JP3952255B2 - Airship intake and exhaust method and apparatus - Google Patents

Airship intake and exhaust method and apparatus Download PDF

Info

Publication number
JP3952255B2
JP3952255B2 JP2001238358A JP2001238358A JP3952255B2 JP 3952255 B2 JP3952255 B2 JP 3952255B2 JP 2001238358 A JP2001238358 A JP 2001238358A JP 2001238358 A JP2001238358 A JP 2001238358A JP 3952255 B2 JP3952255 B2 JP 3952255B2
Authority
JP
Japan
Prior art keywords
air
temperature
gas
pressure
airship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001238358A
Other languages
Japanese (ja)
Other versions
JP2003048598A (en
Inventor
冨久男 福井
正之 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Kawasaki Motors Ltd
Original Assignee
National Institute of Information and Communications Technology
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology, Kawasaki Jukogyo KK filed Critical National Institute of Information and Communications Technology
Priority to JP2001238358A priority Critical patent/JP3952255B2/en
Publication of JP2003048598A publication Critical patent/JP2003048598A/en
Application granted granted Critical
Publication of JP3952255B2 publication Critical patent/JP3952255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、飛行船の吸排気方法および装置に関する。
【0002】
【従来の技術】
飛行船のエンベロープは、浮揚ガスが注入された浮揚ガス嚢および空気が注入される空気嚢に分かれている。また飛行船には、空気嚢内の空気(以下「船内空気」という)を外部に排出するための排気弁または排気ブロワと、外部の空気(以下「外気」という)を空気嚢内に吸入するための吸気ブロワを有している。
【0003】
飛行船は、上昇するときには、排気弁または排気ブロワを用いて船内空気を排出し、飛行船全体の質量を減少させて鉛直上方に向かう余剰浮力を発生させ、この余剰浮力で上昇する。逆に降下するときは、飛行船は、吸気ブロワを用いて空気嚢に外気を吸入し、飛行船全体の質量を増加させて鉛直下方に向かう余剰浮力を発生させ、この余剰浮力で降下する。
【0004】
空気の吸入または排出をするとき、浮揚ガス嚢内の浮揚ガス(以下「船内浮揚ガス」という)および船内空気(以下総称して「船内ガス」という)の圧力が、外気に比べて、エンベロープを破壊するほどの高い圧力になったり、船内ガスの圧力が外気の圧力に比べて、エンベロープの形状を保持できないほどの低い圧力になったりしないように、エンベロープの内外の差圧を適切な所定の差圧範囲に保持しなければならない。このために必要に応じて吸入または排出をして差圧を調整している。具体的には、エンベロープの内外の差圧が所定の差圧範囲から外れないように、吸入流量を調整しながら吸入し、または排出流量を調整しながら排出している。
【0005】
【発明が解決しようとする課題】
飛行船を速やかに上昇させるとき、浮力および外気圧の低減に合わせて、船内空気を排出していくと、船内ガスは断熱膨張と船内空気の排出により温度が低下する。船内ガスの温度が低下すると、飛行船全体の密度(=飛行船全体の質量/飛行船全体の体積)が、飛行船によって排除された外気の密度と同程度以上に高くなり、鉛直上方に向かう余剰浮力が減少して、上昇速度が低くなって上昇が鈍化する。太陽輻射および対流伝熱などによって熱が流入し、船内ガスの温度が高くなれば、上昇速度が回復して大きくなる。
【0006】
また飛行船を速やかに降下させるとき、浮力および外気圧の増加に合わせて、外気を吸入していくと、船内ガスは断熱圧縮と外気の吸入により温度が高騰する。船内ガスの温度が高騰すると、飛行船全体の密度が、飛行船によって排除された外気の密度と同程度以下に低くなり、鉛直下方に向かう余剰浮力が減少して、降下速度が低くなって降下が鈍化する。対流伝熱などによって熱が放出され、船内ガスの温度が低くなれば、降下速度が回復して大きくなる。
【0007】
このように太陽輻射および対流伝熱によって船内ガスの温度が回復するのを待って、上昇および降下を続行する構成では、船内ガスの温度の回復を待つ時間が必要であり、目標高度まで上昇および降下するのに長い時間を要し、果たすべき任務の遂行を妨げるおそれがある。特に飛行船の耐風能力を超えるジェット気流帯を通過するときにそのジェット気流によって大きく流されたり、気象変化への対応が遅れたりすることが考えられる。
【0008】
本発明は、機体内の浮揚ガスおよび空気の断熱変化による温度変化を抑制し、飛行船の上昇および降下を円滑に実行することができる飛行船の吸排気方法および装置を提供することである。
【0009】
【課題を解決するための手段】
請求項1記載の本発明は、機体内を、浮揚ガスを収容するための浮揚ガス収容領域と、空気を収容する空気収容領域とに、各領域の容積比を変化可能に仕切り、空気収容領域の空気を機体の外部に排出して上昇し、空気収容領域に機体の外部から空気を吸入して降下する飛行船の吸排気方法であって、
浮揚ガス収容領域に収容される浮揚ガスの温度および圧力と、空気収容領域に収容される空気の温度および圧力と、機体の外部の空気の温度および圧力とに基づいて、機体の外部の空気の圧力に対する浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の圧力の差圧が、機体の破壊および変形を防止可能な差圧範囲に保持されるとともに、浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の温度が、機体の外部の空気の温度に近づくように、空気収容領域からの空気の排出と、空気収容領域への空気の吸入とを同時に実行することを特徴とする飛行船の吸排気方法である。
【0010】
本発明に従えば、浮揚ガス収容領域に収容される浮揚ガスの温度および圧力と、空気収容領域に収容される空気(以下「船内空気」という)の温度および圧力と、機体の外部の空気(以下「外気」という)の温度および圧力とに基づいて、外気の吸入および船内空気の排出が同時に実行され、外気の圧力に対する浮揚ガスおよび船内空気(以下総称するとき「船内ガス」という)の圧力の差圧が、機体の破壊および変形を防止可能な差圧範囲に保持され、かつ船内ガスの温度が、外気の温度に近づけられる。
【0011】
たとえば飛行船を上昇させるにあたって、船内空気を排出するだけではなく、外気を吸入し、船内空気の一部を外気と交換する。外気は、船内空気の排出に伴なう断熱膨張によって温度低下した船内空気に比べて温度が高く、このような空気の交換によって、断熱膨張によって低下した船内ガスの温度の回復を図り、船内ガスの温度が低くなり過ぎないように、外気の温度近傍に保持される。
【0012】
またたとえば飛行船を降下させるにあたって、外気を吸入するだけではなく、船内空気を排出し、船内空気の一部を外気と交換する。外気は、外気の吸入に伴なう断熱圧縮によって温度高騰した船内空気に比べて温度が低く、このような空気の交換によって、断熱圧縮によって高騰した船内ガスの温度の回復を図り、船内ガスの温度が高くなり過ぎないように、外気の温度近傍に保持される。
【0013】
またたとえば飛行船を所定位置に停留させるにあたって、吸排気を停止するのではなく、飛行船全体の質量が変化しないように、外気を吸入するとともに、船内空気を排出し、船内空気の一部を外気と交換する。このように空気収容領域を換気することによって、太陽輻射による船内ガスの温度の上昇など、船内ガスの温度変化を抑制して、船内ガスの温度が、外気の温度近傍に保持される。
【0014】
請求項2記載の本発明は、機体内を、浮揚ガスを収容するための浮揚ガス収容領域と、空気を収容する空気収容領域とに、各領域の容積比を変化可能に仕切り、空気収容領域の空気を機体の外部に排出して上昇し、空気収容領域に機体の外部から空気を吸入して降下する飛行船の吸排気装置であって、
空気収容領域に機体の外部から空気を吸入するための吸入手段と、
空気収容領域の空気を機体の外部に排出するための排出手段と、
浮揚ガス収容領域に収容される浮揚ガスの温度および圧力を検出する浮揚ガス状態検出手段と、
空気収容領域に収容される空気の温度および圧力を検出する内部空気状態検出手段と、
機体の外部の空気の温度および圧力を検出する外部空気状態検出手段と、
浮揚ガス状態検出手段、内部空気状態検出手段および外部空気状態検出手段の検出結果に基づいて、機体の外部の空気の圧力に対する浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の圧力の差圧が、機体の破壊および変形を防止可能な差圧範囲に保持されるとともに、浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の温度が、機体の外部の空気の温度に近づくように、排出手段および吸入手段を同時に作動させるように制御する制御手段とを含むことを特徴とする飛行船の吸排気装置である。
【0015】
本発明に従えば、浮揚ガス状態検出手段、内部空気状態検出手段および外部空気状態検出手段の検出結果に基づいて、吸入手段および排出手段が制御手段によって制御され、外気の圧力に対する船内ガスの圧力の差圧が、機体の破損および変形を防止可能な差圧範囲に保持され、かつ船内ガスの温度が、外気の温度に近づくように、吸入手段および排出手段が同時に作動される。
【0016】
たとえば飛行船を上昇させるにあたって、排出手段によって船内空気が排出されるだけではなく、吸入手段によって外気が吸入され、船内空気の一部が外気と交換される。外気は、船内空気の排出に伴なう断熱膨張によって温度低下した船内空気に比べて温度が高く、このような空気の交換によって、断熱膨張によって低下した船内ガスの温度の回復を図り、船内ガスの温度が低くなり過ぎないように、外気の温度近傍に保持される。
【0017】
またたとえば飛行船を降下させるにあたって、吸入手段によって外気が吸入されるだけではなく、排出手段によって船内空気が排出され、船内空気の一部が外気と交換される。外気は、外気の吸入に伴なう断熱圧縮によって温度高騰した船内空気に比べて温度が低く、このような空気の交換によって、断熱圧縮によって高騰した船内ガスの温度の回復を図り、船内ガスの温度が高くなり過ぎないように、外気の温度近傍に保持される。
【0018】
またたとえば飛行船を所定位置に停留させるにあたって、吸排気を停止するのではなく、飛行船全体の質量が変化しないように、吸入手段によって外気が吸入されるとともに、排出手段によって船内空気が排出され、船内空気の一部が外気と交換される。このように空気収容領域を換気することによって、太陽輻射による船内ガスの温度の上昇など、船内ガスの温度変化を抑制して、船内ガスの温度が、外気の温度近傍に保持される。
【0019】
【発明の実施の形態】
