JP3943038B2 - Electromagnetic coupling device and power supply device - Google Patents

Electromagnetic coupling device and power supply device Download PDF

Info

Publication number
JP3943038B2
JP3943038B2 JP2003024594A JP2003024594A JP3943038B2 JP 3943038 B2 JP3943038 B2 JP 3943038B2 JP 2003024594 A JP2003024594 A JP 2003024594A JP 2003024594 A JP2003024594 A JP 2003024594A JP 3943038 B2 JP3943038 B2 JP 3943038B2
Authority
JP
Japan
Prior art keywords
power
coil
power supply
magnetic body
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003024594A
Other languages
Japanese (ja)
Other versions
JP2004236476A (en
Inventor
充 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riso Kagaku Corp
Original Assignee
Riso Kagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riso Kagaku Corp filed Critical Riso Kagaku Corp
Priority to JP2003024594A priority Critical patent/JP3943038B2/en
Publication of JP2004236476A publication Critical patent/JP2004236476A/en
Application granted granted Critical
Publication of JP3943038B2 publication Critical patent/JP3943038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電流が流れる給電用コイルを磁性体に巻き込み、受電用コイルが巻き込まれた筒状部材を磁性体に装着し、磁性体と筒状部材の相対的な移動や給電用コイルに流す電流を制御することにより給電用コイルに流れる電流を受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置と、この電磁気的結合装置を構成する給電装置に関する。
【0002】
【従来の技術】
従来、家庭用電源や電池等の電源から電力の供給を受ける場合、この電源や電源回路等に接続された配線にコネクタやソケット等を設け、配線に直接的な電気的接触を行うことにより電力を取り出していた。例えば、蛍光灯や電球等を利用した照明装置を設置する際には、配線上に設けられたコネクタやソケットに蛍光灯や電球等を取り付け、コネクタやソケットを介して電力の供給を受けていた。また、電飾装置を設ける場合においても、予め配線上に設けられたソケット等を介して電飾に電力を供給していた。さらに、防犯のためのセンサ等を設ける場合でも、予め決められた位置に設けられたコネクタ等を介してセンサ等に電力を供給していた。
この出願の発明に関連する先行技術文献情報としては下記のものがある。
【0003】
【特許文献1】
特開平6−51707号公報
【0004】
【特許文献2】
特開2002−8407号公報
【0005】
このように、従来の電力を供給する方法としては、コネクタやソケット等のように機械的接触を介して供給する物が一般的であった。しかし、このような構成では、例えば使用者が蛍光灯や電球等の位置や個数を変更しようとした場合、電力を取り出す位置や個数が配線に直接的接触を持つコネクタやソケットの位置や個数によって決まって来る。このため、大きな設計変更や工事が必要となってしまうという課題がある。しかも、配線と直接的な電気的接触をもつコネクタやソケット等の場合、その接続部に機械的ストレスが集中してしまうため、短絡や断線、感電のおそれがあった。
【0006】
【発明が解決しようとする課題】
ところで、上述した問題を解消するための対策として、磁気を用いて非接触により電力を供給する給電装置が提案されている。
【0007】
図11は上記提案されている給電装置の概略構成を示している。図11に示す給電装置51は、電源装置52と配電装置53を備えている。
【0008】
電源装置52は、電源54、発振回路55、分周回路56、駆動回路57を備えている。電源54は、直流電流を駆動電源として発振回路55、分周回路56、駆動回路57のそれぞれに出力している。発振回路55は、所定の周波数の発振信号を発生して出力している。分周回路56は、発振回路55から出力された信号を所望の周波数に分周して分周信号を出力している。駆動回路57は、分周回路56から出力された分周信号を所定の周期で正負方向に切り替えて交流電流を出力している。
【0009】
配電装置53は、配線58、配電手段59、被給電体60を備えている。配線58は、環状に形成され、電源装置52の駆動回路57から電磁的に誘導されて出力された交流電流を流している。配電手段59は、配線58の近傍に設けられ、配線58に流れる交流電流により電磁的に誘導された双方向電流が磁性体に巻かれた銅線に流されることにより配電を行うものである。被給電体60は、配電手段59の巻線に接続され、巻線に流れる双方向電流により駆動される。
【0010】
上記構成による給電装置51では、電源54により発振回路55を駆動させ、所定の周波数の信号を発生させる。発振回路55により発生した信号は分周回路56に入力される。分周回路56は、入力された信号を所望の周波数に分周するための分周信号とその正負の向きを切り替えるための切替信号を駆動回路57に出力する。駆動回路57は、入力された分周信号と切替信号に基づいて所望の周期の信号を一定の周期で正負方向に切り替えて交流電流を出力する。この駆動回路57から出力された交流電流は配線58に流される。配線58に流された交流電流は、配電手段59の磁性体の巻線に電磁的に誘導される。これにより、配電手段59の磁性体の巻線に双方向電流が流れる。そして、この双方向電流は、配電手段59の巻線の両端に接続された被給電体60に電力として供給される。
【0011】
しかしながら、上述した図11に示す給電装置51では、駆動回路57からの交流電流を流すための環状の配線58と配電手段59の巻線との間が磁気的に結合されており、配線58上のどの位置でも配電手段59の受電状態が同じであり、配線58上の配電手段59の位置に応じて受電状態を変えることができなかった。従って、この種の給電装置51の被給電体60に発光素子を用い、電飾装置として利用した場合には、発光手段への電流のON/OFFによる点灯/消灯の切換えしかできず、表示の自由度が低いという課題が生じる。
【0012】
そこで、本発明は、上記問題点に鑑みてなされたものであり、受電状態を変化させることができ、被給電体として発光手段を用いた場合には、受電状態の変化を色の変化として認識することができる電磁気的結合装置を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、前記給電用コイルの巻き方向が部分的に逆であることを特徴とする。
【0014】
請求項2の発明は、電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、前記給電用コイルの密集度が部分的に変化していることを特徴とする。
【0015】
請求項3の発明は、電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、前記給電用コイルが前記磁性体の複数箇所に設けられており、
前記給電用コイルを駆動する信号の位相とオン・オフとの少なくともいずれか一方を制御する駆動回路を備えたことを特徴とする。
【0016】
請求項4の発明は、電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、
前記受電用コイルが前記筒状部材の複数箇所に設けられ、
前記給電用コイルが前記受電用コイルの長さと同一又は整数倍以上の長さで前記磁性体の複数箇所に設けられ、
前記磁性体と前記筒状部材の相対的な移動に伴うコイル間の電位差により受電状態が変化することを特徴とする。
【0017】
請求項5の発明は、請求項1〜4の何れかに記載の電磁気的結合装置において、前記被給電体が発光手段であることを特徴とする。
【0018】
請求項6の発明は、請求項1〜4の何れかに記載の電磁気的結合装置において、前記磁性体および前記筒状部材が柔軟性を有することを特徴とする。
【0019】
請求項7の発明は、電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、前記磁性体に対して相対的に移動可能に取り付けられる筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置に用いられる給電装置であって、
前記給電用コイルは、部分的に巻き方向が逆転して前記磁性体に巻き込まれていることを特徴とする。
【0020】
請求項8の発明は、電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、前記磁性体に対して相対的に移動可能に取り付けられる筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置に用いられる給電装置であって、
前記給電用コイルは、密集度が部分的に変化して前記磁性体に巻き込まれていることを特徴とする。
【0023】
【発明の実施の形態】
図1は本発明による電磁気的結合装置の第1実施の形態を示す図、図2は図1の電磁気的結合装置における駆動回路の構成図、図3は図1の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【0024】
まず、本発明による電磁気的結合装置の第1実施の形態を図1乃至図3に基づいて説明する。
【0025】
図1に示すように、第1実施の形態の電磁気的結合装置1A(1)は、電源装置2A、給電装置3A、受電装置4Aを備えて構成される。
【0026】
図1に示すように、電源装置2Aは、更に電源5、発振回路6、分周回路7、駆動回路8Aを備えている。電源5は、直流電流を駆動電源として発振回路6、分周回路7、駆動回路8Aのそれぞれに出力している。発振回路6は、所定の周波数(例えば数十Hzから数kHz)の信号を発生して出力している。分周回路7は、発振回路6からの発振信号を分周しており、例えば数百Hzから数十kHzの周波数の分周信号を発生して出力している。
【0027】
駆動回路8Aは、例えば図2に示すような回路により構成される。図2に示す駆動回路8Aは、分周回路7の出力がインバータNOT1に入力している。インバータNOT1の出力は、並列接続されたインバータNOT2とインバータNOT3に入力している。そして、インバータNOT2の出力がトランジスタTr1のベースに入力しており、インバータNOT3の出力がトランジスタTr2のベースに入力している。トランジスタTr1,Tr2とはダーリントン接続されている。トランジスタTr1のコレクタとトランジスタTr2のエミッタとの間には、トランジスタTr2のエミッタ側をアノードとしてダイオードD1,D2が直列接続されている。さらに、トランジスタTr1,Tr2の接続点P1から引き出された出力8aには、後述する給電装置3Bの配線12(第1給電用コイル12A側)に接続されている。
【0028】
また、分周回路7の出力はインバータNOT4とインバータNOT5に入力している。そして、インバータNOT4の出力がトランジスタTr3のベースに入力しており、インバータNOT5の出力がトランジスタTr4のベースに入力している。トランジスタTr3,Tr4とはダーリントン接続されている。トランジスタTr3のコレクタとトランジスタTr4のエミッタとの間には、トランジスタTr4のエミッタ側をアノードとしてダイオードD3,D4が直列接続されている。さらに、トランジスタTr3,Tr4の接続点P2から引き出された出力8bには、後述する給電装置3Bの配線12(第2給電用コイル12B側)に接続されている。
【0029】
この駆動回路8Aでは、分周回路7からの分周信号により交流電流の周期が決定され、後述する給電装置3Aの第1給電用コイル12Aと第2給電用コイル12Bに対し、数百Hzから数十kHzの周波数で図3に示すような電圧を印加して交流電流を供給している。
【0030】
給電装置3Aは、磁性体11と、磁性体11の外周面に巻き込まれて固定された配線12とを備えて構成される。磁性体11は、電磁気的に開放された状態(環状に一体形成されていない状態)で構成される。図1の例では、直線状の棒状物で磁性体11が形成されている。また、図1の例において、1本の配線12により、第1給電用コイル12Aと第2給電用コイル12Bの2つのコイルを形成している。さらに説明すると、駆動回路8の一方の出力8aから配線12が磁性体11の下方から上方に向かって引き出される。磁性体12の上方に引き出された配線12は、磁性体12の中央部に向かって右上がりに巻き込まれて所定長さの第1給電用コイル12Aを形成している(図1のA部)。この第1給電用コイル12Aを形成した配線12は、磁性体11の略中央部の位置から逆方向、すなわち右下がりに巻き込まれて第1給電用コイルと略同等の長さの第2給電用コイル12Bを形成している(図1のB部)。磁性体11の下方まで引き出された配線12は、駆動回路8の他方の出力8bに接続される。
【0031】
図1に示すように、受電装置4Aは、筒状部材15、受電用コイル16、被給電体17を備えて構成される。筒状部材15は、磁性体で構成され、給電装置3Aの配線12が巻き込まれた磁性体11に挿通可能な構成とされる。
【0032】
受電用コイル16は、筒状部材15を磁性体11に挿通した際に、磁性体11に巻き込まれた第1給電用コイル12Aと略平行をなすように、筒状部材15の外周面に第1給電用コイル12Aと同一方向に巻き込まれて固定されている。この受電用コイル16は、給電用コイル12A,12Bと略同等の長さで筒状部材15に巻き込まれる。
【0033】
被給電体17は、例えばLED(発光ダイオード)や電球等の発光手段で構成される。図1の例では、被給電体17がLEDであり、2つのLEDD1,D2が受電用コイル16の両端に互いに逆方向に接続されている。
【0034】
上記構成による電磁気的結合装置1Aでは、受電装置4Aの筒状部材15を給電装置3Aの磁性体11に挿通して取り付ける。そして、LEDD1,D2を取り付けた受電用コイル16が磁性体11の第1給電用コイル12Aと重なっている状態(図1のA部)では、駆動回路8Aから図3に示すような電圧が第1給電用コイル12Aを介して受電用コイル16に電磁的に誘起され、受電用コイル16の両端に接続されたLEDD2が点灯する。そして、受電装置4Aの筒状部材15を給電装置3Aの磁性体11に沿って下方に移動して受電用コイル16が第2給電用コイル12Bと重なる状態(図1のB部)になると、受電用コイル16に誘起される電圧は図3のように方向が変化する。これにより、LEDD2が消灯してLEDD1が点灯する。このように、給電装置3Aの磁性体11に巻き込まれる給電用コイル12A,12Bの巻き方向を逆転させることにより、受電用コイル16の両端に接続されたLEDD1,D2の発光が切り替わる。
【0035】
なお、図3において、LEDD1,D2の動作は、点灯確認できる意味であり、実際の駆動波形ではない。また、上記動作説明では、筒状部材15を磁性体11に沿って移動させているが、磁性体11を筒状部材15に沿って移動させても同様に作用する。すなわち、磁性体11と筒状部材15の相対的な移動によって受電用コイル16に接続された2つのLEDD1,D2の発光を切り替えることができる。
【0036】
このように、第1実施の形態では、給電装置3Aの磁性体11に巻き込まれる配線12を部分的にその巻き方向を逆にして給電用コイル12A,12Bを形成している。これにより、駆動回路8Aから給電用コイル12A,12Bに電磁的に誘起される電圧は、第1給電用コイル12Aと第2給電用コイル12Bとで逆になるので、磁性体11に挿通される筒状部材15の位置によって被給電体17への受電状態を変化させることができる。その際、被給電体17として異なる発光色(例えば緑色と赤色など)の発光手段を用いれば、受電状態の変化を色の変化として認識することができる。
【0037】
次に、本発明による電磁気的結合装置の第2実施の形態を図4および図5に基づいて説明する。なお、第1実施の形態と同一の構成要素には同一番号を付して説明する。
【0038】
図4は本発明による電磁気的結合装置の第2実施の形態を示す図、図5は図4の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【0039】
図4に示すように、第2実施の形態の電磁気的結合装置1B(1)は、電源装置2B、給電装置3B、受電装置4Bを備えて構成される。
【0040】
図4に示すように、電源装置2Bは、更に電源5、発振回路6、分周回路7、駆動回路8Bを備えている。電源5は、直流電流を駆動電源として発振回路6、分周回路7、駆動回路8Bのそれぞれに出力している。発振回路6は、所定の周波数(例えば数十Hzから数kHz)の信号を発生して出力している。分周回路7は、発振回路6からの発振信号を分周しており、例えば数百Hzから数十kHzの周波数の分周信号を発生して出力している。
【0041】
駆動回路8Bは、第1実施の形態と同様に、例えば図2に示すような回路により構成される。この駆動回路8Bでは、分周回路7からの分周信号により交流電流の周期が決定され、後述する給電装置3Bの第1給電用コイル12Aと第2給電用コイル12Bに対し、数百Hzから数十kHzの周波数で図5に示すような電圧を印加して交流電流を供給している。
【0042】
給電装置3Bは、棒状の磁性体11と、磁性体11の外周面に巻き込まれて固定された配線12とを備えて構成される。また、図4の例において、1本の配線12により、第1給電用コイル12Aと第2給電用コイル12Bを形成している。さらに説明すると、駆動回路8Bの一方の出力8aから配線12が磁性体11の下方から上方に向かって引き出される。磁性体11の上方に引き出された配線12は、磁性体11の中央部に向かって右上がりに巻き込まれて所定長さの第1給電用コイル12Aを形成している(図4のA部)。この第1給電用コイル12Aを形成した配線12は、第1給電用コイル12Aの下方に部分的に巻き込みを行わない無巻線部分18(図4のC部)を形成した後、磁性体11の下方に向かって第1給電用コイル12Aと同方向の右上がりに巻き込まれて第1給電用コイル12Aと略同等長さの第2給電用コイル12Bを形成している(図4のB部)。磁性体11の下方まで引き出された配線12は、駆動回路8Bの他方の出力8bに接続される。
【0043】
図4に示すように、受電装置4Bは、筒状部材15、受電用コイル16、被給電体17を備えて構成される。筒状部材15は、磁性体で構成され、給電装置3Aの配線12が巻き込まれた磁性体11に挿通可能な構成とされる。
【0044】
受電用コイル16は、筒状部材15を磁性体11に挿通した際に、磁性体11に巻き込まれた2つの給電用コイル12A,12Bと略平行をなすように、筒状部材15の外周面に給電用コイル12A,12Bと同一方向に巻き込まれて固定されている。この受電用コイル16は、給電用コイル12A,12Bと略同等の長さで筒状部材15に巻き込まれる。
【0045】
被給電体17は、例えばLED(発光ダイオード)や電球等の発光手段で構成される。図4の例では、被給電体17がLEDであり、2つのLEDD1,D2が受電用コイル16の両端に互いに同方向に接続されている。
【0046】
上記構成による電磁気的結合装置1Bでは、受電装置4Bの筒状部材15を給電装置3Bの磁性体11に挿通して取り付ける。そして、LEDD1,D2を取り付けた受電用コイル16が磁性体11の第1給電用コイル12Aと重なっている状態(図4のA部)では、図5に示すような電圧が第1給電用コイル12Aを介して受電用コイル16に電磁的に誘起され、LEDD1,D2が共に点灯する。そして、受電装置4Bの筒状部材15を給電装置3Bの磁性体11に沿って下方に移動して受電用コイル16が無巻線部分18に位置すると、受電用コイル16に誘起される電圧が図5に示すように無くなり、LEDD1,D2が共に消灯する。そして、更に受電装置4Bの筒状部材15を給電装置3Bの磁性体11に沿って下方に移動して受電用コイル16が第2給電用コイル12Bと重なる状態(図4のB部)になると、図5に示すような電圧が第2給電用コイル12Bを介して受電用コイル16に誘起され、LEDD1,D2が再び点灯する。このように、給電装置3Bの磁性体11に巻き込まれる給電用コイル12A,12Bの間に無巻線部分18を設けることにより、受電用コイル16の両端に接続されたLEDD1,D2の発光が点灯・消灯・点灯と変化する。
【0047】
なお、図5において、LEDD1,D2の動作は、点灯確認できる意味であり、実際の駆動波形ではない。また、上記動作説明では、筒状部材15を磁性体11に沿って移動させているが、磁性体11を筒状部材15に沿って移動させても同様に作用する。
【0048】
このように、第2実施の形態では、磁性体11に巻き込まれる配線12の配線密集度を部分的に変化させている。図4の例では、配線12によって形成される第1給電用コイル12Aと第2給電用コイル12Bとの間に無巻線部分18を形成している。これにより、磁性体11に挿通される筒状部材15の位置によって被給電体17への受電状態を変化させることができる。その際、被給電体17として発光手段を用いれば、受電状態の変化を発光手段の点灯と消灯の動作変化として認識することができる。
【0049】
次に、本発明による電磁気的結合装置の第3実施の形態を図6乃至図8に基づいて説明する。なお、第1実施の形態と同一の構成要素には同一番号を付して説明する。
【0050】
図6は本発明による電磁気的結合装置の第3実施の形態を示す図、図7は図6の電磁気的結合装置における駆動回路の構成図、図8は図6の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【0051】
図6に示すように、第3実施の形態の電磁気的結合装置1C(1)は、電源装置2C、給電装置3C、受電装置4Cを備えて構成される。
【0052】
図6に示すように、電源装置2Cは、更に電源5、発振回路6、分周回路7、駆動回路8Cを備えている。電源5は、直流電流を駆動電源として発振回路6、分周回路7、駆動回路8Cのそれぞれに出力している。発振回路6は、所定の周波数(例えば数十Hzから数kHz)の信号を発生して出力している。分周回路7は、発振回路6からの発振信号を分周しており、例えば数百Hzから数kHzの周波数の分周信号を発生して出力するしている。
【0053】
駆動回路8Cは、図6に示すように、第1駆動回路8C1と第2駆動回路8C2を備えており、分周回路7から出力された分周信号により交流電流を出力している。さらに説明すると、駆動回路8Cは、例えば図7に示すような回路により構成される。図7において、第1駆動回路8C1は、分周回路7の出力がインバータNOT1に入力している。インバータNOT1の出力は、並列接続されたインバータNOT2とインバータNOT3に入力している。そして、インバータNOT2の出力がトランジスタTr1のベースに入力しており、インバータNOT3の出力がトランジスタTr2のベースに入力している。トランジスタTr1,Tr2とはダーリントン接続されている。トランジスタTr1のコレクタとトランジスタTr2のエミッタとの間には、トランジスタTr2のエミッタ側をアノードとしてダイオードD1,D2が直列接続されている。さらに、トランジスタTr1,Tr2の接続点P1は、後述する給電装置3Cの第1給電用コイル12Aに接続されている。
【0054】
また、分周回路7の出力はインバータNOT4とインバータNOT5に入力している。そして、インバータNOT4の出力がトランジスタTr3のベースに入力しており、インバータNOT5の出力がトランジスタTr4のベースに入力している。トランジスタTr3,Tr4とはダーリントン接続されている。トランジスタTr3のコレクタとトランジスタTr4のエミッタとの間には、トランジスタTr4のエミッタ側をアノードとしてダイオードD3,D4が直列接続されている。さらに、トランジスタTr3,Tr4の接続点P2は、後述する給電装置3Cの第3給電用コイル12Cに接続されている。
【0055】
第2駆動回路8C2は、第1駆動回路8C1のインバータNOT1の出力が、並列接続されたインバータNOT6とインバータNOT7に入力している。そして、インバータNOT6の出力がトランジスタTr5のベースに入力しており、インバータNOT7の出力がトランジスタTr6のベースに入力している。トランジスタTr5,Tr6とはダーリントン接続されている。トランジスタTr5のコレクタとトランジスタTr6のエミッタとの間には、トランジスタTr6のエミッタ側をアノードとしてダイオードD5,D6が直列接続されている。さらに、トランジスタTr5,Tr6の接続点P3は、後述する給電装置3Cの第2給電用コイル12Bに接続されている。
【0056】
また、分周回路7の出力がインバータNOT8とインバータNOT9に入力している。そして、インバータNOT8の出力がトランジスタTr7のベースに入力しており、インバータNOT9の出力がトランジスタTr8のベースに入力している。トランジスタTr7,Tr8とはダーリントン接続されている。トランジスタTr7のコレクタとトランジスタTr8のエミッタとの間には、トランジスタTr8のエミッタ側をアノードとしてダイオードD7,D8が直列接続されている。さらに、トランジスタTr7,Tr8の接続点P4は、後述する給電装置3Cの第4給電用コイル12Dに接続されている。
【0057】
これら第1、第2駆動回路8C1,8C2では、分周回路7からの分周信号により交流電流の周期が決定される。そして、第1駆動回路8C1は、後述する給電装置3Cの第1給電用コイル12Aと第3給電用コイル12Cに対し、数百Hzから数十kHzの周波数で図8に示すような電圧を印加して交流電流を供給している。また、第2駆動回路8C2は、後述する給電装置3Cの第2給電用コイル12Bと第4給電用コイル12Dに対し、数百Hzから数十kHzの周波数で図8に示すような電圧を印加して交流電流を供給している。
【0058】
給電装置3Cは、棒状の磁性体11と、磁性体11の外周面に巻き込まれて固定された配線12とを備えて構成される。図6の例において、各々独立した4本の配線12により、磁性体11の上方から第1給電用コイル12A、第2給電用コイル12B、第3給電用コイル12C、第4給電用コイル12Dを形成している。
【0059】
第1給電用コイル12Aは、磁性体11の最上部に位置し、第1駆動回路8C1の一方の出力8a1から配線12が磁性体11の上方に引き出され、磁性体11の下方に向かって右上がりに巻き込まれ、その先端が第1駆動回路8C1の他方の出力8b1に接続される。第2給電用コイル12Bは、第1給電用コイル12Aの下に位置し、第2駆動回路8C2の一方の出力8a2から第1給電用コイル12Aの近傍まで引き出され、磁性体11の下方に向かって第1給電用コイル12Aと同一方向の右上がりに巻き込まれ、その先端が第2駆動回路8C2の他方の出力8b2に接続される。第3給電用コイル12Cは、第2給電用コイル12Bの下に位置し、第1駆動回路8C1の一方の出力8a1から第2給電用コイル12Bの近傍まで引き出され、磁性体11の下方に向かって第1給電用コイル12Aと同一方向の右上がりに巻き込まれ、その先端が第1駆動回路8C1の他方の出力8b1に接続される。第4給電用コイル12Dは、第3給電用コイル12Cの下に位置し、第2駆動回路8C2の一方の出力8a2から第3給電用コイル12Cの近傍まで引き出され、磁性体11の下方に向かって第1給電用コイル12Aと同一方向の右上がりに巻き込まれ、その先端が第2駆動回路8C2の他方の出力8b2に接続される。なお、各給電用コイル12A〜12Dは、略同等の長さで磁性体11に巻き込まれる。
【0060】
図6に示すように、受電装置4Cは、筒状部材15、受電用コイル16、被給電体17を備えて構成される。筒状部材15は、磁性体で構成され、給電装置3Cの配線12が巻き込まれた磁性体11に挿通可能な構成とされる。
【0061】
受電用コイル16は、筒状部材15を磁性体11に挿通した際に、磁性体11に巻き込まれた第1乃至第4の給電用コイル12A〜12Dと平行をなすように、筒状部材15の外周面に給電用コイル12A〜12Dと同一方向に巻き込まれて固定されている。この受電用コイル16は、給電用コイル12A〜12Dと略同等の長さで筒状部材15に巻き込まれる。
【0062】
被給電体17は、例えばLED(発光ダイオード)や電球等の発光手段で構成される。図6の例では、被給電体17がLEDであり、2つのLEDD1,D2が受電用コイル17の両端に互いに逆方向に接続されている。
【0063】
上記構成による電磁気的結合装置1Cでは、受電装置4Cの筒状部材15を給電装置3Cの磁性体11に挿通して取り付ける。そして、LEDD1,D2を取り付けた受電用コイル16が磁性体11の第1給電用コイル12Aと重なっている状態(図6のA部)から第2給電用コイル12Bと重なる状態(図6のB部)に移動させた場合、各駆動回路8C1,8C2の位相が逆転しているときは、受電用コイル16に誘起される電圧が図8に示すように方向が変化する。これにより、受電用コイル16が第1給電用コイル12A又は第3給電用コイル12Cの何れかに重なっている状態(図6のA部)ではLEDD2が点灯する。また、受電用コイル16が給電用コイル12A〜12Dの2つのコイルの境界部分を跨がっている状態(図6のC部)では両方のLEDD1,D2が消灯する。さらに、受電用コイル16が第2給電用コイル12B又は第4給電用コイル12Dの何れかに重なっている状態(図6のB部)ではLEDD1が点灯する。
【0064】
ここで、第2駆動回路8C2の波形が第1駆動回路8C1の波形と同位相になると、受電用コイル16が第2給電用コイル12B又は第4給電用コイル12Dと重なっている状態(図6のB部)でLEDD2が点灯する。しかも、受電用コイル16が給電用コイル12A〜12Dの2つのコイルの境界部分を跨がっている状態(図6のC部)でもLEDD2が点灯し続けることになり、LEDD2は給電用コイル12A〜12D上の全ての位置で点灯する。このように、駆動回路8Cの位相を制御することにより、受電用コイル16の移動を行わなくても発光手段の発光を制御することが可能となる。
【0065】
なお、図8において、LEDD1,D2の動作は、点灯確認できる意味であり、実際の駆動波形ではない。また、上記動作説明では、筒状部材15を磁性体11に沿って移動させているが、磁性体11を筒状部材15に沿って移動させても同様に作用する。
【0066】
このように、第3実施の形態では、磁性体11の複数箇所に配線12を巻き込んで複数の給電用コイル12A〜12Dを形成し、これらの給電用コイル12A〜12Dを駆動する信号の位相やオン・オフを複数の駆動回路8C1,8C2により制御している。図6の例では、磁性体11に対し4つの配線12により個々に独立して第1乃至第4給電用コイル12A〜12Dを形成し、第1給電用コイル12Aと第3給電用コイル12Cを第1駆動回路8C1により制御し、第2給電用コイル12Bと第4給電用コイル12Dを第2駆動回路8C2により制御している。これにより、磁性体11に挿通される筒状部材15の位置によって被給電体17への受電状態を変化させることができる。その際、被給電体17として異なる発光色(例えば緑色と赤色など)の発光手段を用いれば、受電状態の変化を発光手段の点灯と消灯の動作変化として認識することができる。
【0067】
次に、本発明による電磁気的結合装置の第4実施の形態を図9および図10に基づいて説明する。なお、第1実施の形態と同一の構成要素には同一番号を付して説明する。
【0068】
図9は本発明による電磁気的結合装置の第4実施の形態を示す図、図10は図9の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【0069】
図9に示すように、第4実施の形態の電磁気的結合装置1D(1)は、電源装置2D、給電装置3D、受電装置4Dを備えて構成される。
【0070】
図9に示すように、電源装置2Dは、更に電源5、発振回路6、分周回路7、駆動回路8Dを備えている。電源5は、直流電流を駆動電源として発振回路6、分周回路7、駆動回路8Dのそれぞれに出力している。発振回路6は、所定の周波数(例えば数十Hzから数kHz)の信号を発生して出力している。分周回路7は、発振回路6からの発振信号を分周しており、例えば数百Hzから数十kHzの周波数の分周信号を発生して出力している。
【0071】
駆動回路8Dは、第1実施の形態と同様に、例えば図2に示すような回路により構成される。この駆動回路8Dでは、分周回路7からの分周信号により交流電流の周期が決定され、後述する給電装置3Dの第1乃至第3給電用コイル12A,12B,12cに対し、数百Hzから数十kHzの周波数で図10に示すような電圧を印加して交流電流を供給している。
【0072】
給電装置3Dは、棒状の磁性体11と、磁性体11の外周面に巻き込まれて固定された配線12とを備えて構成される。図9の例において、各々独立した3本の配線12により、磁性体11の上方から第1給電用コイル12A、第2給電用コイル12B、第3給電用コイル12Cを形成している。
【0073】
第1給電用コイル12Aは、磁性体11の最上部に位置し、駆動回路8Dの一方の出力8aから配線12が磁性体11の上方に引き出され、磁性体11の下方に向かって右上がりに巻き込まれ、その先端が駆動回路8Dの他方の出力8bに接続される。第2給電用コイル12Bは、第1給電用コイル12Aの下に位置し、駆動回路8Dの他方の出力8bから第1給電用コイル12Aの近傍まで引き出され、磁性体11の下方に向かって第1給電用コイル12Aと同一方向の右上がりに巻き込まれ、その先端が駆動回路8Dの一方の出力8aに接続される。すなわち、この第2給電用コイル12Bは、駆動回路8Dに対して第1給電用コイル12Aとは逆に接続されている。第3給電用コイル12Cは、第2給電用コイル12Bの下に位置し、駆動回路8Dの一方の出力8aから第2給電用コイル12Bの近傍まで引き出され、磁性体11の下方に向かって第1給電用コイル12Aと同一方向の右上がりに巻き込まれ、その先端が駆動回路8Dの他方の出力8bに接続される。
【0074】
なお、各給電用コイル12A〜12Cは、後述する受電装置4Dの受電用コイルと略同一長さ又は整数倍以上の長さで磁性体11に巻き込まれるものである。図9の例では、第1給電用コイル12Aと第2給電用コイル12Bが略同一長さで磁性体11に巻き込まれ、第3給電用コイル12Cがその略倍の長さで磁性体11に巻き込まれている。
【0075】
図9に示すように、受電装置4Dは、筒状部材15、受電用コイル16、被給電体17を備えて構成される。筒状部材15は、磁性体で構成され、給電装置3Dの配線12が巻き込まれた磁性体11に挿通可能な構成とされる。
【0076】
図9の例において、受電用コイル16は、各々独立した2本の巻線からなる第1受電用コイル16Aと第2受電用コイル16Bを形成している。これら第1、第2受電用コイル16A,16Bは、筒状部材15を磁性体11に挿通した際に、磁性体11に巻き込まれた第1乃至第3給電用コイル12A〜12Cと平行をなすように、筒状部材15の外周面に給電用コイル12A〜12Cと同一方向に巻き込まれて固定されている。図9の例では、各受電用コイル16A,16Bが第1給電用コイル12Aと略同等又はそれより短い長さで筒状部材15に巻き込まれている。
【0077】
被給電体17は、例えばLED(発光ダイオード)や電球等の発光手段で構成される。図9の例では、被給電体17がLEDであり、D1〜D5の5つのLEDで構成される。さらに説明すると、LEDD1,LEDD2は、第1受電用コイル16Aの始端と第2受電用コイル16Bの始端との間に互いに逆方向に並列接続されている。また、LEDD3,D4は、第2受電用コイル16Bの始端と終端との間に互いに逆方向に並列接続されている。さらに、LEDD5は、第1受電用コイル16Aの始端と第2受電用コイル16Bの終端との間に対し、第2受電用コイル16B側をアノードとして接続されている。このLEDD5のVF(直流順電圧)は、受電用コイル16に対して同一方向に接続されたLEDD1とLEDD3のVF(直流順電圧)よりも小さいものとなっている。
【0078】
上記構成による電磁気的結合装置1Dでは、受電用コイル16A,16Bが図9のA部に位置している状態では、第1給電用コイル12Aと第2給電用コイル12Bを介して受電用コイル16A,16Bに誘起された電圧によりLEDD1とLEDD4が点灯する。筒状部材15を磁性体11に沿って下方に移動し、受電用コイル16A,16Bが図9のC部に位置すると、各々の受電用コイル16A,16Bには逆方向の交流電流が流れる。その結果、受電用コイル16A,16Bにより発生する電圧が無くなり、全てのLEDD1〜LEDD5は消灯する。さらに筒状部材15を磁性体11に沿って下方に移動し、受電用コイル16A,16Bが図9のB部に位置すると、受電用コイル16A,16BにはA部の時とは逆の電圧が誘起される。これにより、LEDD2とLEDD3が点灯する。そして、さらに筒状部材15を磁性体11に沿って下方に移動し、受電用コイル16A,16Bが図9のE部、D部に位置すると、受電用コイル16Aに発生する電圧が徐々にその極性を反転し、LEDD5に対して電圧を印加する。そして、LEDD5が点灯すると、この順方向電圧により受電用コイル16A,16Bからの発生電圧が抑えられるため、本来点灯すべきLEDD3とLEDD1は消灯する。
【0079】
なお、図10において、LEDD1〜LEDD5の動作は、点灯確認できる意味であり、実際の駆動波形ではない。また、上記動作説明では、筒状部材15を磁性体11に沿って移動させているが、磁性体11を筒状部材15に沿って移動させても同様に作用する。
【0080】
また、図9の例では、第1給電用コイル12Aと第3給電用コイル12Cの両端が駆動回路8Dの出力に対して同一に接続され、第2給電用コイル12Bの両端が駆動回路8Dに対して第1給電用コイル12Aとは逆に接続されているが、全ての給電用コイル12A〜12Cの両端を駆動回路8Dの出力に対して同一に接続してもよい。この場合、第1給電用コイル12Aと第3給電用コイル12Cを同一方向に巻き込み、第2給電用コイル12Bの巻き方向を第1給電用コイル12Aとは逆にする。
【0081】
このように、第4実施の形態では、給電装置3Dの磁性体11に巻き込まれる給電用コイル12を3箇所に設けて各々独立した複数の回路を構成し、受電装置4Dの筒状部材15に巻き込まれる受電用コイル16を2箇所に設け、磁性体11と筒状部材15の相対的な移動に伴うコイル間の電位差により受電状態を変化させている。これにより、磁性体11に挿通される筒状部材15の位置によって被給電体17への受電状態を変化させることができる。その際、被給電体17として異なる発光色の発光手段、例えば図9においてLEDD1〜LEDD4が緑色、LEDD5が赤色に発光する発光手段を用いれば、受電状態の変化を発光手段の点灯と消灯の動作変化や色変化として認識することができる。
【0082】
以上説明した本例の電磁気的結合装置によれば、磁性体11に給電用コイル12が巻き込まれた給電装置3と、給電装置3の磁性体11に挿通される筒状部材15に受電用コイル16が巻き込まれた受電装置4との位置関係によって受電状態を任意に変えることができる。
【0083】
また、給電装置3の磁性体11の両端が開放された構成なので、被給電体17が接続される受電装置4を給電装置3の磁性体11に対して簡単に着脱することができる。しかも、被給電体17として発光手段を接続した場合には、給電装置3に対して発光手段が接続された受電装置4を自由に交換でき、発光手段の発光色パターンを任意に変えることができる。すなわち、単なる点灯や消灯の切り替えだけでなく、給電装置3と受電装置4との位置関係に伴う受電状態の変化により表示の自由度を向上させることができる。
【0084】
さらに、給電装置3の磁性体11としては、剛体に限らず、柔軟性を有するもので構成することが可能である。この場合、柔軟性を有する磁性体11に挿通される受電装置4の筒状部材15も磁性体11に沿ってスムーズに移動できるように柔軟性を有するのが好ましい。これにより、直線に限らず、曲線、環状など様々な形状に自由に変形することができる。また、給電装置3の磁性体11の一部(例えば一端部)に電源装置2を内蔵させる構成とすれば、さらに構成の簡略化を図ることができる。
【0085】
そして、本例の電磁気的結合装置1(1A〜1D)は、給電装置3と受電装置4の相対的な移動により、その位置関係によって受電状態が変化する。これにより、本例の電磁気的結合装置1において給電装置3から受電装置4を介して非接触で被給電体17に伝達される電力エネルギーを様々なものに利用できる。
【0086】
例えば被給電体17として発光手段を用いれば、クリスマスツリーの電飾装置として利用することができる。また、給電装置3の磁性体11を様々な形(例えば文字、絵など)に変形して衣類の表面に装着し、被給電体17として発光手段を用いれば、この発光手段の各種色の組み合わせで発光する様々なデザインの衣類を提供することができる。
【0087】
本例の装置を位置センサとして例えば水位計に用いた場合には、被給電体17として発光手段を接続した受電装置4をフロートに取り付け、水位によってフロートが上下した際、水位を発光手段の色により認識することができる。例えば第4実施の形態において、D部の位置を異常位置と設定し、LEDD5の発光色を赤色とすれば、受電装置4を設けたフロートがD部の位置まで水位が下がったときにLEDD5が赤色に発光するので、そのときに同時にアラーム音を出力すれば、色と音により異常を知らせることができる。
【0088】
さらに、本例の装置を例えば剣や刀などの棒状物に採用すれば、剣や刀を振り下ろした際の力の入れ具合に応じて発光手段の色が変化する玩具を構成することができる。この他、受電装置4が受電した電力を電源駆動用信号とON/OFF信号としてICに入力し、このICの駆動により液晶表示器の表示を制御することも可能である。また、受電装置4の受電用コイル16から取り出せる電力を大きくすれば、モータ等の駆動電源としても利用可能である。
【0089】
【発明の効果】
以上の説明で明らかなように、本発明に係る電磁気的結合装置によれば、磁性体に給電用コイルが巻き込まれた給電装置と、給電装置の磁性体に挿通される筒状部材に受電用コイルが巻き込まれた受電装置との位置関係によって受電状態を任意に変えることができる。
【0090】
また、磁性体と筒状部材とを柔軟性を有する構成とすれば、直線に限らず、曲線、環状などの様々な形状に自由に変形することができる。
【0091】
さらに、被給電体として発光手段を用いれば、単なる点灯や消灯の切り替えだけでなく、給電装置と受電装置との位置関係によって受電状態を変えることにより表示の自由度を向上させることができる。
【0092】
そして、給電装置の磁性体に巻き込まれる給電用コイルを部分的にその巻き方向を逆にする構成とすれば、給電用コイルに電磁的に誘起される電圧は、巻き方向によって逆になるので、磁性体に挿通される筒状部材の位置によって被給電体への受電状態を変化させることができる。その際、被給電体として異なる発光色(例えば緑色と赤色など)の発光手段を用いれば、受電状態の変化を色の変化として認識することができる。
【0093】
磁性体に巻き込まれる給電用コイルの配線密集度を部分的に変化させる構成とすれば、磁性体に挿通される筒状部材の位置によって被給電体への受電状態を変化させることができる。その際、被給電体として発光手段を用いれば、受電状態の変化を発光手段の点灯と消灯の動作変化として認識することができる。
【0094】
磁性体の複数箇所に給電用コイルを巻き込み、これらの給電用コイルを駆動する信号の位相やオン・オフを複数の駆動回路により制御する構成とすれば、磁性体に挿通される筒状部材の位置によって被給電体への受電状態を変化させることができる。その際、被給電体として異なる発光色(例えば緑色と赤色など)の発光手段を用いれば、受電状態の変化を発光手段の点灯と消灯の動作変化として認識することができる。
【0095】
磁性体に巻き込まれる給電用コイルを複数箇所に設けて各々独立した複数の回路を構成し、筒状部材に巻き込まれる受電用コイルを複数箇所に設け、磁性体と筒状部材の相対的な移動に伴うコイル間の電位差により受電状態を変化させる構成とすれば、磁性体に挿通される筒状部材の位置によって被給電体への受電状態を変化させることができる。その際、被給電体として異なる発光色の発光手段を用いれば、受電状態の変化を色の変化として認識することができる。
【図面の簡単な説明】
【図1】本発明による電磁気的結合装置の第1実施の形態を示す図である。
【図2】図1の電磁気的結合装置における駆動回路の構成図である。
【図3】図1の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【図4】本発明による電磁気的結合装置の第2実施の形態を示す図である。
【図5】図4の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【図6】本発明による電磁気的結合装置の第3実施の形態を示す図である。
【図7】図6の電磁気的結合装置における駆動回路の構成図である。
【図8】図6の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【図9】本発明による電磁気的結合装置の第4実施の形態を示す図である。
【図10】図9の電磁気的結合装置を動作させたときの給電用コイルと受電用コイルの電圧波形を含むタイミングチャートである。
【図11】非接触により電力を得る給電装置の概略構成を示す図である。
【符号の説明】
1(1A〜1D)…電磁気的結合装置、2(2A〜2D)…電源装置、3(3A〜3D)…給電装置、4(4A〜4D)…受電装置、8(8A〜8D)…駆動回路、11…磁性体、12…配線、12A,12B…給電用コイル、15…筒状部材、16(16A,16B)…受電用コイル、17…被給電体、18…無巻線部分。
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a power feeding coil through which a current flows is wound around a magnetic body, a cylindrical member around which a power receiving coil is wound is attached to the magnetic body, and the relative movement between the magnetic body and the cylindrical member is applied to the power feeding coil. An electromagnetic coupling device that obtains electric power by electromagnetically inducing the current flowing in the power feeding coil by controlling the current in the power receiving coil, and the power feeding device constituting the electromagnetic coupling device In place Related.
[0002]
[Prior art]
Conventionally, when power is supplied from a household power source or a power source such as a battery, a connector or a socket is provided on the wiring connected to the power source or the power circuit, and direct power contact is made to the wiring. Was taking out. For example, when installing an illuminating device using a fluorescent lamp or a light bulb, a fluorescent lamp or a light bulb is attached to a connector or socket provided on the wiring, and power is supplied through the connector or socket. . In addition, even when an electric decoration device is provided, electric power is supplied to the electric decoration via a socket or the like previously provided on the wiring. Furthermore, even when a sensor or the like for crime prevention is provided, power is supplied to the sensor or the like via a connector or the like provided at a predetermined position.
Prior art document information relating to the invention of this application includes the following.
[0003]
[Patent Document 1]
JP-A-6-51707
[0004]
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-8407
[0005]
As described above, as a conventional method of supplying electric power, an object such as a connector or a socket supplied through mechanical contact is generally used. However, in such a configuration, for example, when the user tries to change the position and number of fluorescent lamps and light bulbs, the position and number of the power to be taken out depend on the position and number of connectors and sockets that have direct contact with the wiring. Come on. For this reason, there exists a subject that a big design change and construction will be needed. In addition, in the case of a connector or socket having direct electrical contact with the wiring, mechanical stress concentrates on the connecting portion, which may cause a short circuit, disconnection, or electric shock.
[0006]
[Problems to be solved by the invention]
By the way, as a countermeasure for solving the above-described problem, a power feeding device that supplies power in a non-contact manner using magnetism has been proposed.
[0007]
FIG. 11 shows a schematic configuration of the power feeding apparatus proposed above. A power feeding device 51 illustrated in FIG. 11 includes a power supply device 52 and a power distribution device 53.
[0008]
The power supply device 52 includes a power supply 54, an oscillation circuit 55, a frequency divider circuit 56, and a drive circuit 57. The power source 54 outputs a direct current as a driving power source to each of the oscillation circuit 55, the frequency dividing circuit 56, and the driving circuit 57. The oscillation circuit 55 generates and outputs an oscillation signal having a predetermined frequency. The frequency divider 56 divides the signal output from the oscillation circuit 55 to a desired frequency and outputs a frequency-divided signal. The drive circuit 57 outputs an alternating current by switching the frequency-divided signal output from the frequency-dividing circuit 56 in the positive and negative directions at a predetermined cycle.
[0009]
The power distribution device 53 includes a wiring 58, power distribution means 59, and a power receiver 60. The wiring 58 is formed in a ring shape, and flows an alternating current that is electromagnetically induced and output from the drive circuit 57 of the power supply device 52. The power distribution means 59 is provided in the vicinity of the wiring 58, and distributes power by causing a bidirectional current electromagnetically induced by an alternating current flowing through the wiring 58 to flow through a copper wire wound around a magnetic material. The power-supplied body 60 is connected to the winding of the power distribution means 59 and is driven by a bidirectional current flowing through the winding.
[0010]
In the power feeding device 51 configured as described above, the oscillation circuit 55 is driven by the power supply 54 to generate a signal having a predetermined frequency. A signal generated by the oscillation circuit 55 is input to the frequency dividing circuit 56. The frequency dividing circuit 56 outputs a frequency-divided signal for frequency-dividing the input signal to a desired frequency and a switching signal for switching the positive / negative direction to the drive circuit 57. The drive circuit 57 switches a signal having a desired cycle in the positive and negative directions at a constant cycle based on the input frequency-divided signal and switching signal, and outputs an alternating current. The alternating current output from the drive circuit 57 is passed through the wiring 58. The alternating current passed through the wiring 58 is electromagnetically induced in the magnetic winding of the power distribution means 59. As a result, a bidirectional current flows through the magnetic winding of the power distribution means 59. The bidirectional current is supplied as electric power to the power supply body 60 connected to both ends of the winding of the power distribution means 59.
[0011]
However, in the power feeding device 51 shown in FIG. 11 described above, the annular wiring 58 for flowing an alternating current from the drive circuit 57 and the winding of the power distribution means 59 are magnetically coupled, and the wiring 58 The power receiving state of the power distribution means 59 is the same at any of the positions, and the power receiving state cannot be changed according to the position of the power distribution means 59 on the wiring 58. Therefore, when a light-emitting element is used for the power-supplied body 60 of this type of power supply device 51 and the device is used as an illumination device, it can only be switched on / off by turning on / off the current to the light-emitting means. There arises a problem that the degree of freedom is low.
[0012]
Therefore, the present invention has been made in view of the above problems, and can change the power reception state. When a light emitting means is used as a power supply body, the change in the power reception state is recognized as a color change. It is an object of the present invention to provide an electromagnetic coupling device that can be used.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is a power supply device in which a power supply coil through which a current flows is wound on an electromagnetically opened magnetic body, and a power supply device that supplies an alternating current to the power supply coil. And a power receiving device in which a power receiving coil is wound around the cylindrical member, and a power receiver is connected to the power receiving coil, and electromagnetically induces a current flowing through the power feeding coil in the power receiving coil. An electromagnetic coupling device for obtaining power,
The cylindrical member is attached to the magnetic body so as to be relatively movable, and the winding direction of the power feeding coil is partially reversed.
[0014]
According to a second aspect of the present invention, there is provided a power supply device in which a power supply coil through which a current flows is wound on a magnetic body that is electromagnetically opened, a power supply device that supplies an alternating current to the power supply coil, and a cylindrical member that receives power. An electromagnetic coupling device for obtaining electric power by electromagnetically inducing a current flowing in the power supply coil in the power reception coil, the power reception device having a power supply coil connected to the power reception coil Because
The cylindrical member is attached to the magnetic body so as to be relatively movable, and the density of the power feeding coil is partially changed.
[0015]
According to a third aspect of the present invention, there is provided a power supply device in which a power supply coil through which a current flows is wound on a magnetic body that is electromagnetically opened, a power supply device that supplies an alternating current to the power supply coil, and a cylindrical member that receives power. An electromagnetic coupling device for obtaining electric power by electromagnetically inducing a current flowing in the power supply coil in the power reception coil, the power reception device having a power supply coil connected to the power reception coil Because
The cylindrical member is attached to the magnetic body so as to be relatively movable, and the feeding coil is provided at a plurality of locations of the magnetic body,
A drive circuit for controlling at least one of a phase of a signal for driving the power feeding coil and ON / OFF is provided.
[0016]
According to a fourth aspect of the present invention, there is provided a power supply device in which a power supply coil through which a current flows is wound on a magnetic body that is electromagnetically opened, a power supply device that supplies an alternating current to the power supply coil, and a cylindrical member that receives power. An electromagnetic coupling device for obtaining electric power by electromagnetically inducing a current flowing in the power supply coil in the power reception coil, the power reception device having a power supply coil connected to the power reception coil Because
The cylindrical member is attached to the magnetic body so as to be relatively movable,
The power receiving coil is provided at a plurality of locations of the cylindrical member,
The power supply coil is provided at a plurality of locations of the magnetic body with the same length or a multiple of an integral multiple of the length of the power reception coil,
The power receiving state is changed by a potential difference between the coils accompanying relative movement of the magnetic body and the cylindrical member.
[0017]
According to a fifth aspect of the present invention, in the electromagnetic coupling device according to any one of the first to fourth aspects, the power-supplied body is a light emitting means.
[0018]
A sixth aspect of the present invention is the electromagnetic coupling device according to any one of the first to fourth aspects, wherein the magnetic body and the cylindrical member have flexibility.
[0019]
According to a seventh aspect of the present invention, there is provided a power supply device in which a power supply coil through which a current flows is wound with respect to a magnetic body that is electromagnetically opened, a power supply device that supplies an alternating current to the power supply coil, and the magnetic body. And a power receiving device having a power receiving coil connected to the power receiving coil, and a current flowing through the power feeding coil. A power supply device used in an electromagnetic coupling device that electromagnetically induces electric power to obtain electric power,
The power supply coil is partially wound around the magnetic body with a winding direction reversed.
[0020]
According to an eighth aspect of the present invention, there is provided a power supply device in which a power supply coil through which a current flows is wound with respect to a magnetic body that is electromagnetically opened, a power supply device that supplies an alternating current to the power supply coil, and the magnetic body. And a power receiving device having a power receiving coil connected to the power receiving coil, and a current flowing through the power feeding coil. A power supply device used in an electromagnetic coupling device that electromagnetically induces electric power to obtain electric power,
The power feeding coil is wound around the magnetic body with a partial change in density.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
1 is a diagram showing a first embodiment of an electromagnetic coupling device according to the present invention, FIG. 2 is a configuration diagram of a drive circuit in the electromagnetic coupling device of FIG. 1, and FIG. 3 is a diagram for operating the electromagnetic coupling device of FIG. It is a timing chart containing the voltage waveform of the coil for electric power feeding and the coil for electric power reception at the time.
[0024]
First, a first embodiment of an electromagnetic coupling device according to the present invention will be described with reference to FIGS.
[0025]
As shown in FIG. 1, the electromagnetic coupling device 1A (1) of the first embodiment includes a power supply device 2A, a power feeding device 3A, and a power receiving device 4A.
[0026]
As shown in FIG. 1, the power supply device 2A further includes a power supply 5, an oscillation circuit 6, a frequency divider circuit 7, and a drive circuit 8A. The power supply 5 outputs a direct current as a drive power supply to each of the oscillation circuit 6, the frequency divider circuit 7, and the drive circuit 8A. The oscillation circuit 6 generates and outputs a signal having a predetermined frequency (for example, several tens Hz to several kHz). The frequency dividing circuit 7 divides the oscillation signal from the oscillation circuit 6, and generates and outputs a frequency division signal having a frequency of, for example, several hundred Hz to several tens kHz.
[0027]
The drive circuit 8A is configured by a circuit as shown in FIG. 2, for example. In the drive circuit 8A shown in FIG. 2, the output of the frequency divider circuit 7 is input to the inverter NOT1. The output of the inverter NOT1 is input to the inverter NOT2 and the inverter NOT3 connected in parallel. The output of the inverter NOT2 is input to the base of the transistor Tr1, and the output of the inverter NOT3 is input to the base of the transistor Tr2. The transistors Tr1 and Tr2 are Darlington connected. Between the collector of the transistor Tr1 and the emitter of the transistor Tr2, diodes D1 and D2 are connected in series with the emitter side of the transistor Tr2 as an anode. Furthermore, the output 8a drawn from the connection point P1 of the transistors Tr1 and Tr2 is connected to the wiring 12 (the first power supply coil 12A side) of the power supply device 3B described later.
[0028]
Further, the output of the frequency dividing circuit 7 is input to the inverter NOT4 and the inverter NOT5. The output of the inverter NOT4 is input to the base of the transistor Tr3, and the output of the inverter NOT5 is input to the base of the transistor Tr4. The transistors Tr3 and Tr4 are Darlington connected. Between the collector of the transistor Tr3 and the emitter of the transistor Tr4, diodes D3 and D4 are connected in series with the emitter side of the transistor Tr4 as an anode. Further, the output 8b drawn from the connection point P2 of the transistors Tr3 and Tr4 is connected to the wiring 12 (second feeding coil 12B side) of the feeding device 3B described later.
[0029]
In this drive circuit 8A, the period of the alternating current is determined by the frequency dividing signal from the frequency dividing circuit 7, and from several hundred Hz to the first power supply coil 12A and the second power supply coil 12B of the power supply device 3A described later. An alternating current is supplied by applying a voltage as shown in FIG. 3 at a frequency of several tens of kHz.
[0030]
The power feeding device 3 </ b> A includes a magnetic body 11 and a wiring 12 that is wound around and fixed to the outer peripheral surface of the magnetic body 11. The magnetic body 11 is configured in an electromagnetically open state (a state in which the magnetic body 11 is not integrally formed in an annular shape). In the example of FIG. 1, the magnetic body 11 is formed of a linear bar. Further, in the example of FIG. 1, two wires of the first power supply coil 12 </ b> A and the second power supply coil 12 </ b> B are formed by one wiring 12. More specifically, the wiring 12 is drawn from the lower side of the magnetic body 11 upward from one output 8a of the driving circuit 8. The wiring 12 drawn out above the magnetic body 12 is wound upward to the center of the magnetic body 12 to form a first feeding coil 12A having a predetermined length (A portion in FIG. 1). . The wiring 12 forming the first power feeding coil 12A is wound in the reverse direction from the position of the substantially central portion of the magnetic body 11, that is, downwardly to the right, and has the same length as the first power feeding coil. The coil 12B is formed (B portion in FIG. 1). The wiring 12 drawn to the lower side of the magnetic body 11 is connected to the other output 8 b of the drive circuit 8.
[0031]
As shown in FIG. 1, the power receiving device 4 </ b> A includes a cylindrical member 15, a power receiving coil 16, and a power supplied body 17. The cylindrical member 15 is made of a magnetic material and can be inserted into the magnetic material 11 in which the wiring 12 of the power feeding device 3A is wound.
[0032]
The power receiving coil 16 is formed on the outer peripheral surface of the cylindrical member 15 so as to be substantially parallel to the first power supply coil 12 </ b> A wound around the magnetic body 11 when the cylindrical member 15 is inserted into the magnetic body 11. It is wound and fixed in the same direction as the one feeding coil 12A. The power receiving coil 16 is wound around the cylindrical member 15 with substantially the same length as the power feeding coils 12A and 12B.
[0033]
The power-supplied body 17 is composed of light emitting means such as an LED (light emitting diode) or a light bulb. In the example of FIG. 1, the power-supplied body 17 is an LED, and two LEDs D1 and D2 are connected to opposite ends of the power receiving coil 16 in opposite directions.
[0034]
In the electromagnetic coupling device 1A configured as described above, the cylindrical member 15 of the power receiving device 4A is inserted and attached to the magnetic body 11 of the power feeding device 3A. In a state where the power receiving coil 16 to which the LEDs D1 and D2 are attached overlaps the first power feeding coil 12A of the magnetic body 11 (A part in FIG. 1), the voltage as shown in FIG. The LED D <b> 2 that is electromagnetically induced in the power receiving coil 16 via the one power feeding coil 12 </ b> A and is connected to both ends of the power receiving coil 16 is lit. When the cylindrical member 15 of the power receiving device 4A is moved downward along the magnetic body 11 of the power feeding device 3A and the power receiving coil 16 overlaps the second power feeding coil 12B (B portion in FIG. 1), The direction of the voltage induced in the power receiving coil 16 changes as shown in FIG. Thereby, LEDD2 turns off and LEDD1 lights up. In this way, the light emission of the LEDs D1 and D2 connected to both ends of the power receiving coil 16 is switched by reversing the winding direction of the power feeding coils 12A and 12B wound around the magnetic body 11 of the power feeding device 3A.
[0035]
In FIG. 3, the operations of the LEDs D1 and D2 mean that the lighting can be confirmed, and are not actual driving waveforms. In the above description of the operation, the cylindrical member 15 is moved along the magnetic body 11. However, even if the magnetic body 11 is moved along the cylindrical member 15, the same effect is obtained. That is, the light emission of the two LEDs D1 and D2 connected to the power receiving coil 16 can be switched by the relative movement of the magnetic body 11 and the cylindrical member 15.
[0036]
Thus, in the first embodiment, the power supply coils 12A and 12B are formed by partially reversing the winding direction of the wiring 12 wound around the magnetic body 11 of the power supply device 3A. As a result, the voltage electromagnetically induced from the drive circuit 8A to the power supply coils 12A and 12B is reversed between the first power supply coil 12A and the second power supply coil 12B. Depending on the position of the cylindrical member 15, the power receiving state to the power-supplied body 17 can be changed. At that time, if light emitting means having different light emission colors (for example, green and red) are used as the power supplied body 17, a change in the power receiving state can be recognized as a color change.
[0037]
Next, a second embodiment of the electromagnetic coupling device according to the present invention will be described with reference to FIGS. In addition, the same number is attached | subjected and demonstrated to the component same as 1st Embodiment.
[0038]
FIG. 4 is a diagram showing a second embodiment of an electromagnetic coupling device according to the present invention, and FIG. 5 is a timing chart including voltage waveforms of a power feeding coil and a power receiving coil when the electromagnetic coupling device of FIG. 4 is operated. It is.
[0039]
As shown in FIG. 4, the electromagnetic coupling device 1B (1) of the second embodiment includes a power supply device 2B, a power feeding device 3B, and a power receiving device 4B.
[0040]
As shown in FIG. 4, the power supply device 2B further includes a power supply 5, an oscillation circuit 6, a frequency divider circuit 7, and a drive circuit 8B. The power source 5 outputs a direct current as a driving power source to each of the oscillation circuit 6, the frequency dividing circuit 7, and the driving circuit 8B. The oscillation circuit 6 generates and outputs a signal having a predetermined frequency (for example, several tens Hz to several kHz). The frequency dividing circuit 7 divides the oscillation signal from the oscillation circuit 6, and generates and outputs a frequency division signal having a frequency of, for example, several hundred Hz to several tens kHz.
[0041]
The drive circuit 8B is configured by a circuit as shown in FIG. 2, for example, as in the first embodiment. In this drive circuit 8B, the period of the alternating current is determined by the frequency-divided signal from the frequency divider circuit 7, and from several hundred Hz to the first power supply coil 12A and the second power supply coil 12B of the power supply device 3B described later. An alternating current is supplied by applying a voltage as shown in FIG. 5 at a frequency of several tens of kHz.
[0042]
The power feeding device 3 </ b> B includes a rod-shaped magnetic body 11 and a wiring 12 that is wound around and fixed to the outer peripheral surface of the magnetic body 11. Further, in the example of FIG. 4, the first power supply coil 12 </ b> A and the second power supply coil 12 </ b> B are formed by one wiring 12. More specifically, the wiring 12 is drawn from the lower side to the upper side of the magnetic body 11 from one output 8a of the drive circuit 8B. The wiring 12 drawn out above the magnetic body 11 is wound upwardly toward the center of the magnetic body 11 to form a first feeding coil 12A having a predetermined length (A section in FIG. 4). . The wiring 12 on which the first power supply coil 12A is formed forms a non-winding portion 18 (part C in FIG. 4) that is not partially wound below the first power supply coil 12A, and then the magnetic material 11 The second power supply coil 12B having a length substantially equal to that of the first power supply coil 12A is formed by being wound upwardly to the right in the same direction as the first power supply coil 12A (B portion in FIG. 4). ). The wiring 12 drawn out below the magnetic body 11 is connected to the other output 8b of the drive circuit 8B.
[0043]
As shown in FIG. 4, the power receiving device 4 </ b> B includes a cylindrical member 15, a power receiving coil 16, and a power supplied body 17. The cylindrical member 15 is made of a magnetic material and can be inserted into the magnetic material 11 in which the wiring 12 of the power feeding device 3A is wound.
[0044]
The power receiving coil 16 has an outer peripheral surface of the cylindrical member 15 so as to be substantially parallel to the two power supply coils 12A and 12B wound around the magnetic body 11 when the cylindrical member 15 is inserted into the magnetic body 11. Are wound and fixed in the same direction as the feeding coils 12A and 12B. The power receiving coil 16 is wound around the cylindrical member 15 with substantially the same length as the power feeding coils 12A and 12B.
[0045]
The power-supplied body 17 is composed of light emitting means such as an LED (light emitting diode) or a light bulb. In the example of FIG. 4, the power-supplied body 17 is an LED, and two LEDs D1 and D2 are connected to both ends of the power receiving coil 16 in the same direction.
[0046]
In the electromagnetic coupling device 1B having the above configuration, the cylindrical member 15 of the power receiving device 4B is inserted and attached to the magnetic body 11 of the power feeding device 3B. When the power receiving coil 16 to which the LEDs D1 and D2 are attached overlaps the first power feeding coil 12A of the magnetic body 11 (A portion in FIG. 4), a voltage as shown in FIG. Electromagnetically induced in the power receiving coil 16 through 12A, both the LEDs D1 and D2 are lit. When the cylindrical member 15 of the power receiving device 4B is moved downward along the magnetic body 11 of the power feeding device 3B and the power receiving coil 16 is positioned in the unwinding portion 18, the voltage induced in the power receiving coil 16 is increased. As shown in FIG. 5, it disappears and both LEDs D1 and D2 are extinguished. When the cylindrical member 15 of the power receiving device 4B is further moved downward along the magnetic body 11 of the power feeding device 3B, the power receiving coil 16 is overlapped with the second power feeding coil 12B (B portion in FIG. 4). A voltage as shown in FIG. 5 is induced in the power receiving coil 16 via the second power feeding coil 12B, and the LEDs D1 and D2 are turned on again. Thus, by providing the non-winding portion 18 between the power supply coils 12A and 12B wound around the magnetic body 11 of the power supply device 3B, the LEDs D1 and D2 connected to both ends of the power reception coil 16 are turned on.・ Changes between turning off and turning on.
[0047]
In FIG. 5, the operations of the LEDs D1 and D2 mean that the lighting can be confirmed and are not actual driving waveforms. In the above description of the operation, the cylindrical member 15 is moved along the magnetic body 11. However, even if the magnetic body 11 is moved along the cylindrical member 15, the same effect is obtained.
[0048]
As described above, in the second embodiment, the wiring density of the wirings 12 wound around the magnetic body 11 is partially changed. In the example of FIG. 4, a non-winding portion 18 is formed between the first power supply coil 12 </ b> A and the second power supply coil 12 </ b> B formed by the wiring 12. Thereby, the power receiving state to the power-supplied body 17 can be changed depending on the position of the cylindrical member 15 inserted through the magnetic body 11. At that time, if a light emitting means is used as the power-supplied member 17, a change in the power receiving state can be recognized as an operation change of turning on and off the light emitting means.
[0049]
Next, a third embodiment of the electromagnetic coupling device according to the present invention will be described with reference to FIGS. In addition, the same number is attached | subjected and demonstrated to the component same as 1st Embodiment.
[0050]
6 is a diagram showing a third embodiment of an electromagnetic coupling device according to the present invention, FIG. 7 is a configuration diagram of a drive circuit in the electromagnetic coupling device of FIG. 6, and FIG. 8 is a diagram for operating the electromagnetic coupling device of FIG. It is a timing chart containing the voltage waveform of the coil for electric power feeding and the coil for electric power reception at the time.
[0051]
As shown in FIG. 6, the electromagnetic coupling device 1C (1) of the third embodiment includes a power supply device 2C, a power feeding device 3C, and a power receiving device 4C.
[0052]
As shown in FIG. 6, the power supply device 2C further includes a power supply 5, an oscillation circuit 6, a frequency divider circuit 7, and a drive circuit 8C. The power supply 5 outputs a direct current as a drive power supply to each of the oscillation circuit 6, the frequency divider circuit 7, and the drive circuit 8C. The oscillation circuit 6 generates and outputs a signal having a predetermined frequency (for example, several tens Hz to several kHz). The frequency divider circuit 7 divides the oscillation signal from the oscillation circuit 6, and generates and outputs a frequency division signal having a frequency of, for example, several hundred Hz to several kHz.
[0053]
As shown in FIG. 6, the drive circuit 8 </ b> C includes a first drive circuit 8 </ b> C <b> 1 and a second drive circuit 8 </ b> C <b> 2, and outputs an alternating current based on the frequency division signal output from the frequency divider circuit 7. More specifically, the drive circuit 8C is configured by a circuit as shown in FIG. 7, for example. In FIG. 7, in the first drive circuit 8C1, the output of the frequency divider circuit 7 is input to the inverter NOT1. The output of the inverter NOT1 is input to the inverter NOT2 and the inverter NOT3 connected in parallel. The output of the inverter NOT2 is input to the base of the transistor Tr1, and the output of the inverter NOT3 is input to the base of the transistor Tr2. The transistors Tr1 and Tr2 are Darlington connected. Between the collector of the transistor Tr1 and the emitter of the transistor Tr2, diodes D1 and D2 are connected in series with the emitter side of the transistor Tr2 as an anode. Further, a connection point P1 between the transistors Tr1 and Tr2 is connected to a first power supply coil 12A of a power supply device 3C described later.
[0054]
Further, the output of the frequency dividing circuit 7 is input to the inverter NOT4 and the inverter NOT5. The output of the inverter NOT4 is input to the base of the transistor Tr3, and the output of the inverter NOT5 is input to the base of the transistor Tr4. The transistors Tr3 and Tr4 are Darlington connected. Between the collector of the transistor Tr3 and the emitter of the transistor Tr4, diodes D3 and D4 are connected in series with the emitter side of the transistor Tr4 as an anode. Furthermore, a connection point P2 between the transistors Tr3 and Tr4 is connected to a third power feeding coil 12C of a power feeding device 3C described later.
[0055]
In the second drive circuit 8C2, the output of the inverter NOT1 of the first drive circuit 8C1 is input to the inverter NOT6 and the inverter NOT7 connected in parallel. The output of the inverter NOT6 is input to the base of the transistor Tr5, and the output of the inverter NOT7 is input to the base of the transistor Tr6. The transistors Tr5 and Tr6 are Darlington connected. Between the collector of the transistor Tr5 and the emitter of the transistor Tr6, diodes D5 and D6 are connected in series with the emitter side of the transistor Tr6 as an anode. Furthermore, a connection point P3 of the transistors Tr5 and Tr6 is connected to a second power supply coil 12B of a power supply device 3C described later.
[0056]
Further, the output of the frequency dividing circuit 7 is inputted to the inverter NOT8 and the inverter NOT9. The output of the inverter NOT8 is input to the base of the transistor Tr7, and the output of the inverter NOT9 is input to the base of the transistor Tr8. The transistors Tr7 and Tr8 are Darlington connected. Between the collector of the transistor Tr7 and the emitter of the transistor Tr8, diodes D7 and D8 are connected in series with the emitter side of the transistor Tr8 as an anode. Further, a connection point P4 between the transistors Tr7 and Tr8 is connected to a fourth power supply coil 12D of a power supply device 3C described later.
[0057]
In these first and second drive circuits 8C1 and 8C2, the cycle of the alternating current is determined by the frequency division signal from the frequency divider circuit 7. The first drive circuit 8C1 applies a voltage as shown in FIG. 8 at a frequency of several hundred Hz to several tens of kHz to a first power supply coil 12A and a third power supply coil 12C of a power supply device 3C described later. To supply alternating current. Further, the second drive circuit 8C2 applies a voltage as shown in FIG. 8 at a frequency of several hundred Hz to several tens of kHz to a second power supply coil 12B and a fourth power supply coil 12D of the power supply device 3C described later. To supply alternating current.
[0058]
The power feeding device 3 </ b> C includes a rod-shaped magnetic body 11 and a wiring 12 that is wound around and fixed to the outer peripheral surface of the magnetic body 11. In the example of FIG. 6, the first power supply coil 12 </ b> A, the second power supply coil 12 </ b> B, the third power supply coil 12 </ b> C, and the fourth power supply coil 12 </ b> D are provided from above the magnetic body 11 by four independent wires 12. Forming.
[0059]
The first power supply coil 12A is located at the uppermost part of the magnetic body 11, and the wiring 12 is pulled out from the one output 8a1 of the first drive circuit 8C1 to the upper side of the magnetic body 11, and toward the lower side of the magnetic body 11 It is rolled up and its tip is connected to the other output 8b1 of the first drive circuit 8C1. The second power supply coil 12B is located below the first power supply coil 12A, is drawn from one output 8a2 of the second drive circuit 8C2 to the vicinity of the first power supply coil 12A, and is directed downward of the magnetic body 11. The first power supply coil 12A is wound up to the right in the same direction, and its tip is connected to the other output 8b2 of the second drive circuit 8C2. The third power supply coil 12C is located below the second power supply coil 12B, is drawn from one output 8a1 of the first drive circuit 8C1 to the vicinity of the second power supply coil 12B, and is directed downward of the magnetic body 11. The first power supply coil 12A is wound up to the right in the same direction, and its tip is connected to the other output 8b1 of the first drive circuit 8C1. The fourth power supply coil 12D is located below the third power supply coil 12C, is drawn from one output 8a2 of the second drive circuit 8C2 to the vicinity of the third power supply coil 12C, and is directed downward of the magnetic body 11. The first power supply coil 12A is wound up to the right in the same direction, and its tip is connected to the other output 8b2 of the second drive circuit 8C2. Each of the power supply coils 12 </ b> A to 12 </ b> D is wound around the magnetic body 11 with substantially the same length.
[0060]
As illustrated in FIG. 6, the power receiving device 4 </ b> C includes a cylindrical member 15, a power receiving coil 16, and a power supplied body 17. The cylindrical member 15 is made of a magnetic material and can be inserted into the magnetic material 11 in which the wiring 12 of the power feeding device 3C is wound.
[0061]
When the cylindrical member 15 is inserted through the magnetic body 11, the power receiving coil 16 is parallel to the first to fourth power supply coils 12 </ b> A to 12 </ b> D wound around the magnetic body 11. Is wound around and fixed in the same direction as the feeding coils 12A to 12D. The power receiving coil 16 is wound around the cylindrical member 15 with a length substantially equal to that of the power feeding coils 12A to 12D.
[0062]
The power-supplied body 17 is composed of light emitting means such as an LED (light emitting diode) or a light bulb. In the example of FIG. 6, the power supplied body 17 is an LED, and two LEDs D <b> 1 and D <b> 2 are connected to opposite ends of the power receiving coil 17 in opposite directions.
[0063]
In the electromagnetic coupling device 1C having the above configuration, the cylindrical member 15 of the power receiving device 4C is inserted and attached to the magnetic body 11 of the power feeding device 3C. Then, the power receiving coil 16 to which the LEDs D1 and D2 are attached overlaps the second power feeding coil 12B from the state where the first power feeding coil 12A of the magnetic body 11 is overlapped with the first power feeding coil 12A (FIG. 6B). When the phases of the drive circuits 8C1 and 8C2 are reversed, the direction of the voltage induced in the power receiving coil 16 changes as shown in FIG. As a result, the LED D <b> 2 is lit in a state where the power receiving coil 16 overlaps either the first power feeding coil 12 </ b> A or the third power feeding coil 12 </ b> C (A portion in FIG. 6). Further, in a state where the power receiving coil 16 straddles the boundary portion between the two coils of the power feeding coils 12A to 12D (C portion in FIG. 6), both the LEDs D1 and D2 are turned off. Further, the LED D1 is lit in a state where the power receiving coil 16 overlaps either the second power feeding coil 12B or the fourth power feeding coil 12D (B portion in FIG. 6).
[0064]
Here, when the waveform of the second drive circuit 8C2 is in phase with the waveform of the first drive circuit 8C1, the power receiving coil 16 overlaps the second power supply coil 12B or the fourth power supply coil 12D (FIG. 6). LED B2 is turned on at B part). Moreover, the LEDD2 continues to be lit even when the power receiving coil 16 straddles the boundary portion between the two coils of the power feeding coils 12A to 12D (C portion in FIG. 6). Illuminates at all positions on ~ 12D. In this way, by controlling the phase of the drive circuit 8C, it is possible to control the light emission of the light emitting means without moving the power receiving coil 16.
[0065]
In FIG. 8, the operations of the LEDs D1 and D2 mean that the lighting can be confirmed, and are not actual drive waveforms. In the above description of the operation, the cylindrical member 15 is moved along the magnetic body 11. However, even if the magnetic body 11 is moved along the cylindrical member 15, the same effect is obtained.
[0066]
As described above, in the third embodiment, a plurality of power supply coils 12A to 12D are formed by winding the wiring 12 around a plurality of locations of the magnetic body 11, and the phases of signals for driving these power supply coils 12A to 12D On / off is controlled by a plurality of drive circuits 8C1 and 8C2. In the example of FIG. 6, first to fourth feeding coils 12 </ b> A to 12 </ b> D are formed independently from each other by four wires 12 with respect to the magnetic body 11, and the first feeding coil 12 </ b> A and the third feeding coil 12 </ b> C are connected. Control is performed by the first drive circuit 8C1, and the second power supply coil 12B and the fourth power supply coil 12D are controlled by the second drive circuit 8C2. Thereby, the power receiving state to the power-supplied body 17 can be changed depending on the position of the cylindrical member 15 inserted through the magnetic body 11. At this time, if light emitting means having different emission colors (for example, green and red) are used as the power supplied body 17, a change in the power receiving state can be recognized as a change in operation of turning on and off the light emitting means.
[0067]
Next, a fourth embodiment of the electromagnetic coupling device according to the present invention will be described with reference to FIGS. In addition, the same number is attached | subjected and demonstrated to the component same as 1st Embodiment.
[0068]
FIG. 9 is a diagram showing a fourth embodiment of an electromagnetic coupling device according to the present invention, and FIG. 10 is a timing chart including voltage waveforms of a power feeding coil and a power receiving coil when the electromagnetic coupling device of FIG. 9 is operated. It is.
[0069]
As shown in FIG. 9, the electromagnetic coupling device 1D (1) of the fourth embodiment includes a power supply device 2D, a power feeding device 3D, and a power receiving device 4D.
[0070]
As shown in FIG. 9, the power supply device 2D further includes a power supply 5, an oscillation circuit 6, a frequency divider circuit 7, and a drive circuit 8D. The power supply 5 outputs a direct current as a drive power supply to each of the oscillation circuit 6, the frequency divider circuit 7, and the drive circuit 8D. The oscillation circuit 6 generates and outputs a signal having a predetermined frequency (for example, several tens Hz to several kHz). The frequency dividing circuit 7 divides the oscillation signal from the oscillation circuit 6, and generates and outputs a frequency division signal having a frequency of, for example, several hundred Hz to several tens kHz.
[0071]
The drive circuit 8D is configured by a circuit as shown in FIG. 2, for example, as in the first embodiment. In this drive circuit 8D, the period of the alternating current is determined by the frequency division signal from the frequency divider circuit 7, and from several hundred Hz to the first to third power supply coils 12A, 12B, and 12c of the power supply device 3D described later. An alternating current is supplied by applying a voltage as shown in FIG. 10 at a frequency of several tens of kHz.
[0072]
The power feeding device 3 </ b> D includes a rod-shaped magnetic body 11 and a wiring 12 that is wound around and fixed to the outer peripheral surface of the magnetic body 11. In the example of FIG. 9, a first power supply coil 12 </ b> A, a second power supply coil 12 </ b> B, and a third power supply coil 12 </ b> C are formed from above the magnetic body 11 by three independent wires 12.
[0073]
The first power supply coil 12 </ b> A is located at the top of the magnetic body 11, and the wiring 12 is drawn from the output 8 a of the drive circuit 8 </ b> D to the upper side of the magnetic body 11. It is caught and the tip is connected to the other output 8b of the drive circuit 8D. The second power supply coil 12B is located below the first power supply coil 12A, is pulled out from the other output 8b of the drive circuit 8D to the vicinity of the first power supply coil 12A, and the second power supply coil 12B extends downward from the magnetic body 11. The coil is wound up to the right in the same direction as the one feeding coil 12A, and its tip is connected to one output 8a of the drive circuit 8D. That is, the second power supply coil 12B is connected to the drive circuit 8D in the opposite direction to the first power supply coil 12A. The third power supply coil 12C is positioned below the second power supply coil 12B, is drawn from one output 8a of the drive circuit 8D to the vicinity of the second power supply coil 12B, and is moved downwardly from the magnetic body 11 toward the bottom. The coil is wound up to the right in the same direction as the one feeding coil 12A, and its tip is connected to the other output 8b of the drive circuit 8D.
[0074]
Each of the power feeding coils 12A to 12C is wound around the magnetic body 11 with substantially the same length as the power receiving coil of the power receiving device 4D, which will be described later, or a length that is an integral multiple or more. In the example of FIG. 9, the first power supply coil 12 </ b> A and the second power supply coil 12 </ b> B are wound around the magnetic body 11 with substantially the same length, and the third power supply coil 12 </ b> C is attached to the magnetic body 11 with a length approximately twice as long. It is involved.
[0075]
As illustrated in FIG. 9, the power receiving device 4 </ b> D includes a cylindrical member 15, a power receiving coil 16, and a power supplied body 17. The cylindrical member 15 is made of a magnetic material and can be inserted into the magnetic material 11 in which the wiring 12 of the power feeding device 3D is wound.
[0076]
In the example of FIG. 9, the power receiving coil 16 forms a first power receiving coil 16A and a second power receiving coil 16B each composed of two independent windings. These first and second power receiving coils 16 </ b> A and 16 </ b> B are parallel to the first to third power feeding coils 12 </ b> A to 12 </ b> C wound around the magnetic body 11 when the cylindrical member 15 is inserted into the magnetic body 11. In this way, the outer circumferential surface of the cylindrical member 15 is wound and fixed in the same direction as the feeding coils 12A to 12C. In the example of FIG. 9, each of the power receiving coils 16 </ b> A and 16 </ b> B is wound around the cylindrical member 15 with a length substantially equal to or shorter than that of the first power feeding coil 12 </ b> A.
[0077]
The power-supplied body 17 is composed of light emitting means such as an LED (light emitting diode) or a light bulb. In the example of FIG. 9, the power-supplied body 17 is an LED, and includes five LEDs D1 to D5. More specifically, the LEDs D1 and LEDD2 are connected in parallel in opposite directions between the start end of the first power receiving coil 16A and the start end of the second power receiving coil 16B. The LEDs D3 and D4 are connected in parallel in opposite directions between the start end and the end of the second power receiving coil 16B. Further, the LEDD5 is connected between the starting end of the first power receiving coil 16A and the terminal end of the second power receiving coil 16B with the second power receiving coil 16B side as an anode. The VF (DC forward voltage) of the LEDD5 is smaller than the VF (DC forward voltage) of the LEDD1 and the LEDD3 connected to the power receiving coil 16 in the same direction.
[0078]
In the electromagnetic coupling device 1D having the above-described configuration, when the power receiving coils 16A and 16B are located at the portion A in FIG. 9, the power receiving coil 16A is interposed via the first power feeding coil 12A and the second power feeding coil 12B. LEDD1 and LEDD4 are turned on by the voltage induced in 16B. When the cylindrical member 15 is moved downward along the magnetic body 11 and the power receiving coils 16A and 16B are positioned at a portion C in FIG. 9, an alternating current in the reverse direction flows through each of the power receiving coils 16A and 16B. As a result, the voltage generated by the power receiving coils 16A and 16B disappears, and all the LEDs D1 to LEDD5 are turned off. Further, when the cylindrical member 15 is moved downward along the magnetic body 11 and the power receiving coils 16A and 16B are positioned at the B portion in FIG. 9, the power receiving coils 16A and 16B have a voltage opposite to that at the A portion. Is induced. Thereby, LEDD2 and LEDD3 are turned on. When the cylindrical member 15 is further moved downward along the magnetic body 11 and the power receiving coils 16A and 16B are located at the E and D portions in FIG. 9, the voltage generated in the power receiving coil 16A gradually increases. The polarity is reversed and a voltage is applied to the LEDD5. When the LEDD5 is turned on, the voltage generated from the power receiving coils 16A and 16B is suppressed by the forward voltage, so that the LEDD3 and LEDD1 that should be turned on are turned off.
[0079]
In addition, in FIG. 10, operation | movement of LEDD1-LEDD5 is the meaning which can confirm lighting, and is not an actual drive waveform. In the above description of the operation, the cylindrical member 15 is moved along the magnetic body 11. However, even if the magnetic body 11 is moved along the cylindrical member 15, the same effect is obtained.
[0080]
In the example of FIG. 9, both ends of the first feeding coil 12A and the third feeding coil 12C are connected to the output of the drive circuit 8D, and both ends of the second feeding coil 12B are connected to the drive circuit 8D. On the other hand, the first power supply coil 12A is connected in the opposite direction, but both ends of all the power supply coils 12A to 12C may be connected to the output of the drive circuit 8D in the same manner. In this case, the first feeding coil 12A and the third feeding coil 12C are wound in the same direction, and the winding direction of the second feeding coil 12B is reversed from that of the first feeding coil 12A.
[0081]
Thus, in 4th Embodiment, the coil 12 for electric power feeding wound in the magnetic body 11 of electric power feeding apparatus 3D is provided in three places, respectively, and a some independent circuit is comprised, The cylindrical member 15 of electric power receiving apparatus 4D is comprised. The power receiving coil 16 to be wound is provided in two places, and the power receiving state is changed by the potential difference between the coils accompanying the relative movement of the magnetic body 11 and the cylindrical member 15. Thereby, the power receiving state to the power-supplied body 17 can be changed depending on the position of the cylindrical member 15 inserted through the magnetic body 11. At that time, if a light emitting means having different emission colors is used as the power supply body 17, for example, a light emitting means in which LEDD1 to LEDD4 emit green light and LEDD5 emits red light in FIG. It can be recognized as a change or a color change.
[0082]
According to the electromagnetic coupling device of the present embodiment described above, the power receiving device 3 in which the power feeding coil 12 is wound around the magnetic body 11 and the power receiving coil in the cylindrical member 15 inserted through the magnetic body 11 of the power feeding device 3. The power receiving state can be arbitrarily changed depending on the positional relationship with the power receiving device 4 in which 16 is involved.
[0083]
Since both ends of the magnetic body 11 of the power feeding device 3 are open, the power receiving device 4 to which the power supplied body 17 is connected can be easily attached to and detached from the magnetic body 11 of the power feeding device 3. In addition, when a light emitting unit is connected as the power-supplied body 17, the power receiving device 4 to which the light emitting unit is connected can be freely replaced with respect to the power feeding device 3, and the emission color pattern of the light emitting unit can be arbitrarily changed. . That is, the degree of freedom of display can be improved not only by simply switching on and off, but also by the change in the power receiving state associated with the positional relationship between the power feeding device 3 and the power receiving device 4.
[0084]
Furthermore, the magnetic body 11 of the power feeding device 3 is not limited to a rigid body, and may be configured with flexibility. In this case, it is preferable that the cylindrical member 15 of the power receiving device 4 inserted through the flexible magnetic body 11 also has flexibility so that it can move smoothly along the magnetic body 11. Thereby, it can change freely into various shapes, such as not only a straight line but a curve and a ring. Further, if the power supply device 2 is built in a part (for example, one end portion) of the magnetic body 11 of the power supply device 3, the configuration can be further simplified.
[0085]
The electromagnetic coupling device 1 (1 </ b> A to 1 </ b> D) of this example changes its power receiving state depending on the positional relationship due to the relative movement of the power feeding device 3 and the power receiving device 4. Thereby, in the electromagnetic coupling device 1 of this example, the power energy transmitted from the power feeding device 3 to the power-supplied body 17 through the power receiving device 4 in a non-contact manner can be used for various things.
[0086]
For example, if a light emitting means is used as the power-supplied body 17, it can be used as a Christmas tree lighting device. Further, if the magnetic body 11 of the power feeding device 3 is deformed into various shapes (for example, letters, pictures, etc.) and attached to the surface of clothing, and the light emitting means is used as the power supplied body 17, a combination of various colors of the light emitting means. Clothing with various designs that emit light can be provided.
[0087]
When the apparatus of this example is used as a position sensor, for example, in a water level gauge, the power receiving device 4 connected to the light emitting means is attached to the float as the power-supplied body 17, and when the float rises or falls depending on the water level, the water level is changed to the color of the light emitting means. Can be recognized. For example, in the fourth embodiment, if the position of the D part is set as an abnormal position and the emission color of the LED D5 is set to red, the LED D5 is turned on when the float in which the power receiving device 4 is provided is lowered to the position of the D part. Since it emits red light, if an alarm sound is output at the same time, an abnormality can be notified by color and sound.
[0088]
Furthermore, if the apparatus of this example is used for a rod-like object such as a sword or a sword, a toy in which the color of the light emitting means changes according to the force applied when the sword or sword is swung down can be configured. . In addition, the power received by the power receiving device 4 can be input to the IC as a power drive signal and an ON / OFF signal, and the display of the liquid crystal display can be controlled by driving the IC. Further, if the power that can be extracted from the power receiving coil 16 of the power receiving device 4 is increased, it can also be used as a drive power source for a motor or the like.
[0089]
【The invention's effect】
As is apparent from the above description, according to the electromagnetic coupling device of the present invention, a power feeding device in which a power feeding coil is wound around a magnetic body and a cylindrical member inserted through the magnetic body of the power feeding device are used for power reception. The power receiving state can be arbitrarily changed according to the positional relationship with the power receiving device in which the coil is wound.
[0090]
Further, if the magnetic body and the cylindrical member are configured to have flexibility, they can be freely deformed to various shapes such as a curved line and an annular shape as well as a straight line.
[0091]
Further, when the light emitting means is used as the power supply body, the degree of freedom of display can be improved by changing the power receiving state depending on the positional relationship between the power feeding device and the power receiving device as well as simply switching on and off.
[0092]
And, if the power supply coil wound in the magnetic body of the power supply device is configured to partially reverse the winding direction, the voltage electromagnetically induced in the power supply coil is reversed depending on the winding direction. The power receiving state to the power-supplied body can be changed depending on the position of the cylindrical member inserted through the magnetic body. At that time, if light emitting means having different emission colors (for example, green and red) are used as the power supply body, the change in the power receiving state can be recognized as the color change.
[0093]
If the wiring density of the power supply coil wound around the magnetic body is partially changed, the power receiving state to the power supply body can be changed depending on the position of the cylindrical member inserted through the magnetic body. At this time, if the light emitting means is used as the power-supplied member, the change in the power receiving state can be recognized as the change in operation of turning on and off the light emitting means.
[0094]
If the structure is such that a power feeding coil is wound around a plurality of locations of the magnetic body and the phase and on / off of the signals for driving these power feeding coils are controlled by a plurality of drive circuits, the cylindrical member inserted through the magnetic body The power receiving state to the power-supplied body can be changed depending on the position. At that time, if light emitting means having different light emission colors (for example, green and red) are used as the power supply body, a change in the power receiving state can be recognized as a change in operation of turning on and off the light emitting means.
[0095]
A plurality of power supply coils wound around the magnetic body are provided at a plurality of locations to form a plurality of independent circuits, and a power receiving coil wound around the cylindrical member is provided at a plurality of locations to move the magnetic body and the cylindrical member relative to each other. If the configuration is such that the power receiving state is changed by the potential difference between the coils, the power receiving state to the power-supplied body can be changed depending on the position of the cylindrical member inserted through the magnetic body. At this time, if a light emitting unit having a different emission color is used as the power supply body, a change in the power receiving state can be recognized as a color change.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of an electromagnetic coupling device according to the present invention;
2 is a configuration diagram of a drive circuit in the electromagnetic coupling device of FIG. 1;
3 is a timing chart including voltage waveforms of a power feeding coil and a power receiving coil when the electromagnetic coupling device of FIG. 1 is operated.
FIG. 4 is a diagram showing a second embodiment of an electromagnetic coupling device according to the present invention.
5 is a timing chart including voltage waveforms of a power feeding coil and a power receiving coil when the electromagnetic coupling device of FIG. 4 is operated.
FIG. 6 is a diagram showing a third embodiment of an electromagnetic coupling device according to the present invention.
7 is a configuration diagram of a drive circuit in the electromagnetic coupling device of FIG. 6;
8 is a timing chart including voltage waveforms of a power feeding coil and a power receiving coil when the electromagnetic coupling device of FIG. 6 is operated.
FIG. 9 is a diagram showing a fourth embodiment of an electromagnetic coupling device according to the present invention.
10 is a timing chart including voltage waveforms of a power feeding coil and a power receiving coil when the electromagnetic coupling device of FIG. 9 is operated.
FIG. 11 is a diagram illustrating a schematic configuration of a power feeding device that obtains electric power in a non-contact manner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 (1A-1D) ... Electromagnetic coupling device, 2 (2A-2D) ... Power supply device, 3 (3A-3D) ... Power feeding device, 4 (4A-4D) ... Power receiving device, 8 (8A-8D) ... Drive Circuit 11, Magnetic body 12, wiring 12 A, 12 B, feeding coil, 15 cylindrical member, 16 (16 A, 16 B) receiving coil, 17 fed body, 18 unwinding part

Claims (8)

電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、前記給電用コイルの巻き方向が部分的に逆であることを特徴とする電磁気的結合装置。
A power supply device in which a power supply coil through which a current flows is wound on a magnetic body that is electromagnetically opened, a power supply device in which an alternating current flows in the power supply coil, and a power reception coil in the cylindrical member, A power receiving device in which a power receiver is connected to a power receiving coil, and an electromagnetic coupling device that obtains power by electromagnetically inducing a current flowing in the power receiving coil in the power receiving coil,
The electromagnetic coupling device, wherein the cylindrical member is attached to the magnetic body so as to be relatively movable, and a winding direction of the power feeding coil is partially reversed.
電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、前記給電用コイルの密集度が部分的に変化していることを特徴とする電磁気的結合装置。
A power supply device in which a power supply coil through which a current flows is wound on a magnetic body that is electromagnetically opened, a power supply device in which an alternating current flows in the power supply coil, and a power reception coil in the cylindrical member, A power receiving device in which a power receiver is connected to a power receiving coil, and an electromagnetic coupling device that obtains power by electromagnetically inducing a current flowing in the power receiving coil in the power receiving coil,
The electromagnetic coupling device, wherein the cylindrical member is attached to the magnetic body so as to be relatively movable, and a density of the power feeding coil is partially changed.
電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、前記給電用コイルが前記磁性体の複数箇所に設けられており、
前記給電用コイルを駆動する信号の位相とオン・オフとの少なくともいずれか一方を制御する駆動回路を備えたことを特徴とする電磁気的結合装置。
A power supply device in which a power supply coil through which a current flows is wound on a magnetic body that is electromagnetically opened, a power supply device in which an alternating current flows in the power supply coil, and a power reception coil in the cylindrical member, A power receiving device in which a power receiver is connected to a power receiving coil, and an electromagnetic coupling device that obtains power by electromagnetically inducing a current flowing in the power receiving coil in the power receiving coil,
The cylindrical member is attached to the magnetic body so as to be relatively movable, and the feeding coil is provided at a plurality of locations of the magnetic body,
An electromagnetic coupling device comprising a drive circuit for controlling at least one of a phase and on / off of a signal for driving the power feeding coil.
電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置であって、
前記筒状部材が前記磁性体に相対的に移動可能に取り付けられ、
前記受電用コイルが前記筒状部材の複数箇所に設けられ、
前記給電用コイルが前記受電用コイルの長さと同一又は整数倍以上の長さで前記磁性体の複数箇所に設けられ、
前記磁性体と前記筒状部材の相対的な移動に伴うコイル間の電位差により受電状態が変化することを特徴とする電磁気的結合装置。
A power supply device in which a power supply coil through which a current flows is wound on a magnetic body that is electromagnetically opened, a power supply device in which an alternating current flows in the power supply coil, and a power reception coil in the cylindrical member, A power receiving device in which a power receiver is connected to a power receiving coil, and an electromagnetic coupling device that obtains power by electromagnetically inducing a current flowing in the power receiving coil in the power receiving coil,
The cylindrical member is attached to the magnetic body so as to be relatively movable,
The power receiving coil is provided at a plurality of locations of the cylindrical member,
The power supply coil is provided at a plurality of locations of the magnetic body with the same length or a multiple of an integral multiple of the length of the power reception coil,
An electromagnetic coupling device, wherein a power receiving state is changed by a potential difference between coils accompanying relative movement of the magnetic body and the cylindrical member.
前記被給電体が発光手段であることを特徴とする請求項1〜4の何れかに記載の電磁気的結合装置。  The electromagnetic coupling device according to claim 1, wherein the power supply body is a light emitting unit. 前記磁性体および前記筒状部材が柔軟性を有することを特徴とする請求項1〜4の何れかに記載の電磁気的結合装置。  The electromagnetic coupling device according to claim 1, wherein the magnetic body and the cylindrical member have flexibility. 電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、前記磁性体に対して相対的に移動可能に取り付けられる筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置に用いられる給電装置であって、
前記給電用コイルは、部分的に巻き方向が逆転して前記磁性体に巻き込まれていることを特徴とする給電装置。
A power supply device in which a power supply coil through which an electric current flows is wound with respect to a magnetic material that is electromagnetically opened, a power supply device that supplies an alternating current to the power supply coil, and a magnetic device that is movable relative to the magnetic material A power receiving coil is wound around a cylindrical member to be attached, and a power receiver is connected to the power receiving coil, and a current flowing through the power feeding coil is electromagnetically induced in the power receiving coil. A power supply device used in an electromagnetic coupling device for obtaining electric power,
The power feeding device according to claim 1, wherein the power feeding coil is wound around the magnetic body with a winding direction partially reversed.
電磁気的に開放された磁性体に対し、電流が流れる給電用コイルが巻き込まれた給電装置と、前記給電用コイルに交流電流を流す電源装置と、前記磁性体に対して相対的に移動可能に取り付けられる筒状部材に受電用コイルが巻き込まれ、該受電用コイルに被給電体が接続された受電装置とを備え、前記給電用コイルに流れる電流を前記受電用コイルに電磁気的に誘起して電力を得る電磁気的結合装置に用いられる給電装置であって、
前記給電用コイルは、密集度が部分的に変化して前記磁性体に巻き込まれていることを特徴とする給電装置。
A power supply device in which a power supply coil through which an electric current flows is wound with respect to a magnetic material that is electromagnetically opened, a power supply device that supplies an alternating current to the power supply coil, and a magnetic device that is movable relative to the magnetic material A power receiving coil is wound around a cylindrical member to be attached, and a power receiver is connected to the power receiving coil, and a current flowing through the power feeding coil is electromagnetically induced in the power receiving coil. A power supply device used in an electromagnetic coupling device for obtaining electric power,
The power supply device according to claim 1, wherein the power supply coil is wound around the magnetic body with a partial change in density.
JP2003024594A 2003-01-31 2003-01-31 Electromagnetic coupling device and power supply device Expired - Fee Related JP3943038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024594A JP3943038B2 (en) 2003-01-31 2003-01-31 Electromagnetic coupling device and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024594A JP3943038B2 (en) 2003-01-31 2003-01-31 Electromagnetic coupling device and power supply device

Publications (2)

Publication Number Publication Date
JP2004236476A JP2004236476A (en) 2004-08-19
JP3943038B2 true JP3943038B2 (en) 2007-07-11

Family

ID=32953085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024594A Expired - Fee Related JP3943038B2 (en) 2003-01-31 2003-01-31 Electromagnetic coupling device and power supply device

Country Status (1)

Country Link
JP (1) JP3943038B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747446B2 (en) * 2010-05-19 2015-07-15 株式会社オートネットワーク技術研究所 Coil for wireless power transmission with power feeding unit and wireless power feeding system
WO2012169047A1 (en) * 2011-06-09 2012-12-13 トヨタ自動車株式会社 Power-receiving device, vehicle, and non-contact power supply system
WO2013012585A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Wireless power transfer electric vehicle supply equipment installation and validation tool

Also Published As

Publication number Publication date
JP2004236476A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US8360609B2 (en) Illumination apparatus and driving method thereof
US7928664B2 (en) Illumination systems
JP4081665B2 (en) LED lighting device and lighting fixture
JP5394167B2 (en) Contactless power supply system
JP2010092776A (en) Led driving circuit, led illumination fixture, led illumination equipment, and led illumination system
JP5624269B2 (en) Lighting device, vehicle interior lighting device, vehicle lighting device
JP2011192491A (en) Led lamp
EP3270054B1 (en) Self-luminous suspension lamp
JP3943038B2 (en) Electromagnetic coupling device and power supply device
JP4008361B2 (en) Power supply device
US7108397B2 (en) String lamps device
JP2012009363A (en) Led lighting device
JP4371424B2 (en) Vehicle lighting device
JP2006210000A (en) Decorative illumination device
KR20070077001A (en) Luminescence rope skipping
JP4260577B2 (en) Illumination equipment
KR102325229B1 (en) The wireless LED light
JP3098840U (en) Lighting diode lighting equipment
KR200414292Y1 (en) Luminescence rope skipping
JP3113387U (en) Illumination equipment
JP2004319472A (en) Optical decoration system, power supply circuit, and display device
JP2009081005A (en) Detection device of light source state, and lighting fixture
JP2006221990A (en) Light source device
CN219459332U (en) Sounding device with light rhythm function
JP2013037803A (en) Lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Ref document number: 3943038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees