JP3951481B2 - Steel pipe manufacturing method - Google Patents

Steel pipe manufacturing method Download PDF

Info

Publication number
JP3951481B2
JP3951481B2 JP33813998A JP33813998A JP3951481B2 JP 3951481 B2 JP3951481 B2 JP 3951481B2 JP 33813998 A JP33813998 A JP 33813998A JP 33813998 A JP33813998 A JP 33813998A JP 3951481 B2 JP3951481 B2 JP 3951481B2
Authority
JP
Japan
Prior art keywords
pipe
less
seam
rolling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33813998A
Other languages
Japanese (ja)
Other versions
JP2000158192A (en
Inventor
高明 豊岡
元晶 板谷
章 依藤
正徳 西森
能知 岡部
裕二 橋本
雅朗 正司
康二 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP33813998A priority Critical patent/JP3951481B2/en
Publication of JP2000158192A publication Critical patent/JP2000158192A/en
Application granted granted Critical
Publication of JP3951481B2 publication Critical patent/JP3951481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管の製造方法に関し、とくに帯鋼を連続的に通材しながらオープン管に成形し、これをその対向する両エッジ部を溶接または固相圧接により接合して素管となし、この素管を引き続き絞り圧延して所定サイズの製品管とする造管法において、接合部(シーム部)の硬化を抑制できる鋼管の製造方法に関する。
【0002】
シーム部とは溶接または固相圧接の際にAc3 変態点以上に加熱された素管部分を指す。また、シーム部以外の素管部分を母材部という。
【0003】
【従来の技術】
上記造管法にて製造される溶接鋼管ないし固相圧接鋼管は、その製造途上で、シーム部のみが、母材部に比較して著しく高温に加熱された後かなり大きい冷却速度で冷却されるという熱履歴を経る。そのため、鋼の成分系によってはシーム部にマルテンサイトやべイナイト(低温変態生成物と総称)が生成し、シーム部が母材部に比べて著しく硬化する結果、素管の絞り圧延中に偏肉が生じ、さらには、製品管の曲げ加工やバルジ加工などの2次加工時に、シーム部で割れが発生したり、シーム部のみが不均一に変形して加工精度が悪化する等の問題が生じる。
【0004】
この問題への対応策として、(1)シーム部硬化の小さい低成分系の素材鋼を使用する、あるいは(2)造管後に誘導加熱もしくは通常の加熱炉を用いた熱処理により、母材部とシーム部を均質化することが図られている。また、(3)曲げ加工時にシーム部を曲げ変形の中立軸となる位置にセットすることも行われている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記(1)では素材鋼に大きな制限が加わることとなり、製品特性上の限界の一因となる。前記(2)では当然のことながら生産コストの上昇を招く結果となる。前記(3)では製品管加工時の手間が増える。
本発明は、これらの問題点に鑑み、オープン管エッジ部を接合して形成したシーム部の硬化を広範囲の成分系について抑制できる鋼管の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的達成のために鋭意考究した結果、溶接工程ないしは固相圧接工程で必須に行われるアプセットによりシーム部に生じる増肉(ビード)を、通常は切削除去していることに代えて、これを圧延することにより、シーム部にフェライトを析出させて母材部との組織均一化を図り得ることに想到した。このいわゆるビード圧延は、従来のビード切削の代替工程となるから、工程の付加にはならず生産性を阻害しない。むしろ、ビード切削工具の焼付き等により制限されていた造管スピードを増速できるという効果も期待できる。
【0007】
本発明は、この着想に基づきさらに検討を重ねて完成されたものである。
すなわち本発明は、帯鋼を連続的に通材しながらオープン管に成形し、その対向する両エッジ部を溶接または固相圧接により接合して素管となし、この素管を引き続き絞り圧延して所定サイズの製品管とする鋼管の製造方法において、溶接または固相圧接直後に、圧延温度750 〜950 ℃、圧下率15%以上でシーム部をビード圧延すること、および前記接合直後から前記ビード圧延開始までの間にシーム部を強制冷却することを特徴とする鋼管の製造方法である。
【0008】
本発明では必要に応じて下記(A)、(B)の各要件を付加することがそれぞれ好ましい。
(A)前記ビード圧延の直後にシーム部を5〜50℃/sの冷却速度で加速冷却すること。
(B)前記帯鋼が、重量%で、C:0.01〜0.25%(0.05〜0.15%),Si:0.01〜1.0 %,Mn:0.1 〜2.0 %(0.3 〜1.0 %),P:0.025 %以下(0.010 %以下),S:0.025 %以下(0.010 %以下),Al:0.005 〜0.10%を含有し、あるいはさらに、(i)Cu :0.1 〜1.0 %,Ni:0.05〜1.0 %,Cr:0.1 〜1.0 %,Mo:0.05〜0.5 %のうち1種または2種以上、(ii)Nb:0.005 〜0.070 %,V:0.01〜0.40%,Ti:0.005 〜0.1 %,B:0.0005〜0.0030%のうち1種または2種以上、(iii)REM:0.020 %以下,Ca:0.010 %以下のいずれか一方または両方、から選ばれる1つまたは2つ以上を含有し、残部鉄および不可避的不純物からなること。ここに、()内の組成範囲はさらなる好適範囲である。
【0009】
【発明の実施の形態】
本発明の要件限定理由を以下に説明する。
(ビード圧延温度)
本発明では、接合直後のシーム部をビード圧延する。ビード圧延とは、シーム部に生じた増肉(ビード)を管内外に配設したロールで挟圧し母材部肉厚まで減厚する圧延を意味する。これにより、シーム部の基地相組織すなわち未再結晶オーステナイトに歪み(変形帯)が導入され、フェライトの析出が促される。ここで、ビード圧延温度が750 ℃を下回ると、低温変態生成物が増加して、フェライトの析出量が不足する。一方、ビード圧延温度が950 ℃を上回ると、オーステナイト(γと記す)が十分に再結晶してしまい、未再結晶γへの変形帯導入が不足し、フェライトを十分析出させることが困難である。このため、ビード圧延温度は750 〜950 ℃に限定する。
(ビード圧延の圧下率)
