diagram of a regeneration control method for a filter for a hot water heater according to the present invention.
FIG. 2 is a flowchart of a regeneration control method for a filter for a hot water heater according to a first embodiment of the present invention.
FIG. 3 is a time chart in the same control method.
FIG. 4 is a flowchart of a regeneration control method for a filter for a hot water heater according to a second embodiment of the present invention.
FIG. 5 is a flowchart of a regeneration control method for a filter for a hot water heater according to a third embodiment of the present invention.
FIG. 6 is a flowchart of a regeneration control method for a filter for a hot water heater according to a fourth embodiment of the present invention.
FIG. 7 is a noise comparison diagram in the control method.
FIG. 8 is a flowchart of a regeneration control method for a filter for a hot water heater according to a fifth embodiment of the present invention.
FIG. 9 is a flowchart of a regeneration control method for a filter for a hot water heater according to a seventh embodiment of the present invention.
FIG. 10 is a configuration diagram of a conventional bath unit.
[Explanation of symbols]
1 Feed water temperature detector
2 Flow rate detector
3 Hot water temperature detector
4 Hot water supply volume control unit
5 Hot water supply valve
6 Water flow detector
7,112 Circulation pump
8 Bath water temperature detector
9 Circulation circuit
10 Purification circuit
11 Drain circuit
12,114 Filtration tank
13 Filter media
14 Switching valve A
15 Switching valve B
16 Switching valve C
17 Switching valve D
18 Heating unit
19,102 Bathtub
20 Bathtub water
21 Bath connection adapter
22 Return passage
23 Outbound passage
24 remote control
25 Water level detector

Claims (7)

給水および浴槽水を温水に加熱する加熱部と、給水回路に設けられ給水温度を検知する給水水温検知部および給水流量を検知する流量検知部と、給湯回路に設けられ温水温度を検知する給湯水温検知部および給湯流量を制御する給湯水量制御部と、浴槽水循環回路に給湯する給湯弁部および前記給湯弁部の上流に給湯水および浴槽水の流れを検知する水流検知部と、前記浴槽水循環回路に浴槽水の水位を検知する水位検知部、浴槽水を循環する循環ポンプおよび浴槽水の浴槽水温度を検知する浴槽水水温検知部と、浴槽水循環回路として循環回路,浄化回路,排水回路の回路構成を設け、浄化回路にろ過材を有するろ過槽と、ろ過槽の下流側に浄化回路と循環回路を切り換える切換弁A、循環ポンプと給湯弁部との間に浴槽水循環回路を開閉する切換弁B、加熱部とろ過槽との間に浄化回路と循環回路に切り換える切換弁C、排水回路を開閉する切換弁Dを各々配設した構成において、前記ろ過槽のろ過材の再生手段として、切換弁A,切換弁B,切換弁C,切換弁Dをろ過材再生回路に切り換えした後、(a)循環ポンプを複数回短時間作動し、次に(b)給湯弁部を開とするとともに、給湯水量制御部で給水流量を少流量制御した後、一定時間給水し、最後に(c)給湯水量制御部で給湯流量を再生流量制御した後、一定時間給水してなるふろ給湯器用ろ過材の再生制御方法。A heating unit that heats water and bathtub water to hot water, a feed water temperature detection unit that detects the feed water temperature provided in the feed water circuit, a flow rate detection unit that detects the feed water flow rate, and a hot water temperature that detects the hot water temperature provided in the hot water circuit A detection unit and a hot water supply amount control unit for controlling the hot water flow rate, a hot water supply valve unit for supplying hot water to the bathtub water circulation circuit, a water flow detection unit for detecting the flow of hot water and bathtub water upstream of the hot water valve unit, and the bathtub water circulation circuit The water level detection unit that detects the water level of the bathtub water, the circulation pump that circulates the bathtub water, the bathtub water temperature detection unit that detects the bathtub water temperature, and the circuit of the circulation circuit, purification circuit, and drain circuit as the bathtub water circulation circuit A filter tank having a filter medium in the purification circuit, a switching valve A for switching the purification circuit and the circulation circuit downstream of the filtration tank, and a bathtub water circulation circuit between the circulation pump and the hot water supply valve unit. Switching valve B, switching valve C for switching between the purification circuit and the circulation circuit, and switching valve D for opening and closing the drain circuit between the heating section and the filtration tank, respectively, After switching the switching valve A, the switching valve B, the switching valve C, and the switching valve D to the filter medium regeneration circuit, (a) the circulation pump is operated a plurality of times for a short time, and then (b) the hot water supply valve portion is opened. In addition, the hot water supply amount control unit controls the water supply flow rate to a small amount, and then supplies water for a certain period of time. Finally, (c) the hot water supply water amount control unit regenerates the hot water supply flow rate and then supplies the water for a certain time. A method for controlling the regeneration of filter media for ware. (a)循環ポンプを複数回短時間作動する前に、浄化回路で浴槽水を一定時間浄化してなる請求項1記載のふろ給湯器用ろ過材の再生制御方法。(A) The regeneration control method for a filter for hot water heaters according to claim 1, wherein the bath water is purified by a purification circuit for a certain period of time before the circulation pump is operated a plurality of times for a short time. (b)の給湯弁部を開とするとともに給湯水量制御部で給水流量を少流量制御した後、一定時間給水し、(c)の給湯水量制御部で給湯流量を再生流量制御した後、一定時間給水する間に、(d)として、少流量から再生流量まで徐々に流量を増加してなる請求項1記載のふろ給湯器用ろ過材の再生制御方法。(B) The hot water supply valve part is opened and the hot water supply amount control unit controls the flow rate of the hot water at a low flow rate, then supplies water for a certain period of time, and the hot water supply water amount control unit of (c) controls the regenerative flow rate of the hot water supply. The method for controlling regeneration of a filter for hot water heaters according to claim 1, wherein the flow rate is gradually increased from a small flow rate to a regeneration flow rate as (d) during the time of water supply. (a)の給湯弁部が開の場合、加熱源を非加熱制御してなる請求項1または2記載のふろ給湯器用ろ過材の再生制御方法。The regeneration control method for a filter for hot water heaters according to claim 1 or 2, wherein when the hot water supply valve portion of (a) is open, the heating source is controlled to be non-heated. (b)、(c)および(d)の給湯弁部が開の場合、加熱部を加熱制御してなる請求項1または3記載のふろ給湯器用ろ過材の再生制御方法。The regeneration control method for a filter for hot water heaters according to claim 1 or 3, wherein when the hot water supply valve portion of (b), (c) and (d) is open, the heating portion is controlled to be heated. 給湯温水検知部により、加熱部で少なくとも35℃以上に加熱制御してなる請求項5記載のふろ給湯器用ろ過材の再生制御方法。The regeneration control method for a filter for a hot water heater according to claim 5, wherein the hot water hot water detection unit controls the heating to at least 35 ° C or more by the heating unit. 水位検知部もしくは水流検知部のどちらかで、浴槽水が無いと判定した場合は、(a)循環ポンプの複数回短時間作動を停止し、(e)給湯弁部を複数回開閉操作に移行し、(b)の少流量制御、(c)の再生流量制御または、(b)の少流量制御、(d)の少流量から再生流量まで徐々に流量を増加、(c)の再生流量制御の再生制御してなる請求項1または3記載のふろ給湯器用ろ過材の再生制御方法。If either the water level detection unit or the water flow detection unit determines that there is no bathtub water, (a) stop the circulation pump multiple times for a short time, and (e) switch the hot water supply valve unit to open and close multiple times. (B) Small flow rate control, (c) Regenerative flow rate control, (b) Small flow rate control, (d) Low flow rate to gradually increase the regenerative flow rate, (c) Regenerative flow rate control The regeneration control method for a filter for a hot water heater according to claim 1 or 3, wherein the regeneration control is performed.
JP29826998A 1998-10-20 1998-10-20 Regeneration control method of filter material for bath water heater Expired - Lifetime JP3956509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29826998A JP3956509B2 (en) 1998-10-20 1998-10-20 Regeneration control method of filter material for bath water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29826998A JP3956509B2 (en) 1998-10-20 1998-10-20 Regeneration control method of filter material for bath water heater

Publications (2)

Publication Number Publication Date
JP2000121150A JP2000121150A (en) 2000-04-28
JP3956509B2 true JP3956509B2 (en) 2007-08-08

Family

ID=17857459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29826998A Expired - Lifetime JP3956509B2 (en) 1998-10-20 1998-10-20 Regeneration control method of filter material for bath water heater

Country Status (1)

Country Link
JP (1) JP3956509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026842B2 (en) * 2012-10-12 2016-11-16 水ing株式会社 Cleaning method for water treatment equipment

Also Published As

Publication number Publication date
JP2000121150A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
JP3956509B2 (en) Regeneration control method of filter material for bath water heater
JP3924953B2 (en) Regeneration control method of filter material for bath water heater
JPH0664787U (en) Directly connected water purifier
JP2713176B2 (en) Bath unit
JP2001104724A (en) Hot-water supply bath apparatus with cleaning function
JP3924957B2 (en) Purification device control method
JP2000024417A (en) Water cleaning device
JP3837211B2 (en) Bathtub cleaning equipment
JP2754129B2 (en) Instant water heater
JP3321833B2 (en) Circulation purification device for bathtub
JPH08323118A (en) Water purifier
JP2591431Y2 (en) Circulation purification device for bathtub
JP2002022263A (en) Bath device and method for controlling pump
JPH05212392A (en) Circulating clarification apparatus for bath tub
JP3924958B2 (en) Purification device
JP2606230Y2 (en) Bathtub water purification equipment
JP2000279720A (en) Hot water supply type bathtub device with water cleaning function
JP2000146287A (en) Hot water supply apparatus for bath
JP2000171094A (en) Circulator/purifier for bath hot water
JPH06339605A (en) Apparatus for cleaning of hot water in bathtub and method therefor
JP3114552B2 (en) Water purification device
JP2003028496A (en) Hot water supplier provided with cleaning function
JP2776280B2 (en) Regeneration method of filtration device
JP2001212557A (en) Water cleaning and its washing method
CN107512788A (en) Water treatment system and water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350