JP3943704B2 - Rear focus zoom lens - Google Patents

Rear focus zoom lens Download PDF

Info

Publication number
JP3943704B2
JP3943704B2 JP10549898A JP10549898A JP3943704B2 JP 3943704 B2 JP3943704 B2 JP 3943704B2 JP 10549898 A JP10549898 A JP 10549898A JP 10549898 A JP10549898 A JP 10549898A JP 3943704 B2 JP3943704 B2 JP 3943704B2
Authority
JP
Japan
Prior art keywords
group
lens
negative
positive
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10549898A
Other languages
Japanese (ja)
Other versions
JPH11287952A (en
Inventor
仁志 向谷
伸之 栃木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10549898A priority Critical patent/JP3943704B2/en
Publication of JPH11287952A publication Critical patent/JPH11287952A/en
Application granted granted Critical
Publication of JP3943704B2 publication Critical patent/JP3943704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リアフォーカス式のズームレンズに関し、特に最終レンズと結像面(CCD)との間に色分解プリズムやフィルター等のガラスブロックが入るような長いバックフォーカスと射出瞳を確保しつつ、超広角域をカバーした、ビデオカメラやスチルビデオカメラそして放送用カメラ等に用いられる変倍比3程度、Fナンバー1.8程度の大口径なリアフォーカス式のズームレンズに関するものである。
【0002】
【従来の技術】
最近、ホームビデオカメラ等の小型軽量化に伴い、撮像用のズームレンズの小型化にもめざましい進歩が見られ、特にレンズ全長の短縮化や前玉径の小型化、レンズ構成の簡略化に力が注がれている。これらの目的を達成する為の手段の一つとして、物体側の第1群以外のレンズ群を移動させてフォーカスを行う所謂リアフォーカス式のズームレンズが知られている。一般にリアフォーカス式のズームレンズは、第1群を移動させてフォーカスを行うズームレンズに比べて、第1群の有効径が小さくなり、レンズ系全体の小型化が容易になる。また、近接撮影、特に極近接撮影が可能となり、更に比較的小型軽量のレンズ群を移動させているため、レンズ群の駆動力が小さくてすみ迅速な焦点合わせができる等の利点がある。
【0003】
この様なリアフォーカス式のズームレンズとして例えば、特開昭63−44614号公報では、物体側より順に正の(正の屈折力の)第1レンズ群と、負の第2レンズ群、負の第3レンズ群、そして正の第4レンズ群の4つのレンズ群よりなり、第2レンズ群を移動させて変倍を行い、第3レンズ群で変倍に伴う像面変動を補正すると共にフォーカシングを行うズームレンズを開示している。
【0004】
また、特開昭63−278013号公報では、物体側より順に正の第1レンズ群、負の第2レンズ群、弱い屈折力の第3レンズ群、そして正の第4レンズ群の4つのレンズ群を有し、第2レンズ群を移動させて変倍を行い、第4レンズ群で変倍に伴う像面変動を補正すると共にフォーカシングを行うズームレンズを開示している。
【0005】
また、特開昭62−206516号公報、特開昭63−29718号公報、特開昭62−215225号公報、特開昭62−24213号公報等では物体側より順に正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、正の第4レンズ群を有し、第2レンズ群を移動させて変倍を行い、第4レンズ群で変倍に伴う像面変動を補正すると共にフォーカシングを行うズームレンズを開示している。また、特開平4−43311号公報、特開平4−153615号公報、特開平5−19165号公報、特開平5−27167号公報、及び特開平5−60973号公報等では、前述のタイプの4つのレンズ群より成るズームレンズにおいて第4レンズ群を凸レンズ(正レンズ)1枚または、凸レンズ2枚で構成された例が開示されている。
【0006】
また、特開平5−60974号公報では前述したタイプの4つのレンズ群より成るズームレンズにおいて第4レンズ群を凸凹レンズの2枚で構成されたズームレンズが開示されている。
【0007】
更に、特開昭55−62419号公報、特開昭62−24213号公報、特開昭62−215225号公報、特開昭56−114920号公報、特開平3−200113号公報、特開平4−242707号公報、特開平4−343313号公報、特開平5−297275号公報等の公報では、前述したタイプの4つのレンズ群より成るズームレンズにおいて、その実施例中に第3レンズ群、第4レンズ群がそれぞれが正レンズ、負レンズの2枚からなることを開示している。
【0008】
また、特開平5−72475号公報では、前述したタイプの4つのレンズ群より成るズームレンズにおいて第1レンズ群の物体側に凹、凸レンズの2枚のレンズを配置し、広角用のズームレンズを達成している。
【0009】
また、ビデオデッキの高性能化(デジタル化)に伴いビデオカメラの高画質化が進んできている。その一つの方法として色分解光学系による画像の分解により高画質を達成しているが、それに適したズームレンズが、例えば特開平5−72474号公報、特開平6−51199号公報、特開平6−337353号公報、特開平6−347697号公報、特開平7−199069号公報、特開平7−270684号公報、特開平7−318804号公報、特開平9−281390号公報、特開平9−281391号公報等で提案されている。
【0010】
【発明が解決しようとする課題】
以上述べたように、一般にズームレンズにおいて、前玉径、全系の小型化を達成するには、第1レンズ群による距離合わせ(フォーカス)よりも、所謂、リアフォーカス方式の方が適している。
【0011】
しかしながら、前述の特開昭63−44614号公報では、絞りの前に配置された第3群の移動空間を確保せねばならず、レンズ全長の短縮と前玉径の縮小には限界があった。
【0012】
また、特開昭63−278013号公報では、その全ての実施例が第3レンズ群を負の屈折力とすることで達成させているため、第4レンズ群が大型化しフォーカスによる収差変動が大きくなってしまうという傾向があった。
【0013】
特開昭62−206516号公報、特開昭62−215225号公報、特開昭62−24213号公報、特開昭63−29718号公報、特開平4−026811号公報、特開平4−88309号公報、特開平4−242707号公報及び特開平4−343313号公報、また、特開平4−43311号公報、特開平4−153615号公報、特開平5−19165号公報、特開平5−27167号公報、および、特開平5−60973号公報、特開平5−60974号公報、特開平5−297275号公報等でも、そのレンズ構成において色分解プリズムを配置するのに充分なバックフォーカスを得るのが難しくて、広角端の画角も超広角域にとどいてはいない。
【0014】
更に、特開昭55−62419号公報、特開昭56−114920号公報、特開平3−200113号公報で開示されている例では、第1レンズ群、または、第3レンズ群も変倍に伴って移動するため鏡筒構造が複雑化し、小型な広角用のズームレンズを達成するのが難しかった。また、特開平5−72475号公報では第1レンズ群の物体側に凹、凸レンズの2枚を配置した、所謂ワイドコンバータータイプとなっており、広角端における歪曲収差の補正や、色収差等が3色分解プリズムを使って狙うべき高画質化には不十分なレベルで止まっている。
【0015】
また、特開平5−72474号公報、特開平6−51199号公報、特開平6−337353号公報、特開平6−347697号公報、特開平7−199069号公報、特開平7−270684号公報、特開平7−318804号公報、特開平9−281390号公報、特開平9−281391号公報等の公報では3色分解プリズムを想定したバックフォーカスを確保してはいるが、その実施例はいずれも広角端の半画角が40゜以上を満足するような超広角となっていなかった。
【0016】
本発明は、特に本出願人の先の提案である特開平6−51199号公報、特開平6−337353号公報、特開平7−270684号公報、特開平7−318804号公報、特開平9−281390号公報、特開平9−281391号公報の改良に関し、色分解用プリズムやフィルター等の光学素子やズームレンズ部の保護を目的とした光学素子が入る程度の十分なバックフォーカスを有し、全ズーム域、及び全物体距離範囲に渡って良好な光学性能を有しつつ、半画角で40°以上の超広角域の撮像ができるリアフォーカス式のズームレンズの提供を目的とする。
【0017】
【課題を解決するための手段】
本発明のリアフォーカス式のズームレンズは、
(1−1)物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、正の屈折力の第4群の4つのレンズ群からなり、該第2群を像面側へ移動させて広角端から望遠端への変倍を行い、変倍または被写体の距離変動に伴う像面変動を該第4群の一部または全体を移動させて補正し、該第4群と像面との間にガラスブロックを配置するズームレンズであって、第1群は負の屈折力の第11群と正の屈折力の第12群の2つのレンズ群から構成されており、該第11群は像面側に凹面を向けたメニスカス状の負レンズを少なくとも2つ有し、該第12群は正レンズ、像面側に凹面を向けたメニスカス状の負レンズと正レンズとの接合レンズ、そして正レンズより成り、該第11群と第12群との空気間隔をL、第1群と第2群の焦点距離を各々f1,f2とするとき、
0.3<L/f1≦0.856 ・・・(1a)
1.9<f1/|f2|<4.3 ・・・(2a)
なる条件式を満足することを特徴としている。
【0018】
(1−2)物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、正の屈折力の第4群の4つのレンズ群からなり、該第2群を像面側へ移動させて広角端から望遠端への変倍を行い、変倍または被写体の距離変動に伴う像面変動を該第4群の一部または全体を移動させて補正し、該第4群と像面との間にガラスブロックを配置するズームレンズであって、第1群は負の屈折力の第11群と正の屈折力の第12群の2つのレンズ群から構成されており、該第11群は像面側に凹面を向けたメニスカス状の負レンズを少なくとも2つ有し、該第12群は正レンズ、像面側に凹面を向けたメニスカス状の負レンズと正レンズとの接合レンズ、そして正レンズより成り、該第2群の焦点距離をf2、広角端における全系の焦点距離をFw、広角端で無限遠物体合焦時のバックフォーカスをbFwとしたとき
5<bFw/Fw<9 ・・・(1C)
−4<f2/Fw<−2 ・・・(2C)
なる条件を満足することを特徴としている。
【0019】
この他本発明のリアーフォーカス式のズームレンズは、
(1−3)該第3群は像面側に凹面を向けたメニスカス状の負の第31レンズ、正の第32レンズと負の第33レンズとの接合レンズ3aより成り、該第31レンズと接合レンズ3aとの空気間隔をdとし、第3群の焦点距離をf3とするとき、
0.06<d/f3<0.25 ・・・(3a)
なる条件式を満足することを特徴としている。
【0020】
(1−4)該第2群は像面側に凹面を向けたメニスカス状の負の第21レンズ、負の第22レンズ、正の第23レンズ、そして両レンズ面が凹面の負の第24レンズより成り、広角端の焦点距離をFw、第2群の焦点距離をf2、とするとき、
1.7<|f2|/Fw<3.6 ‥‥‥(4a)
なる条件式を満足している。
【0021】
(1−5)該第2群は負レンズ,負レンズ,負レンズそして正レンズの4つのレンズより成り、第i群の焦点距離をfi、広角端における全系の焦点距離をFwとしたとき
−5.0<f1/f2<−0.5 ‥‥‥(1b)
−5.0<f2/Fw<−1.0 ‥‥‥(2b)
なる条件式を満足している。
【0022】
(1−6)該第3群の焦点距離をf3、広角端における全系の焦点距離をFwとするとき
30<f3/Fw<60 ‥‥‥(3c)
なる条件を満足している。
【0023】
【発明の実施の形態】
図1,図3,図5,図7,図9,図11,図13,図15,図17,図19,図21,図23は本発明のリアフォーカス式のズームレンズの数値実施例1〜12のレンズ断面図、図2,図4,図6,図8,図10,図12,図14,図16,図18,図20,図22,図24は本発明のリアフォーカス式のズームレンズの数値実施例1〜12の諸収差図である。収差図において(A)は広角端、(B)は望遠端を示している。
【0024】
図中、L1は正の屈折力の第1群、L2は負の屈折力の第2群、L3は正の屈折力の第3群、L4は正の屈折力の第4群である。SPは開口絞りであり、第3群L3の中又はその近傍に配置している。Gは色分離系やフェースプレートやフィルター(水晶フィルター,赤外フィルター)等のガラスブロックである。IPは像面である。
【0025】
本実施形態では広角端から望遠端への変倍に際して、矢印のように第2群を像面側へ移動させると共に、変倍に伴う像面変動を第4群を物体側に凸状の軌跡を有しつつ、移動させて補正している。
【0026】
又、第4群を光軸上移動させて、フォーカスを行うリアフォーカス式を採用している。同図に示す第4群の実線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正する為の移動軌跡を示している。尚、第1群と第3群は変倍及びフォーカスの際、固定であるが、必要に応じて移動させても良い。
【0027】
本実施形態においては第4群を移動させて変倍に伴う像面変動の補正を行うと共に第4群を移動させてフォーカスを行うようにしている。特に同図の曲線4a,4bに示すように広角端から望遠端への変倍に際して物体側へ凸状の軌跡を有するように移動させている。これにより第3群と第4群との空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。
【0028】
本実施形態において、例えば望遠端において無限遠物体から近距離物体へフォーカスを行う場合は、同図の直線4cに示すように第4群を前方へ繰り出すことにより行っている。
【0029】
本実施形態におけるズームレンズは第1群と第2群の合成系で形成した虚像を第3群と第4群で感光面上に結像するズーム方式をとっている。本実施形態では従来の所謂4群ズームレンズにおいて第1群を繰り出してフォーカスを行う場合に比べて前述のようなリアフォーカス方式を採ることにより第1群の偏心誤差による性能劣化を防止しつつ第1群のレンズ有効径の増大化を効果的に防止している。
【0030】
そして開口絞りを第3群中又はその近傍に配置することにより可動レンズ群による収差変動を少なくし、開口絞りより前方のレンズ群の間隔を短くすることにより前玉レンズ径の縮小化を容易に達成している。
【0031】
数値実施例1〜12に示すリアフォーカス式のズームレンズは以上のレンズ構成を基本構成としている。
【0032】
(ア)次に図1,図3,図5,図7の数値実施例1〜4のレンズ構成の特徴について説明する。
【0033】
(ア-1) 数値実施例1〜4においては前述の基本構成の基で、第1群は負の屈折力の第11群と正の屈折力の第12群の2つのレンズ群を有し、該第11群は像面側に凹面を向けたメニスカス状の負レンズを少なくとも2つ有し、該第12群は正レンズ、像面側に凹面を向けたメニスカス状の負レンズと正レンズとの接合レンズ、そして正レンズより成り、前述の条件式(1a),(2a)を満足している。
【0034】
(ア-2) 又、数値実施例1〜4においては前述の基本構成の基で、該第3群は像面側に凹面を向けたメニスカス状の負の第31レンズ、正の第32レンズと負の第33レンズとの接合レンズ3aより成り、前述の条件式(3a)を満足している。
【0035】
(ア-3) 又、数値実施例1〜4においては前述の基本構成の基で、該第2群は像面側に凹面を向けたメニスカス状の負の第21レンズ、負の第22レンズ、正の第23レンズ、そして両レンズ面が凹面の負の第24レンズより成り、前述の条件式(4a)を満足している。
【0036】
数値実施例1〜4において、所謂4群のリアフォーカス式のズームレンズで、長いバックフォーカスを確保するためには第1、第2、第3群で構成される略アフォーカル倍率を小さくし、又第4群の焦点距離を長くすることによって可能となる。そのためには第1群の焦点距離を短くしなければならないが、このとき単に第1群の焦点距離を短くする第1群と第2群とが機械的に干渉をおこしてしまうことがある。そこで、本実施形態では前述の如く第1群を構成することによって第1群の主点位置を第2群側に押し出し所望の第1群、第2群の関係を得ている。
【0037】
具体的には前記第11群は像面側に凹面を向けたメニスカス状の負の第11,第12,第13レンズの3つの負レンズより成っており、第12群は正の第14レンズ、像面側に凹面を向けたメニスカス状の負の第15レンズと正の第16レンズとの接合レンズ1a、正の第17レンズより成っている。
【0038】
このレンズ構成の場合、そのレンズ群の主点位置はその群の像面側外に押し出されることになり、第1、第2群の主点間隔を負としても双方が機械的に干渉を起すことはなくなる。従って変倍部でもレトロ型のレンズ系を作り出すことが可能となり、第3群から略アフォーカルで射出する光線束を大きくとることが出来る。そのため、第4群の焦点距離にあまり負担をかけずに全系の焦点距離を短く(広角)にし、且つ長いバックフォーカスを確保することができるようにしている。
【0039】
尚、接合レンズ1aを単一の正レンズより構成しても良い(以下の数値実施例5〜12について全て同じ)。そして1つの実施形態(ア-1) として条件式(1a),(2a)を満足させ、他の実施形態(ア-2) として条件式(3a)を満足させ、又、他の実施形態(ア-3) として条件式(4a)を満足させている。
【0040】
次に前述の条件式(1a),(2a),(3a),(4a)の技術的意味について説明する。
【0041】
条件式(1a)はかかる第1群のレンズ構成において主点を押し出すのに必要な条件であり、下限値を超えると主点の押し出しが不十分となり、所望の第1、2群の焦点距離関係が保てず、しいては所望のバックフォーカスが得られないか、必要なだけの広い画角が得られなくなる。また、上限値を超えると第1群中の負レンズのパワーが第1群の前面に偏りすぎるため歪曲収差が強く発生し、良好な高画質を得ることが出来なくなり好ましくない。
【0042】
条件式(2a)はかかる条件の下で必要な第1群と第2群の焦点距離の比の関係を示し、下限値を超えると第1 群の屈折力が強くなりすぎ、第1 群の物体側に配置する負レンズの屈折力もそれに付随して強くなり、やはり負の歪曲収差が強く発生し補正が困難となり好ましくない。また上限値を超えると必要なアフォーカル倍率が得られず本発明の目的である全系の焦点距離を短くしかつ長いバックフォーカスを確保できなくなる。
【0043】
また、条件式(2a)の数値範囲を、
2.4 < f1/|f2| < 3.5 ‥‥‥(2aa)
なる条件式を満足すると更に良好に収差補正を行うことが可能となる。
【0044】
条件式(3a)は第3群においてもその主点位置を少しでも像面側に押し出し第1群から第3群の間で変倍によって生じる像面位置を像面側に寄せることにより、第4群との共役位置であるピント面をレンズの像面側に押し出す効果があり、掛かる効果によってバックフォーカスを所望の長さまで伸長可能とするものである。
【0045】
条件式(3a)の下限値を超えて間隔が短くなると全系の焦点距離を短くしつつも所望の長さのバックフォーカスを確保することが困難となり、上限値を超えて間隔が開き過ぎると第2群から発散されてくる光線束が第3群中で大きく発散することとなり、第3群以降のレンズ径が大きくなり好ましくない。また、条件式(3a)の数値範囲を、
0.07 < d/f3 < 0.17 ‥‥‥(3aa)
とすると更に良好に収差補正を行うことが出来る。
【0046】
条件式(4a)は、超広角用のズームレンズを達成するための変倍部のパワーを規格するもので、上限値を超えて屈折力が弱くなると前述の変倍部における略アフォーカル倍率を充分高めることができずバックフォーカスを所望の長さ確保することが困難となり、又下限値を超えて屈折力が強くなりすぎるとペッツバール和が負で増大することにより、広い画角を確保することが困難となる。また、条件式(4a)の数値範囲を、
1.7 < |f2|/Fw < 3.0 ‥‥‥(4aa)
とすると更に良好に収差補正を行うことが出来る。
【0047】
尚、数値実施例1〜4において、即ち構成(ア-1) 又は(ア-2) 又は(ア-3) において更に良好なる光学性能を得るには次の諸条件のうち少なくとも1つを満足させるのが良い。
【0048】
(a1)負に増大しがちなペッツバール和を良好に保ち像面の平坦化を達成するためには、第1群の3枚の負の第11,第12,第13レンズの材質の屈折率の平均値をNA1、第2群の負の第21,第22,第24レンズの材質の屈折率の平均値をNA2とした時、
1.60 < NA1 ‥‥‥(5a)
1.80 < NA2 < 1.89 ‥‥‥(6a)
を満足することが好ましい。
【0049】
(a2)長い射出瞳を確保するために第3群中の負の第31レンズと正の第32レンズの間に絞りを配置しているが、射出瞳位置の要件は色分解プリズムの構成によって変わるため、絞りを第3群の前後に配置しても良い。
【0050】
(a3)前記第11群は像面側に凹面を向けたメニスカス状の負の第11,第12,第13レンズの3つの負レンズより成り、第12群は正の第14レンズ、像面側に凹面を向けたメニスカス状の負の第15レンズと正の第16レンズとの接合レンズ1a、正の第17レンズより成り、該第2群は像面側に凹面を向けたメニスカス状の負の第21レンズ、負の第22レンズ、正の第23レンズ、そして両レンズ面が凹面の負の第24レンズより成り、該第3群は像面側に凹面を向けたメニスカス状の負の第31レンズ、正の第32レンズと負の第33レンズとの接合レンズ3aより成ること。
【0051】
(a4)前記第4群は像面側に凸面を向けたメニスカス状の正の第41レンズ、像面側に凹面を向けた負の第42レンズと両レンズ面が凸面の正の第43レンズとの接合レンズ4a、そして両レンズ面が凸面の正の第44レンズより成ること。
である。
【0052】
次に図9,図11,図13,図15,図17の数値実施例5〜9のレンズ構成の特徴について説明する。
【0053】
(イ-1) 数値実施例5〜9は前述の基本構成の基で、該第1群は負の屈折力の第11群と正の屈折力の第12群の2つのレンズ群を有し、該第11群は像面側に凹面を向けたメニスカス状の負レンズを少なくとも2つ有し、該第12群は正レンズ、正レンズ又は負レンズと正レンズとの接合レンズ、そして正レンズより成り、該第2群は負レンズ,負レンズ,負レンズそして正レンズの4つのレンズより成り、前述の条件式(1b),(2b)を満足している。
【0054】
具体的には図9,図11,図13の数値実施例5,6,7では前記第11群は像面側に凹面を向けたメニスカス状の負の第11,第12,第13レンズの3つの負レンズより成り、第12群は正の第14レンズ、像面側に凹面を向けたメニスカス状の負の第15レンズと正の第16レンズとの接合レンズ1a、正の第17レンズより成っている。
【0055】
又、図15,図17の数値実施例8,9では第11群を像面側に凹面を向けたメニスカス状の負の第11,第12レンズより成っており、第12群は正の第14レンズ、像面側に凹面を向けたメニスカス状の負の第15レンズと正の第16レンズとの接合レンズ1a、正の第17レンズより成っている。
【0056】
数値実施例5,6,8,9では第2群を像面側に凹面を向けたメニスカス状の負の第21レンズ、負の第22レンズ、両レンズ面が凹面の負の第23レンズ、そして両レンズ面が凸面の正の第24レンズより構成している。
【0057】
又、数値実施例7では第2群を像面側に凹面を向けたメニスカス状の負の第21レンズ、負の第22レンズ、両レンズ面が凹面の負の第23レンズ、そして両レンズ面が凸面の正の第24レンズより構成し、このうち第23レンズと第24レンズとを接合レンズ2aより構成している。
【0058】
数値実施例5〜9では、すべて球面レンズを用いているが、非球面を有するレンズを仕様することにより更に性能を向上させることやFnoを明るくすることが可能となる。特に第3レンズ群に非球面を有するレンズを用いることによりレンズ枚数の削減を達成することが可能になり、同時に球面収差などを効果的に補正することが可能になる。更に第4レンズ群に非球面を有するレンズを用いることによりコマ収差などを効果的に補正することが可能となる。
【0059】
そして前述のごとく設定することにより、色分解用プリズム等の光学素子やズームレンズ部の保護を目的とした光学素子が入るバックフォーカス空間を十分確保し、全ズーム域、全物体距離範囲に渡って良好な光学性能を提供しつつ、半画角で40°以上の超広角域を撮像可能なリアフォーカス式のズームレンズを得ている。
【0060】
次に前述の条件式(1b),(2b)の技術的な意味について説明する。
【0061】
条件式(1b)は第1レンズ群と第2レンズ群の焦点距離の他に関するものであり、コンパクト化を達成しつつバックフォーカスの長くて良好な光学性能を維持するためのものである。条件式(1b)の下限値を越えて第2レンズ群の焦点距離が長くなり、第1レンズ群の焦点距離が短くなると第2レンズ群の移動量が増大し、レンズ全長や前玉径を小型化する事が困難になる。また望遠端近傍での第4レンズ群の移動量が大きくなりズーミング時の収差の変動が大きくなるといった問題も生じる。逆に上限値を越えると歪曲等の諸収差を良好に補正することが困難になる。
【0062】
条件式(2b)は第2レンズ群の焦点距離に関するものである。条件式(2b)の上限値を越えて第2レンズ群の焦点距離が短くなるとペッツバール和がアンダー方向に大きくなり像面の倒れ等の収差補正が困難になる。逆に下限値を越えて第2レンズ群の焦点距離が長くなると第2レンズ群の移動量が増え、前玉径が大きくなりすぎるという問題が生じてくる。
尚、数値実施例5〜9において即ち(イ-1) において更に良好なる光学性能を得るには次の諸条件のうち少なくとも1つを満足させるのが良い。
【0063】
(b1)前記第3群は像面側に凹面を向けたメニスカス状の負の第31レンズ、正の第32レンズと負の第33レンズとの接合レンズ3aより成っていることである。
【0064】
(b2)前記第4群は像面側に凸面を向けたメニスカス状の正の第41レンズ、像面側に凹面を向けた負の第42レンズと両レンズ面が凸面の正の第43レンズとの接合レンズ4a、そして両レンズ面が凸面の正の第44レンズより成っていることである。
【0065】
(b3)前記第21レンズと第22レンズの合成焦点距離をf2a、前記第23レンズと第24レンズの合成焦点距離をf2b、前記第1,第2,第3群の合成焦点距離をf123、望遠端における全系の焦点距離をfTとしたとき
2.5< f3/f4 <9 ‥‥‥(3b)
−0.5<f2a/f2b <1 ‥‥‥(4b)
−0.5< fT/f123<0 ‥‥‥(5b)
なる条件を満足することである。
【0066】
条件式(3b)は第3レンズ群と第4レンズ群の焦点距離の比に関するものであり、絞り以降のコンパクト化を達成しつつバックフォーカスや射出瞳位置を充分長くして良好な光学性能を維持するためのものである。
【0067】
条件式(3b)の下限を越えて第3レンズ群の焦点距離が短くなると変倍に伴うあるいはフォーカシング時の球面収差の変動の補正が困難となる。また充分なバックフォーカスの確保が困難となったり、ズーム中間位置での射出瞳が短くなったり、第4レンズ群の移動量が大きくなりズーミング時やフォーカシングによる収差の変動が大きくなるといった問題も生じる。
【0068】
逆に上限値を越えて第3レンズ群の焦点距離が長くなると第3レンズ群から射出する光束の発散が大きくなり第4レンズ群の有効径が大きくなりレンズが重くなるためスムーズにフォーカシングが出来なくなるなどの問題が生じる。
【0069】
条件式(4b)は第2レンズ群中のレトロ比に関するものである。条件式(4b)の上限値を超えてレトロ比が強くなると、ペッツバール和がアンダーに大きくなり像面の倒れ等の収差補正が困難になる。逆に下限を超えて小さくなると、第2レンズ群の前側主点位置がかなり像面側になり、第1レンズ群との主点間隔を大きくとらなければならないため、第1レンズ群の径が大型化するという問題が生じる。
【0070】
条件式(5b)は第3レンズ群から射出する軸上光束の平行度(アフォーカル度)に関するものである。条件式(5b)の上限値を越えて軸上光束の収斂度が強くなると至近距離物体での非点隔差が大きくなると共にメリディオナル像面が補正不足になってくる。
【0071】
逆に下限値を越えて軸上光束の発散度が強くなると第4レンズ群に入射する入射高が高くなり、球面収差が多く発生してくるという問題が生じる。
【0072】
(b4)尚、以上述べたように条件式(1b)〜(5b)はバックフォーカス(ガラスブロックを除いた最終レンズ面から像面までの距離)を長くし、全ズーム域、全物体距離範囲に渡って良好な光学性能を提供しつつ、半画角で40°以上の超広角域を撮像可能良好な光学性能を満足するための条件ではあるが、更に望ましくは
−4.0<f1 /f2 <−1.0 ‥‥‥(1bb)
−4.0<f2 /Fw <−2.0 ‥‥‥(2bb)
3.0<f3 /f4 < 7.0 ‥‥‥(3bb)
−0.3<f2a/f2b < 0.8 ‥‥‥(4bb)
−0.4<fT /f123<−0.1 ‥‥‥(5bb)
なる条件を満足することである。
【0073】
(b5)全ズーム域、全物体距離範囲に渡って良好な光学性能を提供しつつ、半画角で40°以上の超広角域を撮像可能良好な光学性能を満足するためには、第2レンズ群中の負レンズの屈折率の平均値をna2としたとき
1.75<na2 ‥‥‥(6b)
なる条件を満足することである。
【0074】
条件式(6b)は、変倍のための第2群中の負レンズの材質の構成に関するもので、小型化のため第2群の屈折力を強くして変倍のための移動量を小さくする必要があるが、そうするとそれに伴って負のペッツバール和が増大し像面の平坦性が損なわれる可能性がある。
【0075】
条件式(6b)はこのようなことを考慮して第2群の屈折力を強めたときのペッツバール和の増大を防止して像面特性を良好に保つために第2群中の負レンズの3つの負レンズの材質の屈折力を適切に設定するためのものである。条件式(6b)を外れると変倍にともなう像面湾曲の変動を良好に補正するのが困難になってくる。
【0076】
(b6)このように半画角で40°以上の超広角域を撮像可能良好な光学性能を満足するためのには上記条件式を満足することが望まれるが、更に良好な光学性能を満足するためには
−3.7 <f1/f2<−1.2
−3.8 <f2/Fw<−2.4
3.1 <f3/f4<6.1
−0.28<f2a/f2b<0.7
−0.37<fT/f123<−0.1
1.80<na2
なる条件式を満足することが望ましい。
【0077】
次に図19,図21,図23の数値実施例10〜12のレンズ構成の特徴について説明する。
【0078】
(ウ-1) 数値実施例10〜12は前述の基本構成の基で、第1群は負の屈折力の第11群と正の屈折力の第12群の2つのレンズ群を有し、該第11群は像面側に凹面を向けたメニスカス状の負レンズを少なくとも2つ有し、該第12群は正レンズ、像面側に凹面を向けたメニスカス状の負レンズと正レンズとの接合レンズ、そして正レンズより成り、前述の条件式(1c),(2c)を満足している。
【0079】
(ウ-2) 又、数値実施例10〜12は前述の基本構成の基で、第3群は像面側に凹面を向けたメニスカス状の負の第31レンズ、正の第32レンズと負の第33レンズとの接合レンズ3aより成っており、前述の条件式(3c)を満足している。
【0080】
数値実施例10〜12において、所謂4群のリアフォーカス式のズームレンズで、長いバックフォーカスを確保するためには第1、第2、第3群で構成される略アフォーカル倍率を小さくし、又第4群の焦点距離を長くすることによって可能となる。そのためには第1群の焦点距離を短くしなければならないが、このとき単に第1群の焦点距離を短くする第1群と第2群とが機械的に干渉をおこしてしまうことがある。そこで、本実施形態では前述の如く第1群を構成することによって第1群の主点位置を第2群側に押し出し所望の第1群、第2群の関係を得ている。
【0081】
又、前記第11群は像面側に凹面を向けたメニスカス状の負の第11,第12,第13レンズの3つの負レンズより成り、第12群は正の第14レンズ、像面側に凹面を向けたメニスカス状の負の第15レンズと正の第16レンズとの接合レンズ1a、正の第17レンズより構成している。
【0082】
このレンズ構成の場合、そのレンズ群の主点位置はその群の像面側外に押し出されることになり、第1、第2群の主点間隔を負としても双方が機械的に干渉を起すことはなくなる。従って変倍部でもレトロ型のレンズ系を作り出すことが可能となり、第3群から略アフォーカルで射出する光線束を大きくとることが出来る。そのため、第4群の焦点距離にあまり負担をかけずに全系の焦点距離を短く(広角)にし、且つ長いバックフォーカスを確保することができるようにしている。
【0083】
次に前述の条件式(1c)〜(3c)の技術的意味について説明する。
【0084】
条件式(1c)は交換レンズに対応するための十分なバックフォーカス(ガラスブロックGを除去したときの最終レンズ面から像面までの距離)を得るのに必要な条件であり、上限値を超えてバックフォーカスが長くなると第3レンズ群から第4レンズ群への光束の発散が大きくなり、第4レンズ群を大型化させ、像面補正や合焦のために第4レンズ群を動かすアクチュエーターへの負荷か増大し、同時に第4レンズ群移動時の収差変動も大きくなる。
【0085】
又、下限値を超えて短くなると、色分解プリズム等の光学素子を入れるスペースの確保が困難になる。条件式(2c)は超広角用のズームレンズを達成するための変倍部のパワーを規格するもので、上限値を超えて屈折力が弱くなると前述の変倍部における略アフォーカル倍率を充分高めることができずバックフォーカスを所望の長さ確保することが困難となり、又、下限値を超えて屈折力が強くなりすぎるとペッツバール和が負の方向で増大することにより、広い画角を確保することが困難となる。
【0086】
条件式(3c)も交換レンズに対応するための十分なバックフォーカスえるのに必要な条件である。上限値を超えて第3レンズ群の焦点距離がながくなると、第3レンズ群からの光束が発散し第4レンズが大型化し、収差変動も大きくなるという問題が生じ、下限値を超えて小さくなると十分なバックフォーカスの確保が困難になる。また、軸上の色収差のみならず倍率の色収差をも良好に補正するためには、全系の色消しのバランスをとることが重要であるが、そのためには第3群の正の第32レンズと負の第33レンズとを接合レンズとすることが好ましい。
【0087】
尚、数値実施例10〜12において、即ち構成(ウ-1) 又は(ウ-2) において更に良好なる光学性能を得るには次の諸条件のうちの少なくとも1つを満足させるのが良い。
【0088】
(c1)前記第11群の負レンズに少なくとも1つの非球面を設けたことである。これより広角端近傍で発生する歪曲収差を良好に補正することができる。
【0089】
(c2)前記第11群は像面側に凹面を向けたメニスカス状の負の第11,第12,第13レンズの3つの負レンズより成っており、該第12レンズは非球面を有していることである。
【0090】
これによれば、大口径の1番目に非球面を用いるよりも製造コストを下げることができ、これより像面側のレンズに用いるよも、軸外光束がレンズの端を通るため、歪曲収差に非常に効果的である。
【0091】
(c3)前記第11群と第12群との空気間隔をL、前記第1群,第3群の焦点距離を各々f1,f3、前記第3群は像面側に凹面を向けたメニスカス状の負の第31レンズ、正の第32レンズと負の第33レンズとの接合レンズ3aより成っており、該第31レンズと接合レンズ3aとの空気間隔をdとしたとき
0.2<L/f1<1 ‥‥‥(4c)
0.02<d/f3<0.1‥‥‥(5c)
なる条件を満足することである。
【0092】
条件式(4c)は本発明の第1群の構成において主点を押し出すのに必要な条件であり、下限値を超えると主点の押し出しが不十分となり、所望の第1、第2群の焦点距離関係が保てず、しいては所望のバックフォーカスが得られないか、必要なだけの広い画角が得られなくなる。また、上限値を超えると第1群中の負レンズのパワーが第1群の前面に偏りすぎるため歪曲収差が強く発生し、良好な高画質を得ることが出来なくなり好ましくない。
【0093】
条件式(5c)は第3群においてもその主点位置を少しでも像面側に押し出し第1群から第3群の間で変倍によって生じる像面位置を像面側に寄せることにより第4群との共役位置であるピント面をレンズの像面側に押し出す効果があり、掛かる効果によってバックフォーカスを所望の長さまで伸長可能とするものである。本条件式の下限値を超えて間隔が短くなると全系の焦点距離を短くしつつも所望の長さのバックフォーカスを確保することが困難となり、上限値を超えて間隔が開き過ぎると第2群から発散されてくる光線束が第3群中で大きく発散することとなり、第3群以降のレンズ径が大きくなり好ましくない。
【0094】
(c4)以上述べてきたように設定することで、バックフォーカス空間を保持し、良好な光学性能を提供しつつ、半画角で45°以上の超広角域を撮像可能なリアフォーカス式のズームレンズを達成できるが、さらに性能を良好にするには各条件式を以下のように設定するのが望ましい。
【0095】
6.0<bFw/Fw<8.0 ‥‥‥(1cc)
−3.0<f2/Fw<−2.2 ‥‥‥(2cc)
30. 0<f3/Fw< 50.0 ‥‥(3cc)
0.40<L/f1<0.90 ‥‥(4cc)
0.04<d/f3<0.07 ‥‥(5cc)
(c5)また、負に増大しがちなペッツバール和を良好に保ち像面の平坦化を達成するためには、第1群の3枚の負の第11,第12,第13レンズの材質の屈折率の平均値をNA1、該第2群は像面側に凹面を向けたメニスカス状の負の第21レンズ、負の第22レンズ、正の第23レンズ、そして両レンズ面が凹面の負の第24レンズより成り、第2群の負の第21,第22,第24レンズの材質の屈折率の平均値をNA 2とした時、
1.60 < NA1 ‥‥‥(6c)
1.75 < NA2 < 1.89 ‥‥‥(7c)
を満足することが好ましい。
【0096】
(c6)半画角で45°以上の超広角域を撮像可能良好な光学性能を満足するためのには上記条件式を満足することが望まれるが、更に良好な光学性能を満足するためには、
6.5<bFw/Fw<7.5
−2.9<f2/Fw<−2.5
35.0<f3/Fw< 50.0
0.60<L/f1<0.80
0.045<d/f3<0.065
2.62 < NA1
1.79 < NA2 < 1.89
なる条件式を満足するのが望ましい。
【0097】
(c7)前記第4群は像面側に凸面を向けたメニスカス状の正の第41レンズ、像面側に凹面を向けた負の第42レンズと両レンズ面が凸面の正の第43レンズとの接合レンズ4a、そして両レンズ面が凸面の正の第44レンズより成っていることである。
【0098】
次に本発明の数値実施例を示す。数値実施例においてRiは物体側より順に第i番目のレンズ面の曲率半径、Diは物体側より順に第i番目のレンズ厚及び空気間隔、Niとνiは各々物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。又、数値実施例において最終の5つのレンズ面は光学フィルター、フェースプレート等を示すが、これらは必要に応じて省略し得る。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、B,C,D,Eを各々非球面係数としたとき、
【0099】
【数1】

Figure 0003943704
なる式で表している。又「e−0X」は「×10−X」を意味している。また前述の各条件式と数値実施例における諸数値との関係を表1〜表3に示す。
【0100】
【外1】
Figure 0003943704
【0101】
【外2】
Figure 0003943704
【0102】
【外3】
Figure 0003943704
【0103】
【外4】
Figure 0003943704
【0104】
【外5】
Figure 0003943704
【0105】
【外6】
Figure 0003943704
【0106】
【外7】
Figure 0003943704
【0107】
【外8】
Figure 0003943704
【0108】
【外9】
Figure 0003943704
【0109】
【外10】
Figure 0003943704
【0110】
【外11】
Figure 0003943704
【0111】
【外12】
Figure 0003943704
【0112】
【表1】
Figure 0003943704
【0113】
【表2】
Figure 0003943704
【0114】
【表3】
Figure 0003943704
【0115】
【発明の効果】
本発明によれば以上のように各要素を設定することにより、色分解用プリズムやフィルター等の光学素子やズームレンズ部の保護を目的とした光学素子が入る程度の十分なバックフォーカスを有し、全ズーム域、及び全物体距離範囲に渡って良好な光学性能を有しつつ、半画角で40°以上の超広角域の撮像ができるリアフォーカス式のズームレンズを達成することができる。
【図面の簡単な説明】
【図1】本発明の数値実施例1のレンズ断面図
【図2】本発明の数値実施例1の収差図
【図3】本発明の数値実施例2のレンズ断面図
【図4】本発明の数値実施例2の収差図
【図5】本発明の数値実施例3のレンズ断面図
【図6】本発明の数値実施例3の収差図
【図7】本発明の数値実施例4のレンズ断面図
【図8】本発明の数値実施例4の収差図
【図9】本発明の数値実施例5のレンズ断面図
【図10】本発明の数値実施例5の収差図
【図11】本発明の数値実施例6のレンズ断面図
【図12】本発明の数値実施例6の収差図
【図13】本発明の数値実施例7のレンズ断面図
【図14】本発明の数値実施例7の収差図
【図15】本発明の数値実施例8のレンズ断面図
【図16】本発明の数値実施例8の収差図
【図17】本発明の数値実施例9のレンズ断面図
【図18】本発明の数値実施例9の収差図
【図19】本発明の数値実施例10のレンズ断面図
【図20】本発明の数値実施例10の収差図
【図21】本発明の数値実施例11のレンズ断面図
【図22】本発明の数値実施例11の収差図
【図23】本発明の数値実施例12のレンズ断面図
【図24】本発明の数値実施例12の収差図
【符号の説明】
L1 第1群
L11 第11群
L12 第12群
L2 第2群
L3 第3群
L4 第4群
IP 像面
SP 絞り
d d線
g g線
ΔS サジタル像面
ΔM メリディオナル像面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rear focus type zoom lens, and in particular, while ensuring a long back focus and exit pupil such that a glass block such as a color separation prism or a filter enters between the final lens and the imaging surface (CCD), The present invention relates to a large-diameter rear focus zoom lens having a zoom ratio of about 3 and an F number of about 1.8, which is used for a video camera, a still video camera, a broadcasting camera, and the like that covers an ultra-wide angle range.
[0002]
[Prior art]
Recently, with the reduction in size and weight of home video cameras and the like, remarkable progress has been made in reducing the size of zoom lenses for imaging, especially in reducing the overall lens length, reducing the front lens diameter, and simplifying the lens configuration. Has been poured. As one of means for achieving these objects, a so-called rear focus type zoom lens that performs focusing by moving a lens group other than the first group on the object side is known. In general, a rear focus type zoom lens has an effective diameter of the first lens unit that is smaller than that of a zoom lens that moves the first lens unit to perform focusing, and the entire lens system can be easily downsized. In addition, close-up photography, particularly close-up photography is possible, and the relatively small and light lens group is moved, so that there is an advantage that the lens group has a small driving force and can be quickly focused.
[0003]
As such a rear focus type zoom lens, for example, in Japanese Patent Application Laid-Open No. 63-44614, a positive first lens group, a negative second lens group, and a negative lens group are sequentially arranged from the object side. It consists of four lens groups, a third lens group and a positive fourth lens group. The second lens group is moved to perform zooming, and the third lens group corrects image plane variation accompanying zooming and focusing. A zoom lens is disclosed.
[0004]
In Japanese Patent Laid-Open No. 63-278013, there are four lenses in order from the object side: a positive first lens group, a negative second lens group, a third lens group with weak refractive power, and a positive fourth lens group. There is disclosed a zoom lens that has a lens group, performs zooming by moving the second lens group, corrects image plane variation accompanying zooming with the fourth lens group, and performs focusing.
[0005]
In JP-A-62-206516, JP-A-63-29718, JP-A-62-215225, JP-A-62-24213 and the like, a positive first lens group in order from the object side, It has a negative second lens group, a positive third lens group, and a positive fourth lens group. The second lens group is moved to perform zooming, and the fourth lens group changes the image plane due to zooming. A zoom lens that corrects and performs focusing is disclosed. In Japanese Patent Laid-Open No. 4-43311, Japanese Patent Laid-Open No. 4-153615, Japanese Patent Laid-Open No. 5-19165, Japanese Patent Laid-Open No. 5-27167, Japanese Patent Laid-Open No. 5-60973, etc. An example is disclosed in which a fourth lens group is composed of one convex lens (positive lens) or two convex lenses in a zoom lens composed of two lens groups.
[0006]
Japanese Patent Application Laid-Open No. 5-60974 discloses a zoom lens in which the fourth lens group is composed of two convex / concave lenses in the zoom lens composed of the four lens groups of the type described above.
[0007]
Furthermore, JP-A-55-62419, JP-A-62-24213, JP-A-62-215225, JP-A-56-114920, JP-A-3-200113, JP-A-4-214 In the publications of Japanese Patent No. 242707, Japanese Patent Laid-Open No. 4-343313, Japanese Patent Laid-Open No. 5-297275, etc., in the zoom lens composed of the four lens groups of the type described above, It discloses that each lens group consists of two lenses, a positive lens and a negative lens.
[0008]
Japanese Patent Laid-Open No. 5-72475 discloses a zoom lens composed of four lens groups of the type described above, in which two concave and convex lenses are arranged on the object side of the first lens group, and a wide-angle zoom lens is provided. Have achieved.
[0009]
In addition, video cameras have been improved in image quality with the improvement in performance (digitalization) of video decks. As one of the methods, high image quality is achieved by image separation by a color separation optical system. Suitable zoom lenses are disclosed in, for example, JP-A-5-72474, JP-A-6-51199, and JP-A-6. JP-A-337353, JP-A-6-347697, JP-A-7-199069, JP-A-7-270684, JP-A-7-318804, JP-A-9-281390, JP-A-9-281391. It is proposed in the issue gazette.
[0010]
[Problems to be solved by the invention]
As described above, in general, in a zoom lens, the so-called rear focus method is more suitable than the distance adjustment (focus) by the first lens group in order to achieve a reduction in the front lens diameter and the entire system. .
[0011]
However, in Japanese Patent Laid-Open No. 63-44614 described above, it is necessary to secure a moving space for the third lens unit arranged in front of the stop, and there is a limit to shortening the total lens length and reducing the front lens diameter. .
[0012]
In Japanese Patent Laid-Open No. 63-278013, all the embodiments achieve the third lens group with negative refracting power. Therefore, the fourth lens group becomes large, and the variation in aberration due to focus is large. There was a tendency to become.
[0013]
JP-A-62-206516, JP-A-62-215225, JP-A-62-24213, JP-A-63-29718, JP-A-4-026811, JP-A-4-88309 JP-A-4-242707 and JP-A-4-343313, JP-A-4-43311, JP-A-4-153615, JP-A-5-19165, JP-A-5-27167. Japanese Laid-Open Patent Publication No. 5-60973, Japanese Laid-Open Patent Publication No. 5-60974, Japanese Laid-Open Patent Publication No. 5-297275, etc. can obtain a back focus sufficient to arrange a color separation prism in the lens configuration. It is difficult, and the angle of view at the wide-angle end does not reach the ultra-wide angle range.
[0014]
Further, in the examples disclosed in JP-A-55-62419, JP-A-56-114920, and JP-A-3-2001113, the first lens group or the third lens group is also variable. Accordingly, the lens barrel structure becomes complicated, and it has been difficult to achieve a compact wide-angle zoom lens. Japanese Patent Laid-Open No. 5-72475 is a so-called wide converter type in which two concave and convex lenses are arranged on the object side of the first lens group, and correction of distortion aberration at the wide-angle end, chromatic aberration, etc. are 3 It has stopped at a level that is insufficient to achieve the high image quality that should be aimed at using the color separation prism.
[0015]
JP-A-5-72474, JP-A-6-511199, JP-A-6-337353, JP-A-6-347697, JP-A-7-199069, JP-A-7-270684, In JP-A-7-318804, JP-A-9-281390, JP-A-9-281391, and the like, a back focus assuming a three-color separation prism is ensured, but all of the examples thereof. The super wide angle at which the half angle of view at the wide angle end satisfied 40 ° or more was not obtained.
[0016]
The present invention particularly relates to the prior proposals of the present applicant, such as JP-A-6-511199, JP-A-6-337353, JP-A-7-270684, JP-A-7-318804, JP-A-9-. With respect to the improvement of No. 281390 and JP-A-9-281391, it has a sufficient back focus so that an optical element such as a color separation prism and a filter, and an optical element for the purpose of protecting the zoom lens unit can enter. An object of the present invention is to provide a rear focus type zoom lens that has a good optical performance over the zoom range and the entire object distance range, and can capture an image in a super-wide angle range of 40 ° or more at a half angle of view.
[0017]
[Means for Solving the Problems]
  The rear focus zoom lens of the present invention is
  (1-1) From four lens groups in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power The second group is moved to the image plane side, and the magnification is changed from the wide-angle end to the telephoto end, and a part or the whole of the fourth group is moved by the magnification change or the image plane variation due to the subject distance variation. And a zoom lens in which a glass block is disposed between the fourth lens group and the image plane. The first lens group is a negative lens power of the eleventh lens group and a positive power of the twelfth lens group. Lens groupConsists ofThe eleventh group has at least two meniscus negative lenses having a concave surface facing the image plane side, the twelfth group is a positive lens, a meniscus negative lens having a concave surface facing the image plane side, and a positive lens When the air distance between the eleventh group and the twelfth group is L, and the focal lengths of the first group and the second group are f1 and f2, respectively,
      0.3 <L / f1≦ 0.856        ... (1a)
      1.9 <f1 / | f2 | <4.3 (2a)
It satisfies the following conditional expression.
[0018]
  (1-2) From the four lens groups in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power The second group is moved to the image plane side, and the magnification is changed from the wide-angle end to the telephoto end, and a part or the whole of the fourth group is moved by the magnification change or the image plane variation due to the subject distance variation. A zoom lens in which a glass block is disposed between the fourth group and the image plane,The first group is composed of two lens groups, an eleventh group having a negative refractive power and a twelfth group having a positive refractive power. The eleventh group is a meniscus negative lens having a concave surface facing the image surface side. The twelfth group includes a positive lens, a cemented lens of a meniscus negative lens with a concave surface facing the image surface side and a positive lens, and a positive lens, and the focal length of the second group is f2, when the focal length of the entire system at the wide-angle end is Fw, and the back focus when focusing on an object at infinity at the wide-angle end is bFw
5 <bFw / Fw <9 (1C)
-4 <f2 / Fw <-2 (2C)
It is characterized by satisfying the following conditions.
[0019]
  In addition, the rear focus zoom lens of the present invention is
(1-3) The third group includes a meniscus negative 31st lens having a concave surface directed toward the image surface side, and a cemented lens 3a formed of a positive 32nd lens and a negative 33rd lens. And the cemented lens 3a, the air gap is d, and the focal length of the third group is f3,
0.06 <d / f3 <0.25 (3a)
It satisfies the following conditional expression.
[0020]
  (1-4) The second lens unit has a meniscus negative 21st lens having a concave surface facing the image surface side, a negative 22nd lens, a positive 23rd lens, and a negative 24th lens having both concave surfaces. When the focal length at the wide-angle end is Fw and the focal length of the second group is f2,
1.7 <| f2 | / Fw <3.6 (4a)
The following conditional expression is satisfied.
[0021]
  (1-5) The second group includes four lenses, a negative lens, a negative lens, a negative lens, and a positive lens. When the focal length of the i-th group is fi and the focal length of the entire system at the wide angle end is Fw.
−5.0 <f1 / f2 <−0.5 (1b)
−5.0 <f2 / Fw <−1.0 (2b)
The following conditional expression is satisfied.
[0022]
  (1-6) When the focal length of the third lens unit is f3 and the focal length of the entire system at the wide angle end is Fw
30 <f3 / Fw <60 (3c)
Is satisfied.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
1, 3, 5, 7, 9, 11, 13, 15, 17, 17, 19, 21, and 23 are numerical examples 1 of the rear focus type zoom lens according to the present invention. , 12, 12, 12, 14, 16, 18, 20, 22, and 24 are the rear focus type of the present invention. FIG. 6 is various aberration diagrams of Numerical Examples 1 to 12 of the zoom lens. In the aberration diagrams, (A) shows the wide-angle end, and (B) shows the telephoto end.
[0024]
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. SP is an aperture stop, which is arranged in or near the third lens unit L3. G is a glass block such as a color separation system, a face plate, or a filter (quartz filter, infrared filter). IP is the image plane.
[0025]
In this embodiment, at the time of zooming from the wide-angle end to the telephoto end, the second group is moved to the image plane side as indicated by an arrow, and the image plane variation caused by zooming is caused by a convex locus on the fourth group toward the object side. It is corrected by moving it.
[0026]
Further, a rear focus type is employed in which the fourth group is moved on the optical axis to perform focusing. The solid curve 4a and the dotted curve 4b of the fourth group shown in the figure show the image plane fluctuations accompanying the zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement trajectory for correction is shown. The first group and the third group are fixed during zooming and focusing, but may be moved as necessary.
[0027]
In the present embodiment, the fourth group is moved to correct the image plane variation accompanying zooming, and the fourth group is moved to perform focusing. In particular, as shown by the curves 4a and 4b in the figure, the zoom lens is moved so as to have a convex locus toward the object side upon zooming from the wide-angle end to the telephoto end. As a result, the space between the third group and the fourth group is effectively used, and the overall length of the lens is effectively shortened.
[0028]
In the present embodiment, for example, when focusing from an infinitely distant object to a close object at the telephoto end, the fourth group is moved forward as indicated by a straight line 4c in the figure.
[0029]
The zoom lens according to the present embodiment employs a zoom system in which a virtual image formed by the combined system of the first group and the second group is formed on the photosensitive surface by the third group and the fourth group. In the present embodiment, compared with a conventional so-called four-group zoom lens in which the first group is extended to perform focusing, the rear focus method as described above is employed, thereby preventing performance degradation due to the eccentric error of the first group. This effectively prevents an increase in effective lens diameter of one group.
[0030]
By disposing the aperture stop in or near the third group, aberration fluctuation due to the movable lens group is reduced, and the distance between the lens groups in front of the aperture stop is shortened, so that the front lens diameter can be easily reduced. Have achieved.
[0031]
The rear focus type zoom lens shown in Numerical Examples 1 to 12 has the above lens configuration as a basic configuration.
[0032]
(A) Next, the features of the lens configurations of Numerical Examples 1 to 4 in FIGS. 1, 3, 5, and 7 will be described.
[0033]
(A-1) In Numerical Examples 1 to 4, the first group has two lens groups of an eleventh group having a negative refractive power and a twelfth group having a positive refractive power based on the basic configuration described above. The eleventh group has at least two meniscus negative lenses having a concave surface facing the image surface side, the twelfth group is a positive lens, and a meniscus negative lens and a positive lens having a concave surface facing the image surface side. The above conditional expressions (1a) and (2a) are satisfied.
[0034]
(A-2) Further, in Numerical Examples 1 to 4, the third group has a meniscus negative 31st lens and a positive 32nd lens with the concave surface facing the image plane side, based on the basic configuration described above. And a negative 33rd lens, which satisfies the above-mentioned conditional expression (3a).
[0035]
(A-3) In Numerical Examples 1 to 4, the second group has a meniscus negative 21st lens and a negative 22nd lens with a concave surface facing the image surface side based on the basic configuration described above. The positive 23rd lens and the negative 24th lens whose both lens surfaces are concave surfaces satisfy the above-mentioned conditional expression (4a).
[0036]
In Numerical Examples 1 to 4, the so-called four groups of rear focus zoom lenses have a substantially afocal magnification configured to reduce the afocal magnification formed by the first, second, and third groups in order to ensure a long back focus. This can be achieved by increasing the focal length of the fourth group. For this purpose, the focal length of the first group must be shortened. At this time, the first group and the second group that simply shorten the focal length of the first group may cause mechanical interference. Therefore, in the present embodiment, by configuring the first group as described above, the principal point position of the first group is pushed to the second group side to obtain a desired relationship between the first group and the second group.
[0037]
Specifically, the eleventh group consists of three negative lenses of meniscus negative eleventh, twelfth and thirteenth lenses with the concave surface facing the image surface side, and the twelfth group is a positive fourteenth lens. , A cemented lens la of a meniscus negative 15th lens and a positive 16th lens with a concave surface facing the image surface side, and a positive 17th lens.
[0038]
In the case of this lens configuration, the principal point position of the lens group is pushed out of the image plane side of the lens group, and both cause mechanical interference even if the distance between the principal points of the first and second groups is negative. There will be nothing. Accordingly, it is possible to create a retro-type lens system even in the zooming portion, and it is possible to obtain a large light bundle emitted from the third group approximately afocally. For this reason, the focal length of the entire system is shortened (wide angle) and a long back focus can be secured without imposing much burden on the focal length of the fourth group.
[0039]
In addition, you may comprise the cemented lens 1a from a single positive lens (all the following numerical examples 5-12 are the same). In one embodiment (A-1), conditional expressions (1a) and (2a) are satisfied, and in another embodiment (A-2), conditional expression (3a) is satisfied. Conditional expression (4a) is satisfied as a-3).
[0040]
Next, the technical meaning of the conditional expressions (1a), (2a), (3a), and (4a) will be described.
[0041]
Conditional expression (1a) is a condition necessary for pushing out the principal point in the lens configuration of the first group. When the lower limit is exceeded, the pushing of the principal point becomes insufficient, and the desired focal lengths of the first and second groups. The relationship cannot be maintained, so that a desired back focus cannot be obtained or a wide angle of view as necessary cannot be obtained. On the other hand, if the upper limit value is exceeded, the power of the negative lens in the first group is too biased toward the front surface of the first group, so that distortion is strongly generated and a good image quality cannot be obtained.
[0042]
Conditional expression (2a) shows the relationship between the required focal length ratios of the first group and the second group under such conditions. If the lower limit is exceeded, the refractive power of the first group becomes too strong. The refractive power of the negative lens disposed on the object side also increases accordingly, and negative distortion is strongly generated and correction is difficult. If the upper limit is exceeded, the necessary afocal magnification cannot be obtained, and the focal length of the entire system, which is the object of the present invention, can be shortened and a long back focus cannot be secured.
[0043]
In addition, the numerical range of conditional expression (2a)
2.4 <f1 / | f2 | <3.5 (2aa)
If this conditional expression is satisfied, aberration correction can be performed more satisfactorily.
[0044]
Conditional expression (3a) is obtained by pushing the position of the principal point in the third group as much as possible to the image plane side, and bringing the image plane position generated by zooming between the first group and the third group toward the image plane side. This has the effect of pushing the focal plane, which is a conjugate position with the fourth group, toward the image plane side of the lens, and the back focus can be extended to a desired length by the applied effect.
[0045]
If the interval becomes shorter than the lower limit value of the conditional expression (3a), it becomes difficult to secure a desired length of back focus while shortening the focal length of the entire system. The light flux diverging from the second group is greatly diverged in the third group, and the lens diameters after the third group are increased, which is not preferable. Also, the numerical range of conditional expression (3a) is
0.07 <d / f3 <0.17 (3aa)
Then, aberration correction can be performed more satisfactorily.
[0046]
Conditional expression (4a) standardizes the power of the zooming unit for achieving a zoom lens for an ultra-wide angle. When the refractive power is weakened beyond the upper limit, the afocal magnification in the zooming unit described above is obtained. It is difficult to ensure the desired length of back focus because it cannot be sufficiently increased, and if the refractive power becomes too strong beyond the lower limit, the Petzval sum will increase negatively to ensure a wide angle of view. It becomes difficult. In addition, the numerical range of conditional expression (4a)
1.7 <| f2 | / Fw <3.0 (4aa)
Then, aberration correction can be performed more satisfactorily.
[0047]
In Numerical Examples 1 to 4, that is, in order to obtain a better optical performance in the configuration (A-1), (A-2), or (A-3), at least one of the following conditions is satisfied. It is good to let it.
[0048]
(A1) In order to maintain the Petzval sum that tends to increase negatively and achieve flattening of the image plane, the refractive index of the material of the three negative eleventh, twelfth and thirteenth lenses in the first group When the average value of NA is NA1, and the average value of the refractive index of the negative 21st, 22nd, and 24th lenses of the second group is NA2,
1.60 <NA1 (5a)
1.80 <NA2 <1.89 (6a)
Is preferably satisfied.
[0049]
(A2) In order to secure a long exit pupil, a stop is disposed between the negative 31st lens and the positive 32nd lens in the third lens group. The exit pupil position requirements depend on the configuration of the color separation prism. Since it changes, you may arrange | position an aperture stop before and behind the 3rd group.
[0050]
(A3) The eleventh group is composed of three negative meniscus lenses of the eleventh, twelfth, and thirteenth, with the concave surface facing the image surface, and the twelfth group is a positive fourteenth lens and image plane A cemented lens 1a of a meniscus negative fifteenth lens and a positive sixteenth lens having a concave surface directed to the side, and a positive seventeenth lens, the second group having a meniscus shape having a concave surface directed to the image surface side A negative 21st lens, a negative 22nd lens, a positive 23rd lens, and a negative 24th lens whose both lens surfaces are concave, the third group is a meniscus negative negative with the concave surface facing the image surface side. And a cemented lens 3a of a positive thirty-second lens and a negative thirty-third lens.
[0051]
(A4) The fourth group is a meniscus positive 41st lens with a convex surface facing the image surface side, a negative 42nd lens with a concave surface facing the image surface side, and a positive 43rd lens with convex surfaces on both lens surfaces And a cemented lens 4a and a positive 44th lens whose both lens surfaces are convex.
It is.
[0052]
Next, features of the lens configurations of Numerical Examples 5 to 9 in FIGS. 9, 11, 13, 15, and 17 will be described.
[0053]
(A-1) Numerical Examples 5 to 9 are based on the basic configuration described above, and the first group has two lens groups of an eleventh group having a negative refractive power and a twelfth group having a positive refractive power. The eleventh group has at least two meniscus negative lenses having a concave surface facing the image plane side, and the twelfth group is a positive lens, a positive lens or a cemented lens of a negative lens and a positive lens, and a positive lens. The second group includes four lenses, a negative lens, a negative lens, a negative lens, and a positive lens, and satisfies the conditional expressions (1b) and (2b) described above.
[0054]
Specifically, in Numerical Examples 5, 6, and 7 of FIGS. 9, 11, and 13, the eleventh group is composed of negative eleventh, twelfth, and thirteenth lenses having a meniscus shape with a concave surface facing the image surface side. Consists of three negative lenses, the twelfth group is a positive fourteenth lens, a cemented lens la of a meniscus negative fifteenth lens and a positive sixteenth lens with a concave surface facing the image plane side, and a positive seventeenth lens Is made up of.
[0055]
Further, in Numerical Examples 8 and 9 of FIGS. 15 and 17, the eleventh group is composed of meniscus negative eleventh and twelfth lenses with the concave surface facing the image surface side, and the twelfth group is a positive first lens. 14 lenses, a cemented lens 1a composed of a meniscus negative fifteenth lens having a concave surface facing the image surface side and a positive sixteenth lens, and a positive seventeenth lens.
[0056]
In Numerical Examples 5, 6, 8, and 9, a meniscus negative 21st lens having a concave surface facing the second group toward the image surface side, a negative 22nd lens, a negative 23rd lens having concave both lens surfaces, Both lens surfaces are composed of a positive 24th lens having a convex surface.
[0057]
In Numerical Example 7, the meniscus negative 21st lens with the second lens unit facing the image side and the negative 21st lens, the negative 22nd lens, the negative 23rd lens with both lens surfaces concave, and both lens surfaces Is composed of a positive 24th lens having a convex surface, of which the 23rd lens and the 24th lens are composed of a cemented lens 2a.
[0058]
In Numerical Examples 5 to 9, all spherical lenses are used. However, by specifying a lens having an aspherical surface, it is possible to further improve the performance and brighten Fno. In particular, it is possible to reduce the number of lenses by using a lens having an aspheric surface in the third lens group, and at the same time, it is possible to effectively correct spherical aberration and the like. Further, coma and the like can be effectively corrected by using a lens having an aspheric surface in the fourth lens group.
[0059]
By setting as described above, a sufficient back focus space is provided for receiving an optical element such as a color separation prism and an optical element for the purpose of protecting the zoom lens unit, and it covers the entire zoom range and the entire object distance range. While providing good optical performance, a rear focus type zoom lens capable of imaging a super wide-angle region of 40 ° or more at a half angle of view is obtained.
[0060]
Next, the technical meaning of the conditional expressions (1b) and (2b) will be described.
[0061]
Conditional expression (1b) relates to the other focal lengths of the first lens group and the second lens group, and is for maintaining good optical performance with a long back focus while achieving compactness. When the lower limit of conditional expression (1b) is exceeded, the focal length of the second lens group becomes longer, and when the focal length of the first lens group becomes shorter, the movement amount of the second lens group increases, and the total lens length and front lens diameter are reduced. It becomes difficult to downsize. In addition, there is a problem that the amount of movement of the fourth lens unit in the vicinity of the telephoto end becomes large and the variation in aberration during zooming becomes large. On the other hand, when the upper limit is exceeded, it is difficult to satisfactorily correct various aberrations such as distortion.
[0062]
Conditional expression (2b) relates to the focal length of the second lens group. If the upper limit of conditional expression (2b) is exceeded and the focal length of the second lens group is shortened, the Petzval sum increases in the under direction, making it difficult to correct aberrations such as image plane tilt. On the other hand, if the focal length of the second lens group is increased beyond the lower limit, the amount of movement of the second lens group increases and the front lens diameter becomes too large.
In Numerical Examples 5 to 9, that is, in order to obtain a further excellent optical performance in (A-1), it is preferable to satisfy at least one of the following conditions.
[0063]
(B1) The third group includes a meniscus negative 31st lens having a concave surface directed toward the image surface side, and a cemented lens 3a composed of a positive 32nd lens and a negative 33rd lens.
[0064]
(B2) The fourth lens group is a meniscus positive 41st lens with a convex surface facing the image surface, a negative 42nd lens with a concave surface facing the image surface, and a positive 43rd lens with both lens surfaces convex. And a cemented lens 4a, and both lens surfaces are composed of a convex positive 44th lens.
[0065]
(B3) The combined focal length of the 21st lens and the 22nd lens is f2a, the combined focal length of the 23rd lens and the 24th lens is f2b, and the combined focal length of the first, second, and third lenses is f123, When the focal length of the entire system at the telephoto end is fT
2.5 <f3 / f4 <9 (3b)
-0.5 <f2a / f2b <1 (4b)
-0.5 <fT / f123 <0 (5b)
To satisfy the following conditions.
[0066]
Conditional expression (3b) relates to the ratio of the focal lengths of the third lens group and the fourth lens group, and achieves good optical performance by sufficiently lengthening the back focus and exit pupil position while achieving compactness after the stop. It is for maintaining.
[0067]
When the focal length of the third lens unit is shortened beyond the lower limit of conditional expression (3b), it becomes difficult to correct spherical aberration fluctuations during zooming or focusing. In addition, it is difficult to ensure sufficient back focus, the exit pupil at the intermediate position of the zoom is shortened, the amount of movement of the fourth lens unit is increased, and fluctuations in aberration due to zooming and focusing are increased. .
[0068]
On the other hand, if the focal length of the third lens group is increased beyond the upper limit value, the divergence of the light beam emitted from the third lens group becomes larger, the effective diameter of the fourth lens group becomes larger, and the lens becomes heavier, so that smooth focusing is possible. Problems such as disappearance occur.
[0069]
Conditional expression (4b) relates to the retro ratio in the second lens group. When the retro ratio is increased beyond the upper limit value of conditional expression (4b), the Petzval sum becomes larger and the correction of aberrations such as image plane tilt becomes difficult. On the other hand, if the value becomes smaller than the lower limit, the front principal point position of the second lens group becomes considerably on the image plane side, and the principal point distance from the first lens group must be increased. The problem of increasing the size arises.
[0070]
Conditional expression (5b) relates to the parallelism (afocal degree) of the axial light beam emitted from the third lens group. When the upper limit of conditional expression (5b) is exceeded and the convergence of the axial light beam becomes strong, the astigmatic difference at the close object increases and the meridional image plane becomes insufficiently corrected.
[0071]
On the contrary, when the divergence of the axial light beam is increased beyond the lower limit, the incident height incident on the fourth lens group increases, and a problem arises that a lot of spherical aberration occurs.
[0072]
(B4) As described above, the conditional expressions (1b) to (5b) increase the back focus (distance from the final lens surface excluding the glass block to the image plane), the entire zoom range, the total object distance range. It is a condition for satisfying the satisfactory optical performance, which is capable of imaging a super wide angle region of 40 ° or more at a half angle of view while providing good optical performance.
-4.0 <f1 / f2 <-1.0 (1bb)
-4.0 <f2 / Fw <-2.0 (2bb)
3.0 <f3 / f4 <7.0 (3bb)
-0.3 <f2a / f2b <0.8 (4bb)
−0.4 <fT / f123 <−0.1 (5bb)
To satisfy the following conditions.
[0073]
(B5) While providing good optical performance over the entire zoom range and the entire object distance range, it is possible to image an ultra-wide angle range of 40 ° or more at a half angle of view. When the average value of the refractive index of the negative lens in the lens group is na2.
1.75 <na2 (6b)
To satisfy the following conditions.
[0074]
Conditional expression (6b) relates to the construction of the material of the negative lens in the second group for zooming. For miniaturization, the refractive power of the second group is increased to reduce the moving amount for zooming. However, there is a possibility that the negative Petzval sum increases accordingly, and the flatness of the image plane may be impaired.
[0075]
Conditional expression (6b) takes this into consideration, in order to prevent the Petzval sum from increasing when the refractive power of the second group is increased, and to maintain good image plane characteristics, so that the negative lens in the second group This is for appropriately setting the refractive power of the materials of the three negative lenses. If the conditional expression (6b) is not satisfied, it will be difficult to satisfactorily correct the variation in field curvature due to zooming.
[0076]
(B6) In this way, it is possible to image a super wide angle region of 40 ° or more at a half angle of view. In order to satisfy good optical performance, it is desirable that the above conditional expression is satisfied, but further satisfactory optical performance is satisfied. To do
−3.7 <f1 / f2 <−1.2
−3.8 <f2 / Fw <−2.4
3.1 <f3 / f4 <6.1
−0.28 <f2a / f2b <0.7
−0.37 <fT / f123 <−0.1
1.80 <na2
It is desirable to satisfy the following conditional expression.
[0077]
Next, features of the lens configurations of Numerical Examples 10 to 12 in FIGS. 19, 21, and 23 will be described.
[0078]
(C-1) Numerical Examples 10 to 12 are based on the basic configuration described above, and the first group has two lens groups, an eleventh group having a negative refractive power and a twelfth group having a positive refractive power, The eleventh group has at least two meniscus negative lenses having a concave surface facing the image plane side, the twelfth group is a positive lens, a meniscus negative lens having a concave surface facing the image plane side, and a positive lens The above-described conditional expressions (1c) and (2c) are satisfied.
[0079]
(C-2) Numerical Examples 10 to 12 are based on the basic configuration described above, and the third group is a negative meniscus 31st lens having a concave surface facing the image surface side, a positive 32nd lens and a negative 32nd lens. This is a cemented lens 3a with the 33rd lens, and satisfies the above-mentioned conditional expression (3c).
[0080]
In Numerical Examples 10 to 12, a so-called four-group rear focus type zoom lens is used to reduce the afocal magnification substantially composed of the first, second, and third groups in order to ensure a long back focus. This can be achieved by increasing the focal length of the fourth group. For this purpose, the focal length of the first group must be shortened. At this time, the first group and the second group that simply shorten the focal length of the first group may cause mechanical interference. Therefore, in the present embodiment, by configuring the first group as described above, the principal point position of the first group is pushed to the second group side to obtain a desired relationship between the first group and the second group.
[0081]
The eleventh group includes three negative lenses of meniscus negative eleventh, twelfth, and thirteenth lenses having a concave surface facing the image surface side, and the twelfth group includes a positive fourteenth lens and an image surface side. The lens is composed of a cemented lens 1a composed of a meniscus negative fifteenth lens and a positive sixteenth lens with a concave surface facing the positive, and a positive seventeenth lens.
[0082]
In the case of this lens configuration, the principal point position of the lens group is pushed out of the image plane side of the lens group, and both cause mechanical interference even if the distance between the principal points of the first and second groups is negative. There will be nothing. Accordingly, it is possible to create a retro-type lens system even in the zooming portion, and it is possible to obtain a large light bundle emitted from the third group approximately afocally. For this reason, the focal length of the entire system is shortened (wide angle) and a long back focus can be secured without imposing much burden on the focal length of the fourth group.
[0083]
Next, the technical meaning of the conditional expressions (1c) to (3c) will be described.
[0084]
Conditional expression (1c) is a condition necessary for obtaining a sufficient back focus (distance from the final lens surface to the image plane when the glass block G is removed) to cope with the interchangeable lens, and exceeds the upper limit value. As the back focus becomes longer, the divergence of the light flux from the third lens group to the fourth lens group becomes larger, the size of the fourth lens group increases, and the actuator moves the fourth lens group for image plane correction and focusing. At the same time, the aberration variation during the movement of the fourth lens unit also increases.
[0085]
On the other hand, if the length is shorter than the lower limit, it is difficult to secure a space for inserting an optical element such as a color separation prism. Conditional expression (2c) specifies the power of the zoom unit for achieving a zoom lens for an ultra-wide angle. When the refractive power is weakened beyond the upper limit, the afocal magnification at the zoom unit is sufficient. It is difficult to secure the desired back focus length, and if the refractive power becomes too strong beyond the lower limit, the Petzval sum increases in the negative direction, ensuring a wide angle of view. Difficult to do.
[0086]
Conditional expression (3c) is also a necessary condition for achieving sufficient back focus to accommodate the interchangeable lens. When the focal length of the third lens group becomes short beyond the upper limit value, there arises a problem that the light flux from the third lens group diverges, the fourth lens becomes large, and aberration fluctuations increase, and when the lower limit value is exceeded, the fourth lens group becomes large. Ensuring sufficient back focus is difficult. In order to satisfactorily correct not only axial chromatic aberration but also lateral chromatic aberration, it is important to balance the achromaticity of the entire system. For this purpose, a positive third lens of the third group is used. The negative 33rd lens is preferably a cemented lens.
[0087]
In Numerical Examples 10 to 12, that is, in order to obtain better optical performance in the configuration (C-1) or (C-2), it is preferable to satisfy at least one of the following conditions.
[0088]
(C1) The negative lens of the eleventh group is provided with at least one aspherical surface. As a result, it is possible to satisfactorily correct distortion occurring in the vicinity of the wide-angle end.
[0089]
(C2) The eleventh group includes three negative lenses of meniscus negative eleventh, twelfth and thirteenth lenses with the concave surface facing the image surface, and the twelfth lens has an aspherical surface. It is that.
[0090]
According to this, the manufacturing cost can be reduced as compared with the case where the first aspherical surface having the large aperture is used, and since the off-axis light beam passes through the end of the lens as compared with the case of using the lens on the image plane side, the distortion aberration. It is very effective.
[0091]
(C3) The air gap between the eleventh group and the twelfth group is L, the focal lengths of the first group and the third group are f1 and f3, respectively, and the third group has a meniscus shape with the concave surface facing the image surface side. The negative 31st lens, and the cemented lens 3a of the positive 32nd lens and the negative 33rd lens, and when the air distance between the 31st lens and the cemented lens 3a is d
0.2 <L / f1 <1 (4c)
0.02 <d / f3 <0.1 (5c)
To satisfy the following conditions.
[0092]
Conditional expression (4c) is a condition necessary for extruding the principal point in the configuration of the first group of the present invention. When the lower limit is exceeded, the principal point is not sufficiently extruded. The focal length relationship cannot be maintained, so that a desired back focus cannot be obtained or a wide angle of view as necessary cannot be obtained. On the other hand, if the upper limit value is exceeded, the power of the negative lens in the first group is too biased toward the front surface of the first group, so that distortion is strongly generated and a good image quality cannot be obtained.
[0093]
Conditional expression (5c) indicates that the principal point position in the third group is pushed slightly toward the image plane side, and the image plane position generated by zooming between the first group and the third group is brought closer to the image plane side. This has the effect of pushing the focus surface, which is a conjugate position with the group, toward the image plane side of the lens, and the back focus can be extended to a desired length by the applied effect. If the interval becomes shorter than the lower limit value of this conditional expression, it becomes difficult to secure a desired length of back focus while shortening the focal length of the entire system. The light flux diverging from the group is greatly diverged in the third group, and the lens diameter after the third group becomes large, which is not preferable.
[0094]
(C4) By setting as described above, a rear focus type zoom that can capture a super wide angle region of 45 ° or more at a half angle of view while maintaining a back focus space and providing good optical performance. Although a lens can be achieved, it is desirable to set each conditional expression as follows in order to further improve the performance.
[0095]
6.0 <bFw / Fw <8.0 (1cc)
-3.0 <f2 / Fw <-2.2 (2cc)
30.0 <f3 / Fw <50.0 (3cc)
0.40 <L / f1 <0.90 (4cc)
0.04 <d / f3 <0.07 (5cc)
(C5) Further, in order to maintain the Petzval sum that tends to increase negatively and achieve flattening of the image surface, the material of the three negative eleventh, twelfth, and thirteenth lenses in the first group is used. The average value of the refractive index is NA1, and the second lens unit is a negative meniscus 21st lens having a concave surface facing the image surface side, a negative 22nd lens, a positive 23rd lens, and a negative surface in which both lens surfaces are concave. When the average value of the refractive index of the material of the negative 21st, 22nd, and 24th lenses in the second group is NA 2,
1.60 <NA1 (6c)
1.75 <NA2 <1.89 (7c)
Is preferably satisfied.
[0096]
(C6) Capturing an ultra-wide-angle region of 45 ° or more at a half angle of view In order to satisfy good optical performance, it is desirable to satisfy the above conditional expression, but in order to satisfy even better optical performance. Is
6.5 <bFw / Fw <7.5
-2.9 <f2 / Fw <-2.5
35.0 <f3 / Fw <50.0
0.60 <L / f1 <0.80
0.045 <d / f3 <0.065
2.62 <NA1
1.79 <NA2 <1.89
It is desirable to satisfy the following conditional expression.
[0097]
(C7) The fourth group has a meniscus positive forty-first lens with a convex surface facing the image surface, a negative forty-second lens with a concave surface facing the image surface, and a positive forty-third lens with convex surfaces. And a cemented lens 4a, and both lens surfaces are composed of a convex positive 44th lens.
[0098]
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing in order from the object side, and Ni and νi are the i-th lens in order from the object side. The refractive index and Abbe number of the glass. In the numerical examples, the last five lens surfaces indicate an optical filter, a face plate, etc., but these may be omitted if necessary. The aspheric shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and B, C, D, and E are the aspheric coefficients, respectively. ,
[0099]
[Expression 1]
Figure 0003943704
It is expressed by the following formula. “E-0X” is “× 10-X"Means. Tables 1 to 3 show the relationship between the above-described conditional expressions and numerical values in the numerical examples.
[0100]
[Outside 1]
Figure 0003943704
[0101]
[Outside 2]
Figure 0003943704
[0102]
[Outside 3]
Figure 0003943704
[0103]
[Outside 4]
Figure 0003943704
[0104]
[Outside 5]
Figure 0003943704
[0105]
[Outside 6]
Figure 0003943704
[0106]
[Outside 7]
Figure 0003943704
[0107]
[Outside 8]
Figure 0003943704
[0108]
[Outside 9]
Figure 0003943704
[0109]
[Outside 10]
Figure 0003943704
[0110]
[Outside 11]
Figure 0003943704
[0111]
[Outside 12]
Figure 0003943704
[0112]
[Table 1]
Figure 0003943704
[0113]
[Table 2]
Figure 0003943704
[0114]
[Table 3]
Figure 0003943704
[0115]
【The invention's effect】
According to the present invention, by setting each element as described above, the optical element such as a color separation prism and a filter, and a back focus sufficient to include an optical element for the purpose of protecting the zoom lens unit are provided. In addition, it is possible to achieve a rear focus type zoom lens capable of imaging in a super wide angle range of 40 ° or more at a half angle of view while having good optical performance over the entire zoom range and the entire object distance range.
[Brief description of the drawings]
FIG. 1 is a sectional view of a lens according to Numerical Example 1 of the present invention.
FIG. 2 is an aberration diagram of Numerical Example 1 of the present invention.
FIG. 3 is a sectional view of a lens according to Numerical Example 2 of the present invention.
FIG. 4 is an aberration diagram of Numerical Example 2 of the present invention.
FIG. 5 is a sectional view of a lens according to Numerical Example 3 of the present invention.
FIG. 6 is an aberration diagram of Numerical Example 3 of the present invention.
FIG. 7 is a sectional view of a lens according to Numerical Example 4 of the present invention.
FIG. 8 is an aberration diagram of Numerical Example 4 of the present invention.
FIG. 9 is a lens cross-sectional view of Numerical Example 5 of the present invention.
FIG. 10 is an aberration diagram of Numerical Example 5 of the present invention.
FIG. 11 is a lens cross-sectional view of Numerical Example 6 according to the present invention.
FIG. 12 is an aberration diagram of Numerical Example 6 according to the present invention.
FIG. 13 is a lens cross-sectional view of Numerical Example 7 according to the present invention.
FIG. 14 is an aberration diagram of Numerical Example 7 of the present invention.
FIG. 15 is a lens cross-sectional view of Numerical Example 8 according to the present invention.
FIG. 16 is an aberration diagram of Numerical Example 8 according to the present invention.
FIG. 17 is a lens cross-sectional view of Numerical Example 9 according to the present invention.
FIG. 18 is an aberration diagram of Numerical Example 9 according to the present invention.
FIG. 19 is a sectional view of a lens according to Numerical Example 10 of the present invention.
FIG. 20 is an aberration diagram of Numerical Example 10 according to the present invention.
FIG. 21 is a lens cross-sectional view of Numerical Example 11 according to the present invention.
FIG. 22 is an aberration diagram of Numerical Example 11 according to the present invention.
FIG. 23 is a lens cross-sectional view of Numerical Example 12 according to the present invention.
FIG. 24 is an aberration diagram of Numerical Example 12 according to the present invention.
[Explanation of symbols]
L1 first group
L11 11th group
L12 12th group
L2 second group
L3 3rd group
L4 4th group
IP image plane
SP Aperture
d d line
g g line
ΔS Sagittal image plane
ΔM Meridional image plane

Claims (4)

物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、正の屈折力の第4群の4つのレンズ群からなり、該第2群を像面側へ移動させて広角端から望遠端への変倍を行い、変倍または被写体の距離変動に伴う像面変動を該第4群の一部または全体を移動させて補正し、該第4群と像面との間にガラスブロックを配置するズームレンズであって、第1群は負の屈折力の第11群と正の屈折力の第12群の2つのレンズ群から構成されており、該第11群は像面側に凹面を向けたメニスカス状の負レンズを少なくとも2つ有し、該第12群は正レンズ、像面側に凹面を向けたメニスカス状の負レンズと正レンズとの接合レンズ、そして正レンズより成り、該第11群と第12群との空気間隔をL、第1群と第2群の焦点距離を各々f1,f2とするとき、
0.3<L/f1≦0.856
1.9<f1/|f2|<4.3
なる条件式を満足することを特徴とするリアフォーカス式のズームレンズ。
In order from the object side, there are four lens groups including a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. Move the group to the image plane side to perform zooming from the wide-angle end to the telephoto end, and correct the image plane variation caused by zooming or subject distance variation by moving part or all of the fourth group, A zoom lens in which a glass block is disposed between the fourth group and the image plane, and the first group is composed of two lens groups, an eleventh group having a negative refractive power and a twelfth group having a positive refractive power. The eleventh group has at least two meniscus negative lenses having a concave surface facing the image surface side, the twelfth group is a positive lens, and a meniscus negative lens having a concave surface facing the image surface side. A positive lens and a positive lens, the air distance between the eleventh group and the twelfth group is L, and the focal points of the first group and the second group When the release with each f1, f2,
0.3 <L / f1 ≦ 0.856
1.9 <f1 / | f2 | <4.3
A rear focus zoom lens characterized by satisfying the following conditional expression:
前記第11群は像面側に凹面を向けたメニスカス状の負の第11,第12,第13レンズの3つの負レンズより成っていることを特徴とする請求項1のリアフォーカス式のズームレンズ。2. The rear focus type zoom according to claim 1, wherein the eleventh group is composed of three negative lenses of meniscus negative eleventh, twelfth and thirteenth lenses with the concave surface facing the image surface side. lens. 物体側より順に正の屈折力の第1群、負の屈折力の第2群、正の屈折力の第3群、正の屈折力の第4群の4つのレンズ群からなり、該第2群を像面側へ移動させて広角端から望遠端への変倍を行い、変倍または被写体の距離変動に伴う像面変動を該第4群の一部または全体を移動させて補正し、該第4群と像面との間にガラスブロックを配置するズームレンズであって、第1群は負の屈折力の第11群と正の屈折力の第12群の2つのレンズ群から構成されており、該第11群は像面側に凹面を向けたメニスカス状の負レンズを少なくとも2つ有し、該第12群は正レンズ、像面側に凹面を向けたメニスカス状の負レンズと正レンズとの接合レンズ、そして正レンズより成り、該第2群の焦点距離をf2、広角端における全系の焦点距離をFw、広角端で無限遠物体合焦時のバックフォーカスをbFwとしたとき
5<bFw/Fw<9
−4<f2/Fw<−2
なる条件を満足することを特徴とするリアフォーカス式のズームレンズ。
In order from the object side, there are four lens groups including a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. Move the group to the image plane side to perform zooming from the wide-angle end to the telephoto end, and correct the image plane variation caused by zooming or subject distance variation by moving part or all of the fourth group, A zoom lens in which a glass block is disposed between the fourth group and the image plane, and the first group is composed of two lens groups, an eleventh group having a negative refractive power and a twelfth group having a positive refractive power. The eleventh group has at least two meniscus negative lenses having a concave surface facing the image surface side, the twelfth group is a positive lens, and a meniscus negative lens having a concave surface facing the image surface side. And a positive lens, and the focal length of the second lens unit is f2, and the focal length of the entire system at the wide angle end is F. , 5 <bFw / Fw when the back focus of an object at infinity upon focusing the BFW in the wide-angle end <9
-4 <f2 / Fw <-2
A rear-focus zoom lens that satisfies the following conditions:
請求項1乃至3いずれか1項に記載のズームレンズを備えることを特徴とするカメラ。A camera comprising the zoom lens according to claim 1.
JP10549898A 1998-03-31 1998-03-31 Rear focus zoom lens Expired - Fee Related JP3943704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10549898A JP3943704B2 (en) 1998-03-31 1998-03-31 Rear focus zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10549898A JP3943704B2 (en) 1998-03-31 1998-03-31 Rear focus zoom lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007011820A Division JP4429325B2 (en) 2007-01-22 2007-01-22 Rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH11287952A JPH11287952A (en) 1999-10-19
JP3943704B2 true JP3943704B2 (en) 2007-07-11

Family

ID=14409276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10549898A Expired - Fee Related JP3943704B2 (en) 1998-03-31 1998-03-31 Rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP3943704B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008311A1 (en) * 2003-07-17 2005-01-27 Sony Corporation Imaging device and zoom lens
JP4612795B2 (en) 2004-01-30 2011-01-12 キヤノン株式会社 Zoom lens and imaging apparatus using the same
JP5006575B2 (en) 2006-05-25 2012-08-22 キヤノン株式会社 Zoom lens and imaging apparatus using the same
JP2009092923A (en) * 2007-10-09 2009-04-30 Fujinon Corp Rear focusing type zoom lens and imaging device
JP5035898B2 (en) 2007-10-09 2012-09-26 富士フイルム株式会社 Rear focus type zoom lens and imaging device

Also Published As

Publication number Publication date
JPH11287952A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP3584107B2 (en) Zoom lens
JP4478247B2 (en) Zoom lens
JPH07270684A (en) Rear focus zoom lens and image pickup system
JPH1062686A (en) Inner focusing type zoom lens
JPH08327903A (en) Small-sized zoom lens
JP4235288B2 (en) Rear focus zoom lens
JP4659196B2 (en) Zoom lens and photographing apparatus
JP2000180722A (en) Rear focusing type zoom lens
JP3373913B2 (en) Zoom lens
JP4429325B2 (en) Rear focus zoom lens
JPH07294816A (en) Zoom lens
JP3184581B2 (en) Zoom lens
JP3236037B2 (en) High zoom lens
JP4454731B2 (en) Zoom lens
JP3943704B2 (en) Rear focus zoom lens
JP4653284B2 (en) Large aperture ratio telephoto zoom lens
JPH0727979A (en) Zoom lens
JPH0560971A (en) Rear focus zoom lens
JP4072276B2 (en) Zoom lens
JP2676400B2 (en) High magnification compact zoom lens
JP4011786B2 (en) Rear focus zoom lens
JP3990812B2 (en) Rear focus zoom lens
JP3486529B2 (en) Zoom lens
JPH05273466A (en) Zoom lens of rear focusing system
JPH08179213A (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees