JP3947111B2 - 振動式トランスデューサ - Google Patents

振動式トランスデューサ Download PDF

Info

Publication number
JP3947111B2
JP3947111B2 JP2002583911A JP2002583911A JP3947111B2 JP 3947111 B2 JP3947111 B2 JP 3947111B2 JP 2002583911 A JP2002583911 A JP 2002583911A JP 2002583911 A JP2002583911 A JP 2002583911A JP 3947111 B2 JP3947111 B2 JP 3947111B2
Authority
JP
Japan
Prior art keywords
conduit
cantilever
vibration
transducer
side pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002583911A
Other languages
English (en)
Other versions
JP2004526160A (ja
Inventor
リーデーア,アルフレート
ドラーム,ヴォルフガング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of JP2004526160A publication Critical patent/JP2004526160A/ja
Application granted granted Critical
Publication of JP3947111B2 publication Critical patent/JP3947111B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • G01F1/8418Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、特にコリオリ質量流量計に使用する振動式トランスデューサに関する。
パイプ中を流れる流体、特に液体の質量流量を決定するのに、測量計がよく使用される。この測量計は、流体にコリオリ力を誘導し、そこから、振動式トランスデューサとそれに接続された制御及び評価判断用の電子機器により質量流量を表す測定信号を得るものである。
このようなコリオリ質量流量計は周知であり、産業用としてずっと利用されてきた。EP-A317 340、米国特許5,398,554、5,476,013、5,531,126、5,691,485、5,705,754、5,796,012、5,945,609、および5,979,246が、WO-A99/51946、WO-A99/40349、およびWO-A00/14485と同様に、例えばパイプ中を流れる流体の質量流量に応答する振動式トランスデューサを備えるコリオリ質量流量計を開示している。このトランスデューサは、
動作中は振動し、入り口側管部および出口側管部を通じてパイプを伝わる流体を通す1本のまっすぐな導管と、
動作中は上記導管を励起して1つの管面内でたわみ振動を起こさせる励起システムと、
上記導管の入り口側および出口側の振動を検知するセンサシステムとを備える。
周知のように、励起されて固有振動の第1の形態によるたわみ振動を生じたまっすぐな導管は、そこを流れる流体にコリオリ力を発生させる。この結果、さらに、固有振動の第2の形態による同一平面上の高次および/または低次のたわみ振動が、上記の励起されたたわみ振動に重なって発生し、これにより、センサシステムによって入り口および出口側で検知される振動が、質量流量にも依存する測定可能な位相差を表すことになる。
通常は、コリオリ質量流量計に使用するトランスデューサの導管は、例えば動作中に固有振動の第1の形態の瞬時の共振周波数で、特に一定に保たれた振動振幅で励起される。この共振周波数も特に流体の瞬間密度に依存しているので、市販のコリオリ質量流量計を使用して、流動する液体の密度を測定することが出来る。
まっすぐな導管の長所の1つは、実質的にどの設置場所においても、また特に使用管内で洗浄作業後に確実に残留なしに排水可能であることである。さらに、上記導管は、製造が簡単でありその結果、例えばオメガ状、らせん状の湾曲導管よりも製造費用も安価である。さらに、上記振動するまっすぐな導管の、湾曲管に比較した長所は、実質的に動作中に導管を通じて接続したパイプ内でねじれ振動が生じないことである。
上記のトランスデューサの重大な短所は、振動するまっすぐな導管に左右交代のふれが生じること、同一周波数で発振する横力(transverse force)がパイプに生じること、および上記横力に釣り合う力を生じるには限度があり、そのための技術が非常に複雑であること、である。
トランスデューサの動的バランスを向上させ、特に振動するまっすぐな導管によって生じ、入り口および出口側でパイプに作用する横力を抑制するために、EP-A317 340、米国特許5,398,554、5,531,126、5,691,485、5,796,012、および5,979,246が、WO-A00/14485と同様に開示しているトランスデューサには、少なくとも1つの一部品または多くの部分に分かれ、入り口及び出口側の導管に取り付けられた耐振動体が備えられる。動作中は、この耐振動体は、梁、特にチューブの梁、または導管と位置合わせした物理上の振り子として設置され、特にそれぞれの導管と異なった位相で振動し、これによって導管の横力やパイプの耐振動体の影響を抑止し、中和することができる。
このような耐振動体を持つトランスデューサは、特に測定する流体が実質的に密度の変動が一定または非常に密度の変動が小さい場合に適用したとき、すなわち、接続するパイプに影響をおよぼす、導管による横力および耐振動体による相殺力をゼロに設定しておくことができるときに適用した場合に効果的である。
連続して測定する異なった流体などの、密度変動率が高い流体に使用した場合、特に米国特許5,531,126, または5,969,265に開示したトランスデューサは、耐振動体をもたないトランスデューサとして同じ短所を持つ。上記の結果は流体の密度にもよるので、ゼロとの差はかなり大きい。すなわち、動作中は、導管および耐振動体で構成されるシステムは、密度による不均衡とそれに関連する横力の結果、割り当てられた静止時位置から全体的にずれる。
密度による横力を抑止する方法は、例えば、米国特許5,979,246、WO-A99/40394、または、WO-A00/14485に提示されている。特に、WO-A00/14485は、パイプを流れる流体用の振動式トランスデューサであり、これは、
流体を通すための導管で、動作中に振動し、入り口側管部および出口側管部を通じて導管が上記パイプに接続され、この振動する導管が少なくとも一時的に、横力により、割り当てられた静止時位置から横方向に変位し、横インパルスがトランスデューサに生じる導管と、
上記導管を駆動する励起システムと、
上記導管の振動を検知するセンサシステムと、
横インパルスが補償されるように補償振動を生成して、上記導管と、上記励起システムと、上記センサシステムと、2つの片持ち梁(cantilever)によって構成される振動系の重心が同じ位置に保持されるようにした、入り口側管部と出口側管部とにそれぞれ取り付けられた第1の耐振動体及び第2の耐振動体と、
を備えている。
WO-A99/40394は、パイプを流れる流体を通すための振動式トランスデューサを開示し、これは、
流体を通すための導管で、動作中に振動し、入り口側管部および出口側管部を通じてパイプに接続された導管と、
上記導管にその入り口側と出口側で取り付けられた耐振動体であって、横力が上記振動する導管と上記耐振動体に生成されるようにしたものと、
上記の入り口側管部と出口側管部に取り付けられたトランスデューサケースと、
上記導管を駆動するための励起システムと、
上記導管の振動を検知する検知システムと、
上記入り口側管部と上記トランスデューサケースに取り付けられて、入り口側の横力を打ち消す相殺力を生成する第1の片持ち梁と、
上記出口側管部と上記トランスデューサケースに取り付けられて、横力が生成されても上記導管が割り当てられた静止時位置に保持されるように、出口側の横力を打ち消す相殺力を生成する第2の片持ち梁と、
を備えている。
上記トランスデューサでは、米国特許5,979,246の記述を含み、密度による不均衡の問題点を、原則として耐振動体の振幅変化を導管振動に事前に動作中に適用することによって、特に、耐振動体振幅のバネ定数を、導管によって生成される力と耐振動体が互いに中和するように設定することによって解決している。
密度による横力を抑止する他の方法は、例えば、米国特許5,287,754、5,705,754、または5,796,010に開示されている。これらに開示されるトランスデューサでは、中または高周波数で振動する単一の導管によって生成される横力は、導管よりはるかに重い耐振動体により、および導管をパイプにゆるく、すなわち、機械的なローパスフィルタによって結合することによって、パイプに伝わらないようにする。このようなトランスデューサの重大な問題点は、十分な減衰を得るために必要な耐振動体が、導管の公称直径に対して不釣合いに大きくなることである。このような大きな構成要素を使用すると、製造の合計コストが増えると共に、パイプへの測定装置の設置コストも増加する。一方、耐振動体が大きくなるに従って低くなるトランスデューサの最小固有振動数を、接続するパイプの非常に低い固有周波数よりさらに低く保つ必要がある。このようなトランスデューサを産業用コリオリ質量流量計、コリオリ質量流量計密度計、および特に流体の測定用メータに使用する場合は、10ミリ以下の小さい公称直径に制限されている。
従って、本発明の目的は、コリオリ質量流量計またはコリオリ質量流量計密度計に特に適し、単一の特にまっすぐな導管を使用する場合であっても広範囲の流体密度に渡って動的にバランスがとれ、しかも比較的サイズの小さいトランスデューサを提供することである。
この目的を達するために、本発明は、パイプを流れる流体用の振動式トランスデューサを提供するものであって、このトランスデューサは、
流体を通すための導管であって、動作中に振動し、入り口側管部および出口側管部を通じて上記パイプに接続されており、振動すると横インパルス(すなわち、導管の軸方向に対し垂直な方向である横方向に生じるインパルス)が上記トランスデューサに生じることによって、少なくとも一時的に、静止時位置から横方向に変位する導管と、
上記導管を駆動する励起システムと、
上記導管の振動を検知するセンサシステムと、
上記入り口および出口側で上記導管に固定された耐振動体と、
上記入り口側管部に取り付けられて、上記入り口側管部を弾性的に変形させる曲げモーメントを生じさせるための第1の片持ち梁と、
上記出口側管部に取り付けられて、上記出口側管部を弾性的に変形させる曲げモーメントを生じさせるための第2の片持ち梁とを備え、
上記曲げモーメントは、変形する入り口側管部と変形する出口側管部とにおいて、上記振動する導管で生成される上記横インパルスと逆方向のインパルスが生成されるようになされている。
さらに、本発明は、パイプを流れる流体用の振動式トランスデューサを提供し、このトランスデューサは、
流体を通すための導管であって、動作中に振動し、入り口側管部および出口側管部を通じて上記パイプに接続されており、振動すると生じる横力(すなわち、導管の軸方向に対し垂直な方向である横方向に生じる力)により、少なくとも一時的に、静止時位置から横方向に変位する導管と、
上記導管を駆動する励起システムと、
上記導管の振動を検知するセンサシステムと、
上記入り口および出口側で上記導管に固定された耐振動体と、
上記入り口側管部を弾性的に変形させる曲げモーメントを生じさせるための、上記入り口側管部に固定された片持ち梁アーム(cantilever arm)と該片持ち梁アーム上に形成された片持ち梁質量体(cantilever mass)とを有する第1の片持ち梁と、
上記出口側管部を弾性的に変形させる曲げモーメントを生じさせるための、上記出口側管部に固定された片持ち梁アームと該片持ち梁上に形成された片持ち梁質量体とを有する第2の片持ち梁とを備え、
上記第1の片持ち梁の片持ち梁質量体と上記第2の片持ち梁の片持ち梁質量体とは、上記導管、上記入り口側管部、および上記出口側管部から離れて配置されており、
上記第1の片持ち梁の片持ち梁アームおよび片持ち梁質量体と、上記第2の片持ち梁の片持ち梁アームおよび片持ち梁質量体とは互いに、上記導管がその静止時位置から変位しても、上記入り口側管部に配置された上記第1の片持ち梁の重心と、上記出口側管部に配置された上記第2の片持ち梁の重心とが、実質的にその静止時位置を維持するようになされている。
本発明の第1の好ましい実施例では、上記変形する入り口側管部と上記変形する出口側管部とが、実質的に上記導管の横変位の方向と逆方向に曲がる。
本発明の第2の好ましい実施例では、上記導管は実質的にまっすぐである。
本発明の第3の好ましい実施例では、上記振動する導管は、たわみ振動を生ずる。
本発明の第4の好ましい実施例では、上記2つの片持ち梁のそれぞれは、重さが上記導管と少なくとも同じである。
本発明の第5の好ましい実施例では、上記トランスデューサは、上記の入り口側管部および出口側管部に固定されたトランスデューサケース更に備える。
本発明の第7の好ましい実施例では、上記導管は、その少なくとも一部分が上記耐振動体で囲まれている。
本発明の第8の好ましい実施例では、上記導管および上記耐振動体は、同軸である。
本発明の第9の好ましい実施例では、個別の質量片が、上記耐振動体に固定されている。
本発明の第10の好ましい実施例では、上記耐振動体に溝が施されている。
本発明の第11の好ましい実施例では、上記耐振動体に取り付けられた上記質量片は、環状で上記耐振動体と同軸である。
振動する導管の横変位運動は、測定を妨げ、接続されたパイプに対する妨害効果を持つものであり、また、管の主な変形、すなわち測定すべき変形に重なるものであり、本発明の基本概念は、この横変位運動を、トランスデューサの動的バランスを保つ入り口側および出口側管部の逆方向の変形に変換することである。
本発明の長所のひとつは、導管を流れる流体の密度が動作中に変動することによってトランスデューサの内部の質量分布が変化してもトランスデューサがその内部に発生する横インパルスおよび横力のバランスを保ち、すなわち、内部のジオメトリーが片持ち梁によって力を受けることによって、内部の横インパルスおよび横力を、接続されたパイプからほとんど切り離すことが出来る。一方で、そのために内部に生じる変形は、実質的にトランスデューサを伝わって届くことはなく、特にパイプには伝わらない。
本発明のトランスデューサは、さらに、動的な振動の遮断によって小型で軽量の装置を可能とすることを特徴とする。上記トランスデューサは、例えば前述した機械的ローパスフィルタシステムによって内部横力を或る程度まで釣り合せるようにしたトランスデューサより25%以上も重量を小さくすることが出来る。従って、上記トランスデューサは、特に公称直径の大きいパイプ、例えば80ミリ以上における測定に適している。
本発明のその他の特徴は、添付図面と共に後述の実施例を参照することによってさらに明らかになる。図面全体に共通する部分には同じ参照文字を使用し、説明を明白にするために必要であれば異なる参照文字を使用する。
図1および図2は、振動式トランスデューサの側面の模式図である。トランスデューサは、その中を流れる流体に、質量流量依存のコリオリ力、密度依存の慣性力、および/または粘性率依存の摩擦力など、トランスデューサに反発し、特にセンサ技術を用いて測定可能な機械的反力を生成する役割を有している。これらの反力から、例えば流体の質量流量m、密度ρ、および/または粘性率ηを、当業者によく知られている方法で得ることができる。
流体を通すため、トランスデューサは、実質的にまっすぐな導管10、特には単一の管を備え、この導管10は、動作中に静止時位置に対して振動しながら、繰り返し弾性的に変形する。
そのために、導管10は、振動運動が可能なように第1の支持システム20に取り付けられ、この第1の支持システム20は、導管10にその入り口および出口の所で固定されている。この支持システム20としては、例えば支持フレーム(supporting frame)または支持チューブ(supporting tube)を使用することが出来る。支持システム20の他の好ましい実施例を以下に説明する。
流体を導管10に流すために、導管10は入り口側管部11および出口側管部12を介して、流体を流すパイプに接続されている。導管10、入り口側管部11、および出口側管部12は、互いに仮想縦軸Lに対して位置合わせされており、例えば単一の管状半仕上げ製品から製造できるような一体構造であることが望ましいが、必要に応じて、導管10および管部11、12はそれぞれ別々の半仕上げ製品を例えば溶接などで互いに接合することで製造することも可能である。導管10としては、スチール、チタン、ジルコニウムなど、実質的にトランスデューサとして一般的に使用される材料を使用することが出来る。
もしトランスデューサをパイプから取り外し可能にするのであれば、第1のフランジ13および第2のフランジ14を入り口側管部11および出口側管部12にそれぞれ設けるのが好ましく、必要に応じて例えば溶接や焼付けによって入り口側管部11および出口側管部12をパイプに直接接続するようにしてもよい。
さらに、図1に模式的に示すように、第2の支持システム30を入り口側管部11および出口側管部12に固定してもよい。この第2の支持システムは、好ましくは、図1に示すように、導管10を収納するトランスデューサケース30’として実現されてもよい。
動作中は、導管10は、特に固有共振周波数のたわみ振動を励起して、いわゆる有用モードで固有振動の第1の形態でたわむようにする。
本発明の好ましい実施例では、導管10は、いわゆるf1固有振動モードの固有共振周波数に出来るだけ近い振動周波数、すなわち図3に模式的に示すように振動する空の導管10が単一の波腹を持つような対称固有振動モードで励起される。例えば、公称直径が20ミリ、壁の厚さ約1.2ミリ、長さ約350ミリの特殊鋼の導管10の場合には、f1固有振動モードの共振周波数は、約850から900Hzである。
質量流量mが0でないように流体がパイプを流れるとき、上記のように振動する導管10によって流体にコリオリ力が誘導される。コリオリ力は導管10に反発し、その結果、同一平面モードとしての励起された有用モードに重なる第2の形態の固有振動による導管10の更なる変形(不図示)を生じる。この変形は、センサ技術を使用して検出することが出来る。導管10の変形の瞬間の形状は、特に振幅では、瞬間の質量流量mに依存する。固有振動の第2の形態、いわゆるコリオリモードは、例えば反対称のf2固有振動モードすなわち2つの波腹を持つモード、および/または4つの波腹を持つ反対称のf4固有振動モードなど、トランスデューサで通常見られるモードである。
有用モードが励起されると、周知のたわみ振動に関連する質量加速度により、振動する単一の導管10で横力Q1が生成され、その結果、これに対応してトランスデューサに横方向に横インパルスが発生する。例えば振動振幅がおよそ0.03mmでは、上記特殊鋼の導管におよそ100Nの横力が生じる。
これらの横力Q1が釣り合わない場合、横インパルスがトランスデューサに残る。この結果、入り口側管部11および出口側管部12を介して、それに固定された第1の支持システム20と共に取り付けられた導管10が、その静止時位置から横方向にたわむ。従って、横力Q1は、少なくともその一部分が、接続されたパイプに入り口側管部11および出口側管部12を介して作用し、その結果、上記パイプをも同様に振動させる。
このようにパイプに作用する横力Q1を最小に抑えるために、本発明の好ましい実施例では、第1の支持システム20が、導管10とは異なった位相で、特に導管10とは反対の位相で振動する、好ましくはフレキシブルな耐振動体20’として実現される。
耐振動体20’は、トランスデューサのバランスを動的に保つことで、所定の流体密度値、例えばトランスデューサの動作中に最も頻繁に期待される値、すなわち臨界値において、振動する導管10に生じる横力Q1が可能な限り完全に補償され、図3aおよび3bに示すように導管10が実際にその静止時位置からずれないようにする役割を有する。従って、動作中には、耐振動体20’は、図3bに模式的に示すように、導管10のたわみ振動と実質的に同一平面上となるたわみ振動を生じるように励起される。
そのために、図1に示すように、耐振動体20’は管の形状、特に導管10と同軸の管として実現されるのが望ましい。必要であれば、耐振動体20’は、米国特許5,969,265、EP-A317,340、またはWO-A00/14485にも示されるように、例えば、複数部分からなる合成ユニットとして、または、図2に示されるように導管10にその入り口および出口でそれぞれ固定された2つの別々の耐振動体よって実現可能である。特に、後者の場合、内側の支持システム20は入り口側の耐振動体および出口側の耐振動体によって構成されるが、外側の支持システム30は、図2に示すように入り口側のサブシステムおよび出口側のサブシステムから構成される2部システムとして実現することも出来る。
他の好ましい実施例では、上記の密度値および導管10の実際の励起振動モードに合わせて耐振動体20’を簡単に調整できるようにするため、個別の第1および第2の質量片201、202が耐振動体20’に取り付けられ、好ましくは取り外し可能に取り付けられている。質量片201、202は、例えば、導管10またはそれを覆って滑動する短い管部に設けられた控えボルトにねじで留めたディスクであってもよい。また、それに相当する質量分布を耐振動体20’に持たせることは、例えば縦方向または環状の溝を形成することで実現できる。それぞれの適用に合った質量分布は、当業者が有限要素法および/または適切な検量方法を用いて容易に決定可能である。必要に応じて、もちろん2つの質量片201、202よりも多くの質量片を使用することが出来る。このとき、支持システム20、30の両方、少なくとも耐振動体20’およびトランスデューサケース30’は、例えばWO-A99/51946またはEP-A 1 150 104に提案してあるように、既存のパイプに後付けしてもよい。
導管10の機械的振動を生成するためには、トランスデューサにはさらに励起システム40、特に電気力学システムを備える。
励起システムは、例えば調整電流もしくは調整電圧を有する制御電子機器(不図示)から供給される電気励起エネルギEexcを、例えばパルス形態または調和振動的に導管10に作用し、かつ上記の方法で弾力的に管を変形させる励起力Fexcに変換する役割を持つ。励起力Fexcは、図1に模式的に示す通り双方向性であってもよく、または一方向性であってもよく、振幅については例えば電流もしくは電圧調整回路によって調整でき、周波数については例えば位相固定ループにより、当業者に周知の方法で調整できる。励起システムは、例えば、耐振動体20’に設置され、動作中に適切な励磁電流で横移動する筒型励磁コイルと、導管10の外側、特にその中央部に固定され、少なくとも一部が上記励磁コイル内を動く永久磁石電機子とを有する単一のソレノイドであることが可能である。励起システム40は、電磁石として、またはWO-A99/51946に示すように例えば地震励磁機(seismic exciter)として実現することも出来る。
導管10の振動を検出するため、この種のトランスデューサに一般に使用されるセンサシステムを採用可能であり、このセンサシステムでは、導管10の運動が入り口側の第1のセンサ50Aと出口側の第2のセンサ50Bで検知され、それに対応する第1および第2のセンサ信号S1およびS2にそれぞれ当業者に周知の方法で変換される。センサ50Aおよび50Bは、例えば、図1に模式的に示すように相対振動測定を行う電気力学式速度センサ、或いは電気力学式変位センサ、または加速度センサ、などであってもよい。電気力学センサシステムの代わりに、抵抗式または圧電式のストレインゲージを使用したセンサシステム、または光電センサシステムを使用してもよい。
繰り返し述べるが、導管10は、図3bに示すように、単一の流体密度値においてのみ、良くとも狭い流体密度の範囲において、耐振動体20’ により動的に均衡を保つことができる。しかし、密度ρが変化する間に、導管10は図3aから3dに縦軸Lで示すようにその静止位置から横方向に変位する。すなわち、上記流体密度値を超える高い密度ρでは、図3cに模式的に示すように導管10自身の振動運動の方向に変位し、また、上記流体密度値を下回る低い密度ρでは、図3dに示すように耐振動体20’ として実現される内部支持システム20の振動運動の方向に変位する。
トランスデューサの動的均衡を向上させ、特に、際立って変化する密度ρを有する流体に対応するため、トランスデューサは、入り口側管部11にできるだけ堅く固定された第1の片持ち梁15と、出口側管部12にできるだけ堅く固定され、かつ好ましくは片持ち梁15に形状が同じである第2の片持ち梁16とをさらに備える。
本発明によれば、2つの片持ち梁15、16は、導管10の中央線に対して対称に配置されるのが望ましいが、この2つの片持ち梁15、16は、振動する導管10が、耐振動体20’が存在する場合はこれと共に、その静止時位置から横方向に変位するとき、それぞれ入り口側管部11と出口側管部12、特には隣接する導管10の近くに、動的に曲げモーメントを生成させる役割を有する。このため、片持ち梁15と16は、例えば溶接または締め付けによって入り口側管部11の出口端部11#と、出口側管部12の入り口端部12#に、それぞれ確実および/または非確実に(positively and/or nonpositively)接続される。
図1および図2に示すように、2つの片持ち梁15、16が、そのようにトランスデューサ内に配置され、好ましくはできるだけ導管10の近くに配置されているので、片持ち梁15の重心M15と片持ち梁16の重心M16とが導管10から離れて配置されており、特には導管10と共に同一直線上に配置されている。この方法では、慣性モーメントは、それぞれの固定点すなわち出口端部11#および入り口端部12#に偏心的に、すなわち関連する重心M15、M16でない点に適用された片持ち梁15、16によって生じる。これらの慣性モーメントは、順次、片持ち梁15、16をそのそれぞれのほぼ静止した重心M15、M16に関して振動させ、その結果、図3c、3dに示すように、導管10の横方向変位運動Vおよび縦軸Lに垂直な第1の仮想回転軸D15に関して出口端部11#にさらなるねじれを加えると共に、上記第1の仮想回転軸に実質的に平行な第2の仮想回転軸D16に関して入口端部12# にさらなるねじれを加える。
出口端部11#のねじれは、図4に拡大表示するように、入り口側管部11の少なくとも一部にさらなる曲げを生じさせる。この曲げは、導管10の変位運動Vとは反対方向に向いており、また、単軸で横力のない、従ってせん断応力のない曲げに相当するものである。これと同様に、出口側管部12も、変位運動Vとは反対方向に曲げられる。
本発明者が見いだしたことによると、入り口側管部11および出口側管部12の曲げは、例えばコンピュータ支援のシミュレーション計算または実験に基く測定によって、最適化することが可能である。すなわち、振動する導管10の上記横力Q1が、完全にまたは少なくとも部分的に、上記曲げにより生じる相殺力Q2によって均衡が取られるようにし、また、振動する導管10によって実際に生じる何の横力も、接続パイプに作用することなく、同じく振動する内部支持システム20が接続パイプに作用するようにすることで、最適化が可能になる。結果として生じる曲げモーメントによって起こる接続パイプの何らかの変形は、支持システム30によって、例えば上記トランスデューサケース30’の適度に高い曲げ剛性によって、簡単に抑制され得る。
本発明は、次のような驚くべき認識にも基づいている。すなわち、上記有用モードの状態にある導管10の瞬間の振動振幅もしくは振動周波数とは無関係に、入り口側管部11および出口側管部12の適切な変形を介して、すなわち、それに対応するたわみ線の適切な形状を介して、縦軸Lに沿った単位長当たりの力の値および運動量の値がトランスデューサ内で次のように設定可能である。すなわち、振動する導管10で生じた横インパルスとは反対方向の横インパルスが、これらの横インパルスが互いに相殺しあうように生成され、その結果、振動する導管10によって生成された横力Q1が、変形する入り口側管部11および変形する出口側管部12によって生成された横力Q2により実質的に均衡が保たれるように、設定可能である。
本発明のさらに別の好ましい実施例では、片持ち梁15は、その重心M15が実質的に入り口側管部11の半分の長さの範囲内に位置するように、導管10に合わせて取り付けられており、また、片持ち梁16は、その重心M16が実質的に出口側管部12の半分の長さの範囲内に位置するように導管10に合わせて取り付けられている。
慣性モーメントを上げるため、片持ち梁15は、図1に示すように、片持ち梁アーム15Aを備え、その上には片持ち梁質量体15Bが出口端部11#から離れて形成されている。同様に、片持ち梁16は、片持ち梁アーム16Aを備え、その上には片持ち梁本体16Bが入り口端部12#から離れて形成されている。片持ち梁質量体15B、16Bは、導管10の横変位、それによる入り口および出口11#、12#のそれぞれの横変位に対してねじれが可能であるが、並進運動している間(translatory terms)は、実質的に、片持ち梁15、16の具体的な機械配置パラメータに基いてそれらに割り当てられたそれぞれの静止時位置に維持されるように、選択される。これに対応して、導管10がその静止時位置から横変位されても、2つの片持ち梁15、16のそれぞれの重心M15、M16は実質的にそれらの静止時位置に配置され、従って、これらは、上記の曲げモーメントを生じさせる片持ち梁15、16の回転運動の中心として機能する。
片持ち梁15,16のそれぞれは、その一端で留められ、すなわち、図1から図4に示すようにそれぞれ出口端部11#および入り口端部12#でのみ固定されるのが望ましい。しかし、望ましくない振動モードを抑制するために、それぞれの片持ち梁質量体15B、16Bおよびトランスデューサケース30’に固定されて、片持ち梁15、16の重心M15、M16をそれぞれの静止位置に安定させる、図4に模式的に示すバネおよび/または減衰要素をさらに備えていてもよい。
特殊鋼の上記導管を有するトランスデューサでの実験によると、例えば、横変位に対して可能な限り非活動であるべき片持ち梁質量体15B、16Bのそれぞれは、特に導管10と比較して、その質量の約5倍の質量に選択されるのが望ましいということがわかった。ただし、驚くべきことに、片持ち梁質量体15B、16Bと片持ち梁アーム15A、16Aとは釣り合っており、動作中に予測される振動中の導管10の振動周波数とは実質的に無関係でありうる。つまり、片持ち梁質量体15B、16Bは、できるだけ重く、特には導管10より重く、また、片持ち梁アーム15A、16Aは、上述したようにできるだけ硬質であることだけが保証されなければならない。
片持ち梁質量体にできるだけ小さい抵抗でねじれを与えるために、片持ち梁15、16を、上記慣性モーメントとそのそれぞれに関連する片持ち梁質量体15B、16Bとの比率ができるだけ低くなるように、導管10に合わせて固定するのが望ましい。研究によると、導管10が例えば上記のような特殊鋼でできている場合は、片持ち梁15、16を入り口側管部11および出口側管部12に合わせて固定することで、上記比率を10−4kg・m2/kgより小さくすべきである。この比率は、望ましくは、片持ち梁質量体15B、16Bを、図3aから図3dおよび図4にそれぞれ断面図で示すような長い角柱または筒の形態で実現すると共に、片持ち梁質量体15B、16Bの最小の主慣性モーメントにおけるそれぞれの主慣性軸が上記の回転軸D15、D16に平行になるように片持ち梁質量体15B、16Bをそれぞれ片持ち梁アーム15A、16Aを介して入り口側管部11および出口側管部12に取り付けることにより、非常に正確に設定することが出来る。
上記比率は、導管10の横方向変位運動Vの関数として動的に最小にすることも出来る。このために、本発明のさらなる好ましい実施例では、例えば図1に模式的に示すように回転軸D15、D16と実質的に平行な溝を形成することによって、片持ち梁質量体15B、16Bの少なくとも一部が柔軟に形成される。
さらに、片持ち梁15、16は、その片持ち梁アーム15A、16Aがそれぞれ入り口側管部11、出口側管部12よりも高い曲げ剛性をもち、少なくとも3倍の曲げ剛性を持つように設計するのが望ましい。このために、片持ち梁アーム15A、16Aは、すでに耐振動体20’について述べたように例えば管状形状であってもよく、そしてそれらは、導管10と同軸であって、もし耐振動体20’が存在するならばそれと同一直線上にあるように、入り口側管部11および出口側管部12にそれぞれ固定されてもよい。この場合、片持ち梁アーム15A、16Aおよび耐振動体20’は、例えば、単一の管状半仕上げ製品から1部品として形成されたり、または半分の管2つから2部品として形成されることも可能である。上記曲げ剛性の比率は、例えば適切な長さの入り口側管部11および出口側管部12を選択することによって設定することも出来る。
しかし、本発明者等が驚いたことに、入り口側管部11および出口側管部12の曲げモーメントは、ある限度内で弾性的にかなり変形する片持ち梁アーム15A、16Aを用いることによって、十分正確に得ることも出来る。そして、片持ち梁質量体15B、16Bは、実質的にねじれを受けにくいように、それらの静止時位置に、好ましくは導管10から比較的離れた位置に維持されるように設計されてもよい。上記のように片持ち梁アーム15A、16Aが管状である場合、これらアームには、それらの曲げ剛性および上記比率の両方を得るために、例えば縦方向に溝を形成するようにしてもよい。
以上の説明から明らかなように、本発明のトランスデューサは、当業者が、特に外部または内部の設置寸法の仕様に従って、導管10と、もし耐振動体20’が存在する場合にはこの耐振動体20’とに生じる横力のバランス化を高品質に達成するのを可能にする、多くの可能なセッティングによって特徴づけられる。
1つの導管を備えたコリオリ型トランスデューサの部分的な側面断面図である。 図1のトランスデューサの発展例の部分的な側面断面図である。 図1または図2のトランスデューサの動作中の導管のたわみ線を模式的に示す図である。 図1または図2のトランスデューサの動作中の導管の一部を模式的に示す図である。

Claims (14)

  1. パイプを流れる流体用の振動式トランスデューサにおいて、
    前記流体を通すための導管であって、動作中に振動し、入り口側管部および出口側管部を介して前記パイプに接続されており、振動すると横インパルスが前記トランスデューサに生じることによって、少なくとも一時的に、静止時位置から横方向に変位する導管と、
    該導管を駆動する励起システムと、
    前記導管の振動を検知するセンサシステムと、
    前記入り口および出口側で前記導管に固定された耐振動体と、
    前記入り口側管部に取り付けられて、前記入り口側管部を弾性的に変形させる曲げモーメントを生じさせるための第1の片持ち梁と、
    前記出口側管部に取り付けられて、前記出口側管部を弾性的に変形させる曲げモーメントを生じさせるための第2の片持ち梁とを備え、
    前記曲げモーメントは、変形する前記入り口側管部と変形する前記出口側管部とにおいて、前記振動する導管で生成される前記横インパルスと逆方向のインパルスが生成されるようになされることを特徴とする振動式トランスデューサ。
  2. 前記変形する入り口側管部と前記変形する出口側管部とが、実質的に前記導管の横方向変位とは逆の方向に曲がることを特徴とする請求項1に記載のトランスデューサ。
  3. 前記第1の片持ち梁は、前記入り口側管部に固定された片持ち梁アームと、該片持ち梁アームに形成された片持ち梁質量体とを有し、
    前記第2の片持ち梁は、前記出口側管部に固定された片持ち梁アームと、該片持ち梁アームに形成された片持ち梁質量体とを有することを特徴とする請求項1又は2に記載のトランスデューサ。
  4. パイプを流れる流体用の振動式トランスデューサにおいて、
    前記流体を通すための導管であって、動作中に振動し、入り口側管部および出口側管部を通じて前記パイプに接続されており、振動すると生じる横力により、少なくとも一時的に、静止時位置から横方向に変位する導管と、
    該導管を駆動する励起システムと、
    前記導管の振動を検知するセンサシステムと、
    前記入り口および出口側で前記導管に固定された耐振動体と、
    前記入り口側管部を弾性的に変形させる曲げモーメントを生じさせるための、前記入り口側管部に固定された片持ち梁アームと該片持ち梁アームに形成された片持ち梁質量体とを有する第1の片持ち梁と、
    前記出口側管部を弾性的に変形させる曲げモーメントを生じさせるための、前記出口側管部に固定された片持ち梁アームと該片持ち梁アームに形成された片持ち梁質量体とを有する第2の片持ち梁とを備え
    前記第1の片持ち梁の片持ち梁質量体と前記第2の片持ち梁の片持ち梁質量体とは、前記導管、前記入り口側管部、および前記出口側管部から離れて配置されており、
    前記第1の片持ち梁の片持ち梁アームおよび片持ち梁質量体と、前記第2の片持ち梁の片持ち梁アームおよび片持ち梁質量体とは互いに、前記導管がその静止時位置から変位しても、前記入り口側管部に配置された前記第1の片持ち梁の重心と、前記出口側管部に配置された前記第2の片持ち梁の重心とが、実質的にその静止時位置を維持するようになされていることを特徴とする振動式トランスデューサ。
  5. 前記導管は、実質的に直線状である請求項1から4のいずれか1項に記載のトランスデューサ。
  6. 前記振動する導管が、たわみ振動を生じることを特徴とする請求項1から5のいずれか1項に記載のトランスデューサ。
  7. 前記2つの片持ち梁のそれぞれが前記導管と少なくとも同じ重さであることを特徴とする請求項1から6のいずれか1項に記載のトランスデューサ。
  8. 前記トランスデューサは、前記入り口側管部および前記出口側管部に固定されたトランスデューサケース更に備えていることを特徴とする請求項1から7のいずれか1項に記載のトランスデューサ。
  9. 前記耐振動体は、管状形状であることを特徴とする請求項1から8のいずれか1項に記載のトランスデューサ。
  10. 前記導管は、その少なくとも一部分が前記耐振動体によって囲まれていることを特徴とする請求項1から9のいずれか1項に記載のトランスデューサ。
  11. 前記導管および前記耐振動体は同軸であることを特徴とする請求項10に記載のトランスデューサ。
  12. 溝が前記耐振動体に形成されていることを特徴とする請求項1から11のいずれか1項に記載のトランスデューサ。
  13. 個別の第1および第2の質量片が、前記耐振動体に固定されていることを特徴とする請求項1から12のいずれか1項に記載のトランスデューサ。
  14. 前記耐振動体に固定された前記質量片は、環状で、前記耐振動体と同軸であることを特徴とする請求項13に記載のトランスデューサ。
JP2002583911A 2001-04-24 2002-02-28 振動式トランスデューサ Expired - Lifetime JP3947111B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01109977A EP1253408A1 (de) 2001-04-24 2001-04-24 Messwandler vom Vibrationstyp
PCT/EP2002/002157 WO2002086426A1 (de) 2001-04-24 2002-02-28 Messwandler vom vibrationstyp

Publications (2)

Publication Number Publication Date
JP2004526160A JP2004526160A (ja) 2004-08-26
JP3947111B2 true JP3947111B2 (ja) 2007-07-18

Family

ID=8177225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002583911A Expired - Lifetime JP3947111B2 (ja) 2001-04-24 2002-02-28 振動式トランスデューサ

Country Status (6)

Country Link
EP (2) EP1253408A1 (ja)
JP (1) JP3947111B2 (ja)
CN (1) CN1267711C (ja)
CA (1) CA2443375C (ja)
RU (1) RU2273827C2 (ja)
WO (1) WO2002086426A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776053B2 (en) * 2001-11-26 2004-08-17 Emerson Electric, Inc. Flowmeter for the precision measurement of an ultra-pure material flow
EP1502085B1 (de) * 2002-05-08 2015-09-02 Endress + Hauser Flowtec AG Messwandler vom vibrationstyp
JP4562497B2 (ja) * 2004-11-15 2010-10-13 株式会社オーバル ノイズ対策形直管式コリオリ流量計
US7716995B2 (en) * 2005-03-29 2010-05-18 Micro Motion, Inc. Coriolis flow meter and method for determining flow characteristics
DE102005042677A1 (de) * 2005-08-27 2007-03-08 Abb Patent Gmbh Coriolis-Massendurchfluss-Aufnehmer
US7490521B2 (en) 2005-11-15 2009-02-17 Endress + Hauser Flowtec Ag Measurement transducer of vibration type
US7472607B2 (en) 2005-11-15 2009-01-06 Endress + Hauser Flowtec Ag Measurement transducer of vibration type
DE102005054855A1 (de) * 2005-11-15 2007-05-16 Flowtec Ag Meßwandler vom Vibrationstyp
WO2007057385A1 (de) * 2005-11-15 2007-05-24 Endress+Hauser Flowtec Ag Messwandler vom vibrationstyp
US7475603B2 (en) 2005-11-15 2009-01-13 Endress + Hauser Flowtec Ag Measurement transducer of vibration-type
WO2008077817A1 (de) * 2006-12-22 2008-07-03 Endress+Hauser Flowtec Ag Messwandler vom vibrationstyp
DE102006062185A1 (de) * 2006-12-22 2008-06-26 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp
DE102007021099A1 (de) 2007-05-03 2008-11-13 Endress + Hauser (Deutschland) Ag + Co. Kg Verfahren zum Inbetriebnehmen und/oder Rekonfigurieren eines programmierbaren Feldmeßgeräts
DE102007030700A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030699A1 (de) 2007-06-30 2009-01-15 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030690A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030691A1 (de) 2007-06-30 2009-01-02 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007063372A1 (de) 2007-12-30 2009-07-02 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007037166A1 (de) 2007-08-07 2009-02-19 Endress + Hauser Flowtec Ag Meßgerät
DE102007058608A1 (de) 2007-12-04 2009-06-10 Endress + Hauser Flowtec Ag Elektrisches Gerät
DE102008022373A1 (de) 2008-05-06 2009-11-12 Endress + Hauser Flowtec Ag Meßgerät sowie Verfahren zum Überwachen eines Meßgeräts
DE102009002289A1 (de) 2009-04-08 2010-10-14 Endress + Hauser Flowtec Ag Verfahren zum Ermitteln einer Periodendauer eines Meßsignals
CN102859852B (zh) 2010-04-19 2015-11-25 恩德斯+豪斯流量技术股份有限公司 测量变换器的驱动电路及由该驱动电路形成的测量***
DE202010006553U1 (de) 2010-05-06 2011-10-05 Endress + Hauser Flowtec Ag Elektronisches Meßgerät mit einem Optokoppler
DE102010030924A1 (de) 2010-06-21 2011-12-22 Endress + Hauser Flowtec Ag Elektronik-Gehäuse für ein elektronisches Gerät bzw. damit gebildetes Gerät
DE102011076838A1 (de) 2011-05-31 2012-12-06 Endress + Hauser Flowtec Ag Meßgerät-Elektronik für ein Meßgerät-Gerät sowie damit gebildetes Meßgerät-Gerät
AT517082B1 (de) * 2015-05-20 2016-11-15 Anton Paar Gmbh Messgerät zur Untersuchung von fluiden Proben
CN105067060B (zh) * 2015-09-16 2018-02-02 济南大学 一种基于扭振的流体质量流量计及其检测方法
DE102016114860A1 (de) 2016-08-10 2018-02-15 Endress + Hauser Flowtec Ag Treiberschaltung sowie damit gebildete Umformer-Elektronik bzw. damit gebildetes Meßsystem
DE102017112950A1 (de) * 2017-06-13 2018-12-13 Krohne Messtechnik Gmbh Magnetisch-induktives Durchflussmessgerät und Verfahren zum Betreiben eines magnetisch-induktiven Durchflussmessgerätes
JP6785894B2 (ja) * 2019-01-21 2020-11-18 マイクロ モーション インコーポレイテッド 振動式デンシトメータ用の改善されたスプール本体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212613B (en) * 1987-11-19 1991-07-03 Schlumberger Ind Ltd Improvements in single vibrating tube transducers
US5945609A (en) * 1996-03-08 1999-08-31 Fuji Electric Co., Ltd. Mass flowmeter for measuring flow rate of a fluid
US5987999A (en) * 1998-07-01 1999-11-23 Micro Motion, Inc. Sensitivity enhancing balance bar
DE19840782C2 (de) * 1998-09-08 2001-09-06 Krohne Messtechnik Kg Massendurchflußmeßgerät

Also Published As

Publication number Publication date
CA2443375A1 (en) 2002-10-31
CA2443375C (en) 2009-06-30
RU2273827C2 (ru) 2006-04-10
CN1267711C (zh) 2006-08-02
RU2003133994A (ru) 2005-02-27
JP2004526160A (ja) 2004-08-26
EP1253408A1 (de) 2002-10-30
EP1381830A1 (de) 2004-01-21
CN1502037A (zh) 2004-06-02
EP1381830B1 (de) 2021-03-31
WO2002086426A1 (de) 2002-10-31

Similar Documents

Publication Publication Date Title
JP3947111B2 (ja) 振動式トランスデューサ
US7010989B2 (en) Vibratory transducer
CA2484668C (en) Vibratory transducer
DK2122311T3 (en) VIBRATION TYPE TRANSDUCER
US7360451B2 (en) Measuring transducer of vibration-type
US7475603B2 (en) Measurement transducer of vibration-type
US7472607B2 (en) Measurement transducer of vibration type
US7490521B2 (en) Measurement transducer of vibration type
RU2369842C2 (ru) Встроенные в трубопровод измерительные устройства и способ компенсации погрешностей измерений во встроенных в трубопровод измерительных устройствах
JP2004538449A (ja) 振動型トランスデューサ
CN101346612B (zh) 振动型测量变换器
JP5096365B2 (ja) 振動型測定変換器
CN101346611B (zh) 振动型测量变换器
RU2396520C2 (ru) Измерительный преобразователь вибрационного типа и применение измерительного преобразователя в измерительном приборе
RU2298165C2 (ru) Измерительный преобразователь вибрационного типа, прибор для измерения вязкости протекающей по трубопроводу жидкости, а также массового расхода и/или плотности и применение измерительного преобразователя для измерения вязкости протекающей по трубопроводу жидкости

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3947111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term