JP3956420B2 - Visible transparent photochromic material - Google Patents

Visible transparent photochromic material Download PDF

Info

Publication number
JP3956420B2
JP3956420B2 JP05302297A JP5302297A JP3956420B2 JP 3956420 B2 JP3956420 B2 JP 3956420B2 JP 05302297 A JP05302297 A JP 05302297A JP 5302297 A JP5302297 A JP 5302297A JP 3956420 B2 JP3956420 B2 JP 3956420B2
Authority
JP
Japan
Prior art keywords
diarylethene
photochromic material
photochromic
visible
microcrystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05302297A
Other languages
Japanese (ja)
Other versions
JPH10251630A (en
Inventor
正浩 入江
Original Assignee
入江  正浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 入江  正浩 filed Critical 入江  正浩
Priority to JP05302297A priority Critical patent/JP3956420B2/en
Publication of JPH10251630A publication Critical patent/JPH10251630A/en
Application granted granted Critical
Publication of JP3956420B2 publication Critical patent/JP3956420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可視域で透明性を有するフォトクロミック材料に関する。
【0002】
【従来の技術】
フォトクロミック材料とは、光の作用により状態の異なる2つの異性体を可逆的に生成する分子または分子集合体を含む材料を言う。フォトクロミック材料は、その光異性化に伴い光吸収係数、屈折率あるいは誘電率を可逆的に変える。これらの光物性変化が、光メモリ媒体あるいは光スイッチ素子などの光機能材料へ応用されている。これらの目的のため、繰り返し耐久性をもちなおかつ熱不可逆なフォトクロミック分子(ジアリールエテン、フルギド)の開発がすすめられてきた。現在ジアリールエテン分子については、十分の繰り返し耐久性、熱不可逆性をもつものが得られている(M.Irie,Pure Appl.Chem.68(1996)1367)。
【0003】
【発明が解決しようとする課題】
これらの分子を光メモリ媒体あるいは光スイッチ素子へ応用する際には、吸光度あるいは屈折率が光照射により大きく変化することが要求される。しかし、これまでのフォトクロミック材料はいずれもフォトクロミック分子を高分子媒体へ分子分散させたものであるため、フォトクロミック分子の濃度を上げることが困難で、十分の変化量を得ることができていないと言う欠点をもつ。
【0004】
【課題を解決するための手段】
吸光度あるいは屈折率を大きく光変化させるには、2つの方法が考えられる。1つは、分子自身の吸光係数あるいは異性化に伴う屈折率変化を上げることであり、もう一つは、高分子媒体中への分子分散濃度を上げることである。前者の方法として、強い電子供与基をもつ分子の合成が試みられており、2万程度の吸光係数をもつジアリールエテン分子が報告されている(M.Irie,K.Sakemura,M.Okinaka,K.Uchida,J.Org.Chem.60(1995)8305)。本発明では、後者の方法を採用した。即ち、本発明は、ヘテロ5員環をアリール部にもつジアリールエテンからなる、粒子径が400nm以下の微結晶が高分子媒体中に分散してなり、500nmでの光線透過率が95%以上である可視域透明フォトクロミック材料に存する。
本発明のフォトクロミック材料は、次のようにして製造することができる。
【0005】
極微小結晶(粒子径400nm以下)を水系において作製すると共に、その微結晶を水溶性高分子に高濃度分散させフォトクロミック薄膜とした。この薄膜は、粒子径が小さいため可視域透明性をもち、また高濃度に分散していることから吸光度変化が大きく(感度が良い)、さらに結晶状態においてフォトクロミック反応することから繰り返し耐久性に優れている。
【0006】
【発明の実施の形態】
次に本発明を詳しく説明する。
フランあるいはチオフェン環などの芳香族性の小さいヘテロ5員環をアリール基としてもつジアリールエテンは、熱不可逆フォトクロミック反応性を示す。多くのジアリールエテンは、結晶状態においてフォトクロミック反応性を示さないが、下記のジアリールエテンは結晶状態においてもフォトクロミック反応性を示す。
【0007】
【化2】

Figure 0003956420
【0008】
これらを、光メモリ、光表示、光スイッチなどのオプトエレクトロニクス材料へ用いるには、高濃度に高分子媒体に分散し、なおかつ透明性を保つことが要求される。また、繰り返し耐久性も高いことが必須条件である。これまでは、高分子媒体へ分子分散させる方法がとられてきた。すなわち、ジアリールエテンおよび高分子の共通溶媒へ、それぞれを溶解、混合の後、キャスト法あるいはスピンコート法により薄膜を作製してきた。このような分子分散の場合では、含有濃度を上げると色素会合、析出が起こりフォトクロミック反応が著しく阻害(反応量子収率の低下)された。また、繰り返し耐久性の低下が認められた。これらの欠点を解決する方法として、結晶状態でフォトクロミック反応するジアリールエテンを用いることが提案されている(特願平8−51592号)が、透明性のある単結晶あるいは、多結晶を得ることが困難であり透明性を必要とする分野への応用はできなかった。本発明では、それらの困難が解決できる。
【0009】
可視域透明性を得るには、粒子径が400nm以下であることが要求される。溶媒からの再結晶で得られる微結晶を粉砕することではこのような微結晶を得ることは非常に困難である。このことは、水中でジアリールエテン微結晶を急速析出させることで解決できる。ジアリールエテンを、水と相溶する溶媒、例えば低級アルコール、アセトン、テトラヒドロフラン、アセトニトリルに溶解し(1〜10-5M)、注射針から強力に撹拌した水に注入し、微結晶が得られる。このままでは、粒子径に拡がりがあり可視域に散乱性があり濁っている。この微結晶水溶液を精密濾過膜(0.5−0.1μm)を通過させ、可視域透明性のある微結晶が得られる。この水溶液は、400nm以上の波長では散乱性を持たない。
【0010】
更に、この微結晶を高濃度に含む高分子薄膜を次のように作製した。水溶性高分子、例えばポリビニルアルコール、ポリビニルピロリドンの水溶液を作製し、上記可視域透明性をもつジアリールエテン微結晶含有水溶液と混合し、その混合溶液をキャスト法あるいはスピンコート法を用いて高分子薄膜を作製した。
この高分子薄膜は、粒子径が小さいため、可視域透明性をもち、また高濃度に分散していることから吸光度変化が大きく(感度が良い)、さらに結晶状態においてフォトクロミック反応することから繰り返し耐久性に優れていることが認められた。
【0011】
【実施例】
実施例1
下記のジアリールエテン(3)をエタノールに溶解(1×10-2M)し、その溶液0.1mlを、強力に撹拌した水10mlにマイクロ注射器を用いて注入した。その後、それぞれを▲1▼そのまま(図1)、▲2▼1.0μmフィルター透過後(図2)および▲3▼0.2μmフィルター透過後(図3)の水溶液の吸収スペクトルを測定した。吸収スペクトルは、紫外光照射前(実線)および紫外光照射後(点線)に測定した。
【0012】
【化3】
Figure 0003956420
【0013】
フィルターを透過させない前は、700nmにまで光散乱が認められ溶液は濁っていた。しかし、0.2μmフィルター透過後は400nm以上に散乱は認められず、可視域透明性を持っていた。
【0014】
実施例2
可視域透明性微結晶のフォトクロミック反応性をヘキサン溶液系と比較した。実施例1と同様の化合物のヘキサン溶液中のフォトクロミック反応に伴う吸収スペクトル変化(図4)と、微結晶状態での変化(図5)とを示す。
両者は、同様のスペクトル変化を示した。閉環反応および開環反応の量子収率をヘキサン中と微結晶で比較した。
【0015】
【表1】
Figure 0003956420
【0016】
両者には、それほど差は認められなかった。
【0017】
実施例3
実施例1の微結晶水溶液を0.2μmフィルターに透過させたものと、ポリビニルアルコール水溶液(1wt%)とを混合して、キャスト法により厚さ500μm高分子薄膜を作製した。この高分子薄膜は、可視域透明性(500nmでの透過率95%以上)を持ち、紫外光照射により青く変色し、可視光(>500nm)照射により青色は退色した。着色/退色を1万回繰り返しても、劣化は認められなかった。
【0018】
実施例4
化合物(1)、(2)、(4)、(5)についても、実施例1と同様に水中において可視域透明性微結晶を作製した所、いずれもヘキサン溶液中と同様のフォトクロミック反応性を示した。また、ポリビニルアルコールへ、実施例3同様に分散させた所、同様のフォトクロミック反応性を示した。
【0019】
比較例
下記のジアリールエテンを実施例1と同様にエタノールに溶解し、そのエタノール溶液(1×10-2M、0.1ml)を撹拌した水10mlに注入して、微結晶を作製した。
このジアリールエテンでは、微結晶フォトクロミック反応は認められなかった。
【0020】
【化4】
Figure 0003956420
【0021】
【発明の効果】
本発明により、可視域において透明で変化量の十分に大きいフォトクロミック材料が得られる。
【図面の簡単な説明】
【図1】実施例1のフィルターで濾過する前の吸収スペクトル
【図2】実施例1の孔径1.0μmのフィルターで濾過したときの吸収スペクトル
【図3】実施例1の孔径0.2μmのフィルターで濾過したときの吸収スペクトル
【図4】実施例2のヘキサン溶液中での吸収スペクトル
【図5】実施例2の微結晶での吸収スペクトル。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photochromic material having transparency in the visible range.
[0002]
[Prior art]
The photochromic material refers to a material containing a molecule or a molecular assembly that reversibly generates two isomers having different states by the action of light. A photochromic material reversibly changes its light absorption coefficient, refractive index, or dielectric constant with its photoisomerization. These changes in optical properties are applied to optical functional materials such as optical memory media or optical switch elements. For these purposes, the development of photochromic molecules (diarylethene, fulgide) that are durable and heat irreversible has been promoted. Currently, diarylethene molecules have been obtained that have sufficient repetition durability and thermal irreversibility (M. Irie, Pure Appl. Chem. 68 (1996) 1367).
[0003]
[Problems to be solved by the invention]
When these molecules are applied to an optical memory medium or an optical switch element, it is required that the absorbance or the refractive index is greatly changed by light irradiation. However, since all the conventional photochromic materials are obtained by molecularly dispersing photochromic molecules in a polymer medium, it is difficult to increase the concentration of photochromic molecules, and it is said that a sufficient amount of change cannot be obtained. Has drawbacks.
[0004]
[Means for Solving the Problems]
Two methods are conceivable for greatly changing the absorbance or refractive index. One is to increase the extinction coefficient of the molecule itself or the refractive index change accompanying isomerization, and the other is to increase the molecular dispersion concentration in the polymer medium. As the former method, synthesis of a molecule having a strong electron donating group has been attempted, and a diarylethene molecule having an extinction coefficient of about 20,000 has been reported (M. Irie, K. Sakemura, M. Okinawa, K. et al.). Uchida, J. Org. Chem. 60 (1995) 8305). In the present invention, the latter method is adopted. That is, in the present invention, microcrystals having a particle diameter of 400 nm or less, which are made of diarylethene having a hetero 5-membered ring in the aryl moiety , are dispersed in a polymer medium, and the light transmittance at 500 nm is 95% or more. It resides in the visible IkiToru Akirafu photochromic material.
Photochromic material of the present invention can be manufactured as follows.
[0005]
Ultrafine crystals (particle diameter of 400 nm or less) were prepared in an aqueous system, and the microcrystals were dispersed in a water-soluble polymer at a high concentration to form a photochromic thin film. This thin film has transparency in the visible range due to its small particle size, and has a large change in absorbance due to high concentration dispersion (high sensitivity), and also has excellent durability due to photochromic reaction in the crystalline state. ing.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
Diarylethene having a heteroaromatic hetero 5-membered ring such as a furan or thiophene ring as an aryl group exhibits thermal irreversible photochromic reactivity. Many diarylethenes do not exhibit photochromic reactivity in the crystalline state, but the following diarylethenes also exhibit photochromic reactivity in the crystalline state.
[0007]
[Chemical 2]
Figure 0003956420
[0008]
In order to use these for optoelectronic materials such as optical memories, optical displays, and optical switches, it is required to disperse them in a polymer medium at a high concentration and to maintain transparency. Moreover, it is an essential condition that repetition durability is also high. Until now, a method of dispersing molecules in a polymer medium has been used. That is, after dissolving and mixing each in the common solvent of diarylethene and a polymer, the thin film has been produced by the cast method or the spin coat method. In the case of such molecular dispersion, when the content concentration was increased, dye association and precipitation occurred, and the photochromic reaction was remarkably inhibited (reduction in reaction quantum yield). In addition, a decrease in repeated durability was observed. As a method for solving these drawbacks, it has been proposed to use diarylethene that undergoes a photochromic reaction in a crystalline state (Japanese Patent Application No. 8-51592), but it is difficult to obtain a transparent single crystal or polycrystal. And could not be applied to fields that require transparency. The present invention can solve these difficulties.
[0009]
In order to obtain visible range transparency, the particle size is required to be 400 nm or less. It is very difficult to obtain such microcrystals by pulverizing the microcrystals obtained by recrystallization from a solvent. This can be solved by rapidly depositing diarylethene microcrystals in water. Diarylethene is dissolved in a solvent compatible with water, for example, lower alcohol, acetone, tetrahydrofuran and acetonitrile (1 to 10 −5 M), and injected from a syringe needle into strongly stirred water to obtain microcrystals. As it is, the particle diameter is expanded, and the visible region is scattered and cloudy. This microcrystalline aqueous solution is passed through a microfiltration membrane (0.5-0.1 μm) to obtain microcrystals having visible range transparency. This aqueous solution has no scattering property at a wavelength of 400 nm or more.
[0010]
Furthermore, a polymer thin film containing this microcrystal at a high concentration was produced as follows. An aqueous solution of a water-soluble polymer such as polyvinyl alcohol or polyvinyl pyrrolidone is prepared and mixed with the above-mentioned aqueous solution containing diarylethene microcrystals having transparency in the visible region. Produced.
Since this polymer thin film has a small particle size, it has transparency in the visible region, and since it is dispersed at a high concentration, it has a large change in absorbance (good sensitivity), and it is repeatedly durable due to a photochromic reaction in the crystalline state. It was recognized that it was excellent in performance.
[0011]
【Example】
Example 1
The following diarylethene (3) was dissolved in ethanol (1 × 10 −2 M), and 0.1 ml of the solution was injected into 10 ml of strongly stirred water using a micro syringe. Thereafter, the absorption spectra of the aqueous solutions were measured for (1) as they were (FIG. 1), (2) after passing through a 1.0 μm filter (FIG. 2), and (3) after passing through a 0.2 μm filter (FIG. 3). The absorption spectrum was measured before ultraviolet light irradiation (solid line) and after ultraviolet light irradiation (dotted line).
[0012]
[Chemical 3]
Figure 0003956420
[0013]
Before passing through the filter, light scattering was observed up to 700 nm and the solution was cloudy. However, after passing through the 0.2 μm filter, no scattering was observed at 400 nm or more, and the film had transparency in the visible range.
[0014]
Example 2
The photochromic reactivity of visible range transparent microcrystals was compared with that of hexane solution system. The absorption spectrum change (FIG. 4) accompanying the photochromic reaction in the hexane solution of the compound similar to Example 1 and the change in a microcrystal state (FIG. 5) are shown.
Both showed similar spectral changes. The quantum yields of ring-closing and ring-opening reactions were compared in hexane and microcrystals.
[0015]
[Table 1]
Figure 0003956420
[0016]
There was not much difference between the two.
[0017]
Example 3
The microcrystalline aqueous solution of Example 1 permeated through a 0.2 μm filter was mixed with a polyvinyl alcohol aqueous solution (1 wt%), and a polymer thin film having a thickness of 500 μm was prepared by a casting method. This polymer thin film had visible region transparency (transmittance of 95% or more at 500 nm), turned blue when irradiated with ultraviolet light, and faded blue when irradiated with visible light (> 500 nm). No deterioration was observed even after repeating the coloring / fading 10,000 times.
[0018]
Example 4
As for the compounds (1), (2), (4), and (5), the same range of photochromic reactivity as in the hexane solution was obtained in the same manner as in Example 1, where visible region transparent microcrystals were prepared. Indicated. Moreover, when it was made to disperse | distribute to polyvinyl alcohol like Example 3, the same photochromic reactivity was shown.
[0019]
Comparative Example The following diarylethene was dissolved in ethanol in the same manner as in Example 1, and the ethanol solution (1 × 10 −2 M, 0.1 ml) was poured into 10 ml of stirred water to produce microcrystals.
With this diarylethene, no microcrystalline photochromic reaction was observed.
[0020]
[Formula 4]
Figure 0003956420
[0021]
【The invention's effect】
According to the present invention, a photochromic material which is transparent in the visible range and has a sufficiently large change amount can be obtained.
[Brief description of the drawings]
FIG. 1 shows an absorption spectrum before filtering with the filter of Example 1. FIG. 2 shows an absorption spectrum when filtered with a filter having a pore diameter of 1.0 μm in Example 1. FIG. Absorption spectrum when filtered through a filter [FIG. 4] Absorption spectrum in a hexane solution of Example 2 [FIG. 5] Absorption spectrum of a microcrystal of Example 2.

Claims (3)

ヘテロ5員環をアリール部にもつジアリールエテンからなる、粒子径が400nm以下の微結晶が高分子媒体中に分散してなり、500nmでの光線透過率が95%以上であることを特徴とする可視域透明フォトクロミック材料。Visible , characterized in that microcrystals having a particle size of 400 nm or less, which are made of diarylethene having a hetero 5-membered ring in the aryl moiety , are dispersed in a polymer medium, and have a light transmittance of 95% or more at 500 nm. IkiToru Akirafu photochromic material. ジアリールエテンのヘテロ5員環、ピロール、チオフェン、フラン、及びセレノフェンよりなる群から選択されたいずれかである請求項1に記載の可視域透明フォトクロミック材料。Hetero 5-membered ring of diarylethene, pyrrole, thiophene, furan, and visible IkiToru Akirafu photochromic material according to claim 1 is any one selected from the group consisting of selenophene. ジアリールエテンが下記の分子構造をもつものである請求項1または2に記載の可視域透明フォトクロミック材料。
Figure 0003956420
(ここで、R1 、R1'はメチル基、R2 、R2'は水素原子、メチル基もしくは置換されていてもよいフェニル基、R3 、R3'は水素原子もしくはメチル基を示す。)
Visible IkiToru Akirafu photochromic material according to claim 1 or 2 diarylethene is one having the following molecular structure.
Figure 0003956420
(Where R 1 and R 1 ′ are methyl groups, R 2 and R 2 ′ are hydrogen atoms, methyl groups or optionally substituted phenyl groups, and R 3 and R 3 ′ are hydrogen atoms or methyl groups. .)
JP05302297A 1997-03-07 1997-03-07 Visible transparent photochromic material Expired - Lifetime JP3956420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05302297A JP3956420B2 (en) 1997-03-07 1997-03-07 Visible transparent photochromic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05302297A JP3956420B2 (en) 1997-03-07 1997-03-07 Visible transparent photochromic material

Publications (2)

Publication Number Publication Date
JPH10251630A JPH10251630A (en) 1998-09-22
JP3956420B2 true JP3956420B2 (en) 2007-08-08

Family

ID=12931277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05302297A Expired - Lifetime JP3956420B2 (en) 1997-03-07 1997-03-07 Visible transparent photochromic material

Country Status (1)

Country Link
JP (1) JP3956420B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256663A (en) * 1999-03-11 2000-09-19 Masahiro Irie Light-induced phase transition organic material
WO2002102923A1 (en) * 2001-06-15 2002-12-27 Mitsubishi Chem Corp Photochromic material and color dose meter using the same
KR20030085251A (en) * 2002-04-29 2003-11-05 한국화학연구원 Photochromic fluorescent polymer and preparation method thereof
GB0214989D0 (en) * 2002-06-28 2002-08-07 Qinetiq Ltd Photochromic liquid crystals
JP5219076B2 (en) * 2008-09-09 2013-06-26 国立大学法人 奈良先端科学技術大学院大学 Photochromic compound and write-once optical recording molecular material

Also Published As

Publication number Publication date
JPH10251630A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
Feringa et al. Chiroptical molecular switches
US20020008229A1 (en) Photochemically controlled photonic crystal diffraction
JP3956420B2 (en) Visible transparent photochromic material
JPH0372118B2 (en)
Saika et al. Multi-mode chemical transducers. Part 2. Electrochromic and photochromic properties of azoquinone compounds
JP2746452B2 (en) Diarylethene compounds
JPH11503117A (en) Photochromic spiropyrans and compositions and products containing them
JPH0723468B2 (en) Photochromic photosensitive composition
Tamaki et al. The photochromism of nitrospiropyran included in γ-cyclodextrin
JPS63207887A (en) Photochromic material and coloring thereof
JP2666225B2 (en) Diarylethene compounds
JP2006335885A (en) Color-developing structure and method for producing the same
JPH04114148A (en) Optical recording medium
JP3032825B1 (en) Chromic compounds
JP3696414B2 (en) Photochromic crystal material
JPS6176490A (en) Photochromic compound
JPS63223084A (en) Photochromic composition
JPH05105685A (en) Photochromic and photosensitive compound
DD153690B1 (en) PHOTOCHROME MEDIUM
JPH0625345B2 (en) Thermostable photochromic material
Sepehr et al. Synthesis, characterization, and photochromism study of two spiropyran molecules with a terminal alkynyl functional group and their new 1, 2, 3-triazoline-containing derivatives
JP2006171321A (en) Organic photorefractive material
CN114539274B (en) Single-factor induced photochromic sensing material and preparation method and application thereof
JPH01226387A (en) Thermal recording material and method
JPH0362883A (en) Photochromic material and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term