JP3955242B2 - Measuring method and apparatus for flatness - Google Patents

Measuring method and apparatus for flatness Download PDF

Info

Publication number
JP3955242B2
JP3955242B2 JP2002206657A JP2002206657A JP3955242B2 JP 3955242 B2 JP3955242 B2 JP 3955242B2 JP 2002206657 A JP2002206657 A JP 2002206657A JP 2002206657 A JP2002206657 A JP 2002206657A JP 3955242 B2 JP3955242 B2 JP 3955242B2
Authority
JP
Japan
Prior art keywords
point
target surface
flatness
collimator lens
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002206657A
Other languages
Japanese (ja)
Other versions
JP2004053255A (en
Inventor
猛 小尾
Original Assignee
京立電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京立電機株式会社 filed Critical 京立電機株式会社
Priority to JP2002206657A priority Critical patent/JP3955242B2/en
Publication of JP2004053255A publication Critical patent/JP2004053255A/en
Application granted granted Critical
Publication of JP3955242B2 publication Critical patent/JP3955242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高精度の平面度が要求される電子部品や精密機械部品などの対象物の平面度を、合理的かつ高精度に測定することを可能にする測定方法並びにこの方法を用いた装置に関する。
【0002】
【従来の技術】
いわゆるデジタルカメラの撮像素子面や精密平面鏡、或は、高精度な平面を有する精密機械部品などは、それらの平面(以下、対象面という)が高い精度の平面(歪みがない平面)に形成されていることが必要であるが、その対象面がどの程度の歪みのない平面に形成されているかは、形成された対象面の平面度を、例えば光学的手法を用いて測定している。
【0003】
従来技術における平面度の測定方法の一例は、対象面上の複数の点に対して基準点からチャートパターン像を出射して対象面に結像させ、その反射像を前記基準点又は該点と共役な点において光−電気的に検出することにより、各点における検出値同士の差、或は、各検出値と予め設定した基準値の差を求め、この値に基づいて対象面の平面度の程度、つまり、対象面にどの程度の歪みなどがあるか、或は、前記検出値の差が許容範囲にあるか否かなどを判断している。
【0004】
しかし、上記のような測定形態であると、対象面の複数点に対して、各点ごとに基準点からチャートパターンを出射して対象面に結像させ、その反射像を基準点又はその点と共役な点において光−電気的に検出するという操作を行うことは、著しく手間がかかる上に、高精度の検出値も得にくいという難点がある。
【0005】
【発明が解決しようとする課題】
本発明は上記のような平面度測定の現状での問題点を解消することできる平面度の測定方法とこの方法を用いた測定装置を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
上記課題を解決することを目的としてなされた本発明測定法の構成は、固定した対象面上に設定した複数の測定点に対して基準点からチャートパターンと該パターンの背後に配 した光源によって形成するチャートパターン像を出射し前測定点において対物レンズを静止ないし微動させて結像させると共に、各測定点からの反射像をそれぞれ前記基準点の共役点において個々に光−電気的に検出し、その検出値に基づいて前記対象面の平面度を測定することを特徴とするものである。
【0007】
また、上記の測定方法を用いた本発明測定装置の構成は、コリメータレンズと、該レンズの焦点に置いたチャートパターンと該パターンの背後に配した光源と、前記コリメータレンズの平行光出射側に配設すると共に前後動可能に設けた複数の同じ対物レンズと、該対物レンズの焦点に配置した測定対象面のセット部と、該対象面から反射される複数の反射像の光路を前記コリメータレンズを通った焦点側において複数方向に偏向させ、かつ、その偏向光路上における前記コリメータレンズの共役点に配置した前記反射像と同数の光−電気検出器とから成ることを特徴とするものである。
【0008】
上記の本発明測定法においては、チャートパターン像を1個の光源と1個のチャートパターン、又は、複数の光源と複数のチャートパターンから形成させるようにしてもよい。この点は、本発明測定装置におけるチャートパターンの形成においても、同様に適用できる。
【0009】
【発明の実施の形態】
次に本発明測定方法の実施の形態例を、本発明測定装置の光学的構成例を模式的に示した図1,図2を参照しつつ説明する。
【0010】
図1,図2において、1はコリメータレンズ、2,3は、該レンズ1の焦点に配置したチャートパターンと該パターン2の背後に配される光源3として機能する半導体レーザー素子であり、図の例では、半導体レーザー素子2,3から出射されるレーザー光がパターン像2として前記コリメータレンズ1に入射し、平行な光軸に変換されて後述する5個の対物レンズ41〜45に向けて出射される。
【0011】
41〜45は前記コリメータレンズ1の出射光軸側に配した5個の同一焦点の対物レンズで、5は前記対物レンズ41〜45の焦点位置であり、この焦点面に、平面度を測定すべき対象、例えばデジタルカメラにおけるCCDの受光面が測定対象面Ojとして配置される対象面Ojのセット部が形成され、各対物レンズ41〜45の焦点が対象面Ojの測定点となる。なお、対象面Ojにおけるこの測定点の位置は、図示した例に限られるものではなく、任意に設定、或は、変更することができる。
【0012】
前記対物レンズ41〜45は、レンズ架台6に設けられ、この架台6がエンコーダ等の測長手段を具備した精密移動台7に搭載されていることにより、コリメータレンズ1の平行光軸と平行に前後移動可能に設けられている。因みに、この移動台7の移動単位は、0.1μm〜1μm程度である。ここで、対象面Ojの測定点を変更したい場合には、対物レンズ41〜45の位置を変更した別のレンズ架台6を上記レンズ架台6に代えて用いたり、或は、レンズ架台6の上で、各対物レンズ41〜45の位置を変更可能に設けておき、所望の位置に各対物レンズを移動させるようにする。なお、いずれの場合においても、各対物レンズ41〜45の位置はコリメータレンズ1の口径内である。
【0013】
8は、前記コリメータレンズにおける焦点のある側の発散光軸上に配置したビームスプリッタで、前記対物レンズ41〜45の夫々を通って反射して来る対象面Ojに結像した前記パターン像2の5個の反射像の光軸を90度偏向させるためのものである。
【0014】
91,92、並びに、94,95は、前記スプリッタ8により偏向させられた5個の反射像のうち、対象面Ojの中心での反射像を除く4個の反射像の光軸を、コリメータレンズ1の光軸とほぼ同じ向きであるが、各光軸をさらに斜め上下方向に割り振って偏向させると共に、前記中心反射像の光軸をパスさせるように、中心にパス穴93を形成した反射光軸を独立した方向に向けた4枚のミラーである。
【0015】
101〜105は、前記4枚のミラー91,92、94,95の各反射光軸上、並びに、パス穴93の背後であって、前記コリメータレンズ1の焦点との共役点に配設した5個の光−電気変換素子(以下、光−電センサという)であり、以上に述べたコリメータレンズ1から光−電センサ101〜105までの構成により、本発明測定装置の光学的構成の一例を形成する。
【0016】
いま、平面度を測定すべき対象面Ojが理想的平面であると仮定すると、対物レンズ41〜45の焦点位置5、即ち、対象面Ojに結像する5個のパターン像2の反射像を受光する各光−電センサ101〜105の出力値は、同一のピーク値を示す。しかし、前記対象面Ojの面に歪みがある、即ち、対象面Ojに各対物レンズ41〜45の焦点位置5から凹状或は凸状などにずれた部分(面)があると、このずれた部分(面)に結像するパターン像2の結像はいわゆる「ピンボケ」状態であるから、その反射像を受光するいずれかの光−電センサ101〜105の出力は、ピントが合った像を受光した光−電センサの出力よりも小さくなる。そこで、本発明では、各測定点に対応する光−電センサ101〜105の出力がピーク値になるように、移動台7を微細に前後動させて、各光−電センサ101〜105の出力がピーク値を示すときの移動台7の位置を検出する。
【0017】
本発明測定方法は、上記の各光−電センサ101〜105に得られる対象面Oj上の5点におけるパターン像2の各反射像による出力値を、予め設定されている基準値と比較演算処理したり、或は、各出力値同士を比較演算してその演算値が許容値内にあるか否かを判別することなどにより処理し、前記対象面Ojが所定の平面度にあるか否かを判別するのである。この結果、本発明では、1つの対象面Ojに対してパターン像2の像を同時に複数個結像させる一回の測定操作によって、その面Ojの平面度の良否を判別することが可能になるのである。
【0018】
上記の本発明測定方法は、図3,図4に例示した本発明測定装置によっても実施可能であるから、次にこの点について図3,図4を参照して説明する。なお、図3,図4において、図1,図2と同一部材,同一部位は同一符号で示している。
【0019】
図3,図4に示した本発明装置では、対象面Ojにおける5箇所の測定点(面)(対象面Ojの中心と四隅部)に対応して、5個のチャートパターンと夫々の光源として機能する半導体レーザー素子31〜35を、コリメータレンズ1の焦点側に、互に光学的,機械的に干渉しないように配設している。
【0020】
このため、図3,図4の装置では、個々のレーザー光によるパターン像21〜25の各出射光軸上に、出射像と反射像の光路を偏向するためのビームスプリッタ81〜85を設けると共に、4個のパターン像21,22、並びに、24,25の光軸上には、その像をコリメータレンズ1の光軸側に偏向するため4枚の偏向ミラー91,94並びに92,95が配置されている。
【0021】
101〜105は、反射光軸上において前記スプリッタ81〜85を経た後のコリメータレンズ1の共役点に配置した光−電センサで、対象面Oj上の5点に結像した夫々のパターン像21〜25の反射像のコントラストを光−電気的に検出する。この検出値は、先の実施例の場合と同様に処理して、対象面Ojの平面度の測定を行う。
【0022】
以上に説明した本発明測定装置においては、コリメータレンズ1は、1枚のレンズを用い5個のパターン像を対物レンズ51〜55に平行光の像として出射し、また、対象面Ojからの反射像をビームスプリッタ8、或は、81〜85に送っていたが、この一枚のコリメータレンズ1は、図示しないが、5個のチャートパターン像に1個の像ごとに対応した5枚のコリメータレンズに代替することができる。
【0023】
次に、本発明測定装置におけるデータの取扱い,処理の態様例について、図5のブロック図により説明する。5個の対物レンズ41〜45を載せて微細な単位で前後動可能な移動台7は、その移動データが、移動台7が具備したエンコーダ7aから距離のパルス信号でカウンタ7bに検出される。
【0024】
一方、各光−電センサ101〜105に関しては、5個の対物レンズ41〜45の焦点位置5に理想平面(対象面Oj)を置いたとき、その面の5箇所に結像するチャートパターン像2の反射像のコントラストを各センサ101〜105が受光したときに示されるピーク検出値を各測定点における基準値として、演算処理部11に格納しておく。また、対象面Ojが焦点位置5から前方(十側)、又は、後方(一側)に移動台7を微細に移動させたときの距離データも演算処理部11に供給されるように設定しておく。
【0025】
そして、実際の測定対象面Ojを対物レンズ41〜45の焦点位置5に設定されたセット部にセットし、その対象面Ojの5箇所に対してチャートパターン像2を結像させ、その反射像のコントラストを各光−電センサ101〜105により検出させ、各センサ101〜105に得られる出力値を、演算処理部11に格納されている各センサ101〜105ごとの前記基準値(ピーク値)と比較し、差が生じた各光−電センサ101〜105については、その出力がピーク値(基準値)になるように移動台7を微細に移動させて、その移動した距離を演算処理部11において測定点ごとに求める。
【0026】
このようにして、対象面Ojの各測定点における結像による光−電センサ101〜105の出力値と、移動台7を移動させて得られるピーク値とによって、上記対象面Ojの各測定点(面)が、焦点位置5(基準値)に対してどの程度の大きさ(距離)十側又は一側にあるかを検出することができるので、対象面Ojが所定の平面に形成されているか否かを測定,判別することができることになる。図5において、12aは移動台7の移動駆動源(モータM)に対する指令値のD/A変換器、12bはアンプである。また、13aは各光−電センサ101〜105の検出値を増巾するアンプ、13bはA/D変換器である。
【0027】
【発明の効果】
本発明は以上の通りであって、対象面上の複数の点に対して基準点からチャートパターン像を出射し、コリメータレンズと対物レンズを通して前記対象面に設定した複数の測定点において結像させると共に、各点からの反射像をそれぞれ前記基準点の共役点において個々に光−電気的に検出し、その検出値に基づいて前記対象面の平面度を測定するようにしたので、一回の測定操作で対象面の複数点を同時に測定することができ、従って、対象面の平面度の測定を著しく合理化,省力化することができる。
【0028】
また、本発明では一回の測定操作で対象面の複数点についてその平面度の度合いを見るから、機械系の動作を繰返すことによる測定誤差が生じ難いのみならず、そのような誤差の累積もないから、測定精度を上げるうえでも有利である。
【図面の簡単な説明】
【図1】 本発明装置の光学的構成の第一例を示した模式図
【図2】 図1の装置の要部の右側面図
【図3】 本発明装置の光学的構成の第二例を示した模式図
【図4】 図3の装置の要部の右側面図
【図5】 本発明装置における信号処理系の一例のブロック図
【符号の説明】
1 コリメータレンズ
2 チャートパターン
3 光源
41〜45 対物レンズ
5 焦点位置
6 対物レンズ架台
7 移動台
8 ビームスプリッタ
91〜95 偏向ミラー
101〜105 光−電センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a measuring method that makes it possible to measure the flatness of an object such as an electronic component or a precision machine component that requires high-precision flatness reasonably and with high accuracy, and an apparatus using this method. .
[0002]
[Prior art]
The so-called digital camera image sensor surface, precision plane mirror, or precision machine parts having a high precision plane are formed on a high precision plane (the plane without distortion). However, the degree of distortion of the target surface is determined by measuring the flatness of the formed target surface using, for example, an optical method.
[0003]
An example of a measuring method of flatness in the prior art is that a chart pattern image is emitted from a reference point to a plurality of points on the target surface and formed on the target surface, and the reflected image is the reference point or the point. By detecting photo-electrically at a conjugate point, a difference between detection values at each point or a difference between each detection value and a preset reference value is obtained, and the flatness of the target surface is calculated based on this value. That is, it is determined how much distortion is present on the target surface, or whether or not the difference between the detected values is within an allowable range.
[0004]
However, in the above measurement mode, for a plurality of points on the target surface, a chart pattern is emitted from the reference point for each point to form an image on the target surface, and the reflected image is the reference point or the point. It is extremely troublesome to perform an operation of photo-electrically detecting at a point conjugate to the point of being difficult to obtain a highly accurate detection value.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a flatness measuring method and a measuring apparatus using this method, which can solve the problems in the present state of flatness measurement as described above.
[0006]
[Means for Solving the Problems]
Configuration of the present invention assay was made in order to solve the above problems, formed by distribution light sources behind the chart pattern and the pattern from the reference point to a plurality of measurement points set on the fixed object surface prior Symbol each measurement point emits chart pattern image that together form an image by stationary or fine movement of the objective lens, individually light at the conjugate point of each of the reference point a reflection image from the measurement point - electrically detected The flatness of the target surface is measured based on the detected value.
[0007]
The configuration of the present measuring apparatus using the above measurement method, a collimator lens, a light source arranged behind the switch Yatopatan and the pattern placed in the focal point of the lens, into parallel light exit side of the collimator lens A plurality of the same objective lenses that are disposed and can be moved back and forth, a set portion of a measurement target surface disposed at a focal point of the objective lens, and an optical path of a plurality of reflected images reflected from the target surface, the collimator lens And the same number of photo-electric detectors as the reflection image arranged at the conjugate point of the collimator lens on the deflection optical path. .
[0008]
In the measurement method of the present invention, the chart pattern image may be formed from one light source and one chart pattern, or a plurality of light sources and a plurality of chart patterns. This point can be similarly applied to the formation of a chart pattern in the measurement apparatus of the present invention.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the measuring method of the present invention will be described with reference to FIGS. 1 and 2 schematically showing an optical configuration example of the measuring apparatus of the present invention.
[0010]
1 and 2, 1 is a collimator lens, and 2 and 3 are semiconductor laser elements that function as a chart pattern disposed at the focal point of the lens 1 and a light source 3 disposed behind the pattern 2, In the example, laser light emitted from the semiconductor laser elements 2 and 3 enters the collimator lens 1 as a pattern image 2 and is converted into parallel optical axes and directed to five objective lenses 4 1 to 4 5 described later. Are emitted.
[0011]
Reference numerals 4 1 to 4 5 denote five confocal objective lenses arranged on the output optical axis side of the collimator lens 1, and 5 denotes a focal position of the objective lenses 4 1 to 4 5. object to be measured in degrees, for example, a set of target surface Oj receiving surface of the CCD is disposed as the object surface Oj in a digital camera is formed, the focal point of the objective lens 41 to 5 the measurement of the object surface Oj It becomes a point. Note that the position of the measurement point on the target surface Oj is not limited to the illustrated example, and can be arbitrarily set or changed.
[0012]
The objective lenses 4 1 to 4 5 are provided on a lens mount 6, and this mount 6 is mounted on a precision moving base 7 having a length measuring means such as an encoder, whereby the collimator lens 1 has a parallel optical axis. It is provided to be movable back and forth in parallel. Incidentally, the moving unit of the moving table 7 is about 0.1 μm to 1 μm. If the operator wants to change the measurement point of the object surface Oj is or used in place of another lens frame 6 which changes the position of the objective lens 41 to 5 to the lens frame 6, or the lens frame 6 on, it may be provided to enable changing the position of the objective lens 41 to 5, to move the respective objective lens to a desired position. Incidentally, in either case, the position of each objective lens 4 1-4 5 is in the aperture of the collimator lens 1.
[0013]
8 is a beam splitter disposed on the divergent optical axis on the focal side of the collimator lens, and the pattern image formed on the object plane Oj reflected through each of the objective lenses 4 1 to 4 5. 2 for deflecting the optical axes of the five reflected images by 90 degrees.
[0014]
9 1 , 9 2 , and 9 4 , 9 5 are the optical axes of four reflected images excluding the reflected image at the center of the target surface Oj out of the five reflected images deflected by the splitter 8. Are substantially in the same direction as the optical axis of the collimator lens 1, but each optical axis is further obliquely allocated and deflected, and at the center, the pass hole 9 3 is passed so as to pass the optical axis of the central reflection image. Are four mirrors in which the reflected optical axes are directed in independent directions.
[0015]
10 1 to 10 5, the four mirrors 9 1, 9 2, 9 4, 9 5 each reflected light axis, as well as, a back pass hole 9 3, between the focal point of the collimator lens 1 The present invention has five photo-electric conversion elements (hereinafter referred to as photo-electric sensors) arranged at the conjugate point, and has the configuration from the collimator lens 1 to the photo-electric sensors 10 1 to 10 5 described above. An example of the optical configuration of the measuring device is formed.
[0016]
Now, when the target surface Oj to be measured flatness is assumed to be ideal plane, the focal position 5 of the objective lens 41 to 5, i.e., the reflection of the five pattern image 2 for imaging the object plane Oj The output values of the photoelectric sensors 10 1 to 10 5 that receive the image show the same peak value. However, there is a distortion in the plane of the target surface Oj, i.e., if there is a portion shifted from the focal position 5 of the objective lens 41 to 5 to the target surface Oj etc. concave or convex (surface), this Since the pattern image 2 formed on the shifted portion (surface) is in a so-called “out-of-focus” state, the output of any of the photoelectric sensors 10 1 to 10 5 that receives the reflected image is in focus. The output is smaller than the output of the photoelectric sensor receiving the combined image. Therefore, in the present invention, the movable table 7 is moved back and forth finely so that the outputs of the photoelectric sensors 10 1 to 10 5 corresponding to the respective measurement points have peak values, and the respective photoelectric sensors 10 1 to 10 1 are moved. The position of the movable table 7 when the output of 10 5 shows the peak value is detected.
[0017]
The measurement method of the present invention compares the output value of each reflection image of the pattern image 2 at the five points on the target surface Oj obtained by each of the photoelectric sensors 10 1 to 10 5 with a preset reference value. Whether the target surface Oj is at a predetermined flatness by performing arithmetic processing or processing by comparing each output value and determining whether the calculated value is within an allowable value, etc. It is determined whether or not. As a result, according to the present invention, it is possible to determine whether the flatness of the surface Oj is good or not by a single measurement operation in which a plurality of images of the pattern image 2 are simultaneously formed on one target surface Oj. It is.
[0018]
The above-described measuring method of the present invention can also be carried out by the measuring apparatus of the present invention illustrated in FIGS. 3 and 4. Next, this point will be described with reference to FIGS. 3 and 4. 3 and 4, the same members and parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.
[0019]
In the device of the present invention shown in FIG. 3 and FIG. 4, five chart patterns and respective light sources correspond to five measurement points (surfaces) on the target surface Oj (center and four corners of the target surface Oj). the semiconductor laser element 3 1 to 3 5 functioning, the focal point side of the collimator lens 1, each other optically, are arranged so as not to mechanically interfere.
[0020]
Therefore, in the apparatus shown in FIGS. 3 and 4, beam splitters 8 1 to 8 for deflecting the optical paths of the outgoing image and the reflected image on the outgoing optical axes of the pattern images 2 1 to 25 by the individual laser beams. 5 and four deflecting mirrors 9 on the optical axes of the four pattern images 2 1 and 2 2 and 2 4 and 25 to deflect the images toward the optical axis of the collimator lens 1. 1 , 9 4 and 9 2 , 9 5 are arranged.
[0021]
10 1 to 10 5, the light was placed at a conjugate point of the collimator lens 1 after undergoing the splitter 8 1-8 5 on the reflected optical axis - by photoelectric sensor, respectively imaged on five points on the target surface Oj s detecting electrical - the contrast of the reflected image of the pattern image 2 1 to 2 5 light. This detected value is processed in the same manner as in the previous embodiment, and the flatness of the target surface Oj is measured.
[0022]
In the present measuring apparatus described above, the collimator lens 1 and emitted as an image of the collimated light five pattern image using a single lens to the objective lens 5 1 to 5 5, also, from the target surface Oj beam splitter 8 a reflection image of, or has been sent to the 8 1-8 5, the single collimator lens 1, although not shown, corresponding to each one of the image into five chart pattern image It can be replaced with five collimator lenses.
[0023]
Next, an example of data handling and processing in the measurement apparatus of the present invention will be described with reference to the block diagram of FIG. The moving table 7 mounted with five objective lenses 4 1 to 4 5 and capable of moving back and forth in minute units has its movement data detected by the counter 7b as a distance pulse signal from the encoder 7a provided in the moving table 7. The
[0024]
On the other hand, for each of the photoelectric sensors 10 1 to 10 5 , when an ideal plane (target surface Oj) is placed at the focal position 5 of the five objective lenses 4 1 to 4 5 , images are formed at five locations on the surface. The peak detection value indicated when each of the sensors 10 1 to 10 5 receives the contrast of the reflected image of the chart pattern image 2 to be stored is stored in the arithmetic processing unit 11 as a reference value at each measurement point. Further, distance data when the moving surface 7 is finely moved from the focal position 5 forward (tenth side) or rearward (one side) from the focal position 5 is also set to be supplied to the arithmetic processing unit 11. Keep it.
[0025]
Then, the actual measurement target surface Oj is set on the set portion set at the focal position 5 of the objective lenses 4 1 to 4 5 , and the chart pattern image 2 is formed on the five positions of the target surface Oj. contrast each light of the reflected image - photoelectric sensors 10 1 to 10 5 by is detected, the sensor 10 1 to 10 output values obtained 5, each sensor 10 1 to 10 5 are stored in the arithmetic processing unit 11 comparing said reference value (peak value), the optical difference occurs - the photoelectric sensors 10 1 to 10 5 to move minutely the moving base 7 so that its output is the peak value (reference value) Then, the moved distance is obtained for each measurement point in the arithmetic processing unit 11.
[0026]
In this way, the output values of the photoelectric sensors 10 1 to 10 5 formed by imaging at each measurement point on the target surface Oj and the peak value obtained by moving the moving base 7 are used to determine each of the target surface Oj. Since it is possible to detect how large (distance) the measurement point (surface) is on the tenth side or one side with respect to the focal position 5 (reference value), the target surface Oj is formed on a predetermined plane. It is possible to measure and discriminate whether or not it is done. In FIG. 5, 12a is a D / A converter for a command value for the moving drive source (motor M) of the moving table 7, and 12b is an amplifier. Reference numeral 13a denotes an amplifier that amplifies the detection values of the respective photoelectric sensors 10 1 to 10 5 , and 13b denotes an A / D converter.
[0027]
【The invention's effect】
The present invention is as described above. A chart pattern image is emitted from a reference point to a plurality of points on a target surface, and formed at a plurality of measurement points set on the target surface through a collimator lens and an objective lens. At the same time, the reflected image from each point is individually photo-electrically detected at the conjugate point of the reference point, and the flatness of the target surface is measured based on the detected value. A plurality of points on the target surface can be measured simultaneously by the measurement operation, and therefore, the flatness measurement of the target surface can be remarkably streamlined and labor-saving.
[0028]
Further, in the present invention, since the degree of flatness of a plurality of points on the target surface is observed with a single measurement operation, not only measurement errors due to repeated mechanical operations are likely to occur, but also accumulation of such errors. This is advantageous in increasing the measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first example of the optical configuration of the apparatus of the present invention. FIG. 2 is a right side view of the main part of the apparatus of FIG. FIG. 4 is a right side view of the main part of the apparatus of FIG. 3. FIG. 5 is a block diagram of an example of a signal processing system in the apparatus of the present invention.
1 Collimator lens 2 Chart pattern 3 Light source
4 1 to 4 5 Objective lens 5 Focus position 6 Objective lens mount 7 Moving table 8 Beam splitter
9 1 to 9 5 Deflection mirror
10 1 to 10 5 Photoelectric sensor

Claims (3)

固定した対象面上に設定した複数の測定点に対して基準点からチャートパターンと該パターンの背後に配した光源によって形成するチャートパターン像を出射し前測定点において対物レンズを静止ないし微動させて結像させると共に、各測定点からの反射像をそれぞれ前記基準点の共役点において個々に光−電気的に検出し、その検出値に基づいて前記対象面の平面度を測定することを特徴とする平面度の測定方法。 Emits chart pattern image formed by a light source arranged behind the fixed plurality of chart patterns and the pattern from the reference point to the measuring points set on the target surface still or fine movement of the objective lens in front Symbol each measurement point together they are allowed to focused, the reflected image from each measurement point individually light at the conjugate point of each of the reference point - that is electrically detected to measure the flatness of the object surface based on the detected value A characteristic flatness measurement method. コリメータレンズと、該レンズの焦点に置いたチャートパターンと該パターンの背後に配した光源と、前記コリメータレンズの平行光出射側に配設すると共に前後動可能に設けた複数の同じ対物レンズと、該対物レンズの焦点に配置した測定対象面のセット部と、該対象面から反射される複数の反射像の光路を前記コリメータレンズを通った焦点側において複数方向に偏向させ、かつ、その偏向光路上における前記コリメータレンズの共役点に配置した前記反射像と同数の光−電気検出器とから成ることを特徴とする平面度の測定装置。A collimator lens, a plurality of the same objective lens provided rotatably in the front and rear with a light source arranged behind the switch Yatopatan and the pattern placed in the focal point of the lens, arranged into parallel light exit side of the collimator lens, The set part of the measurement target surface arranged at the focal point of the objective lens and the optical path of a plurality of reflected images reflected from the target surface are deflected in a plurality of directions on the focal side passing through the collimator lens, and the deflected light An apparatus for measuring flatness, comprising: the same number of photo-electric detectors as the reflected images arranged at a conjugate point of the collimator lens on the road. コリメータレンズは、複数個のチャートパターンと同数のレンズを用いた請求項の平面度の測定装置。 3. The flatness measuring apparatus according to claim 2 , wherein the collimator lens uses the same number of lenses as the plurality of chart patterns.
JP2002206657A 2002-07-16 2002-07-16 Measuring method and apparatus for flatness Expired - Fee Related JP3955242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206657A JP3955242B2 (en) 2002-07-16 2002-07-16 Measuring method and apparatus for flatness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206657A JP3955242B2 (en) 2002-07-16 2002-07-16 Measuring method and apparatus for flatness

Publications (2)

Publication Number Publication Date
JP2004053255A JP2004053255A (en) 2004-02-19
JP3955242B2 true JP3955242B2 (en) 2007-08-08

Family

ID=31931327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206657A Expired - Fee Related JP3955242B2 (en) 2002-07-16 2002-07-16 Measuring method and apparatus for flatness

Country Status (1)

Country Link
JP (1) JP3955242B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031169A (en) * 2007-07-28 2009-02-12 Nikon Corp Position detection apparatus, exposure apparatus, and manufacturing method for device

Also Published As

Publication number Publication date
JP2004053255A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US6856381B2 (en) Method for carrying out the non-contact measurement of geometries of objects
US6825454B2 (en) Automatic focusing device for an optical appliance
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
US6423960B1 (en) Method and system for processing scan-data from a confocal microscope
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JPH11500833A (en) Wavefront measurement system using integrated geometric reference (IGR)
JPH0117523B2 (en)
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
JPH11211439A (en) Surface form measuring device
US6088083A (en) Optical image recording arrangement and method of using the same
JP2003232989A (en) Automatic focusing module for system of microscopic base, microscopic system having automatic focusing module and automatic focusing method for system of microscopic base
JP2015108582A (en) Three-dimensional measurement method and device
JPH1068616A (en) Shape measuring equipment
JP3955242B2 (en) Measuring method and apparatus for flatness
JP4197340B2 (en) 3D shape measuring device
JP2002296018A (en) Three-dimensional shape measuring instrument
JP2005345356A (en) Measuring method of mounting position and its device in flatness measurement
JPH05312538A (en) Three-dimensional shape measuring instrument
JP4248536B2 (en) Measuring method and apparatus for mounting position of pixel surface and mat surface in single lens reflex digital camera
US4758731A (en) Method and arrangement for aligning, examining and/or measuring two-dimensional objects
CN110678290A (en) Scanning head device and method for reflecting or transmitting a scanner beam, scanning device with a scanning head device and scanner
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JPH04110706A (en) Device for taking three-dimensional form data
JPH07311117A (en) Apparatus for measuring position of multiple lens
US20240003674A1 (en) Photogrammetric camera and method for the two-dimensional measurement of objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent or registration of utility model

Ref document number: 3955242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees