JP3956258B2 - Quartz glass jig for silicon wafer heat treatment having a high purity grooving surface and manufacturing method thereof - Google Patents

Quartz glass jig for silicon wafer heat treatment having a high purity grooving surface and manufacturing method thereof Download PDF

Info

Publication number
JP3956258B2
JP3956258B2 JP19813398A JP19813398A JP3956258B2 JP 3956258 B2 JP3956258 B2 JP 3956258B2 JP 19813398 A JP19813398 A JP 19813398A JP 19813398 A JP19813398 A JP 19813398A JP 3956258 B2 JP3956258 B2 JP 3956258B2
Authority
JP
Japan
Prior art keywords
quartz glass
heat treatment
silicon wafer
diamond blade
glass jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19813398A
Other languages
Japanese (ja)
Other versions
JP2000021888A (en
Inventor
宣夫 大橋
茂 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP19813398A priority Critical patent/JP3956258B2/en
Publication of JP2000021888A publication Critical patent/JP2000021888A/en
Application granted granted Critical
Publication of JP3956258B2 publication Critical patent/JP3956258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高純度溝切り面を有するシリコンウエーハ熱処理用治具およびその製造方法、さらに詳しくはシリコンウエーハ熱処理用石英ガラス治具の溝切り面に石英ガラスパーティクルや遷移金属元素異物のない高純度のシリコンウエーハ熱処理用石英ガラス治具およびその製造方法に関する。
【0002】
【従来技術】
従来、シリコンウェーハの熱処理治具としては、耐熱性があり、かつ高純度であるところから石英ガラス治具が用いられてきた。前記石英ガラス治具の加工では、例えばウェーハボートのように多数の溝を一定のピッチでしかも高精度に切削する必要があるところからダイヤモンドブレードが一般的に用いられる。しかしながら、シリカガラスが脆性材料であるところからダイヤモンドブレードによる切削によって加工面に微小な凹凸やマイクロクラックが発生しシリコンウェーハを損傷したり、或いはダイヤモンドブレードの結合剤に由来する各種遷移金属元素による異物が切削面に付着残留し、それがシリコンウェーハの熱処理時に溶融、拡散してウェーハを汚染するなどの欠点があった。そのためダイヤモンドブレードによる切削後、石英ガラス治具をフッ酸溶液で軽くエッチング洗浄する方法が提案されているが、この希薄フッ酸による軽いエッチング洗浄では溝切り面が粗面化してウェーハを傷つけたり、或いは洗浄が完全でないため各種遷移金属元素異物が残留しシリコンウェーハを汚染し、製品歩留まりを低くすることがあった。また、研削後の溝切り面を酸水素バーナーやプロパンバーナー等のバーナー炎で炙り、切削加工で発生した微小な凹凸やマイクロクラックを取り除いて平滑な面にする、いわゆるファイヤーポリシュ加工法も提案されているが、この方法では切削加工時に付着した異物の溶融、拡散による汚染に加えてバーナー火口やガスによる汚染も起こることがあり満足できる処理方法ではなかった。
【0003】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は鋭意研究を続けた結果、ダイヤモンドブレードで加工したシリカガラス熱処理部材を所定の切削条件、及びエッチング条件で処理することで、溝切り面に亀甲構造を形成するとともに、微小な凹凸やマイクロクラックの開放に基づく鋭角な凹凸を滑らかにし、かつ各種遷移金属元素異物を完全に除去したシリコンウエーハ熱処理用石英ガラス治具が得られることを見出して、本発明を完成したものである。すなわち、
【0004】
本発明は、微小な凹凸やマイクロクラックの開放に基づく鋭角な凹凸がなく、遷移金属元素異物の付着がない高純度溝切り面を有するシリコンウエーハ熱処理用石英ガラス治具を提供することを目的とする。
【0005】
また、本発明は、溝切り面が亀甲構造をなす新規な高純度溝切り面を有するシリコンウエーハ熱処理用石英ガラス治具を提供することを目的とする。
【0006】
さらに、本発明は、上記高純度溝切り面を有するシリコンウエーハ熱処理用石英ガラス治具の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明は、切削加工による溝きり面を有するシリコンウエーハ熱処理用石英ガラス治具において、前記溝切り面が亀甲構造をなし、溝切り面全体の表面粗さが中心線平均粗さ(Ra)で0.5〜5μmであることを特徴とする高純度溝切り面を有するシリコンウエーハ熱処理用石英ガラス治具、およびその製造方法に係る。
【0008】
本発明のシリコンウエーハ熱処理用石英ガラス治具は、上述のとおりその溝切り面が亀甲構造をなし、溝切り面全体の表面粗さが中心線平均粗さ(Ra)で0.5〜5μmの範囲にある石英ガラス治具である。前記亀甲構造とは、多角形状の突起物が不規則に連結し、その断面が山状の突起とそれをはさむなだらかな凹部とを有する構造をいい、その断面摸式図を図1に示す。そしてこの亀甲構造の突起間の平均間隔は20〜200μm、突起の凹部に対する最大高さ(Rmax)は2〜20μmの範囲にあるのがよい。また、前記シリコンウエーハ熱処理用石英ガラス治具が有する溝切り面全体の表面粗さは中心線平均粗さ(Ra)で0.5〜5μmの範囲にある必要がある。前記中心線平均粗さが0.5μm未満に切削することは生産性、コスト上、実用的でなく、また5μmを超えると切削面が亀甲構造であっても、その粗さによってシリコンウェーハが損傷を受け好ましくない。
【0009】
上記シリコンウエーハ熱処理用石英ガラス治具は、熱処理用石英ガラス治具をダイヤモンドブレードによる切削加工によって溝切りし、次いで20〜70wt%のフッ酸を用い、温度(T)273〜323Kで、かつ式2
【0010】
【式2】
t=V/[7.2×C2.4×exp{−2.7×104/(8.31×T)}]
(ただし、Vはエッチング量(μm)、Cはフッ酸濃度(wt%)、Tは絶対
温度(K)、tはエッチング時間(min)を表す。)
で表わされる時間でエッチング処理を行い、切削面から石英ガラスを20〜200μmの量除去することで製造される。
【0011】
上記フッ酸による石英ガラスのエッチング速度は、フッ酸濃度と温度という2つの条件に依存し、それらの間には式3
【0012】
【式3】
v=7.2×C2.4×exp{−2.7×104/(8.31×T)}
[ただし、vはエッチング速度(μm/min)を表わす。]
の関係があることが本発明者等により実験的に見出されている。エッチング速度とエッチング時間、エッチング量とにはt=V/vの関係があるところから、式2が導かれ、この式2を用いることで任意のエッチング条件(フッ酸濃度、温度、エッチング量)におけるエッチング時間が決定できる。
【0013】
上記フッ酸エッチングに伴う溝切り面の表面粗さの変化の一例を図2に示すが、表面粗さはエッチング処理直後、急激に増大して極大値に達したのち、徐々に減少しやがて一定値に達する。表面粗さが極大に達した後に亀甲構造が現れるが、その時までの石英ガラスのエッチング量は切削に使用するブレードの種類やブレードの周速度、送り速度等の切削条件によって異なり、切削後の初期表面が粗い程エッチング量を多くする必要がある。本発明の切削条件においてはエッチング量を20〜200μmの範囲にするのがよい。エッチング量が20μm未満では亀甲構造が現れず、また200μmを超える量の石英ガラスを除去しても表面構造に変化がなく無駄なエッチング処理となり好ましくない。
【0014】
本発明の製造方法で使用するフッ酸は、その濃度が高い方がエッチング時間が短くてすむため好ましいが、一般的には70wt%以下のものが入手可能であるところから70wt%以下のフッ酸を使用する。しかし、フッ酸濃度が20wt%未満では、エッチングに時間がかかり過ぎるため好ましくないので、フッ酸濃度を20〜70wt%の範囲とする。また、エッチング時の温度についてはとくに制御する必要がないが、273〜323Kの範囲が好適である。温度が273K未満ではエッチングに時間がかかり過ぎ、また323Kを超えるとエッチング液が蒸発、揮散し易くなり取り扱い上好ましくない。
【0015】
本発明のシリコンウエーハ熱処理用石英ガラス治具の溝切りには高精度が要求されるところから、ダイヤモンドブレードが用いられるが、該ダイヤモンドブレードとしては具体的にメタルボンド型ダイヤモンドブレード、レジンボンド型ダイヤモンドブレード又はビトリファイドボンド型ダイヤモンドブレードが挙げられ、電着型ダイヤモンドブレードはマイクロクラックが大きく入り、またブレードの耐久性も劣るため好ましくない。前記ダイヤモンドブレードを具体的に使用するに当たっては、高精度、高品質な切断面を得るために、レジンボンドダイヤモンドブレードの場合、粒度:#140〜230、結合度:N〜R、集中度:75〜125の仕様が、またメタルボンドダイヤモンドブレードの場合には、粒度:#140〜230、結合度:N、集中度:30〜75の仕様が、さらにビトリファイドダイヤモンドブレードの場合には粒度:#140〜230、集中度:75〜125の仕様が好適である。また、前記ダイヤモンドブレードによる溝切りにおいては溝幅がエッチング処理で拡大するので、溝幅の仕上り寸法より予定するエッチング量の分だけ小さめに切削するのがよい。
【0016】
【発明の実施の態様】
次に具体例に基づいて本発明を詳細に説明するが、本発明はそれにより限定されるものではない。
【0017】
【実施例】
実施例1〜3
直径12mmのむく棒を用いてウェーハボートを作成し、表1に示す仕様のダイヤモンドブレードを用い周速度1300m/min、送り速度60mm/minで、溝深さ6mm、溝幅3mm、溝ピッチ3mmのウェーハボートを作成した。次いで各ウェーハボートについて表1に示すエッチング条件で処理した。実施例1の処理を行ったウェーハボートの溝切り面については走査電子顕微鏡写真を図3に示す。同写真から明らかなように亀甲構造の突起が存在していることが窺える。得られたシリコンウエーハ熱処理用石英ガラス治具についてその溝切り面の表面形状を観察し、表面粗さおよび遷移金属異物数を測定した。その結果を表1に示す。
【0018】
比較例1
実施例と同様なウェーハボートを電着ダイヤモンドブレードで切削し、実施例1と同様なエッチング処理を行った。その結果を表1に示す。
【0019】
比較例2
実施例と同様なウェーハボートをレジンボンドダイヤモンドブレードで切削したのち従来採用されている低濃度のフッ酸溶液によるエッチング処理を行った。その結果を表1に示す。
【0020】
各実施例および比較例における数値は以下の測定方法で求めた値である。
(i)表面粗さ
表面粗さ計(東京精密(株)製 Surfcom300B)によるRmax及びRa(中心線平均粗さ)を測定した値。
【0021】
(ii)突起間の平均間隔
上記(i)の表面粗さ計による粗さプロファイルのデータから単位長さ当たりの突起数を計測し、計算で求めた値
【0022】
(iii)遷移金属異物の数とその同定
走査電子顕微鏡(日本電子(株)製 JSM5800LV)及びエネルギー分散型X線分析法(Oxford.Link ISIS L2001−S/S−ATM)による遷移金属異物数の測定及びその遷移金属異物の元素組成の同定。
【0023】
【表1】

Figure 0003956258
注)レジン:レジンボンド型ダイヤモンドブレード、ビトリ:ビトリファイドボンド型ダイヤモンドブレード、メタル:メタルボンド型ダイヤモンドブレード、電着:電着型ダイヤモンドブレード。
【0024】
〈評価〉
上記表1から明らかなように実施例1〜3の溝切り面は表面粗さが増加しているが亀甲構造が存在し、微小凹凸やマイクロクラックがなくパーティクルの発生がない上に遷移金属異物も殆どみられず、高純度である。
【0025】
一方、比較例1の溝切り面では亀甲構造が存在し、微小凹凸やマイクロクラックがなくパーティクルの発生がない上に遷移金属異物も殆どみれないが、亀甲構造の突起間隔が大きく、かつ表面粗さも大きいところからシリコンウェーハに損傷を与えた。
【0026】
また、比較例2の溝切り面ではフッ酸によるエッチング処理が十分でないため、溝切り面に亀甲構造が現れず、また、遷移金属異物も完全には除去されていなかった。
【0027】
【発明の効果】
本発明のシリコンウエーハ熱処理用石英ガラス治具はその溝切り面が亀甲構造となり、微小凹凸やマイクロクラックがないためパーティクルの発生がなく、かつ遷移金属異物の残留のない高純度の切削面を有する石英ガラス治具である。そのため前記石英ガラス治具を用いたシリコンウェーハの熱処理において、シリコンウェーハの損傷や汚染がなく、高品質のシリコンウェーハが歩留りよく製造できる。前記シリコンウエーハ熱処理用石英ガラス治具は従来の作成方法で得た治具を特定のエッチング条件で処理することで容易に製造でき、その工業的価値は高いものがある。
【図面の簡単な説明】
【図1】シリコンウエーハ熱処理用石英ガラス治具の溝切り面の摸式断面図である。
【図2】HFエッチングに伴う溝切り面の表面粗さの変化を示すグラフである。
【図3】実施例1のシリコンウエーハ熱処理用石英ガラス治具の溝切り面の走査電子顕微鏡写真図である。[0001]
[Industrial application fields]
The present invention relates to a jig for silicon wafer heat treatment having a high-purity grooved surface and a method for manufacturing the same, and more specifically, high-purity free of quartz glass particles and transition metal element foreign matter on the grooved surface of a quartz glass jig for silicon wafer heat treatment. The present invention relates to a quartz glass jig for heat treatment of silicon wafers and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, quartz glass jigs have been used as heat treatment jigs for silicon wafers because of their heat resistance and high purity. In the processing of the quartz glass jig, a diamond blade is generally used because it is necessary to cut a large number of grooves at a constant pitch and with high accuracy, such as a wafer boat. However, since silica glass is a brittle material, fine irregularities and microcracks are generated on the processed surface by cutting with a diamond blade, and the silicon wafer is damaged, or foreign substances due to various transition metal elements derived from the binder of the diamond blade. Remains on the cutting surface and melts and diffuses during heat treatment of the silicon wafer to contaminate the wafer. Therefore, after cutting with a diamond blade, a method of lightly etching and cleaning a quartz glass jig with a hydrofluoric acid solution has been proposed, but with this light etching cleaning with dilute hydrofluoric acid, the grooved surface becomes rough and damages the wafer, Alternatively, since the cleaning is not complete, various transition metal foreign substances remain, contaminating the silicon wafer, and reducing the product yield. In addition, a so-called fire polish method has been proposed in which the groove surface after grinding is burned with a burner flame such as an oxyhydrogen burner or propane burner to remove fine irregularities and microcracks generated in the cutting process to make a smooth surface. However, this method is not a satisfactory treatment method because it may cause contamination by burner crater or gas in addition to contamination due to melting and diffusion of foreign matter adhering during cutting.
[0003]
[Problems to be solved by the invention]
In view of such a current situation, the present inventors have conducted intensive research, and as a result, a turtle shell structure is formed on the grooved surface by treating a silica glass heat-treated member processed with a diamond blade under predetermined cutting conditions and etching conditions. At the same time, the present inventors completed the present invention by finding that a quartz glass jig for heat treatment of silicon wafers can be obtained by smoothing sharp irregularities based on the opening of minute irregularities and microcracks and completely removing foreign substances of various transition metal elements. It is a thing. That is,
[0004]
It is an object of the present invention to provide a quartz glass jig for heat treatment of a silicon wafer having a high-purity grooved surface that is free from minute irregularities and sharp irregularities based on the opening of microcracks and does not adhere to transition metal element foreign matter. To do.
[0005]
Another object of the present invention is to provide a quartz glass jig for heat treatment of a silicon wafer having a novel high purity grooved surface in which the grooved surface has a turtle shell structure.
[0006]
Another object of the present invention is to provide a method for producing a quartz glass jig for heat treatment of a silicon wafer having the above-described high purity groove cut surface.
[0007]
[Means for Solving the Problems]
The present invention that achieves the above object provides a quartz glass jig for heat treatment of a silicon wafer having a grooved surface by cutting, wherein the grooved surface has a turtle shell structure, and the surface roughness of the entire grooved surface is a centerline average roughness. The present invention relates to a quartz glass jig for heat treatment of a silicon wafer having a high-purity groove cut surface, characterized by a thickness (R a ) of 0.5 to 5 μm, and a method for manufacturing the same.
[0008]
As described above, the quartz glass jig for heat treatment of a silicon wafer according to the present invention has a grooved surface having a turtle shell structure, and the entire surface of the grooved surface has a center line average roughness ( Ra ) of 0.5 to 5 [mu] m. It is a quartz glass jig in the range of. The turtle shell structure is a structure in which polygonal protrusions are irregularly connected, and the cross section has a mountain-shaped protrusion and a gentle recess that sandwiches the protrusion. FIG. The average distance between the projections of the turtle structure 20 to 200 [mu] m, maximum height (R max) for the recess of the protrusions may be in the range of 2 to 20 [mu] m. Further, the surface roughness of the entire grooved surface of the quartz glass jig for heat treatment of silicon wafer needs to be in the range of 0.5 to 5 μm in terms of centerline average roughness (R a ). Cutting the centerline average roughness below 0.5 μm is not practical in terms of productivity and cost, and if it exceeds 5 μm, even if the cutting surface has a turtle shell structure, the roughness of the silicon wafer is damaged. Unfavorable.
[0009]
The quartz glass jig for heat treatment of a silicon wafer is formed by grooving the quartz glass jig for heat treatment by cutting with a diamond blade, then using 20 to 70 wt% hydrofluoric acid, at a temperature (T) of 273 to 323 K, and a formula 2
[0010]
[Formula 2]
t = V / [7.2 × C 2.4 × exp {−2.7 × 10 4 /(8.31×T)}]
(Where V represents the etching amount (μm), C represents the hydrofluoric acid concentration (wt%), T represents the absolute temperature (K), and t represents the etching time (min).)
It is manufactured by performing an etching process at a time represented by the following, and removing quartz glass in an amount of 20 to 200 μm from the cut surface.
[0011]
The etching rate of quartz glass with hydrofluoric acid depends on two conditions of hydrofluoric acid concentration and temperature.
[0012]
[Formula 3]
v = 7.2 × C 2.4 × exp {-2.7 × 10 4 /(8.31×T)}
[Where v represents the etching rate (μm / min). ]
It has been experimentally found by the present inventors that there is a relationship of Since there is a relationship of t = V / v between the etching rate, the etching time, and the etching amount, Equation 2 is derived. By using this Equation 2, any etching conditions (hydrofluoric acid concentration, temperature, etching amount) are derived. Etching time at can be determined.
[0013]
FIG. 2 shows an example of the change in the surface roughness of the grooved surface due to the hydrofluoric acid etching. The surface roughness rapidly increases immediately after the etching process and reaches a maximum value, and then gradually decreases and then becomes constant. Reach value. The turtle shell structure appears after the surface roughness reaches the maximum, but the etching amount of quartz glass up to that time depends on the cutting conditions such as the type of blade used for cutting, the peripheral speed of the blade, and the feed rate, and the initial stage after cutting It is necessary to increase the etching amount as the surface becomes rougher. In the cutting conditions of the present invention, the etching amount is preferably in the range of 20 to 200 μm. If the etching amount is less than 20 μm, the tortoiseshell structure does not appear, and even if the quartz glass with an amount exceeding 200 μm is removed, the surface structure does not change and is a wasteful etching process.
[0014]
The concentration of hydrofluoric acid used in the production method of the present invention is preferably higher because the etching time is shorter, but generally 70 wt% or less is available from the point where 70 wt% or less is available. Is used. However, if the hydrofluoric acid concentration is less than 20 wt%, etching takes too much time, which is not preferable. Therefore, the hydrofluoric acid concentration is set in the range of 20 to 70 wt%. Further, it is not necessary to control the temperature at the time of etching, but a range of 273 to 323K is preferable. If the temperature is less than 273K, it takes too much time for etching, and if it exceeds 323K, the etching solution tends to evaporate and volatilize, which is not preferable in handling.
[0015]
Since high precision is required for grooving of the quartz glass jig for heat treatment of silicon wafers of the present invention, a diamond blade is used. Specifically, the diamond blade is a metal bond type diamond blade or a resin bond type diamond. Examples thereof include a blade or a vitrified bond type diamond blade, and an electrodeposited diamond blade is not preferable because microcracks are large and the durability of the blade is poor. When the diamond blade is specifically used, in order to obtain a high-precision and high-quality cut surface, in the case of a resin bond diamond blade, the particle size: # 140 to 230, the degree of bonding: N to R, the degree of concentration: 75 In the case of a metal bond diamond blade, particle size: # 140 to 230, bonding degree: N, concentration degree: 30 to 75, and in the case of a vitrified diamond blade, particle size: # 140 The specification of -230 and the degree of concentration: 75-125 is suitable. Further, in the grooving by the diamond blade, the groove width is enlarged by the etching process, and therefore, it is preferable to cut the groove width to be smaller than a predetermined etching amount from the finished dimension of the groove width.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail based on specific examples, but the present invention is not limited thereto.
[0017]
【Example】
Examples 1-3
A wafer boat was prepared using a bar with a diameter of 12 mm, a diamond blade having the specifications shown in Table 1 was used, a peripheral speed of 1300 m / min, a feed speed of 60 mm / min, a groove depth of 6 mm, a groove width of 3 mm, and a groove pitch of 3 mm. A wafer boat was created. Each wafer boat was then processed under the etching conditions shown in Table 1. A scanning electron micrograph of the grooved surface of the wafer boat subjected to the processing of Example 1 is shown in FIG. As can be seen from the picture, there is a turtle-shell structure protrusion. The obtained quartz glass jig for heat treatment of a silicon wafer was observed for the surface shape of the grooved surface, and the surface roughness and the number of transition metal foreign objects were measured. The results are shown in Table 1.
[0018]
Comparative Example 1
A wafer boat similar to that in the example was cut with an electrodeposited diamond blade, and the same etching treatment as in Example 1 was performed. The results are shown in Table 1.
[0019]
Comparative Example 2
A wafer boat similar to that of the example was cut with a resin bond diamond blade, and then subjected to an etching treatment with a low concentration hydrofluoric acid solution conventionally employed. The results are shown in Table 1.
[0020]
The numerical values in each example and comparative example are values obtained by the following measuring methods.
(I) Surface roughness Value obtained by measuring R max and R a (centerline average roughness) by a surface roughness meter (Surfcom 300B, manufactured by Tokyo Seimitsu Co., Ltd.).
[0021]
(Ii) Average distance between protrusions A value obtained by measuring the number of protrusions per unit length from the roughness profile data obtained by the surface roughness meter of (i) above, and calculating it.
(Iii) Number of transition metal foreign bodies and their identification The number of transition metal foreign bodies by a scanning electron microscope (JSM5800LV manufactured by JEOL Ltd.) and energy dispersive X-ray analysis (Oxford. Link ISIS L2001-S / S-ATM) Measurement and identification of the elemental composition of the transition metal foreign matter.
[0023]
[Table 1]
Figure 0003956258
Note) Resin: Resin bond type diamond blade, Vitri: Vitrified bond type diamond blade, Metal: Metal bond type diamond blade, Electrodeposition: Electrodeposition type diamond blade.
[0024]
<Evaluation>
As apparent from Table 1 above, the grooved surfaces of Examples 1 to 3 have increased surface roughness but have a turtle shell structure, no micro unevenness or micro cracks, and no generation of particles. There is almost no sign and high purity.
[0025]
On the other hand, there is a turtle shell structure on the grooved surface of Comparative Example 1, there are no micro unevenness or micro cracks, no particles are generated, and almost no transition metal foreign matter is seen, but the turtle shell structure has a large protrusion interval and surface roughness. The silicon wafer was damaged from a large place.
[0026]
Further, since the etching treatment with hydrofluoric acid was not sufficient on the grooved surface of Comparative Example 2, the turtle shell structure did not appear on the grooved surface, and the transition metal foreign matter was not completely removed.
[0027]
【The invention's effect】
The quartz glass jig for heat treatment of a silicon wafer according to the present invention has a high-purity cutting surface in which the grooved surface has a turtle shell structure, no micro unevenness or micro cracks, no particles are generated, and no transition metal foreign matter remains. It is a quartz glass jig. Therefore, in the heat treatment of the silicon wafer using the quartz glass jig, the silicon wafer is not damaged or contaminated, and a high-quality silicon wafer can be manufactured with a high yield. The quartz glass jig for silicon wafer heat treatment can be easily manufactured by treating a jig obtained by a conventional production method under specific etching conditions, and has a high industrial value.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a grooved surface of a quartz glass jig for heat treatment of a silicon wafer.
FIG. 2 is a graph showing a change in surface roughness of a grooved surface due to HF etching.
3 is a scanning electron micrograph of a groove cut surface of a quartz glass jig for heat treatment of a silicon wafer of Example 1. FIG.

Claims (4)

切削加工による溝切り面を有するシリコンウエーハ熱処理用石英ガラス治具において、前記溝切り面が亀甲構造をなし、亀甲構造の突起間の平均間隔が20〜200μmで、かつ溝切り面全体の表面粗さが中心線平均粗さ(R)で0.5〜5μm、突起の凹部に対する最大高さ(Rmax)が2〜20μmであることを特徴とするシリコンウエーハ熱処理用石英ガラス治具。In a quartz glass jig for silicon wafer heat treatment having a grooved surface by cutting, the grooved surface has a turtle shell structure, an average interval between protrusions of the turtle shell structure is 20 to 200 μm, and the entire surface of the groove surface is rough. A quartz glass jig for heat treatment of a silicon wafer, having a center line average roughness (R a ) of 0.5 to 5 μm and a maximum height (R max ) with respect to the concave portion of the protrusions of 2 to 20 μm. シリコンウエーハ熱処理用石英ガラス治具を切削加工したのち、20〜70wt%のフッ酸を用い、温度(T)273〜323Kで、かつ式1
【式1】
Figure 0003956258
(ただし、Vはエッチング量(μm)、Cはフッ酸濃度(wt%)、Tは絶対
温度(K)、tはエッチング時間(min)を表す。)
で表わされる時間でエッチング処理を行い、切削面から石英ガラスを20〜200μm除去して溝切り面を亀甲構造とし、亀甲構造の突起間の平均間隔を20〜200μm、溝切り面全体の表面粗さを中心線平均粗さ(R)で0.5〜5μm、突起の凹部に対する最大高さ(Rmax)を2〜20μmすることを特徴とする請求項1記載のシリコンウエーハ熱処理用石英ガラス治具の製造方法。
After cutting a quartz glass jig for silicon wafer heat treatment, 20 to 70 wt% hydrofluoric acid is used, the temperature (T) is 273 to 323 K, and the formula 1
[Formula 1]
Figure 0003956258
(However, V represents the etching amount (μm), C represents the hydrofluoric acid concentration (wt%), T represents the absolute temperature (K), and t represents the etching time (min).)
Etching is performed for a time represented by the following: 20 to 200 μm of quartz glass is removed from the cut surface to make the grooved surface a tortoiseshell structure, the average interval between the protrusions of the tortoiseshell structure is 20 to 200 μm, and the surface roughness of the entire grooved surface The quartz glass for heat treatment of a silicon wafer according to claim 1, characterized in that the center line average roughness (R a ) is 0.5 to 5 µm, and the maximum height (R max ) with respect to the concave portion of the protrusion is 2 to 20 µm. Jig manufacturing method.
切削加工をダイヤモンドブレードで行うことを特徴とする請求項記載のリコンウエーハ熱処理用石英ガラス治具の製造方法。The method of claim 2 wherein the divorced wafer heat-treating the silica glass jig for cutting and performing a diamond blade. ダイヤモンドブレードがメタルボンド型ダイヤモンドブレード、レジンボンド型ダイヤモンドブレード又はビトリファイドボンド型ダイヤモンドブレードのいずれかであることを特徴とする請求項記載のリコンウエーハ熱処理用石英ガラス治具の製造方法。Diamond blade metal bond-type diamond blade manufacturing process according to claim 3 divorced wafer heat treatment for a quartz glass jig, wherein a is any of resin-bonded type diamond blade or vitrified bond-type diamond blade.
JP19813398A 1998-06-30 1998-06-30 Quartz glass jig for silicon wafer heat treatment having a high purity grooving surface and manufacturing method thereof Expired - Lifetime JP3956258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19813398A JP3956258B2 (en) 1998-06-30 1998-06-30 Quartz glass jig for silicon wafer heat treatment having a high purity grooving surface and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19813398A JP3956258B2 (en) 1998-06-30 1998-06-30 Quartz glass jig for silicon wafer heat treatment having a high purity grooving surface and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000021888A JP2000021888A (en) 2000-01-21
JP3956258B2 true JP3956258B2 (en) 2007-08-08

Family

ID=16386007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19813398A Expired - Lifetime JP3956258B2 (en) 1998-06-30 1998-06-30 Quartz glass jig for silicon wafer heat treatment having a high purity grooving surface and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3956258B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60128302T2 (en) * 2000-08-29 2008-01-24 Heraeus Quarzglas Gmbh & Co. Kg Plasma remains quartz glass holder
JP7325167B2 (en) * 2017-03-16 2023-08-14 富士電機株式会社 Semiconductor device manufacturing method
CN115609247B (en) * 2022-12-16 2023-05-30 山西航天清华装备有限责任公司 Thickness processing method for corrugated thin-wall axial V-shaped groove

Also Published As

Publication number Publication date
JP2000021888A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
TWI321337B (en) Methods of making silicon carbide articles capable of reducing wafer contamination
EP2551083A1 (en) Cutter wheel, manual scribing tool and scribing device
JPH09306980A (en) Vertical wafer boat
JP2006517471A (en) Method for polishing inner surface of tubular brittle material and tubular brittle material obtained by the polishing method
KR20000029135A (en) Welding method
JP5211543B2 (en) Wafer support jig, vertical heat treatment boat equipped with the same, and method for manufacturing wafer support jig
JP3956258B2 (en) Quartz glass jig for silicon wafer heat treatment having a high purity grooving surface and manufacturing method thereof
JP4889044B2 (en) Quartz glass jig for heat treatment of recon wafer and method for forming groove cut surface of wafer mounting member provided in the jig
JP3985243B2 (en) Quartz glass jig having large irregularities on the surface and manufacturing method thereof
KR100473705B1 (en) Quartz glass article having sand blast-treated surface and method for cleaning the same
JP2010042991A (en) Silica glass jig used in process for manufacturing semiconductor
EP1193327B1 (en) Silica glass apparatus for semiconductor industry and method for producing the same
KR20030052998A (en) Seed crystal for production of silicon single crystal and method for production of silicon single crystal
US6455352B1 (en) Pin array assembly and method of manufacture
JP5075184B2 (en) Scribing wheel
JP3450112B2 (en) Surface treatment method for quartz glass jig and surface treated jig
KR100607890B1 (en) Film thickness measuring monitor wafer
JPH1059744A (en) Silica glass article having matte surface for semiconductor industry and its production
JPH09245994A (en) Electrode for processing device utilizing plasma, and manufacture of same electrode
JP4437365B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP4539794B2 (en) Silica glass jig for semiconductor industry and manufacturing method thereof
JP4211592B2 (en) Manufacturing method of wafer support
JP2004063617A (en) Jig for heat treating silicon wafer
JPH10194876A (en) Production of jig for semiconductor
JPS59172647A (en) Manufacture of mask plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term