図1は、本発明の実施の一形態の吸排気装置60を備える飛行船1を簡略して模式的に示す断面図である。図2は、吸排気装置60を示すブロック図である。飛行船1は、たとえば通信および放送、地球観測ならびに災害監視などの任務のために用いられる成層圏プラットホームとして実施することができる飛行船であって、機体であるエンベロープ2の下部に、上記任務を遂行するための機器などが装備されるゴンドラ3が設けられて構成される。
【0020】
エンベロープ2内には、可撓性を有する隔膜4が設けられ、エンベロープ2の上側部分と隔膜4によって浮揚ガス嚢5が形成され、エンベロープ2の下側部分と隔膜4によって空気嚢6が形成される。浮揚ガス嚢5は、浮揚ガスが収容される浮揚ガス収容領域7を形成し、空気嚢6は、空気が収容される空気収容領域8を形成する。
【0021】
このようにエンベロープ2内は、隔膜4によって、上層の領域である浮揚ガス収容領域7と、下層の領域である空気収容領域8とに、各領域7,8の容積比を変化可能に仕切られる。浮揚ガスは、空気よりも比重の小さい軽い気体であって、たとえばヘリウムガスおよび水素ガスなどである。また空気嚢6は、姿勢制御のためのバロネットを含んで構成されてもよい。
【0022】
飛行船1は、さらに吸気ブロワ10と、排気弁11とを含む。吸入手段である吸気ブロワ10は、空気収容領域8にエンベロープ2の外部から、エンベロープ2外の空気(以下「外気」という)を吸入するための手段であって、たとえばエンベロープ2の下部に設けられる。排出手段である排気弁11は、空気収容領域8に収容される空気(以下「船内空気」という)をエンベロープ2の外部に排出するための手段であって、たとえばエンベロープ2の下部に設けられる。排出手段は、排気弁11に代えて排気ブロワでもよいが、本実施の形態では排気弁11である。また吸気ブロワ10および排気弁11の個数は限定されることがなく、必要個数を適宜設ければよい。また吸入手段および排出手段は、必ずしもエンベロープ2の下部に設ける必要はなく、飛行船1の前進速度を利用して吸排気を促すことができるようにするために、吸入手段の吸気口を飛行船1の前部に設け、排出手段の排気口を飛行船1の後部に設けて、各々ダクトによって空気収容領域8に導くようにしてもよい。
【0023】
吸気ブロワ10による吸気流量が排気弁11による排気流量よりも大きくなるように、吸気ブロワ10および排気弁11を作動させると、浮揚ガス収容領域7を縮小し、かつ空気収容領域8を拡大するように、隔膜4が変位しながら、外気が空気収容領域8に吸入され、飛行船1全体の比重(=飛行船全体の質量/飛行船全体の体積)が大きくなる。このように比重を大きくすることによって、飛行船1に、鉛直下方に向かう余剰浮力を発生させ、飛行船1を降下させることができる。
【0024】
逆に吸気ブロワ10による吸気流量が排気弁11による排気流量よりも小さくなるように、吸気ブロワ10および排気弁11を作動させると、浮揚ガス収容領域7を拡大し、かつ空気収容領域8を縮小するように、隔膜4が変位しながら、船内空気がエンベロープ2外に排出され、飛行船1全体の比重(=飛行船全体の質量/飛行船全体の体積)が小さくなる。このように比重を小さくすることによって、飛行船1に、鉛直上方に向かう余剰浮力を発生させ、飛行船1を上昇させることができる。
【0025】
飛行船1は、吸気ブロワ10および排気弁11を制御し、飛行船1の上昇および降下を円滑に実行することができるようにするために、浮揚ガス状態検出手段13と、内部空気状態検出手段14と、外部空気状態検出手段15と、制御手段16とをさらに含む。浮揚ガス検出手段13は、浮揚ガス嚢5内の浮揚ガス収容領域7に設けられ、内部空気状態検出手段14は、空気嚢6内の空気収容領域8に設けられ、外部空気状態検出手段15は、たとえば温度および圧力が共に安定しているエンベロープ2の側部中央の外部に設置することが適当であるが、これに限定されずエンベロープ2の下部などの他の場所に設けてもよい。
【0026】
浮揚ガス状態検出手段13は、浮揚ガス圧力センサ17および浮揚ガス温度センサ18を有する。第1の船内圧力センサである浮揚ガス圧力センサ17は、浮揚ガス収容領域7に収容される浮揚ガス(以下単に「浮揚ガス」という)の圧力を検出し、検出した浮揚ガスの圧力を表す浮揚ガス圧力信号S1を制御手段16に与える。第1の船内温度センサである浮揚ガス温度センサ18は、浮揚ガスの温度を検出し、検出した浮揚ガスの温度を表す浮揚ガス温度信号S2を制御手段16に与える。
【0027】
内部空気状態検出手段14は、船内空気圧力センサ19および船内空気温度センサ20を有する。第2の船内圧力センサである船内空気圧力センサ19は、船内空気の圧力を検出し、検出した船内空気の圧力を表す船内空気圧力信号S3を制御手段16に与える。第2の船内温度センサである船内空気温度センサ20は、船内空気の温度を検出し、検出した船内空気の温度を表す船内空気温度信号S4を制御手段16に与える。
【0028】
外部空気状態検出手段15は、外気圧力センサ21および外気温度センサ22を有する。外気圧力センサ21は、外気の圧力を検出し、検出した外気の圧力を表す外気圧力信号S5を制御手段16に与える。外気温度センサ22は、外気の温度を検出し、検出した外気の温度を表す外気温度信号S6を制御手段16に与える。
【0029】
制御手段16は、飛行船1の浮力を制御するための手段であって、たとえばコンピュータなどの計算機によって実現され、ゴンドラ3内に、他の機器とともに設けられる。この制御手段16は、上記各信号S1〜S6が表す、浮揚ガス状態検出手段13、内部空気状態検出手段14および外部空気状態検出手段15の検出結果に基づいて、浮揚ガスおよび船内空気(以下総称して「船内ガス」という)の圧力から外気の圧力を減算した差圧ΔPが、所定の差圧範囲に保持されるとともに、船内ガスの温度が外気の温度近傍の適度な温度範囲内で推移するように、吸気ブロワ10および排気弁11を同時に作動させるように制御する。
【0030】
上記差圧ΔPの所定の差圧範囲は、船内ガスの圧力が外気の圧力に対して、エンベロープ2を破壊するほどの高い圧力になったり、船内ガスの圧力が外気の圧力に対して、エンベロープ2の形状を保持できないほどの低い圧力になったりしない差圧、換言すれば、エンベロープ2の破壊および変形を防止し、エンベロープ2の機能を安定して果たすことができる適切な差圧の範囲である。一例を挙げると、船内ガスの圧力から外気の圧力を減算した差圧ΔPは、200Pa以上1000Pa以下程度に保持される。上記適度な温度範囲は、船内空気と外気との間で密度に大きな差が生じない温度範囲である。
【0031】
飛行船1は、さらに高度および昇降率指令手段25と、高度および昇降率検出手段26とを含む。高度および昇降率指令手段25は、高度指令器50および昇降率指令器51を有している。高度指令器50は、予め入力されて設定され、または飛行中にたとえば通信手段などを用いて入力される目標高度であって、飛行船1が向かうべきおよび/または停留すべき目標高度を高度指令として表す目標高度信号S7を、制御手段16に与える。昇降率指令器51は、予め入力されて設定され、または飛行中にたとえば通信手段などを用いて入力される目標昇降率であって、目標高度を達成するための飛行船1の高度の時間変化率である昇降率、すなわち上昇および降下速度を昇降率指令として表す目標昇降率信号S12を制御手段16に与える。
【0032】
高度および昇降率検出手段26は、飛行船1の高度を検出する高度センサ52および飛行船1の昇降率、すなわち単位時間あたりの変化高度を検出する昇降率センサ53を有する。高度センサ52は、検出した高度を表す検出高度信号S8を制御手段16に与え、昇降率センサ53は、検出した昇降率を表す検出昇降率信号S9を制御手段16に与える。
【0033】
制御手段16は、少なくとも必要吸排気流量、吸排気配分、排気弁開度および吸気ブロワ出力の計算機能および差圧制限管理機能などを有している。このために制御手段16は、少なくとも必要吸排気流量計算部30と、吸排気配分計算部31と、排気弁開度計算部32と、吸気ブロワ出力計算部33と、差圧制限管理部34とを有する。
【0034】
必要吸排気流量計算部30は、目標高度信号S7によって与えられる目標高度および目標昇降率信号S12によって与えられる目標昇降率に基づいて、必要吸排気流量を計算する。必要吸排気流量は、飛行船1に必要とされる吸気流量と排気流量との総計流量(=吸気流量+排気流量)であって、飛行船1に流入する量および飛行船1から流出する量のいずれか一方を正として表される。
【0035】
飛行船1の浮力Bは、飛行船1によって排除される飛行船1の周囲の大気の密度ρと船体の体積Vhullとを乗じたものに、さらに重力加速度gを乗じたもの(=ρVhullg)であり、飛行船1に作用する重力F(=飛行船1の質量M×重力加速度g)と浮力Bとが釣り合えば飛行船1はその高度に停留し、浮力が大きければ飛行船1は鉛直上方に向かう余剰浮力で上昇し、重力が大きければ飛行船1は鉛直下方に向かう余剰浮力で降下する。大気の密度ρは、高度に対応して変化し、浮力が高度によって変化するので、飛行船1の質量Mを変化、すなわち増加および減少させて、重力Fを調節すれば、飛行船1は、重力Fと浮力Bとが釣り合う高度に上昇、降下および停留する。
【0036】
必要吸排気流量計算部30は、たとえば標準大気モデルを用いて、目標昇降率に対応する大気密度の時間変化率を求め、重力Fと浮力Bとが釣り合った状態を保持して飛行船1が安定して上昇および下降するように、大気密度の変化率に対応する浮力Bの変化率に応じて、飛行船1全体の質量Mを変化させることができる船内空気の質量の変化率を求め、必要吸排気流量を求める。
【0037】
さらに必要吸排気流量計算部30は、検出高度信号S8によって与えられる検出高度および検出昇降率信号S9によって与えられる検出昇降率を考慮して、指令値と検出値との差を無くすように、必要吸排気流量を求める。これによって高精度に制御することができる。
【0038】
吸排気配分計算部31は、浮揚ガス圧力信号S1によって与えられる検出浮揚ガス圧力、浮揚ガス温度信号S2によって与えられる検出浮揚ガス温度、船内空気圧力信号S3によって与えられる検出船内空気圧力、船内空気温度信号S4によって与えられる検出船内空気温度、外気圧力信号S5によって与えられる検出外気圧力および外気温度信号S6によって与えられる検出外気温度に基づいて、船内ガスの温度を外気温度に可及的に近い温度(同一温度を含む)に保持できるように、外気と交換される船内空気の流量である換気流量を可及的に大きくして、必要吸排気流量計算部30で求められた必要吸排気流量を得ることができる必要吸気流量および必要排気流量を計算して求める。
【0039】
排気弁開度計算部32は、排気弁11の制御値である必要開度を計算して求める。排気弁11を介して外部に排出される船内空気の排出流量は、船内空気および外気の圧力と、船内空気の温度と、排気弁11の開度とに基づいて決まるので、検出されるこれらの圧力と、検出される船内空気の温度と、吸排気配分計算部31で求められた必要排気流量とに基づいて、必要排気流量が得られる排気弁11の必要開度を求める。
【0040】
吸気ブロワ出力計算部33は、吸気ブロワ10の制御値である必要出力を計算して求める。吸気ブロワ10によって吸入される外気の吸入流量は、船内空気および外気の圧力と、外気の温度と、吸気ブロワ10の出力とに基づいて決まるので、検出されるこれらの圧力と、検出される外気の温度と、吸排気配分計算部31で求められた必要吸気流量とに基づいて、必要吸気流量が得られる吸気ブロワ10の必要ブロワ出力を求める。
【0041】
差圧制限管理部34は、浮揚ガス圧力信号S1によって与えられる検出浮揚ガス圧力、船内空気圧力信号S3によって与えられる検出船内空気圧力、および外気圧力信号S5によって与えられる検出外気圧力に基づいて、エンベロープ2の内外差圧である船内ガスの圧力から外気の圧力を減算した上記差圧ΔPを、計算して求める。検出浮揚ガス圧力と検出船内空気圧力とは、構成上、同一圧力となるので、いずれか一方、本実施の形態では検出船内空気圧力から検出外気圧力を減算して差圧ΔPを求める。差圧制限管理部34は、この求めた差圧ΔPに基づいて、差圧ΔPが所定の差圧範囲を外れる場合に、差圧ΔPを所定の差圧範囲内に回復させることができる排気弁11の開度および吸気ブロワ10のブロワ出力の少なくともいずれか一方を求める。
【0042】
