JP3945145B2 - Cesium hexaborate crystal and method for producing the same - Google Patents

Cesium hexaborate crystal and method for producing the same Download PDF

Info

Publication number
JP3945145B2
JP3945145B2 JP2000326441A JP2000326441A JP3945145B2 JP 3945145 B2 JP3945145 B2 JP 3945145B2 JP 2000326441 A JP2000326441 A JP 2000326441A JP 2000326441 A JP2000326441 A JP 2000326441A JP 3945145 B2 JP3945145 B2 JP 3945145B2
Authority
JP
Japan
Prior art keywords
crystal
refractive index
csb
wavelength
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000326441A
Other languages
Japanese (ja)
Other versions
JP2002131793A (en
Inventor
由郎 影林
幸裕 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2000326441A priority Critical patent/JP3945145B2/en
Publication of JP2002131793A publication Critical patent/JP2002131793A/en
Application granted granted Critical
Publication of JP3945145B2 publication Critical patent/JP3945145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、近赤外光を波長変換によって紫外光を発生させる波長変換素子結晶であるセシウムヘキサボレート(CsB35)結晶に関する。
【0002】
【従来の技術】
波長約193〜196nmのいわゆる深紫外(DUV;Deep Ultra-Violet)領域のレーザー光を発生させることにおいて、レーザーダイオード励起のNd:YAG(イットリウム・アルミニウム・ガーネット)やNd:YVO4(イットリウム・バナデート)やNd:YLF(イットリウム・リチウム・フルオライト)のレーザー発振波長約1μmの光を基本波として、波長200〜220nmのコヒーレントレーザー光との和周波混合(Sum Frequency Mixing)によってDUV光を得るのに高効率な非線形効果を持つセシウムヘキサボレート(CsB35)結晶が有力な素子結晶として知られている。また、CsB35結晶は、上記のレーザー発振波長約1μmの光を基本波とするレーザーの3倍高調波発生においても高効率な非線形効果を持つことが知られている。
【0003】
上記CsB35結晶の屈折率については、特開平6−317822号公報に開示されているほか、Wuらによる技術論文(Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993) 2614)や加藤氏による技術論文(K. Kato, IEEE J. QE 31 (1995) 169)によって報告されている。
【0004】
しかし、それらの屈折率の報告値は互いに異なっている。和周波発生や高調波発生に非線形光学結晶を使用する際、屈折率の異方性に応じた方向に結晶を切り出す必要があり、屈折率や複屈折率が異なると、当然、切り出す方向は異なる。今まで報告されているCsB35単結晶の屈折率に基づいて単結晶をカットした場合、和周波や高調波が全く発生しなかったり、結晶を傾けて使用しなければならなかったりするといった問題が発生した。
【0005】
【発明が解決しようとする課題】
本発明は、上記の問題に鑑み、結晶の製造ロットごと、または素子にする場合は一結晶の部位ごとに屈折率の異ならないCsB35単結晶を提供するものである。具体的な第一の目的はCsB35結晶の屈折率を規定し、第二の目的は屈折率が変化しないCsB35結晶の製造方法を提供するものである。
【0006】
【課題を解決するための手段】
上記課題を解決するために、請求項1に発明はNd:YAG(イットリウム・アルミニウム・ガーネット)やNd:YVO4(イットリウム・バナデート)やNd:YLF(イットリウム・リチウム・フルオライト)のレーザー光を波長変換する非線形光学結晶であって、使用するレーザー光の波長をλとして、x、y、z各光学軸方向の屈折率をそれぞれnx、ny、nzとしたときに、nz>ny>nxであり、nx、ny、nzはレーザー光の波長λに対して式(1)、式(2)、式(3)で関係づけられ、可視域において、波長0.5876μmでの屈折率をnd、波長0.4861μmでの屈折率をnF、波長0.6563μmでの屈折率をnCとしたときのアッベ数ν、すなわちν=(nd−1)/(nF−nC)が、nxにおいて67.1±4、nyにおいて65.3±4、nzにおいて64.4±4であることを特徴とする化学式CsB35もしくはCs2610で表記されるセシウムヘキサボレート結晶とするものである。
nx 2 =1+1/{(0.7459 ± 0.0007)-(0.0068 ± 0.0002)/ λ 2 } (1) ny 2 =1+1/{(0.7167 ± 0.0007)-(0.0068 ± 0.0002)/ λ 2 } (2) nz 2 =1+1/{(0.6759 ± 0.0007)-(0.0065 ± 0.0002)/ λ 2 } (3)
【0007】
また、請求項2記載の発明は、請求項1に記載のセシウムヘキサボレート結晶を製造する製造方法であって、不純物(Cs、B、O以外の元素)濃度が100ppm以下であり、かつ結晶育成の出発組成比がCs2O:B23が1:(2.75±0.01) であることを特徴とするセシウムヘキサボレート結晶を製造する製造方法とするものである。
【0008】
【発明の実施の形態】
本発明者らは、CsB35単結晶を高純度の材料を用い、かつ出発組成比がCs2O:B23が1:(2.75±0.01)から育成し、それらの結晶について紫外域から可視域の屈折率の測定を行い、その屈折率の波長分散や複屈折率を求めた。これらの結果から育成ロットの異なる結晶について詳細に比較検討を行った。単結晶から切り出されたサンプルを用いて実際にレーザーの高調波を発生させ、測定した屈折率を基にした計算から求められた位相整合角と実際に得られた位相整合角を比較検討し、屈折率と複屈折率を検証した。その結果、計算から得られたNd:YLFレーザーの2倍高調波発生(TYPE2)の位相整合角は、(θ、φ)が(76.5゜、0゜)で、実際の位相整合角は、(74.8゜、0゜)であり、結晶切出し時の切出角度誤差の範囲で一致した。
【0009】
したがって、屈折率と複屈折率に間違いがないことが証明された。加藤氏による技術論文においても同様に屈折率と位相整合角が求められており、屈折率と複屈折率に間違いがないと考えると、屈折率の違いは、結晶育成の出発組成と原料不純物にあると推測できる。加藤氏が測定したCsB35単結晶はWu氏らによって提供されており、Wu氏らの育成出発組成と本発明者らの育成出発組成は実際に異なっている。即ち、不純物濃度100ppm以下の高純度の原料、特にCsイオンと電荷保証するアルカリ金属不純物の含有を抑えた高純度原料を使用すれば、屈折率と複屈折率は繰り返し再現できることを見出した。
【0010】
本発明のCsB35単結晶の製造方法を以下に説明する。
純度99.99%の炭酸セシウム(Cs2CO3)および純度99.999%の三酸化ボロン(B23)を原料に用いて、Cs2OとB23のモル比が1:2.75になるように配合し、約900℃で数時間溶融した後に融点近傍830℃にもちきたし、結晶学的なa軸に平行なCsB35種結晶を溶融体表面に侵し、その後溶融液の温度を0.1℃/日でゆっくりと冷却し、10日後に結晶を溶融体から引き離して室温まで冷却した。
使用した原料Cs2OとB23ともに、アルカリ金属不純物を100ppm以下に抑制している。
【0011】
育成されたCsB35単結晶(ロット1)から、(100)面、(010)面、(001)面をそれぞれ底面とする頂角65°のプリズムを切り出して研磨した。研磨後、切り出しが±1゜の精度で正しいことをX線によって確認した。底面の法線方向に偏光した光源と分光計を用い、紫外域から赤外域の屈折率を最小振れ角法によって測定した。今回の測定では屈折率測定の精度は±0.0002であった。
【0012】
ロット1と同じ育成条件に基づいて育成されたCsB35単結晶(ロット2)から同様にプリズムを製作し、分光計を用いて屈折率波長分散を測定した。
【0013】
ロット1およびロット2と同じ育成条件に基づき、結晶学的なc軸に平行なCBO種結晶を用いて育成されたCsB35単結晶(ロット3)から同様にプリズムを製作し、分光計を用いて屈折率波長分散を測定した。
【0014】
以上の3ロットにおける屈折率波長分散とWu氏らによる技術論文(Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993) 2614)や加藤氏による技術論文(K. Kato, IEEE J. QE 31 (1995) 169)にて公知のCsB35単結晶の屈折率波長分散を比較例1および比較例2として、図1にX軸方向、図2にY軸方向、図3にZ軸方向として示す。
【0015】
図1、図2、図3とも、3ロットの屈折率はよく一致している。しかし、これら本発明の製造方法によるCsB35単結晶の屈折率を、過去に報告された公知のCsB35単結晶の屈折率と比較すると、nxでは10 -2 の隔たりがある波長域があることがわかる。
【0016】
屈折率波長分散は以下の式で表される。
n 2 =1+1/(A-B/ λ 2 )
ロット1のCsB35の屈折率波長分散を上式で表すと以下のようになる。
nx 2 =1+1/(0.7461-0.0068/ λ 2 )
ny 2 =1+1/(0.7162-0.0068/ λ 2 )
nz 2 =1+1/(0.6760-0.0065/ λ 2 )
【0017】
ロット2のCsB35の屈折率波長分散を式で表すと以下のようになる。
nx 2 =1+1/(0.7459-0.0068/ λ 2 )
ny 2 =1+1/(0.7167-0.0068/ λ 2 )
nz 2 =1+1/(0.6759-0.0065/ λ 2 )
【0018】
ロット3のCsB35の屈折率波長分散を式で表すと以下のようになる。
nx 2 =1+1/(0.7461-0.0068/ λ 2 )
ny 2 =1+1/(0.7167-0.0068/ λ 2 )
nz 2 =1+1/(0.6762-0.0065/ λ 2 )
屈折率測定の誤差±0.0002から波長分散式の係数A, Bの誤差を算出すると、それぞれ±0.0007、±0.0002であり、波長分散の係数においても3ロットは誤差範囲で一致していることがわかる。
【0019】
屈折率の波長分散を表す指数としてアッベ数(ν)がある。
ν=(nd−1)/(nF− nC)
アッベ数は波長分散の逆数を意味し、数値が大きいほど波長分散が小さい。
ただし、ndは波長0.5876μmでの屈折率、nFは波長0.4861μmでの屈折率、nC波長0.6563μmでの屈折率をそれぞれ表す。
【0020】
3ロットのアッベ数とWu氏らによる技術論文(Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993) 2614)や加藤氏による技術論文(K. Kato, IEEE J. QE 31 (1995) 169)にて公知の屈折率から求めたアッベ数を比較例1および比較例2として、図4に比較して示す。屈折率の測定誤差から求めたアッベ数の誤差も併記した。従来の報告例では測定誤差範囲(±4)を超えて変化しているのに対し、本発明においてはロット間では測定誤差範囲内でアッベ数が一致しており、再現性の良い結晶が得られていることがわかる。
【0021】)
純度99.99%の炭酸セシウム(Cs2CO3)および純度99.999%の三酸化ボロン(B23)、特にCs以外のアルカリ金属、アルカリ土類金属の濃度が15ppm以下の原料を用いると、屈折率が誤差範囲内で一致するCBO結晶が再現性よく育成できた。純度の低い炭酸セシウム(Cs2CO3)および三酸化ボロン(B23)を原料として用いた場合、原料中の不純物が結晶中Csサイトもしくは結晶格子間の空隙や中に取り込まれ、またその取り込まれ方や濃度が異なるため屈折率が変化したものと予想される。また、化学量論組成からずれた組成から結晶を育成する場合も、CsもしくはBの取り込まれ方や濃度が異なるため屈折率が変化したものと予想される。
【0022】
次に、本発明で開示した屈折率を有するCsB35単結晶を実施例とし、Wu氏らによる技術論文(Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993) 2614)や加藤氏による技術論文(K. Kato, IEEE J. QE 31 (1995) 169)にて公知の屈折率を有するCsB35単結晶をそれぞれ比較例1および比較例2として、Nd:YAGレーザーによる高調波発生特性について比較検討した。
【0023】
図5はその結果である。高調波を発生させる際、レーザー光の偏光方向によってTYPE1とTYPE2の2通りの発生条件がある。TYPE1は、互いに同じ偏光方向を有する入射光の周波数混合であり、TYPE2は、偏光方向が互いに直交した入射光の周波数混合である。比較例1はWu氏等の報告したデータであり、比較例2は加藤氏の報告したデータである。
【0024】
これら比較例と比較すると本実施例は実効非線形定数が最も大きく、角度許容幅も大きい。実効非線形定数は位相整合角での非線形性の大きさを表す定数で、実効非線形定数の2乗に比例して変換効率が高くなる。また、角度許容幅は、最高出力が得られる位相整合角から角度をずらしたときに出力が半分に低下するまでの角度幅を意味し、一般的には全幅で示される。角度許容幅が大きいほど角度調整が容易となり、レーザーシステムの設計がしやすくなる。
【0025】
比較例1、2のCsB35単結晶と比べて、本実施例のCsB35単結晶は、実効非線形定数について、従来報告されている比較例1および比較例2のCsB35単結晶に比べて優れたものとなっていることがわかる。また、TYPE2の本実施例のCsB35単結晶は、比較例1のCsB35単結晶と比べて角度許容幅が小さいものの、上述のように実効非線形定数が大きいことから比較例1のCsB35単結晶と比べて優れた非線形結晶となる。
【0026】
なお、上記実施例において、Nd:YAGレーザーを使用してCsB35単結晶の各特性について実験測定を行ったが、Nd:YVO4レーザーやNd:YLFレーザーを使用してもNd:YAGレーザーと同等の結果が得られることは当然に予想されるものである。
【0027】
【発明の効果】
本発明により、CsB35結晶を光学素子として安定に供給することができる。すなわち、所望の角度に結晶を切り出すことができ、位相整合しなかったり結晶を傾けて使用したりすることを避けることができる。
【0028】
また、本発明では、結晶ごとに屈折率の異ならないCsB35結晶育成方法を規定できたもので、不純物濃度100ppmの材料を用い、かつ出発組成比がCs2O:B23が1:(2.75±0.01)から結晶を育成することで育成ロットや種軸方位が変わっても実験誤差範囲内で屈折率が一致するCsB35結晶が得られる。
【図面の簡単な説明】
【図1】 本発明のCsB35単結晶と過去に報告された公知のCsB35単結晶の屈折率波長分散とのX軸方向における比較図である。
【図2】 本発明のCsB35単結晶と過去に報告された公知のCsB35単結晶の屈折率波長分散とのY軸方向における比較図である。
【図3】 本発明のCsB35単結晶と過去に報告された公知のCsB35単結晶の屈折率波長分散とのZ軸方向における比較図である。
【図4】 本発明のCsB35単結晶のアッベ数と過去に報告された公知のCsB35単結晶の屈折率から求めたアッベ数との比較表である。
【図5】 本発明のCsB35単結晶のアッベ数と過去に報告された公知のCsB35単結晶を使用したときの、Nd:YAGレーザーによる高調波発生特性の比較表である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cesium hexaborate (CsB 3 O 5 ) crystal that is a wavelength conversion element crystal that generates ultraviolet light by wavelength conversion of near infrared light.
[0002]
[Prior art]
Laser diode excitation Nd: YAG (yttrium aluminum garnet) and Nd: YVO4 (yttrium vanadate) are used to generate laser light in the so-called deep ultra-violet (DUV) region having a wavelength of about 193 to 196 nm. To obtain DUV light by sum frequency mixing with Nd: YLF (yttrium / lithium / fluorite) laser oscillation wavelength of about 1 μm as the fundamental wave and coherent laser light with a wavelength of 200-220 nm A cesium hexaborate (CsB 3 O 5 ) crystal having a highly efficient nonlinear effect is known as an effective device crystal. The CsB 3 O 5 crystal is also known to have a highly efficient non-linear effect in the generation of the third harmonic of a laser whose fundamental wave is light having a laser oscillation wavelength of about 1 μm.
[0003]
The refractive index of the CsB 3 O 5 crystal is disclosed in Japanese Patent Application Laid-Open No. 6-317822, and a technical paper by Wu et al. (Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993) 2614) and Kato's technical paper (K. Kato, IEEE J. QE 31 (1995) 169).
[0004]
However, their reported refractive index values are different from each other. When using a nonlinear optical crystal for sum frequency generation or harmonic generation, it is necessary to cut the crystal in a direction according to the anisotropy of the refractive index. Of course, if the refractive index and birefringence are different, the cutting direction is different. . When a single crystal is cut based on the refractive index of CsB 3 O 5 single crystals reported so far, no sum frequency or harmonics are generated, or the crystal must be tilted. Problem has occurred.
[0005]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides a CsB 3 O 5 single crystal in which the refractive index does not differ for each crystal production lot or for each element of a crystal when it is used as an element. The specific first object is to define the refractive index of the CsB 3 O 5 crystal, and the second object is to provide a method for producing the CsB 3 O 5 crystal in which the refractive index does not change.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 uses laser light of Nd: YAG (yttrium, aluminum, garnet), Nd: YVO 4 (yttrium, vanadate) or Nd: YLF (yttrium, lithium, fluorite). A non-linear optical crystal for wavelength conversion, where nz>ny> nx, where λ is the wavelength of the laser beam used, and nx, ny, and nz are the refractive indices in the optical axis directions of x, y, and z, respectively. Yes, nx, ny, and nz are related to the wavelength λ of the laser light by the formulas (1), (2), and (3). In the visible range, the refractive index at the wavelength 0.5876 μm is nd, the wavelength Abbe number ν when the refractive index at 0.4861 μm is nF, and the refractive index at 0.6563 μm is nC, that is, ν = (nd−1) / (nF−nC) is 67.1 ± 4 in nx, The chemical formula CsB 3 is characterized in that 65.3 ± 4 in ny and 64.4 ± 4 in nz. A cesium hexaborate crystal represented by O 5 or Cs 2 B 6 O 10 is used.
nx 2 = 1 + 1 / {(0.7459 ± 0.0007)-(0.0068 ± 0.0002) / λ 2 } (1) ny 2 = 1 + 1 / {(0.7167 ± 0.0007)-(0.0068 ± 0.0002) / λ 2 } ( 2) nz 2 = 1 + 1 / {(0.6759 ± 0.0007)-(0.0065 ± 0.0002) / λ 2 } (3)
[0007]
The invention according to claim 2 is a method for producing the cesium hexaborate crystal according to claim 1, wherein the concentration of impurities (elements other than Cs, B, and O) is 100 ppm or less, and crystal growth The starting composition ratio of Cs 2 O: B 2 O 3 is 1: (2.75 ± 0.01), which is a production method for producing a cesium hexaborate crystal.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have grown CsB 3 O 5 single crystals using high-purity materials and starting composition ratios of Cs 2 O: B 2 O 3 of 1: (2.75 ± 0.01). The refractive index from the visible region to the visible region was measured, and the wavelength dispersion and birefringence of the refractive index were obtained. Based on these results, a detailed comparison of crystals with different growth lots was conducted. Using a sample cut from a single crystal, laser harmonics were actually generated, and the phase matching angle obtained from the calculation based on the measured refractive index was compared with the actually obtained phase matching angle. The refractive index and birefringence were verified. As a result, the phase matching angle of the second harmonic generation (TYPE2) of the Nd: YLF laser obtained from the calculation is (θ, φ) is (76.5 °, 0 °), and the actual phase matching angle is ( 74.8 ° and 0 °), which coincided with the range of the cutting angle error at the time of crystal cutting.
[0009]
Therefore, it was proved that there is no mistake in refractive index and birefringence. Similarly, in the technical paper by Mr. Kato, the refractive index and the phase matching angle are required, and considering that there is no mistake in the refractive index and the birefringence, the difference in refractive index depends on the starting composition of crystal growth and the source impurities. I can guess. The CsB 3 O 5 single crystal measured by Mr. Kato is provided by Mr. Wu et al., And the growth starting composition of Mr. Wu et al. And the growth starting composition of the present inventors are actually different. That is, it has been found that the refractive index and the birefringence can be repeatedly reproduced by using a high-purity raw material having an impurity concentration of 100 ppm or less, particularly a high-purity raw material that suppresses the inclusion of Cs ions and alkali metal impurities that guarantee charge.
[0010]
A method for producing the CsB 3 O 5 single crystal of the present invention will be described below.
Using 99.99% pure cesium carbonate (Cs 2 CO 3 ) and 99.999% pure boron trioxide (B 2 O 3 ) as raw materials, the molar ratio of Cs 2 O to B 2 O 3 is 1: 2.75 And melted at about 900 ° C. for several hours, then brought to 830 ° C. near the melting point, invaded the crystal surface by CsB 3 O 5 seed crystals parallel to the a-axis, and then the temperature of the melt was adjusted to 0.1. Cooled slowly at 0 ° C / day and after 10 days the crystals were pulled away from the melt and cooled to room temperature.
Both the used raw materials Cs 2 O and B 2 O 3 suppress alkali metal impurities to 100 ppm or less.
[0011]
From the grown CsB 3 O 5 single crystal (Lot 1), a prism with an apex angle of 65 ° having the (100) plane, the (010) plane, and the (001) plane as the bottom faces was cut and polished. After polishing, it was confirmed by X-ray that the cutout was correct with an accuracy of ± 1 °. The refractive index from the ultraviolet region to the infrared region was measured by the minimum deflection angle method using a light source and a spectrometer polarized in the normal direction of the bottom surface. In this measurement, the accuracy of refractive index measurement was ± 0.0002.
[0012]
A prism was produced in the same manner from a CsB 3 O 5 single crystal (lot 2) grown under the same growth conditions as in lot 1, and the refractive index wavelength dispersion was measured using a spectrometer.
[0013]
Based on the same growth conditions as in lot 1 and lot 2, prisms were similarly fabricated from CsB 3 O 5 single crystals (lot 3) grown using CBO seed crystals parallel to the crystallographic c-axis. Was used to measure refractive index wavelength dispersion.
[0014]
Refractive wavelength dispersion in the above three lots and technical papers by Wu et al. (Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993 2614) and the technical paper by Mr. Kato (K. Kato, IEEE J. QE 31 (1995) 169), the refractive index wavelength dispersion of a known CsB 3 O 5 single crystal is shown as Comparative Example 1 and Comparative Example 2. 1 shows the X-axis direction, FIG. 2 shows the Y-axis direction, and FIG. 3 shows the Z-axis direction.
[0015]
1, 2, and 3, the refractive indexes of the three lots are in good agreement. However, when the refractive index of the CsB 3 O 5 single crystal produced by the production method of the present invention is compared with the refractive index of a known CsB 3 O 5 single crystal reported in the past, nx has a wavelength with a difference of 10 −2. You can see that there is a zone.
[0016]
The refractive index wavelength dispersion is expressed by the following equation.
n 2 = 1 + 1 / (AB / λ 2 )
The refractive index wavelength dispersion of CsB 3 O 5 of lot 1 is expressed as follows.
nx 2 = 1 + 1 / (0.7461-0.0068 / λ 2 )
ny 2 = 1 + 1 / (0.7162-0.0068 / λ 2 )
nz 2 = 1 + 1 / (0.6760-0.0065 / λ 2 )
[0017]
The refractive index wavelength dispersion of CsB 3 O 5 of lot 2 is expressed as follows.
nx 2 = 1 + 1 / (0.7459-0.0068 / λ 2 )
ny 2 = 1 + 1 / (0.7167-0.0068 / λ 2 )
nz 2 = 1 + 1 / (0.6759-0.0065 / λ 2 )
[0018]
The refractive index wavelength dispersion of CsB 3 O 5 of lot 3 is expressed as follows.
nx 2 = 1 + 1 / (0.7461-0.0068 / λ 2 )
ny 2 = 1 + 1 / (0.7167-0.0068 / λ 2 )
nz 2 = 1 + 1 / (0.6762-0.0065 / λ 2 )
If the errors of the chromatic dispersion coefficients A and B are calculated from the error of refractive index measurement ± 0.0002, they are ± 0.0007 and ± 0.0002, respectively. .
[0019]
The Abbe number (ν) is an index representing the wavelength dispersion of the refractive index.
ν = (nd−1) / (nF−nC)
The Abbe number means the reciprocal of chromatic dispersion, and the larger the value, the smaller the chromatic dispersion.
Here, nd represents the refractive index at a wavelength of 0.5876 μm, nF represents the refractive index at a wavelength of 0.4861 μm, and the refractive index at an nC wavelength of 0.6563 μm.
[0020]
Three lots of Abbe numbers and technical papers by Wu et al. (Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993) 2614) The Abbe numbers obtained from known refractive indices in a technical paper by Kato (K. Kato, IEEE J. QE 31 (1995) 169) are shown as Comparative Example 1 and Comparative Example 2 in comparison with FIG. The Abbe number error obtained from the measurement error of the refractive index is also shown. In the case of the conventional report, the measurement error range (± 4) is changed, but in the present invention, the Abbe numbers are consistent within the measurement error range between lots, and a crystal with good reproducibility is obtained. You can see that
0021)
If the raw material has a concentration of 99.99% cesium carbonate (Cs 2 CO 3 ) and 99.999% boron trioxide (B 2 O 3 ), especially alkali metals and alkaline earth metals other than Cs, the refraction will be CBO crystals whose rates matched within the error range could be grown with good reproducibility. When low-purity cesium carbonate (Cs 2 CO 3 ) and boron trioxide (B 2 O 3 ) are used as raw materials, impurities in the raw materials are taken into Cs sites in the crystal or voids between crystal lattices, and It is expected that the refractive index has changed due to the difference in concentration and concentration. Also, when the crystal is grown from a composition deviating from the stoichiometric composition, it is expected that the refractive index has changed due to the difference in how Cs or B is incorporated and the concentration.
[0022]
Next, a CsB 3 O 5 single crystal having a refractive index disclosed in the present invention is taken as an example, and technical papers by Wu et al. (Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang and C. Chen, Appl. Phys. Lett. 62 (1993) 2614) and technical papers by Kato (K. Kato, IEEE J. QE 31 (1995) 169) have a known refractive index of CsB 3 O 5 As comparative examples 1 and 2 for the crystals, the harmonic generation characteristics by the Nd: YAG laser were compared and examined.
[0023]
FIG. 5 shows the result. When generating harmonics, there are two generation conditions of TYPE 1 and TYPE 2 depending on the polarization direction of the laser beam. TYPE1 is frequency mixing of incident light having the same polarization direction, and TYPE2 is frequency mixing of incident light having polarization directions orthogonal to each other. Comparative Example 1 is data reported by Mr. Wu et al., And Comparative Example 2 is data reported by Mr. Kato.
[0024]
Compared with these comparative examples, this example has the largest effective nonlinear constant and the allowable angle range. The effective nonlinear constant is a constant representing the magnitude of nonlinearity at the phase matching angle, and the conversion efficiency increases in proportion to the square of the effective nonlinear constant. The allowable angle width means an angle width until the output is reduced to half when the angle is shifted from the phase matching angle at which the maximum output is obtained, and is generally indicated by the full width. The greater the allowable angle, the easier the angle adjustment and the easier the laser system design.
[0025]
Compared with CsB 3 O 5 single crystal of Comparative Example 1, 2, CsB 3 O 5 single crystal of the present embodiment, the effective nonlinear constant, CsB 3 O 5 in Comparative Examples 1 and 2 have been previously reported It can be seen that it is superior to the single crystal. Further, although the CsB 3 O 5 single crystal of this example of TYPE 2 has a smaller angle tolerance than the CsB 3 O 5 single crystal of Comparative Example 1, it has a large effective nonlinear constant as described above. Compared with the single crystal of CsB 3 O 5, the nonlinear crystal is excellent.
[0026]
In the above examples, Nd: YAG laser was used to experimentally measure the characteristics of the CsB 3 O 5 single crystal. However, even if Nd: YVO 4 laser or Nd: YLF laser was used, Nd: YAG laser was used. Naturally, it is expected that a result equivalent to that of a laser can be obtained.
[0027]
【The invention's effect】
According to the present invention, CsB 3 O 5 crystal can be stably supplied as an optical element. That is, the crystal can be cut out at a desired angle, and it is possible to avoid the phase matching or tilting the crystal.
[0028]
Further, in the present invention, a CsB 3 O 5 crystal growth method in which the refractive index does not vary from crystal to crystal can be specified, and a material having an impurity concentration of 100 ppm is used, and the starting composition ratio is Cs 2 O: B 2 O 3. 1: By growing the crystal from (2.75 ± 0.01), a CsB 3 O 5 crystal having the same refractive index within the experimental error range can be obtained even if the growth lot and seed axis orientation are changed.
[Brief description of the drawings]
1 is a comparison diagram in the X-axis direction and the refractive index wavelength dispersion of CsB 3 O 5 known as reported in the single crystal and the past CsB 3 O 5 single crystal of the present invention.
2 is a comparison diagram in the Y-axis direction and the refractive index wavelength dispersion of CsB 3 O 5 known as reported in the single crystal and the past CsB 3 O 5 single crystal of the present invention.
Figure 3 is a comparison diagram in the Z axis direction of the refractive index wavelength dispersion of CsB 3 O 5 single crystal and known previously reported in CsB 3 O 5 single crystal of the present invention.
FIG. 4 is a comparison table between the Abbe number of the CsB 3 O 5 single crystal of the present invention and the Abbe number determined from the refractive index of a known CsB 3 O 5 single crystal reported in the past.
FIG. 5 is a comparison table of harmonic generation characteristics by Nd: YAG laser when the Abbe number of the CsB 3 O 5 single crystal of the present invention and a known CsB 3 O 5 single crystal reported in the past are used. .

Claims (2)

Nd:YAG(イットリウム・アルミニウム・ガーネット)やNd:YVO4(イットリウム・バナデート)やNd:YLF(イットリウム・リチウム・フルオライト)のレーザー光を波長変換する非線形光学結晶であって、使用するレーザー光の波長をλとして、x、y、z各光学軸方向の屈折率をそれぞれnx、ny、nzとしたときに、nz>ny>nxであり、nx、ny、nzはレーザー光の波長λに対して式(1)、式(2)、式(3)で関係づけられ、
可視域において、波長0.5876μmでの屈折率をnd、波長0.4861μmでの屈折率をnF、波長0.6563μmでの屈折率をnCとしたときのアッベ数ν、すなわちν=(nd−1)/(nF−nC)が、nxにおいて67.1±4、nyにおいて65.3±4、nzにおいて64.4±4であることを特徴とする化学式CsB35もしくはCs2610で表記されるセシウムヘキサボレート結晶。
nx 2 =1+1/{(0.7459 ± 0.0007)-(0.0068 ± 0.0002)/ λ 2 } (1) ny 2 =1+1/{(0.7167 ± 0.0007)-(0.0068 ± 0.0002)/ λ 2 } (2) nz 2 =1+1/{(0.6759 ± 0.0007)-(0.0065 ± 0.0002)/ λ 2 } (3)
Nd: YAG (yttrium aluminum garnet) or Nd: YVO 4 (yttrium vanadate) and Nd: YLF a nonlinear optical crystal for wavelength conversion of laser light (yttrium-lithium-fluorite), laser beam used And nx>ny> nx, where nx, ny, and nz are the laser light wavelength λ, where λ is the wavelength of λ, and the refractive indices in the x, y, and z optical axis directions are nx, ny, and nz, respectively. On the other hand, it is related by Formula (1), Formula (2), and Formula (3),
In the visible region, the refractive index at a wavelength of 0.5876 μm is nd, the refractive index at a wavelength of 0.4861 μm is nF, and the refractive index at a wavelength of 0.6563 μm is nC, that is, ν = (nd−1) / (NF-nC) is 67.1 ± 4 in nx, 65.3 ± 4 in ny, and 64.4 ± 4 in nz, with the chemical formula CsB 3 O 5 or Cs 2 B 6 O 10 The cesium hexaborate crystal described.
nx 2 = 1 + 1 / {(0.7459 ± 0.0007)-(0.0068 ± 0.0002) / λ 2 } (1) ny 2 = 1 + 1 / {(0.7167 ± 0.0007)-(0.0068 ± 0.0002) / λ 2 } ( 2) nz 2 = 1 + 1 / {(0.6759 ± 0.0007)-(0.0065 ± 0.0002) / λ 2 } (3)
請求項1に記載のセシウムヘキサボレート結晶を製造する製造方法であって、不純物(Cs、B、O以外の元素)濃度が100ppm以下であり、かつ結晶育成の出発組成比がCs2O:B23が1:(2.75±0.01)であることを特徴とするセシウムヘキサボレート結晶を製造する製造方法。A manufacturing method for manufacturing a cesium hexaborate crystal according to claim 1, wherein the concentration of impurities (elements other than Cs, B, and O) is 100 ppm or less, and the starting composition ratio of crystal growth is Cs 2 O: B A method for producing a cesium hexaborate crystal, characterized in that 2 O 3 is 1: (2.75 ± 0.01).
JP2000326441A 2000-10-26 2000-10-26 Cesium hexaborate crystal and method for producing the same Expired - Lifetime JP3945145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326441A JP3945145B2 (en) 2000-10-26 2000-10-26 Cesium hexaborate crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326441A JP3945145B2 (en) 2000-10-26 2000-10-26 Cesium hexaborate crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002131793A JP2002131793A (en) 2002-05-09
JP3945145B2 true JP3945145B2 (en) 2007-07-18

Family

ID=18803627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326441A Expired - Lifetime JP3945145B2 (en) 2000-10-26 2000-10-26 Cesium hexaborate crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP3945145B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2338817C2 (en) * 2003-02-13 2008-11-20 Джапан Сайнс Энд Текнолоджи Эдженси Method of borate-based crystal growing and laser generator

Also Published As

Publication number Publication date
JP2002131793A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
Smith et al. Refractive indices of lithium niobate
US5805626A (en) Single-crystal lithium tetraborate and method making the same, optical converting method and converter device using the single-crystal lithium tetraborate, and optical apparatus using the optical converter device
JP2007532763A (en) Methods and compounds for nonlinear optics
US8300305B2 (en) Use of undoped crystals of the yttrium/aluminum/borate family for creating non-linear effects
CN1038352C (en) Non-linear optical crystal strontium boroberyllate
Umemura et al. 90° phase-matching properties of YCa4O (BO3) 3 and GdxY1-xCa4O (BO3) 3
Bechthold et al. Linear and nonlinear optical properties of Ca3 (VO4) 2
Wood et al. Optical birefringence study of the ferroelectric phase transition in lithium niobate tantalate mixed crystals: LiNb1− xTaxO3
JP3945145B2 (en) Cesium hexaborate crystal and method for producing the same
US5343327A (en) RbNbB2 O6 crystal and its nonlinear optical devices
JPH09512354A (en) Nonlinear crystals and their use
JP3518604B2 (en) Dopant-doped KTP exhibiting high birefringence suitable for type II phase matching and similar forms
JP2005275095A (en) Light source unit, semiconductor exposure device, laser medical treatment device, laser interferometer device, and laser microscope device
Valakh et al. Self-induced resonant optical rotation in crystals KCl: Li
EP0573737B1 (en) An optical device using a cerium-doped KTP crystal
US5562768A (en) Potassium-lithium niobate crystals
Jiang et al. Recent developments in the growth and characterization of potassium lithium niobate (KLN) crystals for direct doubling of semiconductor lasers
WO2002059041A1 (en) Polyborates useful for optical frequency conversion
JPH09258283A (en) Optical wavelength conversion method and optical wavelength conversion device
JP2003034595A (en) Method of manufacturing lithium tetraborate single crystal
Shimazu et al. Phase-matching of optically second-harmonic generation in the single crystals of Gd-and La-added barium sodium niobate
JP4052751B2 (en) Laser light generator
Mizell et al. Growth, properties, and applications of potassium niobate single crystals
Noiret et al. Phase transitions in the 5 at.% Nd 3+-doped Ba 2 NaNb 5 O 15 self-doubling laser crystal
JPH05313219A (en) Lithium tantalate single crystal substrate formed with polarization inversion grating and optical element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3945145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term