JP3946979B2 - Methacrylic resin composition with excellent low-temperature processing characteristics and scratch resistance - Google Patents

Methacrylic resin composition with excellent low-temperature processing characteristics and scratch resistance Download PDF

Info

Publication number
JP3946979B2
JP3946979B2 JP2001325338A JP2001325338A JP3946979B2 JP 3946979 B2 JP3946979 B2 JP 3946979B2 JP 2001325338 A JP2001325338 A JP 2001325338A JP 2001325338 A JP2001325338 A JP 2001325338A JP 3946979 B2 JP3946979 B2 JP 3946979B2
Authority
JP
Japan
Prior art keywords
weight
ester
monomer
resin composition
methacrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001325338A
Other languages
Japanese (ja)
Other versions
JP2003128734A (en
Inventor
松村陽一
松本繁美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2001325338A priority Critical patent/JP3946979B2/en
Publication of JP2003128734A publication Critical patent/JP2003128734A/en
Application granted granted Critical
Publication of JP3946979B2 publication Critical patent/JP3946979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金属、プラスチックス、木材等に積層され、二次加工される際、特に低温時においてフィルムが外観を損なわず容易に加工が出来、積層品の耐候性、耐擦り傷性、耐溶剤性に優れたフィルム、シート等を容易に提供する樹脂組成物に関する。
【0002】
【従来の技術・発明が解決しようとする課題】
メタクリル系樹脂はプラスチックの中でも特に耐候性および透明性に優れ、種々の産業分野、たとえばシート、またはフィルム状に成形し、金属、プラスチック、木材など種々の材料にラミネートして基材の劣化を防止したり、美観を維持したりする分野等に広く用いられている。
【0003】
一方塩ビ鋼板といわれるような鋼板に軟質塩化ビニルフィルムをラミネートしたものは塩化ビニルフィルムの光に対する耐久性に心配があり建築材等として使用されることが難しい状況である。
【0004】
これらのことよりメタクリル系樹脂のフィルムを鋼板にラミネートして使用しようとする試みがなされているが、ラミネートした鋼板を加工する際特に低温高速下で折り曲げたりするとフィルムが応力白化したり破れが生じたりして使用できなかった。更に応力白化、破れを防止する目的で低温での伸びの良いフィルムが試みられているが、この場合は耐熱性が低くフィルムがべとついたりブロッキングを生じたり、硬度が低いことにより耐擦り傷性が低下したりして好ましいものではなかった。
【0005】
【課題を解決するための手段】
このような状況に鑑み、本発明者らは鋭意検討を重ねた結果、メタクリル酸エステル系共重合体(A)を特定の組成をもつアクリル酸エステル系重合体(A−1)とメタクリル酸エステル系重合体(A−2)の混合物とし、該樹脂中に分散するアクリル酸エステル系架橋弾性体粒子(B)の組成およびアクリル酸エステル系架橋弾性体粒子(B)中の多官能性化合物の含有量を特定の範囲にし、メタクリル酸エステル系共重合体(A)を特定のグラフト率でアクリル酸エステル系架橋弾性体粒子(B)にグラフト共重合せしめることにより、金属等に積層され2次加工される際に低温で高速で折り曲げても応力白化、破れがなく、かつ耐熱性が高く硬度も高いフィルムを形成しうる樹脂組成物が得られることを見出し本発明を完成させるに至った。
【0006】
即ち、本発明は、(A)メタクリル酸エステル系共重合体85〜60重量部及び(B)アクリル酸エステル系架橋弾性体粒子15〜40重量部[(A)と(B)合わせて100重量部]からなるメタクリル系樹脂組成物であって、(1)メタクリル酸エステル系共重合体(A)が、アクリル酸アルキルエステル100〜30重量%、メタクリル酸アルキルエステル0〜70重量%及び該単量体と共重合可能なエチレン系不飽和単量体0〜20重量%からなる単量体(混合物)を重合してなるガラス転移温度が25℃以下であるアクリル酸エステル系重合体(A−1)5〜30重量部、およびメタクリル酸アルキルエステル100〜75重量%、アクリル酸アルキルエステル25〜0重量%及び該単量体と共重合可能なエチレン系不飽和単量体0〜20重量%からなる単量体(混合物)を重合してなるガラス転移温度が45℃以上であるメタクリル酸エステル系重合体(A−2)30〜65重量部[(A−1)と(A−2)合わせて85〜60重量部]からなり、(2)アクリル酸エステル系架橋弾性体粒子(B)が、アクリル酸アルキルエステル100〜80重量%、メタクリル酸アルキルエステル20〜0重量%の計100重量%及び該単量体と共重合しうる1分子あたり2個以上の非共役2重結合を有する多官能性単量体0.5〜5.0重量%からなる単量体混合物を重合してなり、架橋弾性体粒子の重量平均粒子径が500〜1500Åであり、(3)アクリル酸エステル系重合体(A−1)のアクリル酸エステル系架橋弾性体粒子(B)へのグラフト効率が50重量%以上であり、アクリル酸エステル系重合体(A−1)およびメタクリル酸エステル系重合体(A−2)のアクリル酸エステル系架橋弾性体粒子(B)へのグラフト率が40〜150%であり、かつ、(4)メタクリル系樹脂組成物中のメチルエチルケトン可溶分の還元粘度が0.2〜0.8dl/gであるメタクリル系樹脂組成物(請求項1)、
アクリル酸エステル系架橋弾性体粒子(B)の重量平均粒子径が400〜800Åのアクリル酸エステル系架橋弾性体粒子(B―1)と重量平均粒子径が1000〜3000Åのアクリル酸エステル系架橋弾性体粒子(B−2)とからなりその相加平均が500〜1500Åである請求項1記載のメタクリル系樹脂組成物(請求項2)、
請求項1または2記載のメタクリル系樹脂組成物を成形してなるフィルム(請求項3)、
表面の鉛筆硬度が2B以上であり、かつ0℃での引張り破断伸びが20%以上である請求項3記載のフィルム(請求項4)及び
請求項3または4記載のフィルムを金属またはプラスチックまたは木材にラミネートしてなる積層品(請求項5)に関する。
【0007】
【発明の実施の形態】
本発明に使用されるメタクリル酸エステル系共重合体(A)の成分であるアクリル酸エステル系重合体(A−1)はアクリル酸アルキルエステル100〜30重量%とメタクリル酸アルキルエステル0〜70重量%、および該単量体と共重合可能なエチレン系不飽和単量体0〜20重量%からなる単量体又は単量体混合物を重合させてなるものである。より好ましくはアクリル酸アルキルエステル90〜40重量%、メタクリル酸アルキルエステル10〜60重量%の範囲である。
【0008】
アクリル酸アルキルエステルが30重量%未満では得られるフィルムの伸びが低下して好ましくない。またアクリル酸エステル系重合体(A−1)のガラス転移温度[以下Tg(A−1)と記す]としては25℃以下が好ましい。25℃より高いとフィルムの耐衝撃性が低下して好ましくない。
【0009】
Tg(A−1)はアクリル酸エステル系重合体(A−1)の組成からポリマーハンドブック[Polymer Hand Book(J. Brandrup, Interscience1989)]に記載されている値を使用してFoxの式を用いて算出される。(PMMA = 105℃、PBA = −54℃)
アクリル酸エステル系重合体(A−1)を構成するアクリル酸アルキルエステルは重合反応性やコストの点よりアルキル基の炭素数が1〜12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としてはたとえばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル、アクリル酸n−オクチル等があげられ、これらの単量体は2種以上が併用されてもよい。
【0010】
これらと共重合されうるメタクリル酸アルキルエステルは重合反応性やコストの点からアルキル基の炭素数が1〜12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としてはメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等があげられ、これらの単量体は2種以上が併用されてもよい。
【0011】
上記単量体と共重合可能なエチレン系不飽和単量体としては、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリロニトリル、メタアクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、αメチルスチレン等の芳香族ビニル誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、β-ヒドロキシエチルアクリレート、ジメチルアミノエチルアクリレート、グリシジルアクリレート、アクリルアミド、N-メチロールアクリルアミド等のアクリル酸アルキルエステル誘導体、メタアクリル酸、メタアクリル酸ナトリウム、メタアクリル酸カルシウム等のメタアクリル酸及びその塩、メタアクリルアミド、β-ヒドロキシエチルメタクリレート、ジメチルアミノエチルメタクリレート、グリシジルメタクリレート等のメタアクリル酸アルキルエステル誘導体等があげられ、これらの単量体は2種以上が併用されてもよい。
【0012】
アクリル酸エステル系重合体(A−1)のアクリル酸エステル系架橋弾性体粒子(B)に対するグラフト効率は50%以上が好ましく、より好ましくは60%以上である。50%未満ではフィルムの伸びが低下したり、耐熱性、硬度が低下して好ましくない。
【0013】
本発明に使用されるメタクリル酸エステル系共重合体のもう一方の成分であるメタクリル酸エステル系重合体(A−2)はメタクリル酸アルキルエステル100〜75重量%、アクリル酸アルキルエステル0〜25重量%、および該単量体と共重合可能なエチレン系不飽和単量体0〜20重量%からなる単量体(混合物)を重合させてなるものである。より好ましくはメタクリル酸アルキルエステル80重量%以上、アクリル酸アルキルエステル20重量%以下の範囲である。
【0014】
アクリル酸アルキルエステルが25重量%を超えると得られるフィルムの耐熱性が低下したり硬度が低下したりして好ましくない。メタクリル酸エステル系重合体(A−2)のガラス転移温度[以下Tg(A−2)と記す]としては45℃以上が好ましい。Tg(A−2)が45℃よりも低いとフィルムの耐熱性、硬度が低下して好ましくない。Tg(A−2)はTg(A−1)と同様アクリル酸エステル系重合体(A−2)の組成からポリマーハンドブックに記載の値を用いFoxの式を用いて算出される。
【0015】
アクリル酸アルキルエステル、メタクリル酸アルキルエステル、および該単量体と共重合可能なエチレン系不飽和単量体の具体例は前記アクリル酸エステル系重合体(A−1)に使用したものがあげられる。
【0016】
本発明に用いられるアクリル酸エステル系架橋弾性体粒子(B)はアクリル酸アルキルエステル100〜80重量%、メタクリル酸アルキルエステル0〜20重量%、該単量体と共重合可能なエチレン系不飽和単量体0〜20重量%(以上合わせて100重量%)及び前記単量体と共重合しうる1分子あたり2個以上の非共役2重結合を有する多官能性単量体0.5〜5.0重量%(前記100重量%に対し)からなる単量体混合物を重合させてなるものである。より好ましくはアクリル酸アルキルエステル100〜85重量%、メタクリル酸アルキルエステル15〜0重量%の範囲である。アクリル酸アルキルエステルの割合が80重量%未満になるとアクリル酸エステル系架橋弾性体粒子(B)の性能が低下しフィルムの伸びが低下し、2次加工時に破れたり白化したりして好ましくない。アクリル酸エステル系架橋弾性体粒子(B)のガラス転移温度が高いと常温以下での衝撃エネルギー吸収の点でも不利であり、ガラス転移温度は0℃以下であることが好ましい。より好ましくは−10℃以下である。
【0017】
アクリル酸アルキルエステル、メタクリル酸アルキルエステルおよび該単量体と共重合可能なエチレン系不飽和単量体の具体例は前記樹脂成分アクリル酸エステル系重合体(A−1)に使用したものがあげられる。
【0018】
アクリル酸エステル系架橋弾性体粒子(B)には架橋性の1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体が共重合される。該多官能性単量体が共重合されているため、得られる重合体が架橋重合体となるとともに、未反応の反応性官能基(二重結合)がグラフト交叉点となり、樹脂成分の一定割合がグラフトしアクリル酸エステル系架橋弾性体粒子(B)が樹脂成分中に不連続かつ均一に分散する。
【0019】
この目的で用いられる多官能性単量体は通常使用されるものでよく、たとえばアリルメタアクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼンエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ジプロピレングリコールジメタクリレート、及びこれらに対応するアクリレート類、などを使用することが出来る。これらの多官能性単量体は2種以上使用してもよい。
【0020】
前記多官能性単量体の割合はアクリル酸エステル系架橋弾性体粒子(B)を構成するアクリル酸エステル単量体100〜80重量%、メタクリル酸エステル単量体0〜20重量%合わせて100重量%に対して0.5〜5重量%である。より好ましくは1.0〜3.5重量%の範囲である。0.5重量%未満では得られるフィルムの耐熱性が低下したり、べとついたり、ブロッキングを生じたり、耐溶剤性が低下したり、耐応力白化性が悪化して好ましくない。5重量%を超えるとフィルムの伸びが低下したり成形性が悪化したりして好ましくない。
【0021】
アクリル酸エステル系架橋弾性体粒子(B)の重量平均粒子径は500〜1500Åの範囲が好ましい。より好ましくは600〜1000Åである。500Å未満では伸びが低下したり耐衝撃性が低下したりして好ましくなく、1500Åを超えると応力白化が著しくなり好ましくない。
【0022】
さらには平均粒子径が400〜800Åのアクリル酸エステル系架橋弾性体粒子(B−1)と平均粒子径が1000〜3000Åのアクリル酸エステル系架橋弾性体粒子(B−2)を混合しその相加平均を500〜1500Åの範囲にすることにより耐衝撃性、伸び、耐応力白化性がより向上する。
【0023】
本発明のメタクリル系樹脂組成物におけアクリル酸エステル系重合体(A−1)、メタクリル酸エステル系重合体(A−2)及びアクリル酸エステル系架橋弾性体粒子(B)合わせて100重量部として、アクリル酸エステル系重合体(A−1)とメタクリル酸エステル系重合体(A−2)の合計は85〜60重量部が好ましい。より好ましくは75〜65重量部の範囲である。85重量部を超えるとフィルムの耐衝撃性が低下して好ましくなく、60重量部未満では耐熱性が低下したり、ブロッキングを生じたりしてフィルムの表面が不均一になり好ましくない。
【0024】
アクリル酸エステル系重合体(A−1)は5〜30重量部が好ましい。より好ましくは10〜25重量部の範囲である。5重量部未満では伸びが低下して好ましくなく、30重量部以上では耐熱性が低下したり、硬度が低下して好ましくない。
【0025】
メタクリル酸エステル系重合体(A−2)は30〜65重量部が好ましい。より好ましくは40〜60重量部の範囲である、30重量部以下では硬度が低下して好ましくなく、65重量部を超えると伸びが低下したり応力白化して好ましくない。
【0026】
アクリル酸エステル系架橋弾性体粒子(B)は15〜40重量部が好ましい。より好ましくは25〜35重量部の範囲である。15重量部未満では伸び、耐衝撃性が低下して好ましくなく、40重量部を超えると耐熱性、硬度が低下して好ましくない。
【0027】
アクリル酸エステル系重合体(A−1)及びメタクリル酸エステル系重合体(A−2)のアクリル酸エステル系架橋弾性体粒子(B)へのグラフト率は40〜200%が好ましく、70〜150%がより好ましい。グラフト率が40%未満ではフィルムの伸びが低下したり表面が不均一になったりして好ましくない。200%を超えると成形加工性が低下したりして好ましくない。
【0028】
本発明のメタクリル系樹脂組成物のメチルエチルケトン可溶分の還元粘度は0.2〜0.8[dl/g](N、N−ジメチルホルムアミド溶液、30℃測定)の範囲が好ましい。0.2[dl/g]未満では伸びが低下したり耐薬品、耐溶剤性が低下したりして好ましくなく、0.8[dl/g]を超えると成形加工性が低下して好ましくない。
【0029】
本発明のメタクリル系樹脂組成物の成形体の表面の鉛筆硬度は2B以上であることが好ましい。鉛筆硬度が2Bよりも低いと表面の耐擦り傷性が低くなり、好ましくない。
【0030】
本発明のメタクリル系樹脂組成物を成形してなるフィルムをJIS1号ダンベルに打ち抜き、0℃でJIS K 1173に従い、オートグラフにより引張スピード1000[mm/分]で測定した引っ張り試験の破断伸度(チャック間)は0℃で20%以上であることが好ましい。破断伸度が20%以下では折り曲げ時に応力破壊が生じて好ましくない。
【0031】
本発明のメタクリル系樹脂組成物の製造方法は特に限定されず、公知の乳化重合法、乳化−懸濁重合法、懸濁重合法、塊状重合法が適用可能であるが、乳化重合法が特に好ましい。
【0032】
前記乳化重合法においては通常の重合開始剤が使用される。具体的には例えば過硫酸カリウム、過硫酸ナトリウムなどの無機過酸化物や、クメンハイドロパーオキサイド、ベンゾイルパーオキサイドなどの有機過酸化物、更にアゾビスイソブチロニトリルなどの油溶性開始剤も使用される。これらは単独または2種以上組み合わせ用いられる。これらの開始剤は亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、アスコルビン酸、ヒドロキシアセトン酸、硫酸第一鉄、硫酸第一鉄とエチレンジアミン四酢酸2ナトリウムの錯体などの還元剤と組み合わせた通常のレドックス型開始剤として使用してもよい。
【0033】
前記乳化重合に使用される界面活性剤にも特に限定はなく、通常の乳化重合用の界面活性剤であれば使用することが出来る。具体的には例えばアルキル硫酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ジオクチルスルフォコハク酸ナトリウム、ラウリル硫酸ナトリウムなどの陰イオン性界面活性剤や、アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド、エチレンオキサイドとの反応生成物などの非イオン性界面活性剤などが示される。これらの界面活性剤は単独で用いてもよく、2種以上併用してもよい。更に要すれば、アルキルアミン塩等の陽イオン性界面活性剤を使用してもよい。
【0034】
このような共重合により得られる重合体ラテックスから通常の凝固と洗浄により、またはスプレー、凍結などによる処理により樹脂組成物が分離、回収される。
【0035】
本発明のメタクリル系樹脂組成物は、特にフィルムとして有用であり、例えば通常の溶融押出し法であるインフレーション法やTダイ押出し法あるいはカレンダー法、さらには溶液キャスト法等により良好に加工される。フィルムの厚みは5〜500μmが適当であり10〜300μmが好ましい。
【0036】
必要によりフィルムをエンボス加工をして加飾することも可能である。
【0037】
本発明のメタクリル系樹脂組成物には着色のための無機または有機系の顔料、染料、熱や光に対する安定性を更に向上させるための坑酸化剤、熱安定剤、紫外線吸収剤、紫外線安定剤、抗菌・脱臭剤、滑剤などを単独または、2種以上組み合わせて添加してもよい。
【0038】
また必要に応じ、メタクリル系樹脂(PMMA)、塩化ビニル系樹脂、AS樹脂、PET樹脂、PBT樹脂を配合することも可能である。ブレンドの方法は特に限定されず、公知の方法を用いることができる。
【0039】
また必要に応じて公知の方法により成形フィルム表面の光沢を低減させることができる。たとえば無機充填剤又は架橋性高分子粒子を混練する方法等で実施することができる。またエンボス加工により光沢を低減させることも可能である。
【0040】
【実施例】
以下、実施例を示すが本発明を限定するものではない。尚、特に断りがない場合、実施例及び比較例の部は重量部、%は重量%を表す。尚、実施例及び比較例中の測定、評価は、次の条件・方法により行なった。
(1)アクリル酸エステル系架橋弾性体粒子(B)の平均粒子径:0.02%のラテックス濃度に希釈した試料について546nmの波長で光線透過率より求めた。
(2)グラフト効率:アクリル酸エステル系重合体(a−1)の重合の終了したものを塩析・凝固し樹脂成分を得てサンプルとした。サンプルをメチルエチルケトンに溶解させ、不溶分と可溶分とに分離し、不溶分を架橋弾性体とグラフト分として次式により求めた。
グラフト効率(%)={(ゴム・グラフト分の重量−アクリル酸エステル系架橋弾性体粒子(B)の重量)/混合物(a−1)の重量}×100
(3)グラフト率:メタクリル系樹脂組成物(C)をメチルエチルケトンに溶解させ不溶分と可溶分とを分離し、不溶分を架橋弾性体とグラフト分として次式により算出した。
グラフト率(%)={(ゴム・グラフト分の重量−アクリル酸エステル系架橋弾性体粒子(B)の重量)/アクリル酸エステル系架橋弾性体粒子(B)の重量}×100
(4)還元粘度:メチルエチルケトン可溶分を0.3%N,N−ジメチルホルムアミド溶液で測定した。
(5)フィルム表面性:次の基準に従った。
○ 表面が均一でダイライン、フィッシュ・アイ認められず良好
△ 表面が不均一で、ダイライン、ヤケ、フィッシュ・アイ等が認められる
× 表面が不均一で、ダイライン、ヤケ、フィッシュ・アイ等が著しい
(6)カレンダー加工性:8インチ2本ロールを用いて180℃で5分間混練しロール表面への過度の密着・剥離を次の基準で評価した。
○ ロール表面に適度に密着し剥離性良好。
× ロール表面に過度に密着し剥離しにくい。
(7)ビカット軟化点:フィルムをプレスし3mm厚みの試験片を作成しISOR−306に準拠して1kg荷重で測定した。
(8)伸び:フィルムをオートグラフによりJIS1号ダンベルに打ち抜き、JIS K 1173に準拠して0℃で引張スピード1000mm/分でチャック間の伸びを測定した。
(9)耐溶剤性:フィルムを23℃で5時間エチルアルコールに浸積後室温で乾燥し表面を観察し次の基準で評価した。
○ フィルム表面に変化が認められない
× フィルム表面に白化・溶解等の変化が認められる
(10)表面傷付き性:鉛筆硬度を測定して指標とした。鉛筆硬度はJIS S1005記載の測定法に準拠して測定した。
(11)白化/割れ:フィルムを0.5mm厚さの鋼板に接着剤で貼合せたサンプルをフィルム外側にして接着面の曲率半径が鋼板の厚みの1.5倍になるよう0℃で180折り曲げて観察し評価した。
白化 ○ 白化が認められない
× 白化が認められる
割れ ○ 割れが認められない
× 割れが認められる
【0041】
実施例1
攪拌機つき8l重合装置に以下の物質を仕込んだ。
脱イオン水 200部
ソディウムジオクチルスルフォサクシネート 0.15部
エチレンジアミン四酢酸−2−ナトリウム 0.001部
硫酸第一鉄 0.00025部
重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を40℃にし、表1に示した単量体等の混合物(b−1)を仕込み、10分間攪拌後ソディウムホルムアルデヒドスルフォキシレート0.11部を仕込み、重合を開始させた。1時間後の重合転化率は98%であった。
1時間後より表1に示した単量体等の混合物(b−2)を10部/時間の割合で連続的に添加し、添加終了後、更に1時間重合を継続しアクリル酸エステル系架橋弾性体粒子(B)を得た。重合転化率は99.5%であった。
【0042】
その後ソディウムジオクチルスルフォサクシネート0.25部を仕込んだ後、内温を80℃にし、表1に示した混合物(a−1)を10部/時間の割合で連続的に添加し、更に1時間重合を継続し、アクリル酸エステル系重合体(A−1)を得た。重合転化率は99%、グラフト効率は70%であった。
【0043】
さらにその後、表1に示した単量体等の混合物(a−2)を10部/時間の割合で連続的に添加し、更に1時間重合を継続し、メタクリル酸エステル系重合体(A−2)を経てメタクリル系樹脂組成物(C)を得た。重合転化率は99.0%、グラフト率は110%であり、MEK可溶分の還元粘度は0.36[dl/g]であった。
【0044】
得られたラテックスを酢酸カルシウムで塩析、凝固し、水洗、乾燥して樹脂粉末を得た。得られた樹脂粉末100重量部に対し、紫外線吸収剤としてチヌヴィン1577(チバスペシャルティーケミカルス社製)1.0重量部、酸化防止剤としてイルガノックス1077(チバスペシャルティーケミカルス社製)0.3重量部、滑剤としてLuwaxE(BASF社製)1.0重量部、及び顔料としてカーボンブラック1.0重量部を添加しバンバリーミキサーで混合し、カレンダー成形機(22インチ、逆L字型4本ロール)でサイドロール・トップロールの温度200℃、線速30m/分で成形し100μm厚みのフィルムを得た。このフィルムを用いて種々の特性を評価した。結果を表1に示した。
【0045】
実施例2、3、4および比較例1、2、3、4、5
実施例1と同様にして表1又は表2に示す混合物を仕込みパウダーを得て同様に評価した。結果を表1と表2に示した。
【0046】
実施例
実施例と実施例で得たパウダーを1:1の比率でブレンドし同様に評価した。結果を表1に示した。
【0047】
【表1】

Figure 0003946979
【0048】
【表2】
Figure 0003946979
【0049】
【発明の効果】
本発明のメタクリル酸エステル系樹脂組成物は金属等に積層され、2次加工される際、特に低温での応力白化、割れ等が発生することなく容易に加工でき、ブロッキングも発生せず、かつ耐擦り傷性、耐候性・耐溶剤性にも優れたフィルムを提供する。[0001]
BACKGROUND OF THE INVENTION
The present invention is laminated on metal, plastics, wood, etc., and is processed secondary, especially at low temperatures, the film can be easily processed without damaging the appearance, weather resistance, scratch resistance, solvent resistance of the laminated product The present invention relates to a resin composition that easily provides an excellent film, sheet and the like.
[0002]
[Prior art / problems to be solved by the invention]
Methacrylic resin is particularly excellent in weather resistance and transparency among plastics, and is molded into various industrial fields such as sheets or films, and laminated to various materials such as metal, plastic, and wood to prevent deterioration of the substrate. And is widely used in fields that maintain aesthetics.
[0003]
On the other hand, a laminate of a soft vinyl chloride film on a steel plate referred to as a PVC steel plate is difficult to be used as a building material because of concern about the durability of the vinyl chloride film against light.
[0004]
For these reasons, attempts have been made to laminate a methacrylic resin film to a steel sheet, but when processing the laminated steel sheet, the film may be stress whitened or torn, especially when bent at low temperatures and high speeds. Could not be used. Furthermore, in order to prevent stress whitening and tearing, a film with good elongation at low temperatures has been tried. In this case, however, the heat resistance is low, the film becomes sticky or blocking, and the hardness is low, resulting in scratch resistance. There was not good Masui was lowered.
[0005]
[Means for Solving the Problems]
In view of such a situation, as a result of intensive studies, the present inventors have determined that a methacrylic ester copolymer (A) and a acrylate ester polymer (A-1) having a specific composition and a methacrylic ester. The composition of the acrylic ester-based crosslinked elastic particles (B) dispersed in the resin as a mixture of the polymer (A-2) and the polyfunctional compound in the acrylic ester-based crosslinked elastic particles (B) By making the content into a specific range and graft-copolymerizing the methacrylic ester copolymer (A) to the acrylate ester cross-linked elastic particles (B) at a specific graft ratio, the secondary layer is laminated on a metal or the like. It has been found that a resin composition capable of forming a film having no stress whitening or tearing and having high heat resistance and high hardness even when bent at a high speed at a low temperature during processing will be completed. It was.
[0006]
That is, the present invention comprises (A) 85-60 parts by weight of a methacrylic ester copolymer and (B) 15-40 parts by weight of an acrylate-based crosslinked elastic particle [100 parts in total of (A) and (B). The methacrylic resin composition comprises (1) a methacrylic acid ester copolymer (A) having an acrylic acid alkyl ester of 100 to 30% by weight, a methacrylic acid alkyl ester of 0 to 70% by weight and Acrylic ester polymer (A-) having a glass transition temperature of 25 ° C. or less obtained by polymerizing a monomer (mixture) composed of 0 to 20% by weight of an ethylenically unsaturated monomer copolymerizable with a monomer. 1) 5 to 30 parts by weight, 100 to 75% by weight of methacrylic acid alkyl ester, 25 to 0% by weight of acrylic acid alkyl ester, and ethylenically unsaturated monomer copolymerizable with the monomer 30 to 65 parts by weight of a methacrylic acid ester polymer (A-2) having a glass transition temperature of 45 ° C. or higher obtained by polymerizing a monomer (mixture) consisting of ˜20% by weight [(A-1) and ( A-2) 85 to 60 parts by weight in total, and (2) acrylic ester-based crosslinked elastic particles (B) are 100 to 80% by weight of acrylic acid alkyl ester and 20 to 0% by weight of alkyl methacrylate. A monomer mixture comprising 100% by weight of the total and 0.5 to 5.0% by weight of a polyfunctional monomer having two or more non-conjugated double bonds per molecule that can be copolymerized with the monomer The weight average particle diameter of the crosslinked elastic particles is 500 to 1500 mm, and (3) the acrylic ester polymer (A-1) is converted into the acrylic ester crosslinked elastomer particles (B). graft efficiency is 50 wt% or more There is a graft ratio from 40 to 150% of the acrylic ester cross-linked elastic particles (B) of the acrylic acid ester polymer (A-1) and methacrylic ester polymer (A-2), and (4) A methacrylic resin composition having a reduced viscosity of 0.2 to 0.8 dl / g of methyl ethyl ketone solubles in the methacrylic resin composition (claim 1),
Acrylate ester-based crosslinked elastic particles (B-1) having a weight average particle diameter of 400 to 800 と and acrylate ester-based crosslinked elasticity having a weight average particle size of 1000 to 3000 Å. The methacrylic resin composition (Claim 2), comprising the body particles (B-2) and having an arithmetic average of 500 to 1500 kg,
A film formed from the methacrylic resin composition according to claim 1 or 2 (claim 3),
The film according to claim 3 (claim 4) and the film according to claim 3 or 4 having a pencil hardness of 2B or more and a tensile elongation at break at 0 ° C of 20% or more. It is related with the laminated product (Claim 5) laminated | stacked.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The acrylic acid ester polymer (A-1), which is a component of the methacrylic acid ester copolymer (A) used in the present invention, is an acrylic acid alkyl ester of 100 to 30% by weight and a methacrylic acid alkyl ester of 0 to 70% by weight. %, And a monomer or monomer mixture consisting of 0 to 20% by weight of an ethylenically unsaturated monomer copolymerizable with the monomer. More preferably, it is the range of 90-40 weight% of acrylic acid alkylesters, and 10-60 weight% of methacrylic acid alkylesters.
[0008]
If the alkyl acrylate is less than 30% by weight, the elongation of the resulting film is undesirably lowered. The glass transition temperature of the acrylic ester polymer (A-1) [hereinafter referred to as Tg (A-1)] is preferably 25 ° C. or lower. When it is higher than 25 ° C., the impact resistance of the film is lowered, which is not preferable.
[0009]
Tg (A-1) is calculated from the composition of acrylic ester polymer (A-1) using the formula of Fox using the values described in Polymer Handbook (Polymer Hand Book (J. Brandrup, Interscience 1989)). Is calculated. (PMMA = 105 ° C, PBA = -54 ° C)
The alkyl acrylate ester constituting the acrylate polymer (A-1) is preferably an alkyl group having 1 to 12 carbon atoms in view of polymerization reactivity and cost, and may be linear or branched. . Specific examples thereof include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, etc., and two or more of these monomers are used in combination. May be.
[0010]
The alkyl ester of methacrylic acid that can be copolymerized with these is preferably an alkyl group having 1 to 12 carbon atoms from the viewpoint of polymerization reactivity and cost, and may be linear or branched. Specific examples thereof include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and the like, and two or more of these monomers may be used in combination.
[0011]
Examples of the ethylenically unsaturated monomer copolymerizable with the above monomers include vinyl halides such as vinyl chloride and vinyl bromide, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl formate, vinyl acetate, and vinyl propionate. Vinyl esters such as styrene, vinyl toluene, aromatic vinyl derivatives such as α-methylstyrene, vinylidene halides such as vinylidene chloride and vinylidene fluoride, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate and salts thereof, β-hydroxyethyl acrylate, dimethylaminoethyl acrylate, glycidyl acrylate, acrylamide, acrylic acid alkyl ester derivatives such as N-methylol acrylamide, methacrylic acid, sodium methacrylate, calcium methacrylate Examples include acrylic acid and its salts, methacrylic acid alkyl ester derivatives such as methacrylamide, β-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, and glycidyl methacrylate. These monomers may be used in combination of two or more. .
[0012]
The graft efficiency of the acrylic ester polymer (A-1) to the acrylic ester cross-linked elastic particles (B) is preferably 50% or more, more preferably 60% or more. If it is less than 50%, the elongation of the film is lowered or the heat resistance and hardness are lowered, which is not preferable.
[0013]
The methacrylic acid ester polymer (A-2) which is the other component of the methacrylic acid ester copolymer used in the present invention is 100 to 75% by weight of methacrylic acid alkyl ester and 0 to 25% by weight of acrylic acid alkyl ester. %, And a monomer (mixture) composed of 0 to 20% by weight of an ethylenically unsaturated monomer copolymerizable with the monomer. More preferably, it is in the range of 80% by weight or more of methacrylic acid alkyl ester and 20% by weight or less of alkyl acrylate.
[0014]
If the alkyl ester of acrylic acid exceeds 25% by weight, the heat resistance of the resulting film is lowered or the hardness is not preferred. The glass transition temperature of the methacrylic acid ester polymer (A-2) [hereinafter referred to as Tg (A-2)] is preferably 45 ° C. or higher. When Tg (A-2) is lower than 45 ° C., the heat resistance and hardness of the film are lowered, which is not preferable. Tg (A-2) is calculated from the composition of the acrylate polymer (A-2), using the value described in the polymer handbook, using the Fox equation, as with Tg (A-1).
[0015]
Specific examples of the acrylic acid alkyl ester, the methacrylic acid alkyl ester, and the ethylenically unsaturated monomer copolymerizable with the monomer include those used for the acrylic acid ester polymer (A-1). .
[0016]
The acrylic ester-based crosslinked elastic particles (B) used in the present invention are acrylic acid alkyl ester of 100 to 80% by weight, methacrylic acid alkyl ester of 0 to 20% by weight, and ethylenically unsaturated copolymerizable with the monomer. 0 to 20% by weight of monomer (100% by weight in total) and multifunctional monomer having two or more non-conjugated double bonds per molecule that can be copolymerized with the monomer 0.5 to It is obtained by polymerizing a monomer mixture consisting of 5.0% by weight (relative to 100% by weight). More preferably, it is the range of 100-85 weight% of acrylic acid alkylesters, and 15-0 weight% of methacrylic acid alkylesters. If the ratio of the acrylic acid alkyl ester is less than 80% by weight, the performance of the acrylic ester-based crosslinked elastic particles (B) is lowered, the film elongation is lowered, and it is not preferable because it is broken or whitened during the secondary processing. When the glass transition temperature of the acrylic ester-based crosslinked elastic particles (B) is high, it is disadvantageous in terms of impact energy absorption at room temperature or lower, and the glass transition temperature is preferably 0 ° C. or lower. More preferably, it is −10 ° C. or lower.
[0017]
Specific examples of the acrylic acid alkyl ester, the methacrylic acid alkyl ester, and the ethylenically unsaturated monomer copolymerizable with the monomer include those used for the resin component acrylic acid ester polymer (A-1). It is done.
[0018]
The acrylic ester-based crosslinked elastic particles (B) are copolymerized with a polyfunctional monomer having two or more non-conjugated reactive double bonds per molecule that is crosslinkable. Since the polyfunctional monomer is copolymerized, the resulting polymer becomes a cross-linked polymer, and unreacted reactive functional groups (double bonds) serve as graft crossover points. Are grafted and the acrylic ester-based crosslinked elastic particles (B) are discontinuously and uniformly dispersed in the resin component.
[0019]
The polyfunctional monomers used for this purpose may be those usually used, such as allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene. Ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, tetramethylolmethane tetramethacrylate, dipropylene glycol dimethacrylate, and acrylates corresponding to these can be used. Two or more of these polyfunctional monomers may be used.
[0020]
The ratio of the polyfunctional monomer is 100 to 80% by weight, and 100 to 80% by weight of the acrylate monomer constituting the acrylate-based crosslinked elastic particle (B). It is 0.5 to 5 weight% with respect to weight%. More preferably, it is 1.0 to 3.5% by weight. If it is less than 0.5% by weight, the heat resistance of the resulting film is lowered, sticky, blocking occurs, solvent resistance is lowered, and stress whitening resistance is deteriorated. If it exceeds 5% by weight, the elongation of the film is lowered or the moldability is deteriorated, which is not preferable.
[0021]
The weight average particle diameter of the acrylic ester-based crosslinked elastic particles (B) is preferably in the range of 500 to 1500 mm. More preferably, it is 600-1000cm. If it is less than 500 mm, the elongation is lowered and impact resistance is not preferable. If it exceeds 1500 mm, stress whitening becomes remarkable, which is not preferable.
[0022]
Further, acrylate ester-based crosslinked elastic particles (B-1) having an average particle size of 400 to 800 と and acrylate ester-based crosslinked elastic particles (B-2) having an average particle size of 1000 to 3000 Å are mixed to obtain a phase thereof. By setting the arithmetic average in the range of 500 to 1500 mm, impact resistance, elongation, and stress whitening resistance are further improved.
[0023]
In the methacrylic resin composition of the present invention, 100 parts by weight in total of the acrylic ester polymer (A-1), the methacrylic ester polymer (A-2) and the acrylic ester crosslinked elastomer particles (B) The total of the acrylic ester polymer (A-1) and the methacrylic ester polymer (A-2) is preferably 85 to 60 parts by weight. More preferably, it is the range of 75-65 weight part. If it exceeds 85 parts by weight, the impact resistance of the film is lowered, which is not preferable, and if it is less than 60 parts by weight, the heat resistance is reduced or blocking is caused, and the surface of the film becomes non-uniform.
[0024]
The acrylic ester polymer (A-1) is preferably 5 to 30 parts by weight. More preferably, it is the range of 10-25 weight part. If the amount is less than 5 parts by weight, the elongation decreases, which is not preferable. If the amount is 30 parts by weight or more, the heat resistance decreases and the hardness decreases, which is not preferable.
[0025]
The methacrylic acid ester polymer (A-2) is preferably 30 to 65 parts by weight. More preferably, it is in the range of 40 to 60 parts by weight, and 30 parts by weight or less is not preferable because the hardness is lowered, and if it exceeds 65 parts by weight, the elongation is lowered and stress whitening is not preferable.
[0026]
The acrylic ester-based crosslinked elastic particle (B) is preferably 15 to 40 parts by weight. More preferably, it is the range of 25-35 weight part. If it is less than 15 parts by weight, the elongation and impact resistance are not preferred, and if it exceeds 40 parts by weight, the heat resistance and hardness are not preferred.
[0027]
The graft ratio of the acrylic ester polymer (A-1) and the methacrylic ester polymer (A-2) to the acrylic ester crosslinked elastomer particles (B) is preferably 40 to 200%, preferably 70 to 150. % Is more preferable. Elongation surface lowered in the graft ratio is less than 40% film or becomes uneven in good better wards. If it exceeds 200%, the moldability is lowered, which is not preferable.
[0028]
The reduced viscosity of the methyl ethyl ketone soluble component of the methacrylic resin composition of the present invention is preferably in the range of 0.2 to 0.8 [dl / g] (N, N-dimethylformamide solution, measured at 30 ° C.). If it is less than 0.2 [dl / g], the elongation is lowered and the chemical resistance and the solvent resistance are undesirably lowered, and if it exceeds 0.8 [dl / g], the moldability is lowered, which is not preferred. .
[0029]
The pencil hardness of the surface of the molded body of the methacrylic resin composition of the present invention is preferably 2B or more. When the pencil hardness is lower than 2B, the scratch resistance of the surface is lowered, which is not preferable.
[0030]
A film formed by molding the methacrylic resin composition of the present invention was punched into a JIS No. 1 dumbbell, and the elongation at break in a tensile test measured by an autograph at a tensile speed of 1000 [mm / min] at 0 ° C. according to JIS K 1173 ( The distance between the chucks is preferably 20% or more at 0 ° C. A breaking elongation of 20% or less is not preferable because stress fracture occurs during bending.
[0031]
The production method of the methacrylic resin composition of the present invention is not particularly limited, and a known emulsion polymerization method, emulsion-suspension polymerization method, suspension polymerization method, and bulk polymerization method can be applied. preferable.
[0032]
In the emulsion polymerization method, a usual polymerization initiator is used. Specifically, inorganic peroxides such as potassium persulfate and sodium persulfate, organic peroxides such as cumene hydroperoxide and benzoyl peroxide, and oil-soluble initiators such as azobisisobutyronitrile are also used. Is done. These may be used alone or in combination of two or more. These initiators were combined with reducing agents such as sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, hydroxyacetone acid, ferrous sulfate, ferrous sulfate and disodium ethylenediaminetetraacetate. It may be used as a normal redox type initiator.
[0033]
The surfactant used for the emulsion polymerization is not particularly limited, and any surfactant for ordinary emulsion polymerization can be used. Specifically, for example, anionic surfactants such as sodium alkyl sulfate, sodium alkylbenzene sulfonate, sodium dioctyl sulfosuccinate, sodium lauryl sulfate, and reactions of alkylphenols, aliphatic alcohols with propylene oxide, ethylene oxide Nonionic surfactants such as products are indicated. These surfactants may be used alone or in combination of two or more. Furthermore, if necessary, a cationic surfactant such as an alkylamine salt may be used.
[0034]
The resin composition is separated and recovered from the polymer latex obtained by such copolymerization by ordinary coagulation and washing, or by treatment by spraying, freezing, or the like.
[0035]
The methacrylic resin composition of the present invention is particularly useful as a film, and can be satisfactorily processed by, for example, an ordinary melt extrusion method such as an inflation method, a T-die extrusion method, a calendar method, or a solution casting method. The thickness of the film is suitably 5 to 500 μm, preferably 10 to 300 μm.
[0036]
If necessary, the film can be embossed and decorated.
[0037]
The methacrylic resin composition of the present invention includes inorganic or organic pigments and dyes for coloring, antioxidants, heat stabilizers, ultraviolet absorbers, and ultraviolet stabilizers for further improving the stability to heat and light. Further, antibacterial / deodorant, lubricant, etc. may be added alone or in combination of two or more.
[0038]
If necessary, methacrylic resin (PMMA), vinyl chloride resin, AS resin, PET resin, and PBT resin can be blended. The blending method is not particularly limited, and a known method can be used.
[0039]
If necessary, the gloss of the surface of the molded film can be reduced by a known method. For example, it can be carried out by a method of kneading inorganic fillers or crosslinkable polymer particles. It is also possible to reduce gloss by embossing.
[0040]
【Example】
Hereinafter, examples will be shown, but the present invention is not limited thereto. Unless otherwise specified, parts in Examples and Comparative Examples represent parts by weight, and% represents% by weight. In addition, the measurement and evaluation in an Example and a comparative example were performed by the following conditions and methods.
(1) Average particle diameter of acrylic ester-based crosslinked elastic particles (B): The sample diluted to a latex concentration of 0.02% was determined from light transmittance at a wavelength of 546 nm.
(2) Graft efficiency: A sample obtained by salting out and solidifying the polymer of the acrylic ester polymer (a-1) was obtained and used as a sample. The sample was dissolved in methyl ethyl ketone and separated into an insoluble part and a soluble part, and the insoluble part was determined by the following formula as a crosslinked elastic body and a graft part.
Graft efficiency (%) = {(weight of rubber / graft-weight of acrylic ester-based crosslinked elastic particles (B)) / weight of mixture (a-1)} × 100
(3) Graft ratio: The methacrylic resin composition (C) was dissolved in methyl ethyl ketone to separate the insoluble component and the soluble component, and the insoluble component was calculated as the crosslinked elastic body and the graft component according to the following formula.
Graft rate (%) = {(weight of rubber / graft-weight of acrylic ester-based crosslinked elastic particles (B)) / weight of acrylic ester-based crosslinked elastic particles (B)} × 100
(4) Reduced viscosity: Methyl ethyl ketone soluble content was measured with a 0.3% N, N-dimethylformamide solution.
(5) Film surface property: According to the following criteria.
○ surface is uniform die lines, good △ surface without fish eye observed heterogeneous, die lines, burnt, fish eyes and the like × surface is observed uneven, die lines, burnt, fish eyes and the like is remarkable (6) Calendar workability: Kneading was carried out at 180 ° C. for 5 minutes using two 8-inch rolls, and excessive adhesion / peeling to the roll surface was evaluated according to the following criteria.
○ Adheres to the roll surface moderately and has good peelability.
× It is too close to the roll surface and difficult to peel off.
(7) Vicat softening point: The film was pressed to prepare a test piece having a thickness of 3 mm, and measured under a 1 kg load according to ISOR-306.
(8) Elongation: The film was punched into a JIS No. 1 dumbbell by an autograph, and the elongation between chucks was measured at 0 ° C. and a tensile speed of 1000 mm / min in accordance with JIS K 1173.
(9) Solvent resistance: The film was immersed in ethyl alcohol at 23 ° C. for 5 hours and then dried at room temperature. The surface was observed and evaluated according to the following criteria.
○ No change is observed on the film surface × Changes such as whitening and dissolution are observed on the film surface (10) Surface scratch resistance: Pencil hardness was measured and used as an index. The pencil hardness was measured according to the measurement method described in JIS S1005.
(11) whitening / cracked: the samples laminated with an adhesive to the steel plate of 0.5mm thick film, so that the radius of curvature of the bonding surface to the film on the outside is 1.5 times the thickness of the steel plate 0 ℃ And 180 ° bent and observed and evaluated.
Whitening ○ No whitening is observed × Whitening is observed Cracking ○ No cracking is observed × Cracking is observed [0041]
Example 1
The following substances were charged into an 8 l polymerization apparatus with a stirrer.
Deionized water 200 parts Sodium dioctylsulfosuccinate 0.15 parts Ethylenediaminetetraacetic acid-2-sodium 0.001 parts Ferrous sulfate 0.00025 parts The inside of the polymerizer is fully substituted with nitrogen gas and substantially free of oxygen Then, the internal temperature was set to 40 ° C., a mixture (b-1) of monomers shown in Table 1 was added, and after stirring for 10 minutes, 0.11 part of sodium formaldehyde sulfoxylate was added to perform polymerization. Started. The polymerization conversion after 1 hour was 98%.
After 1 hour, a mixture of monomers (b-2) shown in Table 1 was continuously added at a rate of 10 parts / hour. After the addition was completed, the polymerization was continued for 1 hour to continue the acrylic ester crosslinking. Elastic particle (B) was obtained. The polymerization conversion rate was 99.5%.
[0042]
Thereafter, 0.25 part of sodium dioctylsulfosuccinate was added, the internal temperature was set to 80 ° C., and the mixture (a-1) shown in Table 1 was continuously added at a rate of 10 parts / hour. Time polymerization was continued to obtain an acrylate polymer (A-1). The polymerization conversion was 99% and the grafting efficiency was 70%.
[0043]
Thereafter, a mixture (a-2) of monomers and the like shown in Table 1 was continuously added at a rate of 10 parts / hour, and the polymerization was further continued for 1 hour, whereby a methacrylic ester polymer (A- A methacrylic resin composition (C) was obtained through 2). The polymerization conversion was 99.0%, the grafting rate was 110%, and the reduced viscosity of the MEK solubles was 0.36 [dl / g].
[0044]
The obtained latex was salted out and coagulated with calcium acetate, washed with water and dried to obtain a resin powder. 100 parts by weight of the obtained resin powder is 1.0 part by weight of Tinuvin 1577 (manufactured by Ciba Specialty Chemicals) as an ultraviolet absorber and 0.3 weight by weight of Irganox 1077 (manufactured by Ciba Specialty Chemicals) as an antioxidant. Part, Luwax E (manufactured by BASF) 1.0 part by weight, and carbon black 1.0 part by weight as a pigment are added and mixed with a banbury mixer, calender molding machine (22 inch, inverted L-shaped four rolls) The film was formed at a side roll / top roll temperature of 200 ° C. and a linear speed of 30 m / min to obtain a film having a thickness of 100 μm. Various characteristics were evaluated using this film. The results are shown in Table 1.
[0045]
Examples 2, 3, 4 you and Comparative Example 1, 2, 3, 4
In the same manner as in Example 1, the mixture shown in Table 1 or Table 2 was charged, and a powder was obtained and evaluated in the same manner. The results are shown in Tables 1 and 2.
[0046]
Example 5
The powders obtained in Example 3 and Example 4 were blended at a ratio of 1: 1 and evaluated in the same manner. The results are shown in Table 1.
[0047]
[Table 1]
Figure 0003946979
[0048]
[Table 2]
Figure 0003946979
[0049]
【The invention's effect】
The methacrylate ester-based resin composition of the present invention can be easily processed without causing stress whitening, cracking, etc. particularly at low temperatures when laminated to a metal or the like and subjected to secondary processing, and does not generate blocking, and Provide films with excellent scratch resistance, weather resistance and solvent resistance.

Claims (5)

(A)メタクリル酸エステル系共重合体85〜60重量部及び(B)アクリル酸エステル系架橋弾性体粒子15〜40重量部[(A)と(B)合わせて100重量部]からなるメタクリル系樹脂組成物であって、
(1)メタクリル酸エステル系共重合体(A)が、
アクリル酸アルキルエステル100〜30重量%、メタクリル酸アルキルエステル0〜70重量%及び該単量体と共重合可能なエチレン系不飽和単量体0〜20重量%からなる単量体(混合物)を重合してなるガラス転移温度が25℃以下であるアクリル酸エステル系重合体(A−1)5〜30重量部、および
メタクリル酸アルキルエステル100〜75重量%、アクリル酸アルキルエステル25〜0重量%及び該単量体と共重合可能なエチレン系不飽和単量体0〜20重量%からなる単量体(混合物)を重合してなるガラス転移温度が45℃以上であるメタクリル酸エステル系重合体(A−2)30〜65重量部[(A−1)と(A−2)合わせて85〜60重量部]からなり、
(2)アクリル酸エステル系架橋弾性体粒子(B)が、
アクリル酸アルキルエステル100〜80重量%、メタクリル酸アルキルエステル20〜0重量%の計100重量%及び該単量体と共重合しうる1分子あたり2個以上の非共役2重結合を有する多官能性単量体0.5〜5.0重量%からなる単量体混合物を重合してなり、
架橋弾性体粒子の重量平均粒子径が500〜1500Åであり、
(3)アクリル酸エステル系重合体(A−1)のアクリル酸エステル系架橋弾性体粒子(B)へのグラフト効率が50重量%以上であり、
アクリル酸エステル系重合体(A−1)およびメタクリル酸エステル系重合体(A−2)のアクリル酸エステル系架橋弾性体粒子(B)へのグラフト率が40〜150%であり、かつ、
(4)メタクリル系樹脂組成物中のメチルエチルケトン可溶分の還元粘度が0.2〜0.8dl/gであるメタクリル系樹脂組成物。
(A) Methacrylic ester copolymer consisting of 85 to 60 parts by weight and (B) 15 to 40 parts by weight of acrylic ester-based crosslinked elastic particles [100 parts by weight in combination with (A) and (B)] A resin composition comprising:
(1) A methacrylic acid ester copolymer (A)
A monomer (mixture) comprising 100 to 30% by weight of an acrylic acid alkyl ester, 0 to 70% by weight of a methacrylic acid alkyl ester and 0 to 20% by weight of an ethylenically unsaturated monomer copolymerizable with the monomer. 5-30 parts by weight of an acrylic ester polymer (A-1) having a glass transition temperature of 25 ° C. or less obtained by polymerization, 100-75% by weight of methacrylic acid alkyl ester, and 25-0% by weight of acrylic acid alkyl ester And a methacrylate ester polymer having a glass transition temperature of 45 ° C. or higher obtained by polymerizing a monomer (mixture) comprising 0 to 20% by weight of an ethylenically unsaturated monomer copolymerizable with the monomer (A-2) 30 to 65 parts by weight [(A-1) and (A-2) together 85 to 60 parts by weight]
(2) Acrylic ester-based crosslinked elastic particles (B)
Polyfunctional having 100 to 80% by weight of acrylic acid alkyl ester, 20 to 0% by weight of methacrylic acid alkyl ester, and 100% by weight in total, and two or more non-conjugated double bonds per molecule that can be copolymerized with the monomer A monomer mixture composed of 0.5 to 5.0% by weight of a polymerizable monomer,
The weight average particle diameter of the crosslinked elastic particles is 500 to 1500 mm,
(3) The graft efficiency of the acrylic ester polymer (A-1) to the acrylic ester cross-linked elastic particles (B) is 50% by weight or more,
The graft ratio of the acrylic ester polymer (A-1) and the methacrylic ester polymer (A-2) to the acrylic ester crosslinked elastomer particles (B) is 40 to 150 %, and
(4) A methacrylic resin composition having a reduced viscosity of 0.2 to 0.8 dl / g of methyl ethyl ketone-soluble component in the methacrylic resin composition.
アクリル酸エステル系架橋弾性体粒子(B)の重量平均粒子径が400〜800Åのアクリル酸エステル系架橋弾性体粒子(B―1)と重量平均粒子径が1000〜3000Åのアクリル酸エステル系架橋弾性体粒子(B−2)とからなりその相加平均が500〜1500Åである請求項1記載のメタクリル系樹脂組成物。  Acrylate ester-based crosslinked elastic particles (B-1) having a weight average particle diameter of 400 to 800 と and acrylate ester-based crosslinked elasticity having a weight average particle size of 1000 to 3000 Å. The methacrylic resin composition according to claim 1, wherein the methacrylic resin composition is composed of body particles (B-2) and has an arithmetic average of 500 to 1500 kg. 請求項1または2記載のメタクリル系樹脂組成物を成形してなるフィルム。Molding comprising film according to claim 1 or 2 Symbol placement methacrylic resin composition. 表面の鉛筆硬度が2B以上であり、かつ0℃での引張り破断伸びが20%以上である請求項3記載のフィルム。The film according to claim 3, wherein the surface has a pencil hardness of 2B or more and a tensile breaking elongation at 0 ° C of 20% or more. 請求項3または4記載のフィルムを金属またはプラスチックまたは木材にラミネートしてなる積層品。A laminate obtained by laminating the film according to claim 3 or 4 on metal, plastic, or wood.
JP2001325338A 2001-10-23 2001-10-23 Methacrylic resin composition with excellent low-temperature processing characteristics and scratch resistance Expired - Lifetime JP3946979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325338A JP3946979B2 (en) 2001-10-23 2001-10-23 Methacrylic resin composition with excellent low-temperature processing characteristics and scratch resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325338A JP3946979B2 (en) 2001-10-23 2001-10-23 Methacrylic resin composition with excellent low-temperature processing characteristics and scratch resistance

Publications (2)

Publication Number Publication Date
JP2003128734A JP2003128734A (en) 2003-05-08
JP3946979B2 true JP3946979B2 (en) 2007-07-18

Family

ID=19141924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325338A Expired - Lifetime JP3946979B2 (en) 2001-10-23 2001-10-23 Methacrylic resin composition with excellent low-temperature processing characteristics and scratch resistance

Country Status (1)

Country Link
JP (1) JP3946979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781062B2 (en) 2003-01-10 2010-08-24 Mitsubishi Rayon Co., Ltd. Multilayer structure polymer and resin composition together with acrylic resin film material, acrylic resin laminate film, photocurable acrylic resin film or sheet, laminate film or sheet and laminate molding obtained by laminating thereof
CN106062072B (en) * 2014-03-07 2019-06-07 株式会社钟化 Methacrylic resin composition

Also Published As

Publication number Publication date
JP2003128734A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
EP1908797B1 (en) Methacrylic resin composition
JP5052128B2 (en) Methacrylic resin composition, methacrylic resin film, and film-laminated vinyl chloride molded body
JP5834016B2 (en) Metal laminated (meth) acrylic resin film and resin sheet
JP3664575B2 (en) Methacrylic ester resin composition and film formed by molding the same
JP4291994B2 (en) Acrylic film and its laminate
JP2602846B2 (en) Methacrylate resin composition
JP4291993B2 (en) Acrylic film and its laminate
JP4484381B2 (en) Acrylic matte thermoplastic resin film and method for producing the same
JP6666835B2 (en) Methacrylic resin composition
JP3946979B2 (en) Methacrylic resin composition with excellent low-temperature processing characteristics and scratch resistance
JP2514949B2 (en) Film extruded from methacrylic acid ester-based resin composition
JP4923501B2 (en) Molded product comprising methacrylic resin composition
JP2003327633A (en) Methacrylic resin composition
JP4553729B2 (en) Acrylic resin composition
WO2004035683A1 (en) Acrylic film and laminates comprising the same
JP3686525B2 (en) Matte thermoplastic resin composition and film excellent in bending whitening resistance
JP2004331866A (en) Thermoplastic resin composition excellent in low-temperature processability and in abrasion resistance
JP4836362B2 (en) Acrylic film and its laminate
JP2010037429A (en) Film for use in automobile
JP2004204188A (en) Methacrylic resin composition with excellent processing characteristic at low temperature and abrasion resistance
JP2009024112A (en) Methacrylic-based resin composition
JP2008013660A (en) Thermal decomposition-controlled methacrylic resin composition
JP2002241445A (en) Acrylic resin composition excellent in processing characteristic at low temperature
JP2009035636A (en) Methacrylic resin composition
JP2012057067A (en) Matte acrylic resin film for vapor deposition of metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3946979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term