ビード圧延の圧下率が15%に満たないと、未再結晶γへの変形帯導入が不足して、フェライトを十分析出させることができない。そのため、ビード圧延の圧下率は15%以上に限定する。これを満足するには、ビード肉厚が母材部肉厚の1.15倍以上になるようにアプセット条件を調整すればよい。
(ビード圧延直後のシーム部を冷却速度5〜50℃/sで冷却)
シーム部の特性(靱性や延性)をさらに改善するには、フェライト粒を極力微細化することが有効であり、それにはビード圧延直後のシーム部を加速冷却してフェライトの粒成長を抑制するのがよい。このフェライト粒成長抑制効果が得られる冷却速度の下限は5℃/sである。一方、冷却速度が50℃/sを超えると組織に占める低温変態生成物の割合が大きくなり、組織の不均一およびそれによる硬化が目立つようになる。このため、前記加速冷却の冷却速度は5〜50℃/sとするのが好ましい。
(接合直後からビード圧延開始までの間にシーム部を強制冷却)
ビード圧延温度までシーム部が自然冷却するのを待つと、γ粒が粗大化しビード圧延で導入される変形帯の密度が小さくなって、フェライト析出を促進する効果が弱められるほか、設備ラインの長大化や造管スピードの低減化といったマイナス方向の措置が必要となる。そのため、接合直後からビード圧延開始までの間にシーム部を強制冷却する。
【0010】
図1は、本発明の実施に好適な造管ラインの1例を示す平面配置図である。この造管ラインには、上流から順に、帯鋼10を加熱する帯鋼加熱炉1、帯鋼10をオープン管11に成形する成形装置2、オープン管11の対向する両エッジ部を接合温度まで加熱するエッジヒータ3、オープン管11の両エッジ部をアプセットして接合(圧接)し素管12を形成するスクイズ装置4、シーム部14を強制冷却するシーム強制冷却装置5、シーム部14をビード圧延するビード圧延装置6、シーム部14を加速冷却するシーム加速冷却装置7、素管12全体を加熱または保熱してシーム部14と母材部の温度を均しながら絞り圧延温度に到達させる素管均熱炉8、素管13を絞り圧延(縮径圧延)して所定サイズの製品管13とする絞り圧延装置(レデューサ)9が配置されている。
【0011】
帯鋼加熱炉1の加熱方式は、輻射加熱方式、誘導加熱方式のいずれであってもよく、またこれらを組み合わせた方式でもよい。
成形装置2は、帯鋼1を各種ロールにより幅寄せしながら丸めていく成形加工機能を有するものであれば何でもよい。
エッジヒータ3は、オープン管両エッジ部に直接通電電流または誘導電流を流して抵抗発熱させる方式のもの(図1の例では誘導コイルを造管ライン方向に2段に配設して構成)、レーザビーム、イオンビーム、プラズマビームなどの高エネルギービームを照射して入熱する方式のもの、およびこれらを組み合わせた方式のもののいずれであってもよい。
【0012】
スクイズ装置4は、通常2本の孔型ロールを用いて構成されるが、オープン管両エッジ部を圧接できるものであれば孔型ロールを3本以上用いて構成してもよい。
シーム強制冷却装置5は、エア、水、ミスト(気水混合流体)などの冷媒を噴射する複数のノズルを、造管ライン方向に設けた所定の冷却区間内で冷媒を極力シーム部のみに衝突させるように配設して構成することができる。冷媒の流量や噴射圧力は所定の冷却区間を適当に分割しその分割区間毎に独立に調整可能(ゼロにすることも含む)とするのが望ましい。
【0013】
ビード圧延装置6は、シーム部を素管内外から挟み込むように1対または2対以上のロールを対向配設して構成することができる。素管内面側のロールは素管内に挿入可能な台車を設けてこの台車に支持せしめることができる。
シーム加速冷却装置7は、エア、水、ミスト(気水混合流体)などの冷媒を噴射する複数のノズルを、造管ライン方向に設けた所定の冷却区間内で冷媒を極力シーム部のみに衝突させるように配設して構成することができる。冷媒の流量や噴射圧力は所定の冷却区間を適当に分割しその分割区間毎に独立に調整可能(ゼロにすることも含む)とするのが望ましい。
【0014】
素管均熱炉8は、ラジアントチューブなどを用いた輻射型、誘導コイルを用いた誘導型、これらを組み合わせた輻射・誘導複合型のいずれも好適である。
絞り圧延装置(レデューサ)9は、通常3本の孔型ロールを円周方向に配置したスタンドを造管ライン方向にタンデムに配列して構成されるが、スタンドに配置する孔型ロール本数は、必要に応じて2本、あるいは4本以上としてもかまわない。
【0015】
図2は、図1の造管ライン内での母材部およびシーム部の温度・加工履歴の1例を示す模式図である。
帯鋼10は帯板加熱炉1により必要に応じて温間温度域(200 ℃以上Ac3 点未満)に加熱され、成形装置2によりオープン管11に成形され、その両エッジ部がエッジヒータ3の1段目でキュリー点直上まで加熱され、続いて同2段目で接合温度(たとえば約1500℃)に加熱され、スクイズ装置4で圧接され、素管12がつくられる。このとき管周方向への熱伝導により母材部温度もやや上昇する。圧接直後、シーム部はシーム強制冷却装置5により750 〜950 ℃の温度域まで冷却され、この温度域でビード圧延装置6により圧下率15%以上のビード圧延が行われる。ビード圧延後のシーム部はシーム加速冷却装置7により5〜50℃/sの冷却速度でたとえば約600 ℃まで冷却される。このとき母材部は自然冷却によりたとえば約530 ℃になっている。この温度状態にある素管12が素管均熱炉8に送り込まれ、シーム部と母材部の温度がともに該炉出側で絞り圧延目標温度(たとえば650 ℃)に一致するように均熱が施され、この均熱された素管12がレデューサ9により絞り圧延(レデュース)されて製品管13となる。
【0016】
図3は、SAE1006鋼(0.05%C−0.05%Si−0.32%Mn)に対し図のシーム部温度・加工履歴の模擬実験を行い、(a) ビード圧延なしと(b) ビード圧延あり(温度900 ℃,圧下率35%)のシーム部組織を比較した結果の1例を示す顕微鏡組織写真であり、これに示すように、ビード圧延なしではシーム部が粗いベイナイト組織になるが、適切なビード圧延を加えることによりシーム部を微細なフェライト組織(母材部と略同じ組織)と成し得ることがわかる。
【0017】
本発明は、任意の鋼組成に対して適用できるが、とくに強度−伸びバランスに優れた製品管を得るには、重量%で、C:0.01〜0.25%(0.05〜0.15%),Si:0.01〜1.0 %,Mn:0.1 〜2.0 %(0.3 〜1.0 %),P:0.025 %以下(0.010 %以下),S:0.025 %以下(0.010 %以下),Al:0.005 〜0.10%を含有し、さらに必要に応じて、
(i) Cu:0.1 〜1.0 %,Ni:0.05〜1.0 %,Cr:0.1 〜1.0 %,Mo:0.05〜0.5 %のうち1種または2種以上、
(ii) Nb:0.005 〜0.070 %,V:0.01〜0.40%,Ti:0.005 〜0.1 %,B:0.0005〜0.0030%のうち1種または2種以上、
(iii) REM :0.020 %以下,Ca:0.010 %以下のいずれか一方または両方、
から選ばれる1つまたは2つ以上を含有し、残部鉄および不可避的不純物からなる帯鋼を素材とするのが好ましい。ここに、()内はより好ましい範囲を示す。
【0018】
その理由は以下の通りである。
C:0.01〜0.25%(0.05〜0.15%)
Cは、基地中に固溶あるいは炭化物として析出し、鋼の強度を増す元素であり、また、硬質な第2相として析出した微細なセメンタイト、マルテンサイト、べイナイトが延性(一様伸び)向上に寄与するが、0.01%未満では所望の強度を得るのが困難であり、他方、0.25%超では強度が高くなりすぎて延性が劣化するため、C量は0.01〜0.25%とするのがよい。なお、強度−伸びバランスの面から、0.05〜0.15%がさらに好ましい。
【0019】
Si:0.01〜1.0 %
Siは、脱酸元素として作用するとともに、基地中に固溶し鋼の強度を増すが、0.01%未満ではその効果に乏しく、また、1.0 %超では延性を劣化させるので、Si量は0.01〜1.0 %とするのがよい。
Mn:0.1 〜2.0 %(0.3 〜1.0 %)
Mnは、鋼の強度を増す元素であり、また硬質第2相(セメンタイト、マルテンサイト、べイナイト)の微細析出を促すが、0.1 %未満ではその効果に乏しく、一方、2.0 %超では強度が過大となって延性が劣化するため、Mn量は0.1 〜2.0 %とするのがよい。なお、強度−伸びバランスの観点から、0.3 〜1.0 %がさらに好ましい。
【0020】
P:0.025 %以下(0.010 %以下)
Pは、粒界に偏析し靱性を劣化させるため、極力低減するのが好ましいが、0.025 %までは許容できる。なお、より好ましくは0.010 %以下である。
S:0.025 %以下(0.010 %以下)
Sは、硫化物を増加し清浄度を低下させるため、極力低減するのが好ましいが、0.025 %までは許容できる。なお、より好ましくは0.010 %以下である。
【0021】
Al:0.005 〜0.10%
Alは、結晶粒を微細化する作用を有するが、0.005 %未満ではその作用が不十分であり、一方、0.10%超では酸化物系介在物量が増加して清浄度が低下するので、Al量は0.005 〜0.10%とするのがよい。
Cu:0.1 〜1.0 %
Cuは、鋼の焼入れ性を改善し強度を増す元素であり、また変態点を低下させフェライト粒あるいは硬質第2相を微細化する効果があるが、0.1 %未満ではその効果に乏しく、一方、1.0 %超では熱間加工性を劣化させるので、Cu量は0.1 〜1.0 %とするのがよい。なお、ラインパイプ用として管継ぎ溶接部の硬化を抑制し耐応力腐食割れ性を向上させるには0.5 %以下とするのが好ましい。
【0022】
Ni:0.05〜1.0 %
Niは、鋼の焼入れ性を改善し強度を増すとともに、靱性も改善する元素であり、また変態点を低下させフェライト粒あるいは硬質第2相を微細化する効果があるが、0.05%未満ではその効果に乏しく、一方、1.0 %超では効果が飽和し経済的に高価となるため、Ni量は0.05〜1.0 %とするのがよい。なお、ラインパイプ用として管継ぎ溶接部の硬化を抑制し耐応力腐食割れ性を向上させるには0.5 %以下とするのが好ましい。
【0023】
Cr:0.1 〜1.0 %
Crは、鋼の焼入れ性を改善し強度を増す元素であり、また変態点を低下させフェライト粒あるいは硬質第2相を微細化する効果があるが、0.1 %未満ではその効果に乏しく、一方、1.0 %超では溶接性、延性を劣化させるうえ経済的に高価となるため、Cr量は0.1 〜1.0 %とするのがよい。なお、ラインパイプ用として管継ぎ溶接部の硬化を抑制し耐応力腐食割れ性を向上させるには0.5 %以下とするのが好ましい。
【0024】
Mo:0.05〜0.5 %
Moは、鋼の焼入れ性を改善し強度を増す元素であり、また変態点を低下させフェライト粒あるいは硬質第2相を微細化する効果があるが、0.05%未満ではその効果に乏しく、一方、0.5 %超では溶接性、延性が劣化し、ラインパイプ用では管継ぎ溶接部が硬化して耐応力腐食割れ性が劣化し、そのうえ経済的に高価となるため、Mo量は0.05〜0.5 %とするのがよい。
【0025】
Nb:0.005 〜0.070 %,V:0.01〜0.40%,Ti:0.005 〜0.1 %,B:0.0005〜0.0030%
Nb,V,Ti,Bは、いずれも炭化物、窒化物または炭窒化物として析出し、結晶粒の微細化と高強度化に寄与する元素であり、とくにシーム接合工程の加熱時に結晶粒粗大化を抑制するとともに冷却時にはフェライトの析出核となってシーム部の硬化を防止する効果があるが、Nb:0.005 %未満、V:0.01%未満、Ti:0.005 %未満、B:0.0005%未満ではその効果に乏しく、一方、Nb:0.070 %超、V:0.40%超、Ti:0.1 %超、B:0.0030%超では溶接性と靱性が劣化するため、Nb,V,Ti,Bの量はそれぞれ上記範囲とするのがよい。なお、耐応力腐食割れ性改善の面で、V量は0.10%以下に制限するのがより好ましい。
【0026】
REM :0.020 %以下,Ca:0.010 %以下
REM ,Caは、いずれも介在物の形状調整を通じて加工性を改善するほか、硫化物、酸化物、または硫酸化物として析出しシーム部の硬化を防止する作用があるが、REM :0.020 %超、Ca:0.010 %超では介在物が増えすぎて清浄度が低下し、靱性が劣化するので、REM :0.020 %以下、Ca:0.010 %以下とするのがよい。
【0027】
なお、不可避的不純物に関し、NはAlと結合して結晶粒微細化に寄与するが、0.010 %を超えると延性を劣化させるため0.010 %以下に低減するのが好ましい。また、Oは酸化物として清浄度を低下させるため極力低減するのが好ましいが、0.006 %までは許容できる。
【0028】
【実施例】
表1に示す製管サイズ・鋼組成(残部は鉄および不可避的不純物)の帯鋼を、図1に示した造管ラインにてそれぞれ表2に示した条件で連続造管することにより製品管と成した。なお、帯板加熱炉は輻射方式とし、成形装置はCBR(チャンスフリーバルジローリング)ミルを採用し、エッジヒータは誘導加熱方式とし、スクイズ装置は2ロール対向方式とし、シーム強制冷却装置はミストノズルで構成し、ビード圧延装置は1対のロールを管内外に対向配置して構成し、シーム加速冷却装置はミストノズルで構成し、素管均熱炉は輻射・誘導複合方式とし、レデューサは3ロールスタンドをタンデムに24スタンド配列して構成した。
【0029】
これら製品管の定常絞り圧延部分(先端、尾端から長手方向に0.5 m以上内側に入った部分)から切り出したサンプルについて、肉厚測定により偏肉率(={(最大肉厚−最小肉厚)/平均肉厚}×100 (%))を、顕微鏡観察によりミクロ組織面積率(べイナイト(B)またはマルテンサイト(M)の面積率(%))を、JIS11号引張試験により絞り圧延方向の強度(降伏強さYS(MPa ),引張強さTS(MPa )および伸びEl(%)を、バルジ試験(試験方法:鋼管内に水圧をかけ、長さ150mm の範囲を円形断面のまま35%拡管した。)によりシーム割れ発生の有無(2次加工性)を、それぞれ調査した。その結果を表2に示す。
【0030】
表2より、本発明要件を充足する実施例では、シーム部が母材部と略同じフェライト主体の組織となり、偏肉率が小さく、強度−伸びバランスに優れ、2次加工性も良好(シーム割れなし)であった。これに対し、本発明要件を欠く比較例では、シーム部に低温変態生成物が多く現出し、偏肉率が大きく、強度が高すぎて伸びが悪化し、2次加工性が不良(シーム割れ発生)となった。
【0031】
【表1】

Figure 0003951481
【0032】
【表2】
Figure 0003951481
【0033】
【発明の効果】
かくして本発明によれば、接合後のシーム部に対しビード圧延を施すことにより、そこに低温変態生成物(べイナイトやマルテンサイト)が現出するのを抑制したから、広範囲の鋼組成の溶接鋼管、固相圧接鋼管についてシーム部を母材部と略同じフェライト主体の組織にすることができるようになり、絞り圧延での偏肉を解消できるとともに、製品管の加工性(2次加工性)を改善することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施に好適な造管ラインの1例を示す平面配置図である。
【図2】図1の造管ライン内での母材部およびシーム部の温度・加工履歴の1例を示す模式図である。
【図3】SAE1006鋼に対し図1のシーム部温度・加工履歴の模擬実験を行い、(a) ビード圧延なしと(b) ビード圧延ありのシーム部組織を比較した結果の1例を示す顕微鏡組織写真である。
【符号の説明】
1 帯鋼加熱炉
2 成形装置
3 エッジヒータ
4 スクイズ装置
5 シーム強制冷却装置
6 ビード圧延装置
7 シーム加速冷却装置
8 素管均熱炉
9 絞り圧延装置(レデューサ)
10 帯鋼
11 オープン管
12 素管
13 製品管
14 シーム部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a steel pipe, in particular, forming an open pipe while continuously passing a steel strip, and joining both opposing edge portions by welding or solid-phase pressure welding to form a raw pipe, The present invention relates to a method of manufacturing a steel pipe capable of suppressing the hardening of a joint portion (seam portion) in a pipe making method in which the raw pipe is continuously drawn and rolled into a product pipe of a predetermined size.
[0002]
The seam portion refers to a raw tube portion heated to the Ac 3 transformation point or higher during welding or solid phase pressure welding. Further, the raw pipe portion other than the seam portion is referred to as a base material portion.
[0003]
[Prior art]
During the production of welded steel pipes or solid phase welded steel pipes manufactured by the above pipe making method, only the seam part is cooled at a considerably high cooling rate after being heated to a significantly higher temperature than the base metal part. It goes through a heat history. For this reason, depending on the steel component system, martensite and bainite (generally called low-temperature transformation products) are formed in the seam part, and the seam part hardens significantly compared to the base metal part. There are problems such as the occurrence of meat, and cracks in the seam part during secondary processing such as bending and bulge processing of product pipes, and deterioration in processing accuracy due to uneven deformation of only the seam part. Arise.
[0004]
As countermeasures to this problem, (1) Use low-component material steel with small seam hardening, or (2) Inductive heating after pipe making or heat treatment using a normal heating furnace, It is intended to homogenize the seam portion. In addition, (3) the seam portion is set at a position that becomes a neutral axis of bending deformation during bending.
[0005]
[Problems to be solved by the invention]
However, in the above (1), a large restriction is imposed on the material steel, which contributes to a limitation on product characteristics. The above (2) naturally results in an increase in production cost. In said (3), the effort at the time of product pipe processing increases.
An object of this invention is to provide the manufacturing method of the steel pipe which can suppress hardening of the seam part formed by joining an open pipe edge part about a wide range of component system in view of these problems.
[0006]
[Means for Solving the Problems]
As a result of diligent investigations to achieve the above-mentioned object, the present inventors have usually removed the increased thickness (bead) generated in the seam portion by the upset that is essentially performed in the welding process or the solid-phase pressure welding process. Instead of this, it was conceived that by rolling this, ferrite can be precipitated in the seam portion to make the structure uniform with the base material portion. This so-called bead rolling is an alternative process to the conventional bead cutting, so it does not add a process and does not hinder productivity. Rather, it is also possible to expect the effect of increasing the pipe making speed, which is limited by seizure of the bead cutting tool.
[0007]
The present invention has been completed through further studies based on this idea.
That is, according to the present invention, a steel strip is continuously formed and formed into an open pipe, and both opposing edges are joined by welding or solid-phase pressure welding to form a raw pipe, and this raw pipe is continuously drawn and rolled. In the method of manufacturing a steel pipe having a product pipe of a predetermined size, immediately after welding or solid-phase pressure welding, bead rolling is performed on the seam portion at a rolling temperature of 750 to 950 ° C. and a reduction rate of 15% or more , and the bead is immediately after the joining. A steel pipe manufacturing method characterized in that a seam portion is forcibly cooled before rolling starts .
[0008]
In the present invention, it is preferable to add the following requirements (A) and (B) as necessary.
(A) Immediately cooling the seam portion immediately after the bead rolling at a cooling rate of 5 to 50 ° C./s.
(B) before Symbol steel strip, by weight%, C: 0.01~0.25% (0.05~0.15 %), Si: 0.01~1.0%, Mn: 0.1 ~2.0% (0.3 ~1.0%), P: 0.025% Or less (0.010% or less), S: 0.025% or less (0.010% or less), Al: 0.005 to 0.10%, or (i) Cu: 0.1 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.1-1.0%, Mo: One or more of 0.05-0.5%, (ii) Nb: 0.005-0.070%, V: 0.01-0.40%, Ti: 0.005-0.1%, B: 0.0005-0.0030% One or more of them, (iii) one or more selected from either or both of REM: 0.020% or less, Ca: 0.010% or less, from the remaining iron and inevitable impurities To become a. Here, the composition range in () is a further preferable range.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the requirements of the present invention will be described below.
(Bead rolling temperature)
In the present invention, the seam portion immediately after joining is bead-rolled. The bead rolling means rolling in which a thickening (bead) generated in the seam portion is sandwiched between rolls arranged inside and outside the pipe to reduce the thickness to the thickness of the base material portion. As a result, strain (deformation band) is introduced into the base phase structure of the seam portion, that is, unrecrystallized austenite, and precipitation of ferrite is promoted. Here, when the bead rolling temperature is lower than 750 ° C., the low-temperature transformation product increases and the precipitation amount of ferrite becomes insufficient. On the other hand, when the bead rolling temperature exceeds 950 ° C., austenite (denoted as γ) is sufficiently recrystallized, the introduction of deformation bands into unrecrystallized γ is insufficient, and it is difficult to sufficiently precipitate ferrite. is there. For this reason, bead rolling temperature is limited to 750-950 degreeC.
(Bead rolling reduction)
If the rolling reduction of bead rolling is less than 15%, the introduction of deformation bands into unrecrystallized γ is insufficient, and ferrite cannot be sufficiently precipitated. Therefore, the rolling reduction of bead rolling is limited to 15% or more. In order to satisfy this, the upset condition may be adjusted so that the bead thickness is 1.15 times or more of the base material thickness.
(Cooling the seam immediately after bead rolling at a cooling rate of 5 to 50 ° C / s)
In order to further improve the properties (toughness and ductility) of the seam, it is effective to refine the ferrite grains as much as possible. To this end, the seam immediately after bead rolling is accelerated to suppress ferrite grain growth. Is good. The lower limit of the cooling rate at which this ferrite grain growth suppressing effect is obtained is 5 ° C./s. On the other hand, when the cooling rate exceeds 50 ° C./s, the proportion of the low-temperature transformation product in the structure increases, and the structure non-uniformity and the hardening due to it become conspicuous. For this reason, it is preferable that the cooling rate of the accelerated cooling is 5 to 50 ° C./s.
(The seam is forcedly cooled immediately after joining to the start of bead rolling)
Waiting for the natural cooling of the seam to the bead rolling temperature, the γ grains become coarse and the density of deformation bands introduced by bead rolling decreases, reducing the effect of promoting ferrite precipitation and increasing the length of the equipment line. It is necessary to take measures in the negative direction, such as downsizing and reduction of pipe making speed. Therefore, it forced cooling the seam between immediately after bonding to the bead rolling start.
[0010]
FIG. 1 is a plan layout view showing an example of a pipe forming line suitable for carrying out the present invention. In this pipe forming line, in order from the upstream, a steel strip heating furnace 1 for heating the steel strip 10, a forming device 2 for forming the steel strip 10 into the open pipe 11, and both opposing edge portions of the open pipe 11 up to the joining temperature The edge heater 3 to be heated, the edge portions of the open pipe 11 are upset and joined (pressure-welded) to form the elementary pipe 12, the seam forced cooling device 5 to forcibly cool the seam portion 14, and the seam portion 14 to bead A bead rolling device 6 for rolling, a seam accelerated cooling device 7 for accelerating and cooling the seam portion 14, and an element for reaching the drawing rolling temperature while heating or keeping the entire raw tube 12 to equalize the temperatures of the seam portion 14 and the base material portion. A drawing rolling apparatus (reducer) 9 is provided in which the tube soaking furnace 8 and the raw tube 13 are drawn (reduced diameter reduction) into a product tube 13 of a predetermined size.
[0011]
The heating method of the steel strip heating furnace 1 may be either a radiant heating method or an induction heating method, or a combination of these methods.
The forming apparatus 2 may be anything as long as it has a forming function of rounding the steel strip 1 while bringing it closer by various rolls.
The edge heater 3 is of a type in which an energization current or an induction current is directly supplied to both edge portions of the open pipe to cause resistance heat generation (in the example of FIG. 1, the induction coil is arranged in two stages in the pipe forming line direction), Any of a system that inputs heat by irradiating a high energy beam such as a laser beam, an ion beam, or a plasma beam, or a system that combines these may be used.
[0012]
The squeeze device 4 is normally configured using two perforated rolls, but may be configured using three or more perforated rolls as long as the two pipe edge portions can be pressed.
The forced seam cooling device 5 collides the refrigerant with only the seam portion as much as possible within a predetermined cooling section provided with a plurality of nozzles for injecting a refrigerant such as air, water, mist (air-water mixed fluid) in the pipe forming line direction. It can arrange | position and comprise so that it may make. It is desirable that the flow rate and injection pressure of the refrigerant are appropriately divided (including zero) into a predetermined cooling section and can be adjusted independently for each divided section.
[0013]
The bead rolling device 6 can be configured by arranging one or two or more pairs of rolls to face each other so as to sandwich the seam portion from the inside and outside of the raw tube. The roll on the inner surface side of the raw tube can be supported by this cart provided with a cart that can be inserted into the raw tube.
The seam accelerated cooling device 7 collides the refrigerant with only the seam portion as much as possible within a predetermined cooling section provided with a plurality of nozzles for injecting refrigerant such as air, water, mist (air-water mixed fluid) in the pipe forming line direction. It can arrange | position and comprise so that it may make. It is desirable that the flow rate and injection pressure of the refrigerant are appropriately divided (including zero) into a predetermined cooling section and can be adjusted independently for each divided section.
[0014]
The raw tube soaking furnace 8 is preferably either a radiation type using a radiant tube or the like, an induction type using an induction coil, or a combined radiation / induction type.
The drawing rolling device (reducer) 9 is usually configured by arranging a stand in which three perforated rolls are arranged in the circumferential direction in a tandem arrangement in the pipe forming line direction. The number of perforated rolls arranged in the stand is: Two or four or more may be used as necessary.
[0015]
FIG. 2 is a schematic diagram showing an example of the temperature and processing history of the base material portion and the seam portion in the pipe making line of FIG.
The steel strip 10 is heated to a warm temperature range (200 ° C. or higher and less than Ac 3 points) by a strip heating furnace 1 and formed into an open tube 11 by a forming device 2, and both edge portions thereof are edge heaters 3. The first stage is heated to just above the Curie point, and then the second stage is heated to the joining temperature (for example, about 1500 ° C.) and is pressed by the squeeze device 4 to form the raw tube 12. At this time, the base material temperature slightly increases due to heat conduction in the pipe circumferential direction. Immediately after the pressure welding, the seam portion is cooled to a temperature range of 750 to 950 ° C. by the seam forced cooling device 5, and bead rolling with a reduction rate of 15% or more is performed by the bead rolling device 6 in this temperature range. The seam portion after bead rolling is cooled to, for example, about 600 ° C. by the seam accelerated cooling device 7 at a cooling rate of 5 to 50 ° C./s. At this time, the base material portion is, for example, about 530 ° C. due to natural cooling. The raw pipe 12 in this temperature state is fed into the raw pipe soaking furnace 8 and soaked so that the temperatures of the seam portion and the base metal portion coincide with the drawing rolling target temperature (for example, 650 ° C.) on the exit side of the furnace. The soaked elementary tube 12 is drawn and reduced by the reducer 9 to form a product tube 13.
[0016]
Fig. 3 shows the simulation results of seam temperature and processing history of Fig. 2 for SAE1006 steel (0.05% C-0.05% Si-0.32% Mn). (A) Without bead rolling and (b) With bead rolling ( It is a micrograph of a microscopic structure showing an example of a result of comparing seam part structures at a temperature of 900 ° C. and a reduction ratio of 35%. As shown in this figure, the seam part becomes a coarse bainite structure without bead rolling. It can be seen that by applying bead rolling, the seam part can be formed into a fine ferrite structure (substantially the same structure as the base material part).
[0017]
Although the present invention can be applied to any steel composition, in order to obtain a product tube having an excellent strength-elongation balance, C: 0.01 to 0.25% (0.05 to 0.15%), Si: 0.01 -1.0%, Mn: 0.1-2.0% (0.3-1.0%), P: 0.025% or less (0.010% or less), S: 0.025% or less (0.010% or less), Al: 0.005 to 0.10%, and further If necessary,
(i) Cu: 0.1 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.1 to 1.0%, Mo: 0.05 to 0.5%, one or more,
(ii) Nb: 0.005 to 0.070%, V: 0.01 to 0.40%, Ti: 0.005 to 0.1%, B: one or more of 0.0005 to 0.0030%,
(iii) REM: 0.020% or less, Ca: 0.010% or less, or both,
It is preferable to use, as a raw material, a steel strip containing one or two or more selected from the group consisting of the remaining iron and inevitable impurities. Here, the inside of () shows a more preferable range.
[0018]
The reason is as follows.
C: 0.01 to 0.25% (0.05 to 0.15%)
C is an element that precipitates as a solid solution or carbide in the matrix and increases the strength of the steel, and fine cementite, martensite, and bainite precipitated as a hard second phase improve ductility (uniform elongation). However, if it is less than 0.01%, it is difficult to obtain a desired strength. On the other hand, if it exceeds 0.25%, the strength becomes too high and the ductility deteriorates, so the C content should be 0.01-0.25%. . From the viewpoint of strength-elongation balance, 0.05 to 0.15% is more preferable.
[0019]
Si: 0.01-1.0%
Si acts as a deoxidizing element and dissolves in the matrix to increase the strength of the steel. However, if it is less than 0.01%, its effect is poor, and if it exceeds 1.0%, the ductility is degraded. It should be 1.0%.
Mn: 0.1 to 2.0% (0.3 to 1.0%)
Mn is an element that increases the strength of steel and promotes fine precipitation of hard second phase (cementite, martensite, bainite), but its effect is poor at less than 0.1%, while strength is over 2.0%. Since it becomes excessive and ductility deteriorates, the amount of Mn is preferably 0.1 to 2.0%. In addition, from the viewpoint of strength-elongation balance, 0.3 to 1.0% is more preferable.
[0020]
P: 0.025% or less (0.010% or less)
P is segregated at the grain boundary and deteriorates toughness, so it is preferable to reduce it as much as possible, but it is acceptable up to 0.025%. More preferably, it is 0.010% or less.
S: 0.025% or less (0.010% or less)
Since S increases sulfides and lowers cleanliness, S is preferably reduced as much as possible, but is acceptable up to 0.025%. More preferably, it is 0.010% or less.
[0021]
Al: 0.005 to 0.10%
Al has the effect of refining crystal grains, but if it is less than 0.005%, its effect is insufficient, while if it exceeds 0.10%, the amount of oxide inclusions increases and the cleanliness decreases, so the amount of Al Is preferably 0.005 to 0.10%.
Cu: 0.1 to 1.0%
Cu is an element that improves the hardenability of steel and increases strength, and has the effect of lowering the transformation point and refining ferrite grains or hard second phase, but less than 0.1%, the effect is poor. If it exceeds 1.0%, the hot workability deteriorates, so the Cu content is preferably 0.1 to 1.0%. For line pipes, 0.5% or less is preferable in order to suppress hardening of the welded joint and improve stress corrosion cracking resistance.
[0022]
Ni: 0.05-1.0%
Ni is an element that improves the hardenability of steel and increases its strength, and also improves toughness. It also has the effect of reducing the transformation point and refining ferrite grains or hard second phase. On the other hand, if it exceeds 1.0%, the effect is saturated and economically expensive, so the Ni content should be 0.05-1.0%. For line pipes, 0.5% or less is preferable in order to suppress hardening of the welded joint and improve stress corrosion cracking resistance.
[0023]
Cr: 0.1 to 1.0%
Cr is an element that improves the hardenability of the steel and increases the strength, and has the effect of reducing the transformation point and refining the ferrite grains or the hard second phase. However, if it is less than 0.1%, the effect is poor. If it exceeds 1.0%, weldability and ductility are deteriorated and it is economically expensive. Therefore, the Cr content is preferably 0.1 to 1.0%. For line pipes, 0.5% or less is preferable in order to suppress hardening of the welded joint and improve stress corrosion cracking resistance.
[0024]
Mo: 0.05-0.5%
Mo is an element that improves the hardenability of the steel and increases the strength, and has the effect of reducing the transformation point and refining the ferrite grains or the hard second phase. However, if it is less than 0.05%, the effect is poor. If it exceeds 0.5%, the weldability and ductility deteriorate, and for line pipes, the welded joint is hardened and the stress corrosion cracking resistance deteriorates. Moreover, the Mo amount is 0.05 to 0.5% because it is economically expensive. It is good to do.
[0025]
Nb: 0.005 to 0.070%, V: 0.01 to 0.40%, Ti: 0.005 to 0.1%, B: 0.0005 to 0.0030%
Nb, V, Ti, and B are all elements that precipitate as carbide, nitride, or carbonitride, and contribute to refinement and high strength of crystal grains. While cooling, it has the effect of preventing the hardening of the seam part by forming ferrite nuclei during cooling, but Nb: less than 0.005%, V: less than 0.01%, Ti: less than 0.005%, and B: less than 0.0005% Less effective, while Nb: over 0.070%, V: over 0.40%, Ti: over 0.1%, B: over 0.0030%, the weldability and toughness deteriorate, so the amount of Nb, V, Ti, B is respectively The above range is preferable. In terms of improving the stress corrosion cracking resistance, the V content is more preferably limited to 0.10% or less.
[0026]
REM: 0.020% or less, Ca: 0.010% or less
REM and Ca both improve workability by adjusting the shape of inclusions, and also have the effect of preventing the seam from hardening by precipitation as sulfides, oxides, or sulfates, but REM: over 0.020%, If the Ca content exceeds 0.010%, the inclusions increase too much and the cleanliness decreases and the toughness deteriorates. Therefore, it is preferable to set REM: 0.020% or less and Ca: 0.010% or less.
[0027]
Regarding inevitable impurities, N combines with Al and contributes to the refinement of crystal grains. However, if it exceeds 0.010%, the ductility is deteriorated, so that it is preferably reduced to 0.010% or less. O is preferably reduced as much as possible because it lowers cleanliness as an oxide, but it is acceptable up to 0.006%.
[0028]
【Example】
Product pipes by continuously pipe-making steel strips of the size and steel composition shown in Table 1 (the balance being iron and inevitable impurities) in the pipe-making line shown in FIG. 1 under the conditions shown in Table 2 respectively. It was done. The strip heating furnace is a radiation system, the molding device is a CBR (chance free bulge rolling) mill, the edge heater is an induction heating method, the squeeze device is a two-roll facing system, and the seam forced cooling device is a mist nozzle. The bead rolling device is composed of a pair of rolls facing each other inside and outside the pipe, the seam accelerated cooling device is composed of a mist nozzle, the tube soaking furnace is a combined radiation and induction system, and the reducer is 3 The roll stand is configured by arranging 24 stands in tandem.
[0029]
For samples cut from the regular drawing and rolling parts of these product tubes (parts entering 0.5 m or more in the longitudinal direction from the tip and tail ends), the thickness ratio was measured by thickness measurement (= {(maximum wall thickness-minimum wall thickness). ) / Average wall thickness} × 100 (%)), microscopic observation of the microstructure area ratio (bainite (B) or martensite (M) area ratio (%)), and JIS No. 11 tensile test in the direction of drawing and rolling Strength (yield strength YS (MPa), tensile strength TS (MPa) and elongation El (%)), bulge test (test method: water pressure is applied to the steel pipe, and the range of 150 mm length remains in a circular cross section. The presence or absence of seam cracks (secondary workability) was investigated, respectively, and the results are shown in Table 2.
[0030]
As shown in Table 2, in the examples satisfying the requirements of the present invention, the seam part is substantially the same ferrite-based structure as the base material part, the deviation rate is small, the strength-elongation balance is excellent, and the secondary workability is also good (the seam part). No cracks). In contrast, in the comparative example lacking the requirements of the present invention, many low-temperature transformation products appear in the seam part, the uneven thickness ratio is large, the strength is too high, the elongation deteriorates, and the secondary workability is poor (seam cracking). Occurred).
[0031]
[Table 1]
Figure 0003951481
[0032]
[Table 2]
Figure 0003951481
[0033]
【The invention's effect】
Thus, according to the present invention, by performing bead rolling on the seam portion after joining, the occurrence of low-temperature transformation products (bainite and martensite) is suppressed, so that welding with a wide range of steel compositions is possible. For steel pipes and solid phase welded steel pipes, the seam part can be made to have the same ferrite-based structure as the base metal part, which can eliminate uneven thickness in drawing rolling and the workability of the product pipe (secondary workability) ) Can be improved.
[Brief description of the drawings]
FIG. 1 is a plan layout view showing an example of a pipe forming line suitable for implementing the present invention.
FIG. 2 is a schematic diagram showing an example of the temperature and processing history of the base material portion and the seam portion in the pipe making line of FIG. 1;
FIG. 3 is a microscope showing an example of a result of a simulation of the seam temperature and processing history shown in FIG. 1 for SAE1006 steel and comparing the structure of a seam part with (a) no bead rolling and (b) bead rolling. It is an organization photograph.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel strip heating furnace 2 Forming device 3 Edge heater 4 Squeeze device 5 Seam forced cooling device 6 Bead rolling device 7 Seam acceleration cooling device 8 Base tube soaking furnace 9 Drawing rolling device (reducer)
10 steel strip
11 open tube
12 Elementary tube
13 Product pipe
14 Seam

Claims (3)

帯鋼を連続的に通材しながらオープン管に成形し、その対向する両エッジ部を溶接または固相圧接により接合して素管となし、この素管を引き続き絞り圧延して所定サイズの製品管とする鋼管の製造方法において、溶接または固相圧接直後に、圧延温度750 〜950 ℃、圧下率15%以上でシーム部をビード圧延すること、および前記接合直後から前記ビード圧延開始までの間にシーム部を強制冷却することを特徴とする鋼管の製造方法。The steel strip is formed into an open pipe while continuously passing through it, and the opposite edge portions are joined by welding or solid-phase pressure welding to form a raw pipe. In the method of manufacturing a steel pipe to be used as a pipe, immediately after welding or solid phase pressure welding, bead rolling the seam portion at a rolling temperature of 750 to 950 ° C. and a reduction ratio of 15% or more , and immediately after the joining until the start of the bead rolling. A method of manufacturing a steel pipe, wherein the seam portion is forcibly cooled . 前記ビード圧延の直後にシーム部を5〜50℃/sの冷却速度で加速冷却することを特徴とする請求項1記載の鋼管の製造方法。 The method for producing a steel pipe according to claim 1, wherein the seam portion is accelerated and cooled immediately after the bead rolling at a cooling rate of 5 to 50 ° C / s. 前記帯鋼が、重量%で、C:0.01〜0.25%,Si:0.01〜1.0%,Mn:0.1 〜2.0 %,P:0.025 %以下,S:0.025 %以下,Al:0.005 〜0.10%を含有し、あるいはさらに、Cu:0.1 〜1.0 %,Ni:0.05〜1.0 %,Cr:0.1 〜1.0 %,Mo:0.05〜0.5 %,Nb:0.005 〜0.070 %,V:0.01〜0.40%,Ti:0.005 〜0.1 %,B:0.0005〜0.0030%,REM :0.020 %以下,Ca:0.010 %以下のうち1種または2種以上を含有し、残部鉄および不可避的不純物からなることを特徴とする請求項1または2に記載の鋼管の製造方法。The steel strip contains, by weight, C: 0.01 to 0.25%, Si: 0.01 to 1.0%, Mn: 0.1 to 2.0%, P: 0.025% or less, S: 0.025% or less, Al: 0.005 to 0.10% In addition, Cu: 0.1 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.1 to 1.0%, Mo: 0.05 to 0.5%, Nb: 0.005 to 0.070%, V: 0.01 to 0.40%, Ti: 0.005 -0.1%, B: 0.0005-0.0030%, REM: 0.020% or less, Ca: 0.010% or less, one or more of them are contained, and the balance iron and inevitable impurities are included. Or the manufacturing method of the steel pipe of 2 .
JP33813998A 1998-11-27 1998-11-27 Steel pipe manufacturing method Expired - Fee Related JP3951481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33813998A JP3951481B2 (en) 1998-11-27 1998-11-27 Steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33813998A JP3951481B2 (en) 1998-11-27 1998-11-27 Steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2000158192A JP2000158192A (en) 2000-06-13
JP3951481B2 true JP3951481B2 (en) 2007-08-01

Family

ID=18315292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33813998A Expired - Fee Related JP3951481B2 (en) 1998-11-27 1998-11-27 Steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP3951481B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679115B2 (en) * 2011-02-25 2015-03-04 Jfeスチール株式会社 High carbon steel pipe excellent in cold workability, machinability and hardenability and method for producing the same
CN109722611B (en) * 2017-10-27 2020-08-25 宝山钢铁股份有限公司 Steel for low-yield-ratio ultrahigh-strength continuous oil pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000158192A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
US6290789B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
JP4819185B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP4608739B2 (en) Manufacturing method of steel pipe for automobile door reinforcement
WO2010052928A1 (en) Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
CN104220622A (en) High-strength thick-walled electric-resistance-welded steel pipe having excellent low-temperature toughness, and method for manufacturing same
JPH09235617A (en) Production of seamless steel tube
JP2009242841A (en) High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
CN102549186B (en) High-strength steel pipe, steel plate for high-strength steel pipe, and processes for producing these
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
US20220373108A1 (en) Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure
CN110106444A (en) A kind of driving axle housing 700MPa grades of hot-rolled sheet coils and preparation method thereof
CN113453817B (en) Square steel pipe, method for producing the same, and building structure
CN113302315B (en) Hot-rolled steel sheet, welded joint, and method for producing same
TWI754213B (en) Square steel pipe, method for manufacturing the same, and building structure
JP3760640B2 (en) Steel pipe manufacturing method
JP2008248383A (en) Directly quenched thick steel plate with thin wall and manufacturing method therefor
JP4140419B2 (en) Manufacturing method of high strength steel pipe with excellent composite secondary workability
JP3622499B2 (en) Steel pipe manufacturing method
JP3951481B2 (en) Steel pipe manufacturing method
JP5589335B2 (en) Manufacturing method of high toughness steel
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
CN110592469A (en) 550 MPa-grade preheating-free welding thick-specification steel plate for ocean engineering and preparation method thereof
JP3896647B2 (en) Manufacturing method of high-strength steel pipe with excellent workability
JP7472826B2 (en) Electric resistance welded steel pipe and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees