JP3955394B2 - Manufacturing method of spherical semiconductor device - Google Patents

Manufacturing method of spherical semiconductor device Download PDF

Info

Publication number
JP3955394B2
JP3955394B2 JP21044398A JP21044398A JP3955394B2 JP 3955394 B2 JP3955394 B2 JP 3955394B2 JP 21044398 A JP21044398 A JP 21044398A JP 21044398 A JP21044398 A JP 21044398A JP 3955394 B2 JP3955394 B2 JP 3955394B2
Authority
JP
Japan
Prior art keywords
spherical
spherical semiconductor
semiconductor element
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21044398A
Other languages
Japanese (ja)
Other versions
JP2000031190A (en
Inventor
宏平 巽
健二 下川
英児 橋野
宣生 竹田
敦之 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Materials Co Ltd filed Critical Nippon Steel Materials Co Ltd
Priority to JP21044398A priority Critical patent/JP3955394B2/en
Priority to US09/350,125 priority patent/US6509645B2/en
Publication of JP2000031190A publication Critical patent/JP2000031190A/en
Priority to US09/851,324 priority patent/US20020132462A1/en
Priority to US10/255,759 priority patent/US6909182B2/en
Application granted granted Critical
Publication of JP3955394B2 publication Critical patent/JP3955394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1017Shape being a sphere

Landscapes

  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置、特に表面に1つ以上の電極を有する球状半導体素子からなる球状半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、シリコンウェハ上に集積回路を形成する、これまでの半導体デバイスの代わりに球状シリコンの表面に回路が形成されてなる球状半導体素子が開発されている。この球状半導体素子はその表面に1つ以上の電極を有し、種々の機能を持つ球状半導体素子を組み合わせることにより、多様な機能を持つ半導体装置を実現することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる球状半導体素子はそれ自体では機能することができず、つまり外部回路等と電気信号をやり取りするめに外部と電気的に接続する入出力手段が必要である。このように球状半導体素子自体は優れた機能を持ちながらも、従来では特にその実装レベルで有効な手段がないのが実情であった。
【0004】
本発明はかかる実情に鑑み、外部との接続性に優れた球状半導体装置の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の球状半導体装置の製造方法は、球状半導体素子の表面電極に球状バンプを有する半導体装置の製造方法であって、配列基板上の前記球状半導体素子の表面電極に対応する位置に、球状バンプを形成すべき導電性ボールを仮配列させ、各導電性ボールを前記球状半導体素子の表面電極に転写接合することを特徴とする。
【0006】
また、本発明の球状半導体装置の製造方法において、前記導電性ボールを配列基板から前記球状半導体素子の表面電極に転写する際、前記配列基板上の各導電性ボールを位置規制しながら転写するようにしたことを特徴とする。
【0007】
また、本発明の球状半導体装置の製造方法において、前記導電性ボールを配列基板から前記球状半導体素子の表面電極に転写する際、配列基板表面と前記球状半導体素子表面の間に所定の間隙が形成されるようにしたことを特徴とする。
【0008】
また、本発明の球状半導体装置の製造方法において、前記導電性ボールは、熱圧着により球状半導体素子の表面電極に転写接合されることを特徴とする。
【0009】
また、本発明の球状半導体装置の製造方法において、前記導電性ボールは、溶着により前記球状半導体素子の表面電極に転写接合されることを特徴とする。
【0010】
また、本発明の球状半導体装置の製造方法において、前記球状半導体素子の表面電極もしくは導電性ボールにフラックスを塗布し、導電性ボールを該電極に転写接合することを特徴とする。
【0011】
また、本発明の球状半導体装置の製造方法において、球状半導体素子の電極1組以上の導電性ボールを前記配列基板に配列させておき、1枚の配列基板から1組以上の導電性ボールを供給転写することによりバンプを形成することを特徴とする。
【0012】
本発明によれば、球状半導体素子の表面電極に対応する配列孔を有する配列基板を使用する。この配列基板に一旦、導電性ボールを仮配列させておき、導電性ボールと球状半導体素子の電極とを位置合わせしながら、両者を接触させて導電性ボールを表面電極に転写接合する。
【0013】
この場合特に半導体素子の表面は球面であるから、導電性ボールを仮配列する際に単に配列基板上に載置しただけでは転写時に位置ずれを起こしてしまう。本発明では配列基板上の各導電性ボールを位置規制しながら接触させることで、導電性ボールを適正かつ確実に転写することができる。
【0014】
【発明の実施の形態】
以下、図面に基づき本発明による半導体装置の製造方法の好適な実施形態を説明する。
図1は、本発明に係る半導体装置の一実施形態を示している。この例ではたとえば図示のように、球状半導体素子1の電極の位置に導電性の球状バンプ10が形成されている。
【0015】
ここで、球状半導体素子1は球状のシリコン結晶材料を用い、複数の製造工程を経て球状結晶材料の表面に所望の回路を形成することでつくられる。この球状半導体素子1自体の製造工程としては主に、結晶材料の清浄工程、酸化膜形成工程、フォトレジスト膜形成工程、球面露光によるフォトリソグラフィ工程、パターン現像工程、エッチング工程等を含んでいる。これらの工程により形成された回路には、外部との電気的接続を行うための電極が設けられる。すなわち複数の電極が球状半導体素子1の球面に沿って列設される。
【0016】
たとえば、図1の例のように球状半導体素子1の表面の円周に沿って、外部との接続対象となる1組の球状バンプ10が形成されている。球状バンプ10は、導電性の金属ボールを球状半導体素子1の電極部に転写したものである。これら1組の球状バンプ10は、共通の接触平面(球面であってもよい)Sを有する。この接触平面Sと球状半導体素子1の表面との間に所定の間隙が形成されるように、1組の球状バンプ10を球状半導体素子1から突出配置してある。
【0017】
図2は、球状バンプ10の配列例を模式的に示している。接触平面Sに接する1組の球状バンプ10の各々は、球状半導体素子1の表面に形成されている電極2に接合する。図から明らかなように接触平面Sと球状半導体素子1の表面(頂点Pとする)間には間隙Gが形成される。この間隙Gを形成するように球状バンプ10を球状半導体素子1から突出させて配置することで、球状バンプ10をたとえば接続対象に加圧して接合する際、球状バンプ10の有効な加圧変形しろを確保し、適正なバンプ接合を保証する。
【0018】
図2の図示例において、頂点Pを通る接触平面S′とした場合には球状半導体素子1の表面との間に間隙がなくなり、このような状態では適正なバンプ接合が難しくなる。したがって、球状バンプ10の配列位置は、下記式を満足することが好ましい。
R−r≦(r+R)cosθ (0≦θ≦2π)
上式において、Rは球状半導体素子の半径、rは球状バンプの半径、またθは球状半導体素子と球状バンプの中心を結ぶ線と頂点Pを通る直径とのなす角度である。
【0019】
上記構成のように球状半導体素子1の表面の電極2に球状バンプ10を有する球状半導体装置を製造する本発明方法は、球状半導体素子1の表面の電極2に対応する配列孔を有する配列基板を使用する。この配列基板上に球状バンプ10を形成すべき導電性の金属ボールを仮配列させ、各導電性の金属ボールを球状半導体素子1の表面電極2に転写接合するというものである。
【0020】
ここで、図3は本発明方法に係る配列基板20上に、球状バンプ10を形成するための導電性の金属ボール11を仮配列した様子を示している。図1のように球状半導体素子1の表面の円周に沿って球状バンプ10を形成する場合には、図3に示されるように金属ボール11が円形に仮配列される。
【0021】
各金属ボール11は、図4に示すように配列基板20の配列孔21によって位置決めされ、保持されている。配列孔21は球状半導体素子1の電極2に対応して、この例では円周に沿って形成されている。なお、配列基板20は平板状のものであってよい。配列孔21の開口部21aはテーパ状に形成されており、このようにテーパを付すことで金属ボール11の座りをよくし、正確に位置決め保持することができる。
【0022】
ここで図5に示すように、配列孔21の開口部21aのテーパ角αは、好ましくは10°<α<60°の範囲に設定される。
また、最も好ましくは30°−θ<α<60°−θ(θ<20°)の範囲とする。
【0023】
また、配列基板20の配列孔21を適当なバキューム源(図示せず)と接続しておいてもよい。つまり配列孔21に仮配列された金属ボール11を図4の点線のように負圧吸引し、これにより金属ボール11を配列孔21に吸着させるようにすることができる。
【0024】
本発明方法において金属ボール11は、熱圧着により球状半導体素子1の表面電極2に転写接合することができる。図6において、配列基板20には前述の図3のように金属ボール11が円形に仮配列されているものとする。そして、配列基板20上に仮配列された金属ボール11に対して、球状半導体素子1を下降させる。金属ボール11と球状半導体素子1の電極2とを位置合わせしながら、両者を接触させる。このとき金属ボール11を適度に加熱して電極2に押しつけることで、金属ボール11を電極2に転写接合することができ、これにより球状半導体素子1の各電極2に球状バンプ10が形成される。
【0025】
上記の場合金属ボール11は、図4に示したように配列基板20の配列孔21にてテーパ状の開口部21aによって正確に位置決め保持されている。金属ボール11を電極2に転写する際、金属ボール11がぐらつかないように位置規制することで、金属ボール11を適正かつ確実に転写することができる。
【0026】
また、金属ボール11の転写時に配列基板20の基板表面20aと球状半導体素子1の表面(頂点P、図2参照)との間には間隙Gが形成されるようにする。なお、この間隙Gは電極2の配列位置、金属ボール11の大きさ等これらの幾何学的関係によって決まる。
【0027】
上記のように金属ボール11を転写接合して、球状半導体素子1の各電極2に球状バンプ10を形成する場合、金属ボール11をバキュームによって配列孔21に吸着させるようにしてもよい。このバキュームを用いると、金属ボール11が配列基板20の下面側にくるように保持することができ、上述の場合とは上下位置関係を逆にして金属ボール11を転写接合することができる。
【0028】
また、本発明方法において金属ボール11は、溶着により球状半導体素子1の表面の電極2に転写接合することができる。この場合球状半導体素子1の電極2もしくは金属ボール11にフラックスを塗布しておくのが好ましい。つまりアルミニウム等の合金からなる電極2は、一般には半田等の低融点金属とは濡れ性が悪いため、上記のようにフラックスを塗布することで良好な接合性を確保することができる。また、半田酸化膜の除去、金属ボールの固定等の目的にもフラックスとして有用な機能を発揮する。
【0029】
本発明に係る半導体装置を実装する場合、上記のように形成される球状バンプ10を介して外部回路等に接続することができる。つまり球状半導体素子1の電極2はたとえば、セラミックス基板、フィルムキャリア、シリコン基板、プリント回路基板、リードフレーム、半導体チップまたは球状半導体素子それぞれの電極と接続される。
【0030】
ここで図7(A)は、球状半導体素子1を用いたBGAパッケージの例を示している。図において、球状半導体素子1の各電極2はそれに形成された球状バンプ10を介して、プリント回路基板30と接続される。球状半導体素子1が接続されたプリント回路基板30はさらに、各種の電子機器等と接続され、これらの電子機器との間で電気信号のやり取りを行うことができる。
【0031】
この例の場合をはじめ本発明の半導体装置を実装するにあたって、図7(A)に示すように球状半導体素子1を封止材料3で封止するとよい。なお、この封止材料3としては、樹脂あるいは樹脂とフィラーを含むモールドコンパウンド等の絶縁材料で封止するのが好ましい。このように封止することで、球状半導体素子1の回路面の保護を図り、あるいは球状半導体素子1とプリント回路基板30等の熱膨張係数の差に起因する熱歪みを有効に抑制することができる。
【0032】
図7(B)に示すように複数の球状半導体素子1が各電極2に形成された複数の球状バンプ10を介して相互に接続され、このように接続されたものがプリント回路基板20と接続されるものであってもよい。この場合、図7(A)に示したように複数の球状半導体素子1全体を封止材料3で封止してもよい。
【0033】
あるいはまた、図8は、球状半導体素子1を用いたQFPパッケージの例を示している。図において、球状半導体素子1の各電極2はそれに形成された球状バンプ10を介して、リードフレーム31と接続される。この場合にも球状半導体素子1を封止材料3で封止するとよい。
【0034】
さらに、図9は所謂、複数個どりで球状半導体素子1に球状バンプ10を転写接合する例を示している。この例は、球状半導体素子の電極1組以上の金属ボールを配列基板に配列させておき、1枚の配列基板から1組以上の金属ボールを供給転写するというものである。
【0035】
たとえば、まず図9(A)のように複数の球状半導体素子1が保持基板100に並べて保持される。この場合、各球状半導体素子1の電極2が下側に配置されるようにする。配列基板200には球状半導体素子1に対応して、複数組の金属ボール11を仮配列させておく。なお、金属ボール11は、配列基板200に形成されている仮配列用のディンプルもしくは凹部201(図9(B)参照)によって正確に位置決めされているものとする。この電極2と金属ボール11をアライメントした状態で、保持基板100を配列基板200に重ね合わせる。
【0036】
保持基板100と配列基板200に重ね合わせて、適度な圧力をかけることにより金属ボール11を電極2に転写接合することができる。つぎに、図9(B)のように保持基板100を引き上げると、球状半導体素子1の各電極2に球状バンプ10が形成される。このように複数の球状半導体素子1に一括でバンプを形成することで、製造実装工程を大幅に効率化することができる。
【0037】
本発明の好適な実施の形態を説明したが、球状半導体素子1の電極2の位置に形成されるべき球状バンプ10の配列の仕方等につき、たとえば図1等に示した円形状の場合のみに限定されるものではなく、その他種々の配列方法を採用可能であり、いずれの場合も形成された球状バンプ10を介して外部との電気的接続を容易かつ的確に行うことができる。
【0038】
【発明の効果】
以上説明したように本発明によれば、この種の球状半導体素子から成る半導体装置の製造において、配列基板に一旦、導電性ボールを仮配列させておき、導電性ボールと球状半導体素子の電極とを位置合わせしながら、両者を接触させて導電性ボールを表面電極に転写接合する。これより導電性ボールでなる優れた特性の球状バンプを形成することができ、この球状バンプを介して外部回路等との良好な電気的接続を実現することができる。
【図面の簡単な説明】
【図1】本発明の半導体装置の製造方法に係る一実施形態を示す斜視図である。
【図2】本発明の半導体装置における球状バンプの配列例を模式的に示す図である。
【図3】本発明の実施形態における配列基板上に金属ボールを仮配列した様子を示す平面図である。
【図4】図3に示した配列基板上に仮配列された金属ボールを示す断面図である。
【図5】本発明の半導体装置の製造方法に係る配列基板の配列孔まわりの部分拡大図である。
【図6】本発明の半導体装置の製造方法における金属ボール転写時の様子を示す図である。
【図7】本発明に係る半導体装置のそれぞれ実装例を示す図である。
【図8】本発明に係る半導体装置の別の実装例を示す図である。
【図9】本発明の半導体装置の製造方法における複数個どりの例を示す図である。
【符号の説明】
1 球状半導体素子
2 電極
3 封止材料
10 球状バンプ
11 金属ボール
20 配列基板
21 配列孔
21a 開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly to a method for manufacturing a spherical semiconductor device comprising a spherical semiconductor element having one or more electrodes on its surface.
[0002]
[Prior art]
In recent years, a spherical semiconductor element in which a circuit is formed on the surface of spherical silicon has been developed instead of a conventional semiconductor device that forms an integrated circuit on a silicon wafer. This spherical semiconductor element has one or more electrodes on its surface, and a semiconductor device having various functions can be realized by combining spherical semiconductor elements having various functions.
[0003]
[Problems to be solved by the invention]
However, such a spherical semiconductor element cannot function by itself, that is, input / output means that is electrically connected to the outside is necessary to exchange electrical signals with an external circuit or the like. As described above, while the spherical semiconductor element itself has an excellent function, conventionally, there is no effective means particularly at the mounting level.
[0004]
In view of such circumstances, an object of the present invention is to provide a method for manufacturing a spherical semiconductor device excellent in external connectivity.
[0005]
[Means for Solving the Problems]
A method for manufacturing a spherical semiconductor device according to the present invention is a method for manufacturing a semiconductor device having a spherical bump on a surface electrode of a spherical semiconductor element, wherein the spherical bump is placed at a position corresponding to the surface electrode of the spherical semiconductor element on an array substrate. The conductive balls to be formed are temporarily arranged, and each conductive ball is transferred and bonded to the surface electrode of the spherical semiconductor element.
[0006]
In the method of manufacturing a spherical semiconductor device according to the present invention, when transferring the conductive balls from the array substrate to the surface electrode of the spherical semiconductor element, the conductive balls on the array substrate are transferred while regulating the position. It is characterized by that.
[0007]
In the method for manufacturing a spherical semiconductor device of the present invention, a predetermined gap is formed between the surface of the array substrate and the surface of the spherical semiconductor element when the conductive balls are transferred from the array substrate to the surface electrode of the spherical semiconductor element. It is made to be made to be done.
[0008]
In the method for manufacturing a spherical semiconductor device of the present invention, the conductive ball is transferred and bonded to the surface electrode of the spherical semiconductor element by thermocompression bonding.
[0009]
In the method for manufacturing a spherical semiconductor device of the present invention, the conductive ball is transferred and bonded to the surface electrode of the spherical semiconductor element by welding.
[0010]
In the method for manufacturing a spherical semiconductor device of the present invention, a flux is applied to the surface electrode or conductive ball of the spherical semiconductor element, and the conductive ball is transferred and bonded to the electrode.
[0011]
In the method for manufacturing a spherical semiconductor device of the present invention, one or more sets of conductive balls of electrodes of a spherical semiconductor element are arranged on the array substrate, and one or more sets of conductive balls are supplied from one array substrate. A bump is formed by transferring.
[0012]
According to the present invention, an array substrate having array holes corresponding to the surface electrodes of the spherical semiconductor element is used. The conductive balls are temporarily arranged on the array substrate, and the conductive balls and the electrodes of the spherical semiconductor element are aligned, and the conductive balls are transferred and bonded to the surface electrode by bringing them into contact with each other.
[0013]
In this case, in particular, since the surface of the semiconductor element is a spherical surface, when the conductive balls are temporarily arranged, simply placing them on the arrangement substrate causes a displacement in the transfer. In the present invention, the conductive balls on the array substrate are brought into contact with each other while restricting the position, whereby the conductive balls can be transferred appropriately and reliably.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of a method for manufacturing a semiconductor device according to the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of a semiconductor device according to the present invention. In this example, as shown, for example, conductive spherical bumps 10 are formed at the positions of the electrodes of the spherical semiconductor element 1.
[0015]
Here, the spherical semiconductor element 1 is manufactured by using a spherical silicon crystal material and forming a desired circuit on the surface of the spherical crystal material through a plurality of manufacturing steps. The manufacturing process of the spherical semiconductor element 1 itself mainly includes a crystal material cleaning process, an oxide film forming process, a photoresist film forming process, a photolithography process by spherical exposure, a pattern developing process, an etching process, and the like. The circuit formed by these steps is provided with electrodes for electrical connection with the outside. That is, a plurality of electrodes are arranged along the spherical surface of the spherical semiconductor element 1.
[0016]
For example, a set of spherical bumps 10 to be connected to the outside are formed along the circumference of the surface of the spherical semiconductor element 1 as in the example of FIG. The spherical bump 10 is obtained by transferring a conductive metal ball to the electrode portion of the spherical semiconductor element 1. The set of spherical bumps 10 has a common contact plane (which may be a spherical surface) S. A set of spherical bumps 10 are arranged so as to protrude from the spherical semiconductor element 1 so that a predetermined gap is formed between the contact plane S and the surface of the spherical semiconductor element 1.
[0017]
FIG. 2 schematically shows an arrangement example of the spherical bumps 10. Each of the set of spherical bumps 10 in contact with the contact plane S is bonded to the electrode 2 formed on the surface of the spherical semiconductor element 1. As is apparent from the figure, a gap G is formed between the contact plane S and the surface of the spherical semiconductor element 1 (referred to as apex P). By disposing the spherical bumps 10 so as to protrude from the spherical semiconductor element 1 so as to form the gap G, when the spherical bumps 10 are pressed and joined to the connection target, for example, effective spherical deformation of the spherical bumps 10 is allowed. To ensure proper bump bonding.
[0018]
In the illustrated example of FIG. 2, when the contact plane S ′ passes through the apex P, there is no gap between the spherical semiconductor element 1 and the bump bonding becomes difficult in such a state. Therefore, the arrangement position of the spherical bumps 10 preferably satisfies the following formula.
R−r ≦ (r + R) cos θ (0 ≦ θ ≦ 2π)
In the above equation, R is the radius of the spherical semiconductor element, r is the radius of the spherical bump, and θ is the angle formed by the line passing through the center of the spherical semiconductor element and the spherical bump and the diameter passing through the apex P.
[0019]
The method of the present invention for manufacturing a spherical semiconductor device having the spherical bumps 10 on the electrodes 2 on the surface of the spherical semiconductor element 1 as in the above-described configuration is an arrangement substrate having array holes corresponding to the electrodes 2 on the surface of the spherical semiconductor element 1 use. The conductive metal balls on which the spherical bumps 10 are to be formed are temporarily arranged on the array substrate, and each conductive metal ball is transferred and bonded to the surface electrode 2 of the spherical semiconductor element 1.
[0020]
Here, FIG. 3 shows a state in which conductive metal balls 11 for forming the spherical bumps 10 are temporarily arranged on the array substrate 20 according to the method of the present invention. When the spherical bumps 10 are formed along the circumference of the surface of the spherical semiconductor element 1 as shown in FIG. 1, the metal balls 11 are temporarily arranged in a circle as shown in FIG.
[0021]
As shown in FIG. 4, each metal ball 11 is positioned and held by the array hole 21 of the array substrate 20. The array holes 21 correspond to the electrodes 2 of the spherical semiconductor element 1 and are formed along the circumference in this example. The array substrate 20 may be a flat plate. The openings 21a of the array holes 21 are formed in a taper shape, and by providing the taper in this way, the sitting of the metal balls 11 can be improved and the positioning can be accurately performed.
[0022]
Here, as shown in FIG. 5, the taper angle α of the openings 21a of the array holes 21 is preferably set in a range of 10 ° <α <60 °.
Most preferably, the range is 30 ° −θ <α <60 ° −θ (θ <20 °).
[0023]
Further, the array holes 21 of the array substrate 20 may be connected to a suitable vacuum source (not shown). That is, the metal balls 11 temporarily arranged in the array holes 21 can be sucked with negative pressure as indicated by the dotted lines in FIG. 4, and thereby the metal balls 11 can be adsorbed to the array holes 21.
[0024]
In the method of the present invention, the metal ball 11 can be transferred and bonded to the surface electrode 2 of the spherical semiconductor element 1 by thermocompression bonding. In FIG. 6, it is assumed that the metal balls 11 are temporarily arranged in a circular pattern on the array substrate 20 as shown in FIG. Then, the spherical semiconductor element 1 is lowered with respect to the metal balls 11 temporarily arranged on the arrangement substrate 20. While the metal ball 11 and the electrode 2 of the spherical semiconductor element 1 are aligned, they are brought into contact with each other. At this time, the metal ball 11 is appropriately heated and pressed against the electrode 2, whereby the metal ball 11 can be transferred and bonded to the electrode 2, thereby forming a spherical bump 10 on each electrode 2 of the spherical semiconductor element 1. .
[0025]
In the above case, the metal balls 11 are accurately positioned and held by the tapered openings 21a in the array holes 21 of the array substrate 20, as shown in FIG. When the metal ball 11 is transferred to the electrode 2, the metal ball 11 can be transferred appropriately and reliably by restricting the position so that the metal ball 11 does not wobble.
[0026]
In addition, a gap G is formed between the substrate surface 20a of the array substrate 20 and the surface of the spherical semiconductor element 1 (vertex P, see FIG. 2) when the metal balls 11 are transferred. The gap G is determined by these geometrical relations such as the arrangement position of the electrodes 2 and the size of the metal balls 11.
[0027]
When the metal balls 11 are transferred and bonded as described above to form the spherical bumps 10 on the respective electrodes 2 of the spherical semiconductor element 1, the metal balls 11 may be attracted to the array holes 21 by vacuum. When this vacuum is used, the metal balls 11 can be held so as to be on the lower surface side of the array substrate 20, and the metal balls 11 can be transferred and bonded with the vertical relationship reversed from the above case.
[0028]
In the method of the present invention, the metal ball 11 can be transferred and bonded to the electrode 2 on the surface of the spherical semiconductor element 1 by welding. In this case, it is preferable to apply a flux to the electrode 2 or the metal ball 11 of the spherical semiconductor element 1. That is, the electrode 2 made of an alloy such as aluminum generally has poor wettability with a low-melting-point metal such as solder, and thus good bonding can be secured by applying the flux as described above. Also, it exhibits a useful function as a flux for the purpose of removing the solder oxide film and fixing the metal ball.
[0029]
When the semiconductor device according to the present invention is mounted, it can be connected to an external circuit or the like via the spherical bump 10 formed as described above. That is, the electrode 2 of the spherical semiconductor element 1 is connected to, for example, an electrode of each of a ceramic substrate, a film carrier, a silicon substrate, a printed circuit board, a lead frame, a semiconductor chip, or a spherical semiconductor element.
[0030]
Here, FIG. 7A shows an example of a BGA package using the spherical semiconductor element 1. In the figure, each electrode 2 of the spherical semiconductor element 1 is connected to a printed circuit board 30 through a spherical bump 10 formed thereon. The printed circuit board 30 to which the spherical semiconductor element 1 is connected is further connected to various electronic devices and the like, and electrical signals can be exchanged with these electronic devices.
[0031]
In mounting the semiconductor device of the present invention including the case of this example, the spherical semiconductor element 1 may be sealed with a sealing material 3 as shown in FIG. The sealing material 3 is preferably sealed with an insulating material such as a resin or a mold compound containing a resin and a filler. By sealing in this way, the circuit surface of the spherical semiconductor element 1 can be protected, or the thermal distortion caused by the difference in thermal expansion coefficient between the spherical semiconductor element 1 and the printed circuit board 30 can be effectively suppressed. it can.
[0032]
As shown in FIG. 7B, a plurality of spherical semiconductor elements 1 are connected to each other through a plurality of spherical bumps 10 formed on each electrode 2, and the thus connected one is connected to the printed circuit board 20. It may be done. In this case, the entire plurality of spherical semiconductor elements 1 may be sealed with the sealing material 3 as shown in FIG.
[0033]
Alternatively, FIG. 8 shows an example of a QFP package using the spherical semiconductor element 1. In the figure, each electrode 2 of the spherical semiconductor element 1 is connected to a lead frame 31 through a spherical bump 10 formed thereon. Also in this case, the spherical semiconductor element 1 may be sealed with the sealing material 3.
[0034]
Further, FIG. 9 shows an example in which a spherical bump 10 is transferred and bonded to the spherical semiconductor element 1 in a so-called plural number. In this example, one or more sets of metal balls of electrodes of a spherical semiconductor element are arranged on an array substrate, and one or more sets of metal balls are supplied and transferred from one array substrate.
[0035]
For example, first, a plurality of spherical semiconductor elements 1 are held side by side on the holding substrate 100 as shown in FIG. In this case, the electrode 2 of each spherical semiconductor element 1 is arranged on the lower side. A plurality of sets of metal balls 11 are temporarily arranged on the array substrate 200 corresponding to the spherical semiconductor elements 1. It is assumed that the metal balls 11 are accurately positioned by temporary array dimples or recesses 201 (see FIG. 9B) formed on the array substrate 200. In a state where the electrode 2 and the metal ball 11 are aligned, the holding substrate 100 is overlaid on the array substrate 200.
[0036]
The metal ball 11 can be transferred and bonded to the electrode 2 by superposing the holding substrate 100 and the array substrate 200 and applying an appropriate pressure. Next, when the holding substrate 100 is pulled up as shown in FIG. 9B, the spherical bumps 10 are formed on the respective electrodes 2 of the spherical semiconductor element 1. Thus, by forming bumps on the plurality of spherical semiconductor elements 1 in a lump, the manufacturing and mounting process can be greatly improved in efficiency.
[0037]
Although the preferred embodiment of the present invention has been described, the arrangement of the spherical bumps 10 to be formed at the position of the electrode 2 of the spherical semiconductor element 1 is only for the circular shape shown in FIG. It is not limited, and various other arrangement methods can be adopted, and in any case, electrical connection with the outside can be easily and accurately performed through the formed spherical bumps 10.
[0038]
【The invention's effect】
As described above, according to the present invention, in the manufacture of a semiconductor device composed of this type of spherical semiconductor element, the conductive balls are temporarily arranged on the array substrate, and the conductive balls and the electrodes of the spherical semiconductor elements are arranged. The conductive balls are transferred and bonded to the surface electrode by bringing them into contact with each other while aligning them. As a result, it is possible to form a spherical bump having excellent characteristics made of a conductive ball, and it is possible to realize a good electrical connection with an external circuit or the like via the spherical bump.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment according to a method of manufacturing a semiconductor device of the present invention.
FIG. 2 is a diagram schematically showing an arrangement example of spherical bumps in the semiconductor device of the present invention.
FIG. 3 is a plan view showing a state in which metal balls are temporarily arranged on the arrangement substrate in the embodiment of the present invention.
4 is a cross-sectional view showing metal balls temporarily arranged on the arrangement substrate shown in FIG. 3;
FIG. 5 is a partially enlarged view around the array hole of the array substrate according to the method of manufacturing a semiconductor device of the present invention.
FIG. 6 is a diagram showing a state at the time of metal ball transfer in the method for manufacturing a semiconductor device of the present invention.
FIG. 7 is a diagram showing a mounting example of a semiconductor device according to the present invention.
FIG. 8 is a diagram showing another example of mounting the semiconductor device according to the present invention.
FIG. 9 is a diagram showing an example of a plurality of methods in the method for manufacturing a semiconductor device of the present invention.
[Explanation of symbols]
Reference Signs List 1 spherical semiconductor element 2 electrode 3 sealing material 10 spherical bump 11 metal ball 20 array substrate 21 array hole 21a opening

Claims (7)

球状半導体素子の表面電極に球状バンプを有する半導体装置の製造方法であって、
配列基板上の前記球状半導体素子の表面電極に対応する位置に、球状バンプを形成すべき導電性ボールを仮配列させ、各導電性ボールを前記球状半導体素子の表面電極に転写接合することを特徴とする球状半導体装置の製造方法。
A method of manufacturing a semiconductor device having a spherical bump on a surface electrode of a spherical semiconductor element,
Conductive balls on which spherical bumps are to be formed are temporarily arranged at positions corresponding to the surface electrodes of the spherical semiconductor elements on the array substrate, and each conductive ball is transferred and bonded to the surface electrodes of the spherical semiconductor elements. A method for manufacturing a spherical semiconductor device.
前記導電性ボールを配列基板から前記球状半導体素子の表面電極に転写する際、前記配列基板上の各導電性ボールを位置規制しながら転写するようにしたことを特徴とする請求項1に記載の球状半導体装置の製造方法。2. The transfer according to claim 1, wherein when the conductive balls are transferred from the array substrate to the surface electrode of the spherical semiconductor element, the conductive balls on the array substrate are transferred while the position is regulated. Manufacturing method of spherical semiconductor device. 前記導電性ボールを配列基板から前記球状半導体素子の表面電極に転写する際、前記配列基板表面と前記球状半導体素子表面の間に所定の間隙が形成されるようにしたことを特徴とする請求項1または2に記載の球状半導体装置の製造方法。2. The method according to claim 1, wherein when the conductive balls are transferred from the array substrate to the surface electrode of the spherical semiconductor element, a predetermined gap is formed between the array substrate surface and the spherical semiconductor element surface. A method for manufacturing a spherical semiconductor device according to 1 or 2. 前記導電性ボールは、熱圧着により前記球状半導体素子の表面電極に転写接合されることを特徴とする請求項1〜3のいずれか1項に記載の球状半導体装置の製造方法。The method of manufacturing a spherical semiconductor device according to claim 1, wherein the conductive ball is transferred and bonded to a surface electrode of the spherical semiconductor element by thermocompression bonding. 前記導電性ボールは、溶着により前記球状半導体素子の表面電極に転写接合されることを特徴とする請求項1〜3のいずれか1項に記載の球状半導体装置の製造方法。The method for manufacturing a spherical semiconductor device according to claim 1, wherein the conductive ball is transferred and bonded to a surface electrode of the spherical semiconductor element by welding. 前記球状半導体素子の表面電極もしくは導電性ボールにフラックスを塗布し、導電性ボールを該電極に転写接合することを特徴とする請求項5に記載の球状半導体装置の製造方法。6. The method of manufacturing a spherical semiconductor device according to claim 5, wherein a flux is applied to a surface electrode or a conductive ball of the spherical semiconductor element, and the conductive ball is transferred and bonded to the electrode. 球状半導体素子の電極1組以上の導電性ボールを前記配列基板に配列させておき、1枚の配列基板から1組以上の導電性ボールを供給転写することによりバンプを形成することを特徴とする請求項1〜6のいずれか1項に記載の球状半導体装置の製造方法。One or more conductive balls of a spherical semiconductor element are arranged on the array substrate, and bumps are formed by supplying and transferring one or more conductive balls from one array substrate. The manufacturing method of the spherical semiconductor device of any one of Claims 1-6.
JP21044398A 1998-07-09 1998-07-09 Manufacturing method of spherical semiconductor device Expired - Fee Related JP3955394B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21044398A JP3955394B2 (en) 1998-07-09 1998-07-09 Manufacturing method of spherical semiconductor device
US09/350,125 US6509645B2 (en) 1998-07-09 1999-07-09 Spherical semiconductor device and method for fabricating the same
US09/851,324 US20020132462A1 (en) 1998-07-09 2001-05-09 Spherical semiconductor device and method for fabricating the same
US10/255,759 US6909182B2 (en) 1998-07-09 2002-09-27 Spherical semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21044398A JP3955394B2 (en) 1998-07-09 1998-07-09 Manufacturing method of spherical semiconductor device

Publications (2)

Publication Number Publication Date
JP2000031190A JP2000031190A (en) 2000-01-28
JP3955394B2 true JP3955394B2 (en) 2007-08-08

Family

ID=16589424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21044398A Expired - Fee Related JP3955394B2 (en) 1998-07-09 1998-07-09 Manufacturing method of spherical semiconductor device

Country Status (1)

Country Link
JP (1) JP3955394B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580749B2 (en) 2000-02-18 2004-10-27 シャープ株式会社 Mounting method of granular semiconductor device
JP2002076249A (en) * 2000-08-28 2002-03-15 Dainippon Printing Co Ltd Cluster spherical semiconductor
JP2002286959A (en) 2000-12-28 2002-10-03 Canon Inc Semiconductor device, photoelectric fusion substrate and manufacturing method for the same
JP4758030B2 (en) * 2001-06-22 2011-08-24 シャープ株式会社 Semiconductor device
JP3927883B2 (en) 2002-08-02 2007-06-13 キヤノン株式会社 Optical waveguide device and photoelectric fusion substrate using the same

Also Published As

Publication number Publication date
JP2000031190A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
US7854367B2 (en) Apparatus and method for arranging magnetic solder balls
JP2000074993A (en) High performance integrated circuit chip package
JPH11233687A (en) Semiconductor device having sub-chip scale package structure and manufacture thereof
JP2000180469A (en) Contactor for semiconductor device, tester using contactor for semiconductor device, testing method using contactor for semiconductor device and method for cleaning contactor for semiconductor device
JP2850901B2 (en) Ball arrangement jig and manufacturing method thereof
US6909182B2 (en) Spherical semiconductor device and method for fabricating the same
JP3955394B2 (en) Manufacturing method of spherical semiconductor device
JPH10247700A (en) Electronic part, mounting method thereof and mask
JPH1167795A (en) Semiconductor chip mounting device, method for mounting semiconductor chip and semiconductor device
JP4465891B2 (en) Semiconductor device
JP3568869B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP4206779B2 (en) Manufacturing method of semiconductor device
JP3904326B2 (en) Electronic device having bumps formed thereon and method of manufacturing the electronic device
JP4655269B2 (en) Method and apparatus for mounting conductive ball
JP2004247464A (en) Semiconductor device and manufacturing method therefor
JP2000306949A (en) Semiconductor device, manufacture thereof and mounting structure thereof
JP2000031189A (en) Spherical semiconductor device
JP2001298102A (en) Packaging structure of functional element and its manufacturing method
JP2001135667A (en) Method of forming bump, mold to be used therein, semiconductor device, its manufacturing method, circuit board and electronic apparatus
JP3943037B2 (en) Manufacturing method of semiconductor device
JP3759703B2 (en) Semiconductor device using COF film and manufacturing method thereof
JP2833167B2 (en) Method for forming and mounting solder bumps
JPH0410635A (en) Flip chip package mounting
JP2822990B2 (en) CSP type semiconductor device
JPH08107164A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees