JP3943461B2 - Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator - Google Patents

Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator Download PDF

Info

Publication number
JP3943461B2
JP3943461B2 JP2002226615A JP2002226615A JP3943461B2 JP 3943461 B2 JP3943461 B2 JP 3943461B2 JP 2002226615 A JP2002226615 A JP 2002226615A JP 2002226615 A JP2002226615 A JP 2002226615A JP 3943461 B2 JP3943461 B2 JP 3943461B2
Authority
JP
Japan
Prior art keywords
dust collection
particles
rectangular wave
high voltage
charging unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002226615A
Other languages
Japanese (ja)
Other versions
JP2004066063A (en
Inventor
章朝 瑞慶覧
浩二 安本
良宏 河野
泰郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002226615A priority Critical patent/JP3943461B2/en
Priority to AU2003227343A priority patent/AU2003227343B2/en
Priority to KR1020030053317A priority patent/KR100944819B1/en
Priority to CNB031530052A priority patent/CN1274422C/en
Priority to CN2006101085835A priority patent/CN1951571B/en
Publication of JP2004066063A publication Critical patent/JP2004066063A/en
Application granted granted Critical
Publication of JP3943461B2 publication Critical patent/JP3943461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Description

【0001】
【発明の属する技術分野】
本発明は、トンネル内の空気などを浄化するのに好適な、矩形波電気集じん装置、および、矩形波電気集じん装置の最適駆動方法に関する。
【0002】
【従来の技術】
従来から知られている通り、自動車道トンネル内の空気は、自動車から排出される排気ガス中の有害ガス、煤煙、自動車の走行に伴って生じるタイヤや道路アスファルトの磨耗粉塵などのサブミクロンオーダの浮遊微粒子で汚染されている。そこで、この汚染空気中の煤煙・微粒子を除去するために、帯電部および集じん部によって構成された二段式電気集じん装置を用いた空気浄化設備が実用化されている。
【0003】
図9は、一般的に知られている2段式電気集じん装置の構成を示す。本図に示す電気集じん装置100は、帯電部1と集じん部2から構成されている。帯電部1は、線(4)対平板電極(3a,3b)構造を有している。そして、電極間には直流高電圧を課電し、コロナ放電を発生させている。一方、集じん部2は、平行平板電極(5a,5b,6)構造を有している。この平行平板電極間には直流高電圧を課電することにより、静電界が形成される。これらの構成をもつ2段式電気集じん装置において、粒子は帯電部1において単極性に帯電し、集じん部2の静電界によって、集じん電極5a,5b上に捕集される。
【0004】
こういった従来型の二段式電気集じん装置は、ナノメータ粒子に対しても集じん率が高く、また大流量処理に適している。
【0005】
【発明が解決しようとする課題】
しかし、自動車道路トンネル内のように、浮遊粒子の主成分として、電気抵抗の低いカーボンなどが含まれている場合には、集じん電極上に捕集された粒子が再び飛散し、ガス流と共に電気集じん装置から排出される場合がある。この現象を再飛散現象と呼ぶ。再飛散現象は、大粒径粒子の集じん率を著しく低下させることから、改善すべき大きな課題となっている。
【0006】
図10は、上述した再飛散現象のメカニズムを示した説明図である。ここで、帯電部において粒子は、負に単極帯電されているものとする。この場合、再飛散現象のメカニズムは以下の通りである。
【0007】
まず、図10の(A)に示すよう、帯電部内で負極性に帯電した粒子9は、集じん部接地電極板上に捕集される。接地電極上に集じんされたカーボン粒子は、直ちに電荷を失い接地極と同極性となる。このため、接地電極上の集じん粒子の近傍は電界が強くなる。さらに(B)に示すように、空間中の負極性帯電粒子が接地電極上に集じんされるとき、接地電極上の粒子と凝集するとともに、電界によるクーロン力によって、負極性電極方向へ数珠状凝集粒子を形成する。接地電極上の数珠状凝集粒子は凝集肥大化するに従い(図10(C)参照)、流体抗力やクーロン力などの剥離力が強くなり、これらの力が接地電極と凝集粒子間の付着力より大きくなったとき再飛散する。
【0008】
かかる再飛散現象を極めて有効に防止する方法として、矩形波交流電気集じん装置が提案されている。
【0009】
図11は、矩形波交流電気集じん装置の概略構成を示す。本装置は、帯電部40と集じん部50から構成されている。帯電部40は線対平板電極構造であり、1対の平板からなる接地電極21,22と線状の高電圧電極23を有する。この線−平板電極間には高電圧電源20から直流高電圧を印加し、帯電部40にコロナ放電を発生させる。直流高電圧の極性は正または負のいずれでも良く、またパルス電圧でもよい。
【0010】
集じん部50は平行平板電極構造であり、1対の平板からなる接地電極31,32と、1枚の平板からなる高電圧電極33とを有する。この接地−高電圧電極間には、矩形波高電圧電源30から矩形波高電圧を印加する。なお、矩形波高電圧電源30の代わりに正弦波交流からなる交流高電圧電源を用いても良い。
【0011】
この種の矩形波高電圧電源の電圧範囲は、電極間1mmあたり3kV以下が適当であり、一般には1mmあたり約0.9kv程度である。また、印加電圧の周波数は数Hz〜数kHzの範囲とされていた。しかし、その周波数が高くなるに従い、電源容量を大きくしなければならないという問題があった。また逆に、周波数を低く設定すると、再飛散が発生し大粒径粒子の集じん率が低下してくるという問題が生じる。
【0012】
よって本発明の目的は、集じん部に印加する矩形波電圧の周波数を低くした場合、すなわち電源容量を小さくした場合にも、高い集じん率を維持することができるようにした、矩形波電気集じん装置、および、矩形波電気集じん装置の最適駆動方法を提供することにある。
【0013】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る矩形波電気集じん装置は、主成分として電気抵抗の低いカーボンが含まれている浮遊粒子を帯電させるコロナ放電形帯電部と、該帯電部の下流において矩形波高電圧を印加することにより前記浮遊粒子の集じんを行う集じん部とを備えた電気集じん装置であって、前記矩形波高電圧の周波数が0.1Hz〜2Hzである矩形波高電圧発生部を備え、前記浮遊粒子による数珠状の極板凝集粒子を球状の凝集粒子に変化させて集じんを行うことを特徴とする。ここで、前記コロナ放電形帯電部は線対平板電極構造を有し、前記集じん部は平行平板電極構造を有することができる。
【0014】
また、本発明に係る矩形波電気集じん装置の最適駆動方法は、主成分として電気抵抗の低いカーボンが含まれている浮遊粒子を帯電させるコロナ放電形帯電部と、該帯電部の下流において矩形波高電圧を印加することにより前記浮遊粒子の集じんを行う集じん部とを備えた電気集じん装置を駆動するに際して、前記矩形波高電圧の周波数を0.1Hz〜2Hzの範囲内に設定し、前記浮遊粒子による数珠状の極板凝集粒子を球状の凝集粒子に変化させて集じんを行うことを特徴とする。ここで、前記コロナ放電形帯電部は線対平板電極構造を有し、前記集じん部は平行平板電極構造を有することができる。
【0015】
【発明の実施の形態】
以下、図1〜図8を参照して、本発明の実施の形態を詳細に説明する。
【0016】
図1は、本発明を適用した矩形波電気集じん装置の断面構成図である。この矩形波電気集じん装置は、帯電部40と集じん部50から構成されている。帯電部40は線対平板電極構造であり、1対の平板からなる接地電極21,22と線状の高電圧電極23を有する。この線−平板電極間には高電圧電源20から直流高電圧を印加し、帯電部40にコロナ放電を発生させる。直流高電圧の極性は正または負のいずれでも良く、またパルス電圧でもよい。
【0017】
集じん部50は平行平板電極構造であり、1対の平板からなる接地電極31,32と、1枚の平板からなる高電圧電極33とを有する。この接地−高電圧電極間には、矩形波高電圧電源60から矩形波高電圧(周波数0.1〜2Hz)を印加する。電圧を印加することによって、集じん部50では、静電界が発生する。浮遊粒子を含んだガス流は、帯電部50を通過することによって荷電され、集じん部50の静電界によって、集じん電極上に捕集される。
【0018】
次に、図2および図3を参照して、集じん部50に矩形波高電圧を印加した場合の再飛散防止メカニズムを説明する。図2は、集じん部50における帯電粒子の捕集および再飛散防止モデルを示す。ここで、帯電部40(図1参照)には負の直流高電圧が印加され、粒子はマイナスに帯電されているものとする。図3は、集じん部50に印加される矩形波高電圧の波形を示す。
【0019】
図3において、集じん部50に印加される電圧を3つの区間に分けて考える。aの区間は、集じん部50に正の高電圧が印加されている領域である。bの区間は、集じん部50への印加電圧が、正から負に変化する遷移領域である(数msec)。cの区間は、集じん部50に負の高電圧が印加されている領域である。aの領域のとき、帯電部40で負に帯電した粒子は、正極性の高電圧集じん電極板上に捕集される(図2参照)。捕集された粒子は、直ちに正に帯電し、数珠状の極板凝集粒子を形成する。その後、bの区間においては、電圧の極性が正から負に急激に変化する。集じん電極板の極性が正から負に急激に変化するため、数珠状の極板凝集粒子は、静電気によって集じん電極板方向へ力を受け、球状の凝集粒子へと変化する。
【0020】
かくして、球状の凝集粒子に変化することによって、剥離力としてはたらく風力や静電気力が小さくなり、再飛散は起こらなくなる(図2(C)参照)。
【0021】
(実験結果)
実験1
図4および図5は、実験により得られた集じん率の周波数特性(直流(DC)印加時、矩形波周波数0.001〜1Hz印加時)を示す。実験条件として、風速は5m/s、集じん部50の長さは206mm、帯電電圧は11kV、集じん電圧は±5kVの矩形波とした。また、集じん部50電極距離は6mmとした。
【0022】
この実験の結果、いずれの粒径においても周波数が高くなるに従い集じん率は向上し、特に周波数0.1〜1Hzで最も高い集じん率を示した。
【0023】
実験2
図6は、他の実験により得られた集じん率の周波数特性(矩形波周波数0.1〜10Hz時)を示す。実験条件として、風速は7m/s、集じん部50の長さは412mm、帯電電圧は11kV、集じん電圧は±7.5kVの矩形波とした。また、集じん部50電極間距離は9mmとした。
【0024】
この実験の結果、集じん率はいずれの周波数においても、粒径0.5〜2μmで最大となる傾向を示した。また、周波数4Hzおよび10Hzに比べて、0.1Hzおよび1Hzの方が、高い集じん率となった。
【0025】
以上のことから、矩形波電気集じん装置において、0.1〜2Hzが最適な周波数であるといえる。
【0026】
参考実験
なお、参考として、集じん部50に正弦波交流高電圧を印加した場合における、集じん率の周波数特性を図7に示す。実験条件として、風速は5m/s、集じん部50の長さは206mm、帯電電圧は直流11kV、集じん電圧は正弦波交流5kVrms、周波数は25〜100Hzの範囲で変化させた。集じん部電極間距離は6mmとした。この実験の結果、集じん率は周波数が高くなるに従い低下した。その理由は、図8(各周波数における粒子振動モデル)に示すように、周波数が高いために集じん部50に流入した帯電粒子が電極空間にトラップされ、集じん電極上に捕集されないまま排出されるからである。
【0027】
【発明の効果】
以上説明した通り本発明によれば、矩形波電気集じん装置において、小さい電源容量で再飛散を効果的に防止し、高い集じん率得ることができる。換言すると、本発明によれば、低い周波数(小さい電源容量)で高い集じん率を維持する最適な周波数選定が可能となる。
【図面の簡単な説明】
【図1】本発明を適用した矩形波電気集じん装置の断面構成図である。
【図2】図1の集じん部50における帯電粒子の捕集および再飛散防止モデルを示す説明図である。
【図3】集じん部50に印加される矩形波高電圧の波形を示す図である。
【図4】実験により得られた集じん率の周波数特性(直流(DC)印加時、周波数0.001〜1Hz印加時)を示す線図である。
【図5】実験により得られた集じん率の周波数特性(直流(DC)印加時、周波数0.001〜1Hz印加時)を示す線図である。
【図6】他の実験により得られた集じん率の周波数特性(周波数0.1〜10Hz時)を示す線図である。
【図7】集じん部50に正弦波交流高電圧を印加した場合における、集じん率の周波数特性を示す線図である。
【図8】各周波数における粒子振動モデルを示す説明図である。
【図9】一般的に知られている2段式電気集じん装置の構成を示す図である。
【図10】再飛散現象のメカニズムを示した説明図である。
【図11】矩形波交流電気集じん装置の概略構成を示す図である。
【符号の説明】
20 高電圧電源
21,22 接地電極
23 線状の高電圧電極
31,32 接地電極
33高電圧電極
40 帯電部
50 集じん部
60 矩形波高電圧電源(周波数0.1〜2Hz)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rectangular wave electric dust collector and an optimum driving method for the rectangular wave electric dust collector, which are suitable for purifying air in a tunnel.
[0002]
[Prior art]
As is known in the art, the air in an expressway tunnel is in the order of submicron, such as harmful gases in the exhaust gas exhausted from automobiles, smoke, and tire and road asphalt wear dust generated by automobiles. Contaminated with airborne particles. Therefore, in order to remove the soot and particulates in the contaminated air, air purification equipment using a two-stage electric dust collector composed of a charging part and a dust collecting part has been put into practical use.
[0003]
FIG. 9 shows a configuration of a generally known two-stage electrostatic precipitator. An electric dust collector 100 shown in the figure includes a charging unit 1 and a dust collecting unit 2. The charging unit 1 has a wire (4) versus plate electrode (3a, 3b) structure. A high DC voltage is applied between the electrodes to generate corona discharge. On the other hand, the dust collection part 2 has a parallel plate electrode (5a, 5b, 6) structure. An electrostatic field is formed between the parallel plate electrodes by applying a DC high voltage. In the two-stage electrostatic precipitator having these configurations, the particles are unipolarly charged in the charging unit 1 and are collected on the dust collecting electrodes 5 a and 5 b by the electrostatic field of the dust collecting unit 2.
[0004]
Such a conventional two-stage electrostatic precipitator has a high dust collection rate with respect to nanometer particles and is suitable for a large flow rate treatment.
[0005]
[Problems to be solved by the invention]
However, in the case of automobile road tunnels, when carbon with low electrical resistance is included as the main component of suspended particles, the particles collected on the dust collection electrode will be scattered again, along with the gas flow. May be discharged from electrostatic precipitator. This phenomenon is called a re-scattering phenomenon. The re-scattering phenomenon is a big problem to be improved because it significantly lowers the dust collection rate of large-sized particles.
[0006]
FIG. 10 is an explanatory diagram showing the mechanism of the re-scattering phenomenon described above. Here, it is assumed that the particles are negatively monopolarly charged in the charging portion. In this case, the mechanism of the re-scattering phenomenon is as follows.
[0007]
First, as shown in FIG. 10A, the particles 9 that are negatively charged in the charging portion are collected on the dust collecting portion ground electrode plate. The carbon particles collected on the ground electrode immediately lose their charge and have the same polarity as the ground electrode. For this reason, an electric field becomes strong in the vicinity of the dust collection particles on the ground electrode. Further, as shown in (B), when the negatively charged particles in the space are collected on the ground electrode, they aggregate with the particles on the ground electrode, and also beaded in the direction of the negative electrode by the Coulomb force due to the electric field. Agglomerated particles are formed. As the bead-like aggregated particles on the ground electrode become agglomerated and enlarged (see FIG. 10C), the peeling force such as fluid drag and coulomb force becomes stronger, and these forces are more than the adhesion force between the ground electrode and the aggregated particles. Re-scatters when it grows up.
[0008]
As a method for effectively preventing such a re-scattering phenomenon, a rectangular wave AC electrostatic precipitator has been proposed.
[0009]
FIG. 11 shows a schematic configuration of a rectangular wave AC electrostatic precipitator. This apparatus includes a charging unit 40 and a dust collection unit 50. The charging unit 40 has a line pair plate electrode structure, and includes ground electrodes 21 and 22 formed of a pair of flat plates, and a linear high voltage electrode 23. A DC high voltage is applied between the wire and the plate electrode from the high voltage power supply 20 to cause the charging unit 40 to generate corona discharge. The polarity of the DC high voltage may be positive or negative, and may be a pulse voltage.
[0010]
The dust collection part 50 has a parallel plate electrode structure, and includes ground electrodes 31 and 32 made of a pair of flat plates and a high voltage electrode 33 made of one flat plate. A rectangular wave high voltage is applied from the rectangular wave high voltage power supply 30 between the ground and the high voltage electrode. Instead of the rectangular wave high voltage power supply 30, an AC high voltage power supply composed of a sinusoidal alternating current may be used.
[0011]
The voltage range of this type of rectangular wave high voltage power supply is suitably 3 kV or less per 1 mm between electrodes, and is generally about 0.9 kv per 1 mm. Further, the frequency of the applied voltage was in the range of several Hz to several kHz. However, there is a problem that the power supply capacity has to be increased as the frequency increases. Conversely, if the frequency is set low, there will be a problem that re-scattering occurs and the dust collection rate of large-diameter particles decreases.
[0012]
Therefore, an object of the present invention is to provide a rectangular wave electric power which can maintain a high dust collection rate even when the frequency of the rectangular wave voltage applied to the dust collecting portion is lowered, that is, when the power source capacity is reduced. An object of the present invention is to provide a dust collector and a method for optimally driving a rectangular wave electric dust collector.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a rectangular wave electrostatic precipitator according to the present invention comprises a corona discharge type charging unit for charging floating particles containing carbon having a low electrical resistance as a main component, and An electrostatic precipitator including a dust collection unit that collects the suspended particles by applying a rectangular wave high voltage downstream, wherein the rectangular wave high voltage has a frequency of 0.1 Hz to 2 Hz. A generator is provided , and the beads are collected by changing the bead-shaped electrode plate aggregated particles by the suspended particles into spherical aggregated particles . Here, the corona discharge type charging portion may have a line-to-plate electrode structure, and the dust collection portion may have a parallel plate electrode structure.
[0014]
Further, the optimum driving method of the rectangular wave electric dust collector according to the present invention includes a corona discharge type charging unit that charges floating particles containing carbon having a low electrical resistance as a main component , and a rectangular shape downstream of the charging unit. When driving an electric dust collector equipped with a dust collector that collects the suspended particles by applying a wave high voltage, the frequency of the rectangular wave high voltage is set within a range of 0.1 Hz to 2 Hz , Dust collection is performed by changing the bead-shaped electrode plate aggregated particles by the suspended particles into spherical aggregated particles . Here, the corona discharge type charging portion may have a line-to-plate electrode structure, and the dust collection portion may have a parallel plate electrode structure.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
[0016]
FIG. 1 is a cross-sectional configuration diagram of a rectangular wave electric dust collector to which the present invention is applied. This rectangular wave electric dust collector includes a charging unit 40 and a dust collecting unit 50. The charging unit 40 has a line pair plate electrode structure, and includes ground electrodes 21 and 22 formed of a pair of flat plates, and a linear high voltage electrode 23. A DC high voltage is applied between the wire and the plate electrode from the high voltage power supply 20 to cause the charging unit 40 to generate corona discharge. The polarity of the DC high voltage may be positive or negative, and may be a pulse voltage.
[0017]
The dust collection part 50 has a parallel plate electrode structure, and includes ground electrodes 31 and 32 made of a pair of flat plates and a high voltage electrode 33 made of one flat plate. A rectangular high voltage (frequency 0.1 to 2 Hz) is applied between the ground and the high voltage electrode from the rectangular high voltage power supply 60. By applying a voltage, an electrostatic field is generated in the dust collection portion 50. The gas flow containing suspended particles is charged by passing through the charging unit 50 and is collected on the dust collection electrode by the electrostatic field of the dust collection unit 50.
[0018]
Next, with reference to FIG. 2 and FIG. 3, the re-scattering prevention mechanism when a rectangular wave high voltage is applied to the dust collection part 50 is demonstrated. FIG. 2 shows a model for collecting charged particles and preventing re-scattering in the dust collection unit 50. Here, it is assumed that a negative DC high voltage is applied to the charging unit 40 (see FIG. 1), and the particles are negatively charged. FIG. 3 shows a waveform of a rectangular high voltage applied to the dust collector 50.
[0019]
In FIG. 3, the voltage applied to the dust collection part 50 is considered divided into three sections. The section “a” is an area where a positive high voltage is applied to the dust collection portion 50. A section b is a transition region in which the voltage applied to the dust collector 50 changes from positive to negative (several msec). The section c is a region where a negative high voltage is applied to the dust collection portion 50. In the region a, the particles negatively charged by the charging unit 40 are collected on the positive high-voltage dust collecting electrode plate (see FIG. 2). The collected particles are immediately positively charged to form bead-shaped electrode plate aggregate particles. Thereafter, in the interval b, the polarity of the voltage changes rapidly from positive to negative. Since the polarity of the dust collecting electrode plate changes rapidly from positive to negative, the bead-shaped electrode plate aggregated particles are subjected to a force in the direction of the dust collecting electrode plate due to static electricity and change into spherical aggregated particles.
[0020]
Thus, by changing to spherical agglomerated particles, wind force and electrostatic force acting as peeling force are reduced, and re-scattering does not occur (see FIG. 2C).
[0021]
(Experimental result)
Experiment 1
4 and 5 show the frequency characteristics of the dust collection rate (when direct current (DC) is applied and when a rectangular wave frequency of 0.001 to 1 Hz is applied) obtained by experiments. As experimental conditions, the wind speed was 5 m / s, the length of the dust collection part 50 was 206 mm, the charging voltage was 11 kV, and the dust collection voltage was a rectangular wave of ± 5 kV. The distance between the dust collection portion 50 electrodes was 6 mm.
[0022]
As a result of this experiment, the dust collection rate improved as the frequency increased at any particle size, and the highest dust collection rate was exhibited particularly at a frequency of 0.1 to 1 Hz.
[0023]
Experiment 2
FIG. 6 shows the frequency characteristics of the dust collection rate (at the time of a rectangular wave frequency of 0.1 to 10 Hz) obtained by another experiment. As experimental conditions, the wind velocity was 7 m / s, the length of the dust collection portion 50 was 412 mm, the charging voltage was 11 kV, and the dust collection voltage was a square wave of ± 7.5 kV. The distance between the dust collection part 50 electrodes was 9 mm.
[0024]
As a result of this experiment, the dust collection rate tended to be maximum at a particle size of 0.5 to 2 μm at any frequency. Moreover, compared with the frequency of 4 Hz and 10 Hz, 0.1 Hz and 1 Hz became a high dust collection rate.
[0025]
From the above, it can be said that 0.1 to 2 Hz is the optimum frequency in the rectangular wave electrostatic precipitator.
[0026]
Reference Experiment As a reference, FIG. 7 shows the frequency characteristics of the dust collection rate when a sinusoidal AC high voltage is applied to the dust collection unit 50. As experimental conditions, the wind speed was 5 m / s, the length of the dust collection portion 50 was 206 mm, the charging voltage was DC 11 kV, the dust collection voltage was sine wave AC 5 kVrms, and the frequency was changed in the range of 25 to 100 Hz. The distance between the dust collector electrodes was 6 mm. As a result of this experiment, the dust collection rate decreased as the frequency increased. The reason for this is that, as shown in FIG. 8 (particle vibration model at each frequency), the charged particles flowing into the dust collection portion 50 due to the high frequency are trapped in the electrode space and discharged without being collected on the dust collection electrode. Because it is done.
[0027]
【The invention's effect】
As described above, according to the present invention, in a rectangular wave electric dust collector, re-scattering can be effectively prevented with a small power source capacity, and a high dust collection rate can be obtained. In other words, according to the present invention, it is possible to select an optimum frequency that maintains a high dust collection rate at a low frequency (small power source capacity).
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of a rectangular wave electrostatic precipitator to which the present invention is applied.
FIG. 2 is an explanatory diagram showing a model for collecting charged particles and preventing re-scattering in the dust collection unit 50 of FIG. 1;
FIG. 3 is a diagram showing a waveform of a rectangular wave high voltage applied to the dust collection unit 50;
FIG. 4 is a diagram showing the frequency characteristics of dust collection obtained by experiments (when direct current (DC) is applied and when a frequency of 0.001 to 1 Hz is applied).
FIG. 5 is a diagram showing the frequency characteristics of dust collection obtained by experiments (when direct current (DC) is applied and when a frequency of 0.001 to 1 Hz is applied).
FIG. 6 is a diagram showing a frequency characteristic (at a frequency of 0.1 to 10 Hz) of a dust collection rate obtained by another experiment.
7 is a diagram showing the frequency characteristics of the dust collection rate when a sinusoidal AC high voltage is applied to the dust collection unit 50. FIG.
FIG. 8 is an explanatory diagram showing a particle vibration model at each frequency.
FIG. 9 is a diagram showing a configuration of a generally known two-stage electrostatic precipitator.
FIG. 10 is an explanatory view showing a mechanism of a re-scattering phenomenon.
FIG. 11 is a diagram showing a schematic configuration of a rectangular wave AC electrostatic precipitator.
[Explanation of symbols]
20 High-voltage power supply 21, 22 Ground electrode 23 Linear high-voltage electrode 31, 32 Ground electrode 33 High-voltage electrode 40 Charging unit 50 Dust collection unit 60 Rectangular wave high-voltage power supply (frequency 0.1 to 2 Hz)

Claims (4)

主成分として電気抵抗の低いカーボンが含まれている浮遊粒子を帯電させるコロナ放電形帯電部と、該帯電部の下流において矩形波高電圧を印加することにより前記浮遊粒子の集じんを行う集じん部とを備えた電気集じん装置であって、
前記矩形波高電圧の周波数が0.1Hz〜2Hzである矩形波高電圧発生部を備え、前記浮遊粒子による数珠状の極板凝集粒子を球状の凝集粒子に変化させて集じんを行うことを特徴とする矩形波電気集じん装置。
A corona discharge-type charging unit that charges floating particles containing carbon having low electrical resistance as a main component, and a dust collection unit that collects the floating particles by applying a rectangular high voltage downstream of the charging unit. An electric dust collector comprising:
A rectangular wave high voltage generator having a frequency of the rectangular wave high voltage of 0.1 Hz to 2 Hz is provided , and dust collection is performed by changing the bead-shaped electrode plate aggregated particles by the suspended particles into spherical aggregated particles. Square wave electric dust collector.
請求項1において、
前記コロナ放電形帯電部は線対平板電極構造を有し、前記集じん部は平行平板電極構造を有することを特徴とする矩形波電気集じん装置。
In claim 1,
The corona discharge type charging unit has a line-to-plate electrode structure, and the dust collection unit has a parallel plate electrode structure.
主成分として電気抵抗の低いカーボンが含まれている浮遊粒子を帯電させるコロナ放電形帯電部と、該帯電部の下流において矩形波高電圧を印加することにより前記浮遊粒子の集じんを行う集じん部とを備えた電気集じん装置を駆動するに際して、
前記矩形波高電圧の周波数を0.1H z〜2Hzの範囲内に設定し、前記浮遊粒子による数珠状の極板凝集粒子を球状の凝集粒子に変化させて集じんを行うことを特徴とする、矩形波電気集じん装置の最適駆動方法。
A corona discharge-type charging unit that charges floating particles containing carbon having low electrical resistance as a main component, and a dust collection unit that collects the floating particles by applying a rectangular high voltage downstream of the charging unit. When driving an electric dust collector equipped with
The frequency of the rectangular wave high voltage is set within a range of 0.1 Hz to 2 Hz, and the beads are aggregated by changing the bead-shaped electrode plate aggregated particles by the suspended particles into spherical aggregated particles , Optimal driving method for rectangular wave electrostatic precipitator.
請求項3において、
前記コロナ放電形帯電部は線対平板電極構造を有し、前記集じん部は平行平板電極構造を有することを特徴とする、矩形波電気集じん装置の最適駆動方法。
In claim 3,
The method for optimally driving a rectangular wave electric dust collector, wherein the corona discharge type charging unit has a line-to-plate electrode structure, and the dust collection unit has a parallel plate electrode structure.
JP2002226615A 2002-08-02 2002-08-02 Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator Expired - Lifetime JP3943461B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002226615A JP3943461B2 (en) 2002-08-02 2002-08-02 Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator
AU2003227343A AU2003227343B2 (en) 2002-08-02 2003-07-31 Electric Dust Collecting Apparatus
KR1020030053317A KR100944819B1 (en) 2002-08-02 2003-08-01 Electric dust collecting apparatus
CNB031530052A CN1274422C (en) 2002-08-02 2003-08-04 Electric dusting equipment
CN2006101085835A CN1951571B (en) 2002-08-02 2003-08-04 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226615A JP3943461B2 (en) 2002-08-02 2002-08-02 Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator

Publications (2)

Publication Number Publication Date
JP2004066063A JP2004066063A (en) 2004-03-04
JP3943461B2 true JP3943461B2 (en) 2007-07-11

Family

ID=32013903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226615A Expired - Lifetime JP3943461B2 (en) 2002-08-02 2002-08-02 Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator

Country Status (2)

Country Link
JP (1) JP3943461B2 (en)
CN (1) CN1951571B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603515B1 (en) * 2004-02-27 2006-07-20 안강호 Apparatus for manufacturing ultra-fine particles using corona discharge and method thereof
JP4687595B2 (en) * 2006-07-18 2011-05-25 富士電機システムズ株式会社 Electric dust collector
JP5816810B2 (en) 2011-04-22 2015-11-18 パナソニックIpマネジメント株式会社 Electric dust collector
CN104084310A (en) * 2014-07-14 2014-10-08 双盾环境科技有限公司 Spiral cathode wire for electrostatic precipitator
CN104759184A (en) * 2015-03-20 2015-07-08 东华大学 Air purification comprehensive testing device for tunnel or subway
CN104923399A (en) * 2015-06-02 2015-09-23 国家电网公司 Electrostatic dust collector for ring-network cabinet
CN105057101A (en) * 2015-08-17 2015-11-18 中国重型机械研究院股份公司 Cylindrical vertical wet-type explosion-proof and voltage-resistant electric precipitator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244425B2 (en) * 1996-04-17 2002-01-07 三洋電機株式会社 Optical semiconductor integrated circuit
CN2484118Y (en) * 2001-05-16 2002-04-03 王舜逸 Discharging apparatus of electrostatic dust collector

Also Published As

Publication number Publication date
CN1951571A (en) 2007-04-25
CN1951571B (en) 2010-08-18
JP2004066063A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
Yamamoto et al. Diesel PM collection for marine and automobile emissions using EHD electrostatic precipitators
JP3790394B2 (en) Air purification device
JP3943461B2 (en) Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator
JP4759773B2 (en) Particle packed bed dust collector
WO2023050276A1 (en) Enhanced agglomeration and coalescence and efficient particle layer-based filtering device for ultrafine particles
CN111054168B (en) Device and method for efficiently removing multichannel fine particles
CN111097251B (en) Device and method for efficiently removing fine particles in multiple-field subareas
EP0009857A2 (en) Fly ash agglomerator, flue equipped with this agglomerator and process for removing suspended charged particles of mixed size from a volume of gas
JP4094223B2 (en) Electric dust collector
JP2868757B1 (en) Electric dust collector
KR100944819B1 (en) Electric dust collecting apparatus
JP3943463B2 (en) AC electric field type electric dust collector and driving method of AC electric field type electric dust collector
JP2004121987A (en) Ac electric field precipitator and method for driving the electric precipitator
JP4526201B2 (en) Electric dust collector
JP3948415B2 (en) Electric dust collector
JP4836468B2 (en) Electric dust collector
JP2000197833A (en) Electric dust collector for tunnel
JP2913289B1 (en) Electric dust collector
JP3661364B2 (en) Electric dust collector
KR20050079024A (en) Multi-stage device for fine dust agglomeration by using electric forces
Ehara et al. Performance of high velocity electrostatic precipitator for road tunnel
CN212215006U (en) Device of high-efficient desorption of multichannel fine particles thing
JP2938423B1 (en) Electric dust collector
JP2012020285A (en) Electric precipitator
JPH10202144A (en) Electrostatic dust precipitator for tunnel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Ref document number: 3943461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term