差圧制限管理部34は、たとえば求めた差圧ΔPが、所定の差圧範囲を越える場合、すなわち上限値を越える場合には、船内ガス圧力を低くして差圧ΔPを減少させるために、吸気ブロワ10のブロワ出力を0とし、排気弁11の開度をその時点の開度、少なくとも0より大きい開度として求める。また差圧制限管理部34は、たとえば求めた差圧ΔPが、所定の差圧範囲を下回る場合、すなわち下限値未満の場合には、船内ガス圧力を高くして差圧ΔPを上昇させるために、吸気ブロワ10のブロワ出力をその時点の値、少なくとも0より大きい値とし、排気弁11の開度を0として求める。
【0043】
このような制御手段16は、差圧制限管理部34で求めた差圧ΔPが、上述のような適切な所定の差圧範囲に存在する場合には、排気弁開度計算部32で求めた必要開度を開度指令として表す開度信号S10を排気弁11に与えるとともに、吸気ブロワ出力計算部33で求められた必要ブロワ出力をブロワ出力指令として表すブロワ出力信号S11を吸気ブロワ10に与える。
【0044】
また制御手段16は、差圧制限管理部34で求めた差圧ΔPが、上述のような適切な所定の差圧範囲から外れる場合には、差圧ΔPを所定の差圧範囲に回復させるための開度およびブロワ出力を、必要開度および必要ブロワ出力よりも優先させて指令する開度信号S10およびブロワ出力信号S11を与える。差圧制限管理部34で差圧ΔPを所定の差圧範囲に回復させるための開度およびブロワ出力の一方だけが求められた場合には、その一方だけを必要開度および必要ブロワ出力の対応する側に優先させて指令とし、残余は必要開度または必要ブロワ出力をそのまま指令として与える。換言すれば、差圧ΔPが所定の差圧範囲から外れる場合には、吸気ブロワおよび排気弁の指令のうち少なくともいずれか一方を、差圧ΔPを所定の差圧範囲に回復させるための指令に置き換えている。
【0045】
排気弁11は、ドライバである駆動制御器を備えており、開度信号S10の表す開度指令に基づいて、開度を調節し、これによって開度指令に対応する排気流量が得られる。吸気ブロワ10は、ドライバである駆動制御器を備えており、ブロワ出力信号S11の表すブロワ出力指令に基づいて、出力を調節し、これによってブロワ出力指令に対応する吸気流量が得られる。
【0046】
成層圏プラットホームとして用いられる飛行船1は、太陽電池および燃料電池から供給される電力で稼動するように構成されるので、推進装置および吸排気のための手段、本実施の形態では吸気ブロワ10および排気弁11での消費電力、太陽電池および燃料電池からの供給電力、船体重量および規模、ならびに耐風能力などを総合的に検討して、全体システムが設計される。したがってこのようなシステムの成立を満たし、かつ最大限の能力での吸排気が可能なように、吸気ブロワ10および排気弁11は設計される。
【0047】
吸排気装置60は、吸気ブロワ10、排気弁11、浮揚ガス状態検出手段13、内部空気状態検出手段14、外部空気状態検出手段15、制御手段16、高度および指令手段25ならびに高度および昇降率検出手段26を含んで構成される。
【0048】
図3は、本発明の飛行船1の吸排気方法に従う吸排気制御動作を示すフローチャートである。本発明の吸排気方法では、基本的には、浮揚ガスの温度および圧力と、船内空気の温度および圧力と、外気の温度および圧力とに基づいて、差圧ΔPが、所定の差圧範囲に保持されるとともに、船内ガスの温度が外気の温度近傍の適度な温度範囲内で推移するように、具体的には、船内ガスの温度が、飛行船上昇時に低くなり過ぎないように、また飛行船降下時に高くなり過ぎないように、船内空気の排出と、外気の吸入とを同時に実行する。
【0049】
飛行船1を運航制御するにあたって、本発明に従って実行される吸排気方法では、ステップa0で、高度および昇降率指令手段25による指令によって、吸排気制御動作が開始されると、ステップa1で、各種情報が取得される。具体的には、上述の各検出手段13〜15,26によって、浮揚ガス圧力、浮揚ガス温度、船内空気圧力、船内空気温度、外気圧力、外気温度、高度および昇降率が検出され、制御手段16に与えられる。
【0050】
各種情報が取得されると、ステップa2に移行し、必要吸排気流量計算部30によって、上述のようにして必要吸排気流量を求める。指令される高度が現在の高度よりも高ければ、上昇するために、総計として必要な排出すべき流量が求められ、指令される高度が現在の高度よりも低ければ、降下するために、総計として必要な吸入すべき流量が求められ、指令される高度が現在の高度と同一であれば、その高度に停留するために、総計として吸気も排気もしない吸排気流量、すなわち0が求められる。このように必要吸排気流量を求めた後、ステップa3に移行し、吸排気配分計算部31によって、上述のようにして必要吸気流量および必要排気流量を求め、ステップa4に移行する。
【0051】
ステップa4では、排気弁開度計算部32によって、上述のようにして排気弁11の開度を求めるととともに、吸気ブロワ出力計算部33によって,上述のようにして吸気ブロワ10のブロワ出力を求める。さらにステップa4では、差圧制限管理部34によって、上述のように差圧ΔPが所定の差圧範囲から外れる場合には、差圧ΔPが所定の差圧範囲に回復するように、排気弁11の開度および吸気ブロワ10のブロワ出力の少なくともいずれか一方を求めて置き換える。
【0052】
このように、排気弁11の開度および吸気ブロワ10のブロワ出力を求めてステップa5に移行する。ステップa5では、ステップa4で求めた排気弁11の開度を指令する開度信号S10が制御手段16から排気弁11に与えられて、排気弁11が指令に基づいて駆動されるとともに、ステップa4で求めた吸気ブロワ10のブロワ出力を指令するブロワ出力信号S11が制御手段16から吸気ブロワ10に与えられて、吸気ブロワ10が指令に基づいて駆動される。
【0053】
このように排気弁11および吸気ブロワ10を駆動して、ステップa6に移行し、一連の動作が終了する。この図3を参照して説明したような一連の運航制御動作を繰り返すことによって、飛行船1が運航される。
【0054】
以上説明したような飛行船1によれば、浮揚ガス状態検出手段13、内部空気状態検出手段14および外部空気状態検出手段15の検出結果に基づいて、吸気ブロワ10および排気弁11が制御手段16によって制御され、外気の圧力に対する船内ガスの圧力の差圧ΔPが、所定の差圧範囲に保持され、かつ船内ガスの温度が外気の温度近傍の適度な温度範囲内で推移するように、吸気ブロワ10および排気弁11が同時に作動される。
【0055】
飛行船1を上昇させるにあたって、排気弁11によって船内空気が排出されるだけではなく、吸気ブロワ10によって外気が吸入され、船内空気の一部が外気と交換される。外気は、船内空気の排出に伴なう断熱膨張によって温度低下した船内空気に比べて温度が高く、このような空気の交換によって、断熱膨張によって低下した船内ガスの温度の回復を図り、船内ガスが、外気の温度に近い温度に保持される。
【0056】
また飛行船1を降下させるにあたって、吸気ブロワ10によって外気が吸入されるだけではなく、排気弁11によって船内空気が排出され、船内空気の一部が外気と交換される。外気は、外気の吸入に伴なう断熱圧縮によって温度高騰した船内空気に比べて温度が低く、このような空気の交換によって、断熱圧縮によって高騰した船内ガスの温度の回復を図り、船内ガスが、外気の温度に近い温度に保持される。
【0057】
また飛行船を所定位置に停留させるにあたって、吸排気を停止するのではなく、飛行船1全体の質量が変化しないように、吸気ブロワ10によって外気が吸入されるとともに、排気弁11によって船内空気が排出され、船内空気の一部が外気と交換される。このように空気収容領域8を換気することによって、太陽輻射による船内ガスの温度の上昇など、船内ガスの温度変化を抑制して、船内ガスが、外気の温度に近い温度に保持される。
【0058】
このように飛行船1を上昇および降下させるにあたって、船内空気の一部を外気と交換することによって、断熱変化を起こした船内ガスの温度の回復を図り、船内ガスを、外気の温度に近い温度に保持することができる。これによって上昇に必要な適切な鉛直上方に向かう余剰浮力および降下に必要な適切な鉛直下方に向かう余剰浮力が得られ、従来のように空気の交換をしない構成に比べて、上昇および降下に要する時間を短縮し、円滑に上昇および降下することができる。
【0059】
図4は、飛行船1による地上から離陸して上昇する場合のシミュレーションによる経過時間と高度との関係を示すグラフである。図5は、図4のシミュレーションによる船内空気と高度との関係を示すグラフである。図4において、実線40は、本発明に従って吸気ブロワ10を、排気弁11と同時に作動させた場合の経過時間と高度との関係を示し、破線41は、従来の技術のように吸気ブロワ10を全く作動させずに、排気弁11だけを作動させた場合の経過時間と高度との関係を示す。図5において、実線42は、本発明に従って吸気ブロワ10を、排気弁11と同時に作動させた場合の船内空気の温度と高度との関係を示し、破線43は、従来の技術のように吸気ブロワ10を全く作動させずに、排気弁11だけを作動させた場合の船内空気の温度と高度との関係を示し、一点鎖線43は、外気温度と高度の関係を示す。
【0060】
図4および図5に示されるように、排気弁11だけを作動させ、太陽輻射などによって自然に船内空気の温度が回復するのを待ちながら上昇する場合に比べて、吸気ブロワ10および排気弁11を同時に作動させることによって、船内空気の温度を外気温度に近い状態であって、外気温度とほぼ同一に保持し、短時間で高い高度に達するように上昇させることができる。たとえば本発明に従えば、高度2万mまで達するのに要する時間を、従来の技術に比べて約1時間20分程度短縮することができる。このように上昇および降下に要する時間を短縮し、円滑に上昇および降下することができ、任務の円滑な遂行が可能になる。
【0061】
たとえば高度約12km付近に存在するジェット気流帯を通過するときに、その通過に要する時間が短くなるので、風に流される距離を最小限に抑え、目標位置に容易に到着することができる。ジェット気流帯は、空気が水平方向に高速度で流れる強風域であって、成層圏プラットホームとして用いられる飛行船1は、地上と任務遂行高度となる成層圏との間を移動するには、このジェット気流帯を通過しなければならない。このとき風(空気の流れ)に流されないように、飛行船1に搭載する推進装置の出力を上げて風に抵抗するが、上述したような全体システムの総合的な設計から、推進装置の最大出力は、成層圏での比較的小さい風速に合わせて設計されているので、ジェット気流帯の風に対しては、流されないようにするための出力としては不足し、風に流されながらの上昇/降下飛行となる。流される距離Dは、風速Vwから飛行船の最大速度Vsを減算したものの時間積分(D=∫(Vw−Vs)dt)であり、この距離Dを小さくするためには、通過時間を短くすればよい。したがって本発明にしたがって、速やかに上昇および降下すれば、ジェット気流帯通過時に流される距離Dを短くして、目標位置に容易に到着することができる。
【0062】
また任務を遂行する高度に停留するとき、船内ガスの温度および圧力の高騰を抑えることができ、飛行船1の機体の構造に対する強度要求を低減することができる。さらに無風状態での停留にあたって、強制対流伝熱による放熱をする目的で、飛行船に対する外気の相対的な流れを得るために、飛行船1に停留点付近を移動させることなく、船内ガスを、外気の温度に近い温度に保持することができる。したがって地面に対して移動することなく、一定の停留位置に停留すること、すなわち定点滞空が可能になる。
【0063】
上述の実施の形態は、本発明の例示に過ぎず、本発明の範囲内において構成を変更することができる。たとえば飛行船1は、成層圏プラットホームとして用いられる飛行船に限定されることはなく、他の用途の飛行船であってもよい。また図1には、飛行船1を簡略化して示しているが、飛行船1は、少なくとも空気嚢6を複数の空気室に分割した構成とし、各空気室の空気を個別に排出し、かつ各空気室に外気を個別に吸入できるようにして、これによって姿勢を制御することができるようにしてもよい。また排出手段は、排気弁に代えて排気ブロワを用いてもよい。
【0064】
【発明の効果】
請求項1記載の本発明によれば、飛行船を上昇および降下させるにあたって、船内空気の一部を外気と交換することによって、断熱変化を起こした船内ガス温度の回復を図り、船内ガスを、外気の温度に近い温度に保持することができる。これによって上昇に必要な適切な鉛直上方に向かう余剰浮力および降下に必要な適切な鉛直下方に向かう余剰浮力が得られ、従来のように空気の交換をしない構成に比べて、上昇および降下に要する時間を短縮し、円滑に上昇および降下することができる。したがって任務の円滑な遂行が可能になる。たとえば高度約12km付近に存在するジェット気流帯を通過するときに、その通過に要する時間が短くなるので、風に流される距離を最小限に抑え、目標位置に容易に到着することができる。また任務を遂行する高度に停留するとき、船内ガスの温度および圧力の高騰を抑えることができ、飛行船の機体の構造に対する強度要求を低減することができる。さらに無風状態での停留にあたって、強制対流伝熱による放熱をする目的で、飛行船に対する外気の相対的な流れを得るために、飛行船に停留点付近を移動させることなく、船内ガスを、外気の温度に近い温度に保持することができる。したがって地面に対して移動することなく、一定の停留位置に停留すること、すなわち定点滞空が可能になる。
【0065】
請求項2記載の本発明によれば、飛行船を上昇および降下させるにあたって、船内空気の一部を外気と交換することによって、断熱変化を起こした船内ガスの温度の回復を図り、船内ガスを、外気の温度に近い温度に保持することができる。これによって上昇に必要な適切な鉛直上方に向かう余剰浮力および降下に必要な適切な鉛直下方に向かう余剰浮力が得られ、従来のように空気の交換をしない構成に比べて、上昇および降下に要する時間を短縮し、円滑に上昇および降下することができる。したがって任務の円滑な遂行が可能になる。たとえば高度約12km付近に存在するジェット気流帯を通過するときに、その通過に要する時間が短くなるので、風に流される距離を最小限に抑え、目標位置に容易に到着することができる。また任務を遂行する高度に停留するとき、船内ガスの温度および圧力の高騰を抑えることができ、飛行船の機体の構造に対する強度要求を低減することができる。さらに無風状態での停留にあたって、強制対流伝熱による放熱をする目的で、飛行船に対する外気の相対的な流れを得るために、飛行船に停留点付近を移動させることなく、船内ガスを、外気の温度に近い温度に保持することができる。したがって地面に対して移動することなく、一定の停留位置に停留すること、すなわち定点滞空が可能になる。
【図面の簡単な説明】
【図1】本発明の実施の一形態の吸排気装置60を備える飛行船1を簡略して模式的に示す断面図である。
【図2】吸排気装置60を示すブロック図である。
【図3】本発明の飛行船1の吸排気方法に従う吸排気制御動作を示すフローチャートである。
【図4】飛行船1による地上から離陸して上昇する場合のシミュレーションによる経過時間と高度との関係を示すグラフである。
【図5】図4のシミュレーションによる船内空気と高度との関係を示すグラフである。
【符号の説明】
1 飛行船
2 エンベロープ
3 ゴンドラ
4 隔膜
5 浮揚ガス嚢
6 空気嚢
7 浮揚ガス収容領域
8 空気収容領域
10 吸気ブロワ
11 排気弁
13 浮揚ガス状態検出手段
14 内部空気状態検出手段
15 外部空気状態検出手段
16 制御手段
60 吸排気装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an airship intake and exhaust method and apparatus.
[0002]
[Prior art]
The envelope of an airship is divided into a buoyant gas sac into which buoyant gas is injected and an air sac into which air is injected. The airship also has an exhaust valve or blower for discharging the air in the air sac (hereinafter referred to as “ship air”) to the outside, and the intake air for sucking the external air (hereinafter referred to as “outside air”) into the air sac. Has a blower.
[0003]
When the airship ascends, it uses the exhaust valve or the exhaust blower to discharge the inboard air, reduces the mass of the entire airship, generates surplus buoyancy heading vertically upward, and rises with this surplus buoyancy. When descending, the airship sucks outside air into the air sac using the air intake blower, increases the mass of the entire airship, generates surplus buoyancy directed vertically downward, and descends with this surplus buoyancy.
[0004]
When inhaling or discharging air, the pressure of the buoyant gas in the buoyant gas sac (hereinafter referred to as “inboard buoyant gas”) and the air in the ship (hereinafter collectively referred to as “inboard gas”) destroys the envelope compared to the outside air. The pressure difference between the inside and outside of the envelope is set to an appropriate predetermined difference so that the pressure of the ship's gas does not become low enough to maintain the shape of the envelope compared to the pressure of the outside air. Must be kept in the pressure range. For this purpose, the differential pressure is adjusted by suction or discharge as necessary. Specifically, the suction is performed while adjusting the suction flow rate or the discharge flow is adjusted while the discharge flow rate is adjusted so that the differential pressure inside and outside the envelope does not fall outside a predetermined differential pressure range.
[0005]
[Problems to be solved by the invention]
When the airship is quickly raised, if the inboard air is discharged in accordance with the reduction of buoyancy and external pressure, the temperature of the inboard gas decreases due to adiabatic expansion and discharge of the inboard air. When the temperature of the inboard gas decreases, the density of the airship as a whole (= mass of the airship / volume of the airship as a whole) becomes higher than the density of the outside air removed by the airship, and the surplus buoyancy toward the top vertically decreases. As a result, the ascent rate becomes low and the rise slows down. If heat flows in due to solar radiation, convection heat transfer, etc., and the temperature of the inboard gas increases, the rising speed recovers and increases.
[0006]
Further, when the airship is quickly lowered, if the outside air is inhaled as the buoyancy and the outside air pressure increase, the temperature of the inboard gas rises due to adiabatic compression and inhalation of the outside air. If the temperature of the inboard gas rises, the density of the airship as a whole will be less than or equal to the density of the outside air removed by the airship, the excess buoyancy going vertically downward will decrease, the descent speed will decrease, and the descent will slow down To do. If heat is released by convection heat transfer or the like and the temperature of the gas in the ship decreases, the descent rate recovers and increases.
[0007]
In such a configuration where the temperature of the inboard gas waits for recovery by solar radiation and convective heat transfer and continues to rise and descend, it is necessary to wait for the recovery of the temperature of the inboard gas, and the temperature rises to the target altitude. It takes a long time to descend, which may hinder the performance of the mission to be performed. In particular, when passing through a jet stream that exceeds the wind resistance capacity of an airship, it is considered that the jet stream will cause a large flow or delay in response to weather changes.
[0008]
An object of the present invention is to provide an airship intake / exhaust method and apparatus that can suppress temperature changes due to adiabatic changes in levitation gas and air in the airframe and can smoothly perform ascent and descent of the airship.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, the airframe is partitioned into a buoyant gas storage region for storing levitation gas and an air storage region for storing air so that the volume ratio of each region can be changed. Is a method for intake and exhaust of an airship that rises by discharging the air to the outside of the fuselage and sucking air from the outside of the fuselage to the air containing area,
Based on the temperature and pressure of the buoyant gas contained in the buoyant gas containment area, the temperature and pressure of the air contained in the air containment area, and the temperature and pressure of the air outside the fuselage, The differential pressure between the pressure of the floating gas stored in the floating gas storage area and the pressure of the air stored in the air storage area with respect to the pressure is Possible to prevent destruction and deformation of the aircraft While maintaining the differential pressure range, the temperature of the buoyant gas contained in the buoyant gas containing area and the air contained in the air containing area is the temperature of the air outside the aircraft. Approach As described above, the airship intake / exhaust method is characterized by simultaneously performing the discharge of air from the air accommodating area and the intake of air into the air accommodating area.
[0010]
According to the present invention, the temperature and pressure of the levitation gas accommodated in the levitation gas accommodation area, the temperature and pressure of the air accommodated in the air accommodation area (hereinafter referred to as “inboard air”), the air outside the aircraft ( (Hereinafter referred to as “outside air”), the intake of the outside air and the discharge of the inboard air are performed at the same time. Levitating gas and inboard air (hereinafter collectively referred to as “inboard gas”) The differential pressure of Possible to prevent destruction and deformation of the aircraft Maintained in the differential pressure range and the temperature of the inboard gas is the temperature of the outside air To be close to The
[0011]
For example, when ascending an airship, not only the air inside the ship is discharged, but the outside air is sucked and a part of the inside air is exchanged with the outside air. The temperature of the outside air is higher than that of the inboard air that has been reduced in temperature due to adiabatic expansion accompanying the discharge of inboard air.By such air exchange, the temperature of the inboard gas that has decreased due to adiabatic expansion can be recovered, and the inboard gas can be recovered. So that the temperature of the air does not become too low.
[0012]
Further, for example, when the airship is lowered, not only the outside air is sucked but also the inside air is discharged and a part of the inside air is exchanged with the outside air. The temperature of the outside air is lower than that of the inboard air that has risen in temperature due to adiabatic compression accompanying the intake of outside air.By such air exchange, the temperature of the inboard gas that has risen due to adiabatic compression can be recovered, and It is kept near the temperature of the outside air so that the temperature does not become too high.
[0013]
For example, when stopping the airship at a predetermined position, intake and exhaust are not stopped, but outside air is sucked in and air is exhausted so that the mass of the entire airship does not change. Exchange. By ventilating the air storage area in this way, the temperature change of the inboard gas, such as an increase in the temperature of the inboard gas due to solar radiation, is suppressed, and the temperature of the inboard gas is maintained near the temperature of the outside air.
[0014]
The present invention according to claim 2 divides the airframe into a buoyant gas accommodating region for accommodating levitation gas and an air accommodating region for accommodating air so that the volume ratio of each region can be changed. An air intake / exhaust device for the airship that rises by discharging the air outside the fuselage and then descends by sucking air from the outside of the fuselage into the air containing area,
Inhalation means for inhaling air from the outside of the aircraft to the air containing area;
Discharging means for discharging the air in the air containing area to the outside of the fuselage;
Levitation gas state detection means for detecting the temperature and pressure of the levitation gas stored in the levitation gas storage area;
Internal air condition detection means for detecting the temperature and pressure of the air accommodated in the air accommodating area;
External air condition detection means for detecting the temperature and pressure of the air outside the aircraft,
Based on the detection results of the levitation gas state detection means, the internal air state detection means, and the external air state detection means, the levitation gas is contained in the levitation gas accommodation area with respect to the pressure of the air outside the airframe. The differential pressure of air pressure is Possible to prevent destruction and deformation of the aircraft While maintaining the differential pressure range, the temperature of the buoyant gas contained in the buoyant gas containing area and the air contained in the air containing area is the temperature of the air outside the aircraft. Approach Thus, the airship intake / exhaust device includes control means for controlling the discharge means and the suction means to operate simultaneously.
[0015]
According to the present invention, the suction means and the discharge means are controlled by the control means based on the detection results of the floating gas state detection means, the internal air state detection means, and the external air state detection means, so that the pressure against the outside air pressure is controlled. Ship Inner moth Of The pressure differential pressure is Possible to prevent damage and deformation of the aircraft Maintained in the differential pressure range and the temperature of the inboard gas is the temperature of the outside air Approach Thus, the suction means and the discharge means are operated simultaneously.
[0016]
For example, when the airship is raised, not only the inboard air is discharged by the discharge means but also the outside air is sucked by the suction means, and a part of the inboard air is exchanged with the outside air. The temperature of the outside air is higher than that of the inboard air that has been reduced in temperature due to adiabatic expansion accompanying the discharge of inboard air.By such air exchange, the temperature of the inboard gas that has decreased due to adiabatic expansion can be recovered, and the inboard gas can be recovered. So that the temperature of the air does not become too low.
[0017]
For example, when the airship is lowered, not only the outside air is inhaled by the inhaling means, but also the inboard air is discharged by the discharging means, and a part of the inboard air is exchanged with the outside air. The temperature of the outside air is lower than that of the inboard air that has risen in temperature due to adiabatic compression accompanying the intake of outside air.By such air exchange, the temperature of the inboard gas that has risen due to adiabatic compression can be recovered, and It is kept near the temperature of the outside air so that the temperature does not become too high.
[0018]
Also, for example, when the airship is stopped at a predetermined position, outside air is sucked in by the suction means and the inboard air is discharged by the discharge means so that the mass of the entire airship is not changed. Part of the air is exchanged with outside air. By ventilating the air storage area in this way, the temperature change of the inboard gas, such as an increase in the temperature of the inboard gas due to solar radiation, is suppressed, and the temperature of the inboard gas is maintained near the temperature of the outside air.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view schematically showing an airship 1 including an intake / exhaust device 60 according to an embodiment of the present invention. FIG. 2 is a block diagram showing the intake / exhaust device 60. The airship 1 is an airship that can be implemented as a stratospheric platform used for missions such as communication and broadcasting, earth observation, and disaster monitoring, for example, in order to perform the above missions under the envelope 2 that is a fuselage. A gondola 3 equipped with the above devices is provided.
[0020]
A flexible diaphragm 4 is provided in the envelope 2, and a floating gas sac 5 is formed by the upper part of the envelope 2 and the diaphragm 4, and an air sac 6 is formed by the lower part of the envelope 2 and the diaphragm 4. The The buoyant gas sac 5 forms a buoyant gas accommodating region 7 in which levitation gas is accommodated, and the air sac 6 forms an air accommodating region 8 in which air is accommodated.
[0021]
Thus, the inside of the envelope 2 is partitioned by the diaphragm 4 into a floating gas storage region 7 that is an upper layer region and an air storage region 8 that is a lower layer region so that the volume ratio of the regions 7 and 8 can be changed. . The levitation gas is a light gas having a specific gravity smaller than that of air, such as helium gas and hydrogen gas. The air sac 6 may be configured to include a baronet for posture control.
[0022]
The airship 1 further includes an intake blower 10 and an exhaust valve 11. The intake blower 10 serving as a suction means is a means for sucking air outside the envelope 2 (hereinafter referred to as “outside air”) from the outside of the envelope 2 into the air accommodating region 8. . The exhaust valve 11 serving as a discharge means is a means for discharging the air stored in the air storage region 8 (hereinafter referred to as “inboard air”) to the outside of the envelope 2, and is provided at the lower part of the envelope 2, for example. The exhaust means may be an exhaust blower instead of the exhaust valve 11, but is the exhaust valve 11 in the present embodiment. The number of intake blowers 10 and exhaust valves 11 is not limited, and the necessary number may be provided as appropriate. In addition, the suction means and the discharge means are not necessarily provided below the envelope 2, and in order to facilitate intake and exhaust using the forward speed of the airship 1, the suction port of the suction means is provided on the airship 1. It may be provided at the front part, and the exhaust port of the discharge means may be provided at the rear part of the airship 1 so as to be led to the air accommodating region 8 by a duct.
[0023]
When the intake blower 10 and the exhaust valve 11 are operated so that the intake flow rate by the intake blower 10 is larger than the exhaust flow rate by the exhaust valve 11, the floating gas storage region 7 is reduced and the air storage region 8 is expanded. In addition, while the diaphragm 4 is displaced, outside air is sucked into the air accommodating region 8 and the specific gravity of the entire airship 1 (= mass of the entire airship / volume of the entire airship) increases. By increasing the specific gravity in this way, the airship 1 can be caused to generate surplus buoyancy in the vertically downward direction, and the airship 1 can be lowered.
[0024]
Conversely, when the intake blower 10 and the exhaust valve 11 are operated so that the intake flow rate by the intake blower 10 becomes smaller than the exhaust flow rate by the exhaust valve 11, the floating gas storage region 7 is expanded and the air storage region 8 is reduced. As described above, while the diaphragm 4 is displaced, the inboard air is discharged out of the envelope 2 and the specific gravity of the entire airship 1 (= mass of the entire airship / volume of the entire airship) is reduced. By reducing the specific gravity in this way, surplus buoyancy directed vertically upward can be generated in the airship 1 and the airship 1 can be raised.
[0025]
The airship 1 controls the intake blower 10 and the exhaust valve 11 so that the airship 1 can be smoothly raised and lowered, and the levitation gas state detection means 13, the internal air state detection means 14, The external air condition detecting means 15 and the control means 16 are further included. The levitation gas detection means 13 is provided in the levitation gas storage area 7 in the levitation gas sac 5, the internal air state detection means 14 is provided in the air storage area 8 in the air sac 6, and the external air state detection means 15 is For example, although it is appropriate to install outside the center of the side of the envelope 2 where both temperature and pressure are stable, the present invention is not limited to this and may be installed at other locations such as the lower part of the envelope 2.
[0026]
The levitation gas state detection means 13 includes a levitation gas pressure sensor 17 and a levitation gas temperature sensor 18. A levitation gas pressure sensor 17 that is a first inboard pressure sensor detects the pressure of levitation gas (hereinafter simply referred to as “levitation gas”) stored in the levitation gas storage area 7 and indicates the detected levitation gas pressure. A gas pressure signal S1 is supplied to the control means 16. A levitation gas temperature sensor 18 that is a first inboard temperature sensor detects the temperature of the levitation gas, and provides the control means 16 with a levitation gas temperature signal S2 representing the detected temperature of the levitation gas.
[0027]
The internal air condition detection means 14 has an inboard air pressure sensor 19 and an inboard air temperature sensor 20. An inboard air pressure sensor 19 which is a second inboard pressure sensor detects the pressure of the inboard air and gives an inboard air pressure signal S3 representing the detected pressure of the inboard air to the control means 16. The inboard air temperature sensor 20, which is a second inboard temperature sensor, detects the temperature of the inboard air and gives an inboard air temperature signal S 4 representing the detected temperature of the inboard air to the control means 16.
[0028]
The external air state detection means 15 includes an outside air pressure sensor 21 and an outside air temperature sensor 22. The outside air pressure sensor 21 detects the pressure of outside air, and gives the outside air pressure signal S5 representing the detected outside air pressure to the control means 16. The outside air temperature sensor 22 detects the temperature of the outside air, and gives the outside air temperature signal S6 indicating the detected temperature of the outside air to the control means 16.
[0029]
The control means 16 is means for controlling the buoyancy of the airship 1 and is realized by a computer such as a computer, for example, and is provided in the gondola 3 together with other devices. This control means 16 is based on the detection results of the levitation gas state detection means 13, the internal air state detection means 14 and the external air state detection means 15 represented by the signals S1 to S6. The pressure difference ΔP obtained by subtracting the pressure of the outside air from the pressure of “inboard gas” is maintained within a predetermined differential pressure range, and the temperature of the inboard gas changes within an appropriate temperature range near the temperature of the outside air. Thus, the intake blower 10 and the exhaust valve 11 are controlled to operate simultaneously.
[0030]
The predetermined differential pressure range of the differential pressure ΔP is such that the pressure of the ship's gas is high enough to destroy the envelope 2 with respect to the pressure of the outside air, or the pressure of the ship's gas is the envelope with respect to the pressure of the outside air. In the range of the appropriate differential pressure that can prevent the envelope 2 from being destroyed and deformed and can stably perform the function of the envelope 2. is there. For example, the differential pressure ΔP obtained by subtracting the pressure of the outside air from the pressure of the inboard gas is maintained at about 200 Pa to 1000 Pa. The above moderate temperature range is a temperature range in which a large difference in density does not occur between the inboard air and the outside air.
[0031]
The airship 1 further includes an altitude / lift rate command means 25 and an altitude / lift rate detection means 26. The altitude and elevating rate command means 25 has an altitude commander 50 and an elevating rate commander 51. The altitude command unit 50 is a target altitude that is input and set in advance, or is input using, for example, communication means during the flight, and the target altitude that the airship 1 should head and / or stop as the altitude command. A target altitude signal S7 to be expressed is given to the control means 16. The ascending / descending rate commander 51 is a target ascending / descending rate that is input and set in advance or is input using, for example, communication means during the flight, and the time change rate of the altitude of the airship 1 for achieving the target altitude. The control unit 16 is provided with a target up / down rate signal S12 that represents the up / down rate, i.e., the ascending / descending rate as an up / down rate command.
[0032]
The altitude and elevating rate detection means 26 has an altitude sensor 52 that detects the altitude of the airship 1 and an elevating rate sensor 53 that detects the elevating rate of the airship 1, that is, the changing altitude per unit time. The altitude sensor 52 gives a detected altitude signal S8 representing the detected altitude to the control means 16, and the elevation rate sensor 53 gives a detected elevation rate signal S9 representing the detected elevation rate to the control means 16.
[0033]
The control means 16 has at least a necessary intake / exhaust flow rate, intake / exhaust distribution, exhaust valve opening and intake blower output calculation function, differential pressure limit management function, and the like. For this purpose, the control means 16 includes at least a necessary intake / exhaust flow rate calculation unit 30, an intake / exhaust distribution calculation unit 31, an exhaust valve opening calculation unit 32, an intake blower output calculation unit 33, and a differential pressure restriction management unit 34. Have
[0034]
The required intake / exhaust flow rate calculation unit 30 calculates the required intake / exhaust flow rate based on the target altitude given by the target altitude signal S7 and the target elevation rate given by the target elevation rate signal S12. The required intake / exhaust flow rate is a total flow rate (= intake flow rate + exhaust flow rate) of the intake flow rate and the exhaust flow rate required for the airship 1, and is either an amount flowing into the airship 1 or an amount flowing out from the airship 1. One is represented as positive.
[0035]
The buoyancy B of the airship 1 is the density ρ of the atmosphere around the airship 1 excluded by the airship 1 and the volume V of the hull. hull Multiplied by gravitational acceleration g (= ρV) hull g), if the gravity F acting on the airship 1 (= mass M of the airship 1 × gravity acceleration g) balances with the buoyancy B, the airship 1 stops at its altitude, and if the buoyancy is large, the airship 1 moves vertically upward. Ascending due to surplus buoyancy, and if gravity is large, the airship 1 descends due to surplus buoyancy going vertically downward. Since the density ρ of the atmosphere changes corresponding to the altitude, and the buoyancy changes depending on the altitude, if the mass F of the airship 1 is changed, that is, increased and decreased to adjust the gravity F, the airship 1 Rises, descends and stops at an altitude at which buoyancy B is balanced.
[0036]
The required intake / exhaust flow rate calculation unit 30 obtains the time change rate of the atmospheric density corresponding to the target lift rate using, for example, a standard atmospheric model, and maintains the state where the gravity F and the buoyancy B are balanced, thereby stabilizing the airship 1. Then, according to the change rate of the buoyancy B corresponding to the change rate of the atmospheric density, the change rate of the mass of the inboard air that can change the mass M of the airship 1 is obtained so as to rise and fall. Obtain the exhaust flow rate.
[0037]
Further, the necessary intake / exhaust flow rate calculation unit 30 is required to eliminate the difference between the command value and the detection value in consideration of the detection altitude given by the detection altitude signal S8 and the detection elevation rate given by the detection elevation rate signal S9. Find the intake and exhaust flow rates. This makes it possible to control with high accuracy.
[0038]
The intake / exhaust distribution calculation unit 31 detects the detected levitation gas pressure given by the levitation gas pressure signal S1, the detected levitation gas temperature given by the levitation gas temperature signal S2, the detected inboard air pressure given by the inboard air pressure signal S3, and the inboard air temperature. Based on the detected ship air temperature given by the signal S4, the detected outside air pressure given by the outside air pressure signal S5, and the detected outside air temperature given by the outside air temperature signal S6, the temperature of the ship gas is as close as possible to the outside air temperature ( The necessary intake / exhaust flow rate obtained by the required intake / exhaust flow rate calculation unit 30 is obtained by increasing the ventilation flow rate, which is the flow rate of the ship's air exchanged with the outside air, as much as possible. Calculate the required intake flow rate and required exhaust flow rate that can be obtained.
[0039]
The exhaust valve opening calculation unit 32 calculates and obtains a necessary opening that is a control value of the exhaust valve 11. Since the discharge flow rate of the ship air discharged to the outside through the exhaust valve 11 is determined based on the pressure of the ship air and the outside air, the temperature of the ship air, and the opening degree of the exhaust valve 11, Based on the pressure, the detected temperature of the ship's air, and the required exhaust flow rate obtained by the intake / exhaust distribution calculation unit 31, the required opening of the exhaust valve 11 for obtaining the required exhaust flow rate is obtained.
[0040]
The intake blower output calculation unit 33 calculates and obtains a necessary output that is a control value of the intake blower 10. Since the intake flow rate of the outside air sucked by the intake blower 10 is determined based on the pressure of the ship's air and the outside air, the temperature of the outside air, and the output of the intake blower 10, these detected pressures and the detected outside air The required blower output of the intake blower 10 from which the required intake flow rate can be obtained is obtained based on the above-described temperature and the required intake flow rate obtained by the intake / exhaust distribution calculation unit 31.
[0041]
The differential pressure limit management unit 34 uses the detected buoyant gas pressure given by the buoyant gas pressure signal S1, the detected inboard air pressure given by the inboard air pressure signal S3, and the detected outside air pressure given by the outside air pressure signal S5. The above-mentioned differential pressure ΔP obtained by subtracting the pressure of the outside air from the pressure of the ship's gas, which is the internal / external differential pressure of 2, is obtained by calculation. Since the detected levitation gas pressure and the detected ship air pressure are the same in construction, either one of the present embodiments subtracts the detected outside air pressure from the detected ship air pressure to obtain the differential pressure ΔP. The differential pressure restriction management unit 34 can recover the differential pressure ΔP within the predetermined differential pressure range when the differential pressure ΔP is out of the predetermined differential pressure range based on the obtained differential pressure ΔP. 11 at least one of the opening degree and the blower output of the intake blower 10 is obtained.
[0042]
For example, when the obtained differential pressure ΔP exceeds a predetermined differential pressure range, that is, exceeds an upper limit value, the differential pressure restriction management unit 34 reduces the differential pressure ΔP by lowering the inboard gas pressure. The blower output of the intake blower 10 is set to 0, and the opening degree of the exhaust valve 11 is obtained as the opening degree at that time, at least larger than zero. Further, the differential pressure restriction management unit 34 increases the in-board gas pressure and raises the differential pressure ΔP, for example, when the obtained differential pressure ΔP is below a predetermined differential pressure range, that is, below the lower limit value. Then, the blower output of the intake blower 10 is set to a value at that time, a value greater than at least 0, and the opening of the exhaust valve 11 is determined to be 0.
[0043]
Such a control means 16 is obtained by the exhaust valve opening degree calculation unit 32 when the differential pressure ΔP obtained by the differential pressure restriction management unit 34 exists in an appropriate predetermined differential pressure range as described above. An opening signal S10 representing the required opening as an opening command is given to the exhaust valve 11, and a blower output signal S11 representing the necessary blower output obtained by the intake blower output calculation unit 33 as a blower output command is given to the intake blower 10. .
[0044]
Further, the control means 16 restores the differential pressure ΔP to the predetermined differential pressure range when the differential pressure ΔP obtained by the differential pressure restriction management unit 34 is out of the appropriate predetermined differential pressure range as described above. Are provided with an opening signal S10 and a blower output signal S11 that give priority to the required opening and the required blower output over the required opening and the required blower output. When only one of the opening degree and the blower output for recovering the differential pressure ΔP to the predetermined differential pressure range is obtained by the differential pressure restriction management unit 34, only one of them corresponds to the required opening degree and the required blower output. The command is given priority over the operating side, and the required opening or required blower output is given as the command for the remainder. In other words, when the differential pressure ΔP is out of the predetermined differential pressure range, at least one of the commands for the intake blower and the exhaust valve is used as a command for restoring the differential pressure ΔP to the predetermined differential pressure range. Replaced.
[0045]
The exhaust valve 11 includes a drive controller as a driver, and adjusts the opening based on the opening command represented by the opening signal S10, thereby obtaining an exhaust flow rate corresponding to the opening command. The intake blower 10 includes a drive controller as a driver, and adjusts the output based on the blower output command represented by the blower output signal S11, thereby obtaining an intake flow rate corresponding to the blower output command.
[0046]
Since the airship 1 used as a stratospheric platform is configured to operate with electric power supplied from a solar cell and a fuel cell, a propulsion device and means for intake and exhaust, in this embodiment, an intake blower 10 and an exhaust valve The overall system is designed by comprehensively examining the power consumption at 11, the power supplied from solar cells and fuel cells, the weight and scale of the hull, and the wind resistance capability. Therefore, the intake blower 10 and the exhaust valve 11 are designed so as to satisfy the establishment of such a system and allow intake and exhaust with the maximum capacity.
[0047]
The intake / exhaust device 60 includes an intake blower 10, an exhaust valve 11, a floating gas state detection unit 13, an internal air state detection unit 14, an external air state detection unit 15, a control unit 16, an altitude and command unit 25, and an altitude and an elevation rate detection. Means 26 is included.
[0048]
FIG. 3 is a flowchart showing the intake / exhaust control operation according to the intake / exhaust method of the airship 1 of the present invention. In the intake / exhaust method of the present invention, basically, the differential pressure ΔP is within a predetermined differential pressure range based on the temperature and pressure of the levitation gas, the temperature and pressure of the ship's air, and the temperature and pressure of the outside air. In particular, the temperature of the inboard gas should not be too low when the airship rises, so that the temperature of the inboard gas will change within an appropriate temperature range near the temperature of the outside air. In order to prevent the air from becoming too high sometimes, exhausting the inboard air and inhaling the outside air are performed simultaneously.
[0049]
In the intake / exhaust method executed in accordance with the present invention for controlling the airship 1 according to the present invention, when the intake / exhaust control operation is started by the command from the altitude and elevating rate command means 25 in step a0, various information is displayed in step a1. Is acquired. Specifically, the detection means 13 to 15 and 26 described above detect the levitation gas pressure, the levitation gas temperature, the inboard air pressure, the inboard air temperature, the outside air pressure, the outside air temperature, the altitude, and the elevation rate, and the control means 16 Given to.
[0050]
When various pieces of information are acquired, the process proceeds to step a2, and the required intake / exhaust flow rate calculation unit 30 determines the required intake / exhaust flow rate as described above. If the commanded altitude is higher than the current altitude, the flow rate to be discharged as a total is required to rise, and if the commanded altitude is lower than the current altitude, it will be used as a total to descend. If the required flow rate to be drawn is obtained and the commanded altitude is the same as the current altitude, an intake / exhaust flow rate that does not cause intake or exhaust, that is, 0 is obtained as a total in order to stop at that altitude. After determining the required intake / exhaust flow rate in this way, the process proceeds to step a3, where the intake / exhaust distribution calculation unit 31 determines the required intake flow rate and the required exhaust flow rate as described above, and then proceeds to step a4.
[0051]
In step a4, the exhaust valve opening calculator 32 determines the opening of the exhaust valve 11 as described above, and the intake blower output calculator 33 determines the blower output of the intake blower 10 as described above. . Furthermore, in step a4, when the differential pressure ΔP deviates from the predetermined differential pressure range by the differential pressure restriction management unit 34 as described above, the exhaust valve 11 is restored so that the differential pressure ΔP recovers to the predetermined differential pressure range. At least one of the opening degree and the blower output of the intake blower 10 is obtained and replaced.
[0052]
Thus, the opening degree of the exhaust valve 11 and the blower output of the intake blower 10 are obtained, and the process proceeds to step a5. In step a5, an opening signal S10 for commanding the opening of the exhaust valve 11 obtained in step a4 is given from the control means 16 to the exhaust valve 11, and the exhaust valve 11 is driven based on the command. The blower output signal S11 for instructing the blower output of the intake blower 10 obtained in the above is given from the control means 16 to the intake blower 10, and the intake blower 10 is driven based on the command.
[0053]
In this way, the exhaust valve 11 and the intake blower 10 are driven, the process proceeds to step a6, and a series of operations ends. The airship 1 is operated by repeating a series of operation control operations as described with reference to FIG.
[0054]
According to the airship 1 as described above, the intake blower 10 and the exhaust valve 11 are controlled by the control means 16 based on the detection results of the floating gas state detection means 13, the internal air state detection means 14, and the external air state detection means 15. The intake blower is controlled such that the pressure difference ΔP of the pressure of the inboard gas with respect to the pressure of the outside air is maintained within a predetermined differential pressure range, and the temperature of the inboard gas changes within an appropriate temperature range near the temperature of the outside air. 10 and the exhaust valve 11 are actuated simultaneously.
[0055]
When the airship 1 is raised, not only the exhaust air 11 is exhausted by the exhaust valve 11, but also the outside air is sucked by the intake blower 10 and a part of the inboard air is exchanged with the outside air. The temperature of the outside air is higher than that of the inboard air that has been reduced in temperature due to adiabatic expansion accompanying the discharge of inboard air.By such air exchange, the temperature of the inboard gas that has decreased due to adiabatic expansion can be recovered, and the inboard gas can be recovered. Is maintained at a temperature close to the temperature of the outside air.
[0056]
When the airship 1 is lowered, not only the outside air is drawn in by the intake blower 10 but also the inside air is discharged by the exhaust valve 11 and a part of the inside air is exchanged with the outside air. The temperature of the outside air is lower than that of shipboard air that has risen in temperature due to adiabatic compression accompanying the intake of outside air.By such air exchange, the temperature of shipboard gas that has risen due to adiabatic compression is recovered, and The temperature is kept close to the temperature of the outside air.
[0057]
In addition, when the airship is stopped at a predetermined position, intake and exhaust are not stopped, but outside air is drawn in by the intake blower 10 and inboard air is discharged by the exhaust valve 11 so that the mass of the airship 1 as a whole does not change. Part of the ship's air is exchanged with outside air. By ventilating the air accommodating region 8 in this manner, the temperature change of the inboard gas, such as an increase in the temperature of the inboard gas due to solar radiation, is suppressed, and the inboard gas is maintained at a temperature close to the temperature of the outside air.
[0058]
Thus, when raising and lowering the airship 1, a part of the inboard air is exchanged with the outside air to recover the temperature of the inboard gas that has undergone the adiabatic change, and the inboard gas is brought to a temperature close to the temperature of the outside air. Can be held. As a result, surplus buoyancy in the appropriate vertical direction necessary for ascent and surplus buoyancy in the proper vertical direction necessary for the descent are obtained, and it is necessary for ascent and descent compared to the conventional configuration in which no air is exchanged. Time can be shortened and it can rise and fall smoothly.
[0059]
FIG. 4 is a graph showing the relationship between the elapsed time and the altitude according to the simulation when the airship 1 takes off from the ground and ascends. FIG. 5 is a graph showing the relationship between shipboard air and altitude according to the simulation of FIG. In FIG. 4, a solid line 40 shows the relationship between the elapsed time and altitude when the intake blower 10 is operated simultaneously with the exhaust valve 11 according to the present invention, and a broken line 41 shows the intake blower 10 as in the prior art. The relationship between the elapsed time and the altitude when only the exhaust valve 11 is operated without being operated at all is shown. In FIG. 5, the solid line 42 shows the relationship between the temperature and altitude of the inboard air when the intake blower 10 is operated simultaneously with the exhaust valve 11 according to the present invention, and the broken line 43 shows the intake blower as in the prior art. 10 shows the relationship between the temperature of the ship's air and the altitude when only the exhaust valve 11 is operated without operating 10 at all, and the alternate long and short dash line 43 shows the relationship between the outside air temperature and the altitude.
[0060]
As shown in FIGS. 4 and 5, the intake blower 10 and the exhaust valve 11 are operated as compared with the case where only the exhaust valve 11 is operated and the temperature rises while waiting for the temperature of the ship air to naturally recover due to solar radiation or the like. Are operated at the same time, the temperature of the ship's air can be raised to reach a high altitude in a short period of time while keeping the temperature of the ship's air close to the outside air temperature and substantially the same as the outside air temperature. For example, according to the present invention, the time required to reach an altitude of 20,000 m can be shortened by about 1 hour and 20 minutes compared to the conventional technique. Thus, the time required for ascending and descending can be shortened, and ascending and descending can be smoothly performed, and the task can be smoothly performed.
[0061]
For example, when passing through a jet air current zone present at an altitude of about 12 km, the time required for the passage is shortened, so that the distance of the wind can be minimized and the target position can be easily reached. The jet airflow zone is a strong wind region where air flows at a high speed in the horizontal direction, and the airship 1 used as a stratospheric platform moves between the ground and the stratosphere at the mission execution altitude. Must pass through. At this time, the propulsion device mounted on the airship 1 is resisted against wind by increasing the output of the propulsion device so that it is not blown by the wind (air flow). Is designed for a relatively small wind speed in the stratosphere, so it does not have enough output to prevent it from flowing against the wind in the jet stream zone, and ascending / descending while being carried by the wind Become a flight. The distance D that is passed is the wind speed V w To airship maximum speed V s Is the time integral (D = ∫ (V w -V s ) Dt), and in order to reduce the distance D, the passing time may be shortened. Therefore, according to the present invention, if it rises and descends quickly, it can easily reach the target position by shortening the distance D that flows when passing through the jet air current zone.
[0062]
Further, when the mission is stopped at a high altitude, the rise in temperature and pressure of the inboard gas can be suppressed, and the strength requirement for the structure of the airship 1 can be reduced. Furthermore, in order to obtain the relative flow of the outside air to the airship for the purpose of radiating heat by forced convection heat transfer at the time of stopping in the windless state, the inboard gas is transferred to the airship 1 without moving the vicinity of the stopping point. It can be kept at a temperature close to the temperature. Therefore, it is possible to stop at a certain stop position without moving with respect to the ground, that is, fixed-point arrears.
[0063]
The above-described embodiment is merely an example of the present invention, and the configuration can be changed within the scope of the present invention. For example, the airship 1 is not limited to an airship used as a stratosphere platform, and may be an airship for other uses. In FIG. 1, the airship 1 is shown in a simplified manner. The airship 1 is configured such that at least the air sac 6 is divided into a plurality of air chambers, and the air in each air chamber is individually discharged. It is also possible to allow the outside air to be individually sucked into the chamber and thereby control the posture. The exhaust means may use an exhaust blower instead of the exhaust valve.
[0064]
【The invention's effect】
According to the first aspect of the present invention, when the airship is raised and lowered, a part of the inboard air is exchanged with the outside air to recover the inboard gas temperature that has caused the adiabatic change. It can be kept at a temperature close to the temperature of. As a result, surplus buoyancy in the appropriate vertical direction necessary for ascent and surplus buoyancy in the proper vertical direction necessary for the descent are obtained, and it is necessary for ascent and descent compared to the conventional configuration in which no air is exchanged. Time can be shortened and it can rise and fall smoothly. Therefore, the task can be smoothly performed. For example, when passing through a jet air current zone present at an altitude of about 12 km, the time required for the passage is shortened, so that the distance of the wind can be minimized and the target position can be easily reached. Further, when the mission is stopped at a high altitude, the temperature and pressure of the inboard gas can be prevented from rising, and the strength requirements for the structure of the airship body can be reduced. Furthermore, in order to obtain the relative flow of the outside air to the airship for the purpose of heat dissipation by forced convection heat transfer when stopping in the windless state, the inboard gas is moved to the temperature of the outside air without moving the airship near the stopping point. Can be maintained at a temperature close to. Therefore, it is possible to stop at a certain stop position without moving with respect to the ground, that is, fixed-point arrears.
[0065]
According to the second aspect of the present invention, when the airship is raised and lowered, the temperature of the inboard gas that has undergone adiabatic change is recovered by exchanging a part of the inboard air with the outside air. It can be maintained at a temperature close to the temperature of the outside air. As a result, surplus buoyancy in the appropriate vertical direction necessary for ascent and surplus buoyancy in the proper vertical direction necessary for the descent are obtained, and it is necessary for ascent and descent compared to the conventional configuration in which no air is exchanged. Time can be shortened and it can rise and fall smoothly. Therefore, the task can be smoothly performed. For example, when passing through a jet air current zone present at an altitude of about 12 km, the time required for the passage is shortened, so that the distance of the wind can be minimized and the target position can be easily reached. Further, when the mission is stopped at a high altitude, the temperature and pressure of the inboard gas can be prevented from rising, and the strength requirements for the structure of the airship body can be reduced. Furthermore, in order to obtain the relative flow of the outside air to the airship for the purpose of heat dissipation by forced convection heat transfer when stopping in the windless state, the inboard gas is moved to the temperature of the outside air without moving the airship near the stopping point. Can be maintained at a temperature close to. Therefore, it is possible to stop at a certain stop position without moving with respect to the ground, that is, fixed-point arrears.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an airship 1 including an intake / exhaust device 60 according to an embodiment of the present invention.
FIG. 2 is a block diagram showing an intake / exhaust device 60;
FIG. 3 is a flowchart showing an intake / exhaust control operation according to the intake / exhaust method of the airship 1 of the present invention.
FIG. 4 is a graph showing a relationship between elapsed time and altitude by simulation when the airship 1 takes off from the ground and ascends.
FIG. 5 is a graph showing the relationship between shipboard air and altitude according to the simulation of FIG.
[Explanation of symbols]
1 Airship
2 Envelope
3 Gondola
4 diaphragm
5 Levitation gas sac
6 Air sac
7 Floating gas storage area
8 Air containment area
10 Intake blower
11 Exhaust valve
13 Floating gas state detection means
14 Internal air condition detection means
15 External air condition detection means
16 Control means
60 Air intake / exhaust system

Claims (2)

機体内を、浮揚ガスを収容するための浮揚ガス収容領域と、空気を収容する空気収容領域とに、各領域の容積比を変化可能に仕切り、空気収容領域の空気を機体の外部に排出して上昇し、空気収容領域に機体の外部から空気を吸入して降下する飛行船の吸排気方法であって、
浮揚ガス収容領域に収容される浮揚ガスの温度および圧力と、空気収容領域に収容される空気の温度および圧力と、機体の外部の空気の温度および圧力とに基づいて、機体の外部の空気の圧力に対する浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の圧力の差圧が、機体の破壊および変形を防止可能な差圧範囲に保持されるとともに、浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の温度が、機体の外部の空気の温度に近づくように、空気収容領域からの空気の排出と、空気収容領域への空気の吸入とを同時に実行することを特徴とする飛行船の吸排気方法。
The aircraft body is divided into a floating gas storage area for storing levitation gas and an air storage area for storing air so that the volume ratio of each area can be changed, and the air in the air storage area is discharged to the outside of the aircraft. The airship intake and exhaust method that ascends and sucks air from the outside of the fuselage to the air containing area and descends,
Based on the temperature and pressure of the buoyant gas contained in the buoyant gas containment area, the temperature and pressure of the air contained in the air containment area, and the temperature and pressure of the air outside the fuselage, The differential pressure between the floating gas stored in the floating gas storage area and the pressure of the air stored in the air storage area with respect to the pressure is maintained in a differential pressure range that can prevent destruction and deformation of the fuselage, and the floating gas storage area The discharge of air from the air storage area and the intake of air into the air storage area so that the temperature of the floating gas stored in the air and the air stored in the air storage area approaches the temperature of the air outside the aircraft An airship intake / exhaust method, characterized in that:
機体内を、浮揚ガスを収容するための浮揚ガス収容領域と、空気を収容する空気収容領域とに、各領域の容積比を変化可能に仕切り、空気収容領域の空気を機体の外部に排出して上昇し、空気収容領域に機体の外部から空気を吸入して降下する飛行船の吸排気装置であって、
空気収容領域に機体の外部から空気を吸入するための吸入手段と、
空気収容領域の空気を機体の外部に排出するための排出手段と、
浮揚ガス収容領域に収容される浮揚ガスの温度および圧力を検出する浮揚ガス状態検出手段と、
空気収容領域に収容される空気の温度および圧力を検出する内部空気状態検出手段と、
機体の外部の空気の温度および圧力を検出する外部空気状態検出手段と、
浮揚ガス状態検出手段、内部空気状態検出手段および外部空気状態検出手段の検出結果に基づいて、機体の外部の空気の圧力に対する浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の圧力の差圧が、機体の破壊および変形を防止可能な差圧範囲に保持されるとともに、浮揚ガス収容領域に収容される浮揚ガスおよび空気収容領域に収容される空気の温度が、機体の外部の空気の温度に近づくように、排出手段および吸入手段を同時に作動させるように制御する制御手段とを含むことを特徴とする飛行船の吸排気装置。
The aircraft body is divided into a floating gas storage area for storing levitation gas and an air storage area for storing air so that the volume ratio of each area can be changed, and the air in the air storage area is discharged to the outside of the aircraft. An air intake / exhaust device that ascends and descends by sucking air from outside the fuselage into the air containing area,
Inhalation means for inhaling air from the outside of the aircraft to the air containing area;
Discharging means for discharging the air in the air containing area to the outside of the fuselage;
Levitation gas state detection means for detecting the temperature and pressure of the levitation gas stored in the levitation gas storage area;
Internal air condition detection means for detecting the temperature and pressure of the air accommodated in the air accommodating area;
External air condition detection means for detecting the temperature and pressure of the air outside the aircraft,
Based on the detection results of the levitation gas state detection means, the internal air state detection means, and the external air state detection means, the levitation gas is contained in the levitation gas accommodation area with respect to the pressure of the air outside the airframe. The differential pressure of the air pressure is maintained within a differential pressure range that can prevent destruction and deformation of the fuselage, and the temperature of the floating gas accommodated in the floating gas accommodating region and the temperature of the air accommodated in the air accommodating region are And a control means for controlling the exhaust means and the intake means to operate at the same time so as to approach the temperature of the outside air of the airship.
JP2001238358A 2001-08-06 2001-08-06 Airship intake and exhaust method and apparatus Expired - Fee Related JP3952255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238358A JP3952255B2 (en) 2001-08-06 2001-08-06 Airship intake and exhaust method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238358A JP3952255B2 (en) 2001-08-06 2001-08-06 Airship intake and exhaust method and apparatus

Publications (2)

Publication Number Publication Date
JP2003048598A JP2003048598A (en) 2003-02-18
JP3952255B2 true JP3952255B2 (en) 2007-08-01

Family

ID=19069285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238358A Expired - Fee Related JP3952255B2 (en) 2001-08-06 2001-08-06 Airship intake and exhaust method and apparatus

Country Status (1)

Country Link
JP (1) JP3952255B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599147B2 (en) * 2004-12-01 2010-12-15 富士重工業株式会社 Airship and airship equipment installation method
JP5462589B2 (en) * 2009-10-29 2014-04-02 川崎重工業株式会社 Airship and its attitude control method
US10558219B2 (en) * 2017-09-21 2020-02-11 Loon Llc Systems and methods for controlling an aerial vehicle using lateral propulsion and vertical movement
CN110466731B (en) * 2019-08-24 2023-03-17 哈尔滨工业大学 Airship floating weight balance control method based on interaction of air bag and helium bag
WO2024134883A1 (en) * 2022-12-23 2024-06-27 明星電気株式会社 Flight altitude maintaining device
CN117806378B (en) * 2023-12-30 2024-07-16 威海格斗士游艇有限公司 Inflatable boat and inflation control method

Also Published As

Publication number Publication date
JP2003048598A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
EP2230173B1 (en) Systems and methods for buoyancy management in an airship
US7871035B2 (en) Propulsion system for an airship or hybrid aircraft
US8678309B2 (en) Lifting gas replenishment in a tethered airship system
JP3522711B2 (en) airship
CN110182352B (en) Air-floating unpowered long-endurance aircraft and control method thereof
WO2008051638A2 (en) Buoyancy control system for an airship
JP2019505435A (en) Catalyst deactivation system for aircraft with multiple fuel tanks
JP3952255B2 (en) Airship intake and exhaust method and apparatus
KR101476171B1 (en) Aircraft for Astronomical Observation
US8459589B2 (en) External pressurization system for lighter than air vehicles
CN211139645U (en) Helium balloon unmanned aerial vehicle
US20100140388A1 (en) Air cushion landing system and method of operation
EP2132087B1 (en) Aircraft configured for vertically ascending and landing
JP5462589B2 (en) Airship and its attitude control method
US20020164559A1 (en) Method and apparatus for aircraft-based simulation of variable accelerations and reduced gravity conditions
WO1988000555A1 (en) Vertical flight control unit for airships
CN103072686B (en) Inflation valve and diaphragm structure product
US20240025539A1 (en) Mass distribution method and apparatus
RU196628U1 (en) Airship Ballast System
RU2812823C1 (en) Semi-rigid airship
JP2001233294A (en) Airship
JP4019165B2 (en) High altitude return and aerial powered balloon and its operation method
CN117585138A (en) Thermal control method of stratospheric aerostat
JP3524442B2 (en) Soft altitude airship and its operation control method
CN114954894A (en) Autonomous control method and autonomous control system for height adjustment of aerostat

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3952255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees