JP3941429B2 - Water stoppage / Yamadome construction method for rebuilding existing buildings - Google Patents

Water stoppage / Yamadome construction method for rebuilding existing buildings Download PDF

Info

Publication number
JP3941429B2
JP3941429B2 JP2001227267A JP2001227267A JP3941429B2 JP 3941429 B2 JP3941429 B2 JP 3941429B2 JP 2001227267 A JP2001227267 A JP 2001227267A JP 2001227267 A JP2001227267 A JP 2001227267A JP 3941429 B2 JP3941429 B2 JP 3941429B2
Authority
JP
Japan
Prior art keywords
existing building
groundwater
mountain
ground
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001227267A
Other languages
Japanese (ja)
Other versions
JP2003041568A (en
Inventor
稔 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001227267A priority Critical patent/JP3941429B2/en
Publication of JP2003041568A publication Critical patent/JP2003041568A/en
Application granted granted Critical
Publication of JP3941429B2 publication Critical patent/JP3941429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、既存建物の建替え工事にあたり、地下水による既存建物の浮き上がりを防止するうえで好適な止水・山留工事方法に関する。
【0002】
【従来の技術】
市街地等の建物は地下空間を有効利用するために地下階を有する場合が多く、地下階付きの既設建物を建替える場合にも、改築建物を地下階付きで計画するのが一般的である。こうした建替え工事を行う場合、通常は、自由水や被圧水の地下水位が既存建物の基礎深さよりも浅いので、既存建物の解体時に地下水による浮力で躯体が浮き上がるおそれがある。そこで、従来、既存建物の解体によって発生するコンクリートガラを地下部分に埋めたり、地上部の一部を止水・山留工事が完了するまで残置すること等によって躯体の浮き上がりを防止している。
【0003】
【発明が解決しようとする課題】
しかし、地下部にコンクリートガラを埋める方法では、埋めたコンクリートガラを改めて除去することが必要となり、工期の延長やコストの増大を招いてしまう。また、地上部の一部を残置して解体工事を行う方法では、解体工事が行い難くなって非能率になるだけではなく、残置した部分が障害となって止水・山留工事の作業性も低下してしまう。
【0004】
このような不都合を回避するため、既存建物の地下部の周囲に止水・山留壁を根入れさせたうえで、滞水層の地下水を揚水して浮力を低減させる工法も提案されている。この工法では、止水・山留壁を構築するための溝を掘削する際に溝壁の崩壊を防止すべく、溝壁安定液(ベントナイト泥水等)を掘削溝に充填させながら掘削しなければならない。そのために、既存建物の地下部外壁の内側に別の側壁を構築し、地下部外壁と側壁との間の空間に溝壁安定液を保持した状態で、この空間の底部から止水・山留壁用の溝を掘削することが必要である。このように、止水・山留壁を構築して地下水を揚水する工法では、側壁を構築することが必要となるため、やはり、工期延長およびコスト増を招いてしまう。
【0005】
本発明は上記の点に鑑みてなされたものであり、建替え工事の工期の延長やコスト増大を招くことなく、地下水による既存建物の浮き上がりを防止することが可能な、既存建物の建替え工事における地下水処理方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、請求項1に記載された発明は、地上部と地下部とから構成された既存建物の建て替え工事における前記地下部の止水・山留工事方法であって、前記既存建物の地上部を解体する解体工程と、前記既存建物の基礎下を取り囲むように、地盤内の滞水層へ薬液を注入して不透水部を構築する構築工程と、当該不透水部で取り囲まれた地盤内の滞水層から地下水を揚水する揚水工程と、前記不透水部の内側に止水・山留壁を設置する設置工程とを備えることを特徴とする。
【0007】
本発明によれば、地盤内の滞水層へ薬液を注入することにより、この薬液が注入された滞水層と地盤の不透水層とから構成される不透水部を形成し、この不透水部で取り囲まれた既存建物の基礎下の地盤から地下水を揚水するので、既存建物の解体中に、地下水の浮力によって既存建物が浮き上がることはない。このため、既存建物の浮き上がり防止の対策を講ずることが不要となる。
また、滞水層のみに薬液を注入するので、止水・山留壁を構築する従来の工法に比べて、工期及びコストを低減できる。
そして、不透水部を構築する構築工程と、地下水を揚水する揚水工程とを備えることにより、基礎下の地下水圧を低下させることができる。そして、基礎下が不透水部で取り囲まれていることで、周囲の地盤から基礎下へ地下水が流れ込むのを阻止して、地下水圧が低下した状態を維持することができる。したがって、既存建物の解体中に地下水による浮き上がりを防止するために解体により生じたガラを地下部分に埋め戻す等の対策を講ずることが不要となり、建替え工事の工期短縮およびコスト低減を図ることができる。
また、不透水部の内側に止水・山留壁を設置するので、地下工事における掘削時の受動土圧を安全に負担できる程度の深さまで構築すれば足りる。すなわち、止水・山留壁の深さを格段に小さくすることができるので、止水・山留工事の工期およびコストを低減できる。
第2の発明は、第1の発明において、前記解体工程は、前記構築工程及び前記揚水工程と並行して行うことを特徴とする。
本発明による止水・山留工事方法によれば、既存建物の解体工事と、不透水部を構築し、不透水部で囲まれた地盤から地下水を揚水する工事とを並行して行えるので、改築工事の工期の短縮化が図られる。
【0008】
【発明の実施の形態】
図1および図2は、本発明の地下水処理方法が適用された既存建物の建替え工事の施工手順を説明するための図である。図1および図2には、地上部10aおよび地下部10bを有する既存建物10を解体して、止水・山留壁12を構築するまでの施工手順を示している。
【0009】
本実施形態では、先ず、図1に示すように、既存建物10の地上部10aの解体工事と並行して、既存建物10の基礎下を取り囲むように不透水部14を構築する工事を行う。この不透水部14の構築は滞水層16へ薬液18を注入することにより行うが、その詳細は後述する。
【0010】
不透水部14を構築した後、各滞水層16の深さまで揚水井戸20を掘削し、各滞水層16から地下水を揚水する。この揚水作業は、遅くとも、地上部10aの解体の進捗に伴って地下水の浮力により地下部10bが浮き上がるおそれが生ずる前に行うようにする。揚水により各滞水層16の地下水圧が十分に低下し、さらに、地上部10aの解体が完了した後、図2に示すように、地表面レベルに作業床22を築造する。そして、作業床22上に工事機械24等を設置して、止水・山留壁12を構築するための止水・山留工事を行い、更に、図2に点線Aで示す改築建物の掘削深さまでの掘削工事や杭工事等の地下工事を行う。
【0011】
次に、不透水部14の施工手順について説明する。不透水部14の施工は、既存建物10の地下部10bの最地下階の床面から薬液注入用の穴をボーリングし、このボーリング穴を通して各滞水層16へ薬液18を注入することにより行う。すなわち、不透水部14は、地盤の不透水層と、薬剤18が注入された滞水層16とによって構成される。
【0012】
先ず、図3(A)に示すように、ケーシングパイプ30を用いたケーシング掘りにより薬液注入用孔32を掘削する。次に同図(B)に示すように、フレキシブルパイプ34を用いて、ケーシングパイプ30の内側へシールグラウト36を充填した後、同図(C)に示すようにスリーブパイプ38を順次接続しながらケーシングパイプ30の内側へその全長にわたり挿入設置する。スリーブパイプ38の設置後、ケーシングパイプ30を引き抜き、シールグラウト36が固化するまで養生期間をおいた後、同図(D)に示すように、インジェクションパイプ40をスリーブパイプ38の内側へ滞水層16の深さまで挿入する。
【0013】
図4は、スリーブパイプ38にインジェクションパイプ40を挿入した状態を示す拡大図である。図4に示す如く、インジェクションパイプ40は、その内外が導通した注入部44と、注入部44の上下に設けられたシール部46とを備えている。インジェクションパイプ40は、注入部44がスリーブパイプ38のジョイント部48の内側に位置するように、インジェクションパイプ40に挿入される。スリーブパイプ38のジョイント部48にはスリーブバルブ50が設けられており、ジョイント部48の内側の圧力が一定以上になるとスリーブバルブ50が開くようになっている。また、インジェクションパイプ40のシール部46は、その外周とスリーブパイプ38の内周面との間でシール性が確保されるように構成されている。
【0014】
インジェクションパイブ40をスリーブパイプ38へ挿入した後、図3(E)に示すように、インジェクションパイプ40へ圧力水を供給する。供給された圧力水は、注入部44からインジェクションパイプ40のジョイント部48の内側空間へ流入する。上記したように、ジョイント部48の内部空間はその上下をインジェクションパイプ40のシール部46によってシールされているから、圧力水の流入に伴ってこの空間内の水圧は上昇する。その結果、スリーブバルブ50が開き、このバルブを通ってスリーブパイプ38の外側へ流出した水の水圧によって、固化したシールグラウト36およびその周辺の滞水層16にクラックが発生する。
【0015】
こうしてシールグラウト36および滞水層16にクラックを発生させた後、図3(F)に示すように、水に代えて、薬液18をインジェクションパイプ40へ供給する。これにより、上記クラックを通して、滞水層16に薬液18が注入される。このような圧力水によるクラックの発生と、薬液18の注入を各滞水層16について行う。
【0016】
なお、本実施形態では、薬液18の注入を2回に分けて行うものとし、一次注入として(セメント+ベントナイト)系の薬液を用い、二次注入として水ガラス系の薬液を用いている。ただし、薬液18の注入を2回に分けずに、例えば水ガラス系の薬液を1回で注入してもよく、また、水ガラス系に限らず、不透水性に優れた各種の液剤を薬液18として用いることができる。
【0017】
以上の工程を、図5に示す平面図の如く、既存建物10の基礎下を取り囲むように適宜な間隔(隣接する薬液用注入穴32から注入された薬液18が互いに重なり合う程度の間隔)で繰り返すことにより、不透水部14を構築する。そして、上記図2を参照して述べたように、不透水部14の内側の滞水層16の地下水を揚水した後、止水・山留壁12の工事を行う。
【0018】
以上説明したように、本実施形態では、既存建物10の基礎下を取り囲むように不透水部14を構築した状態で、不透水部14の内側の地盤から地下水を揚水することで、基礎下の地下水圧を十分に低下させることができる。また、基礎下が不透水部14で取り囲まれていることで、周囲の地盤から基礎下へ地下水が流れ込むのを阻止して、地下水圧が低下した状態を維持することができる。したがって、本実施形態によれば、既存建物10の解体中に地下水による浮き上がりを防止するために解体により生じたガラを地下部分に埋め戻す等の対策を講ずることが不要となり、建替え工事の工期短縮およびコスト低減を図ることができる。また、止水・山留工事の完了を待つことなく、既存建物10の解体工事を進めることができる(すなわち、解体工事と止水・山留工事とを並行して行える)ので、この点でも、改築工事の工期の短縮化が図られる。
【0019】
さらに、止水・山留壁を構築してから地下水を揚水する従来の工法と比較すると、以下の点で、工期短縮およびコスト低減の効果が得られる。
(1)上記従来の工法では、建物躯体への浮力に寄与する被圧水を含む滞水層の深さまで止水・山留壁を構築することが必要であるが、本実施形態では、地下工事における掘削時の受動土圧を安全に負担できる程度の深さまで構築すれば足りる。すなわち、止水・山留壁の深さを格段に小さくすることができるので、止水・山留工事の工期およびコストを低減できる。
(2)上記従来の工法では、溝壁安定液を保持するために側壁を構築することが必要であるのに対して、本実施形態ではそのような側壁は不要である。
【0020】
【発明の効果】
本発明によれば、既存建物の解体中に、地下水の浮力によって既存建物が浮き上がることがなくなるので、既存建物の浮き上がり防止の対策を不要とすることができる。したがって、建替え工事の工期の延長やコスト増大を招くことなく、地下水による既存建物の浮き上がりを防止することができる。
【図面の簡単な説明】
【図1】本発明の地下水処理方法が適用された既存建物の建替え工事の施工手順を説明するための図であり、既存建物の地上部を解体中の状態を示す。
【図2】本発明の地下水処理方法が適用された既存建物の建替え工事の施工手順を説明するための図であり、既存建物の地上部を解体後、止水・山留壁を構築した状態を示す。
【図3】図3(A)〜図3(F)は、不透水部の構築手順を示す図である。
【図4】スリーブパイプにインジェクションパイプを挿入した状態を示す拡大図である。
【図5】薬液注入により不透水部を構築した状態を示す平面図である。
【符号の説明】
10 既存建物
12 止水・山留壁
14 不透水部
16 滞水層
18 薬液
20 揚水井戸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water stopping / mounting method suitable for preventing the existing building from being lifted by groundwater in the rebuilding work of the existing building.
[0002]
[Prior art]
Buildings such as urban areas often have an underground floor in order to make effective use of the underground space, and when rebuilding an existing building with an underground floor, it is common to plan the renovated building with an underground floor. When such a rebuilding work is performed, the groundwater level of free water or pressurized water is usually shallower than the foundation depth of the existing building, so there is a risk that the housing will be lifted by the buoyancy of the groundwater when the existing building is demolished. Therefore, conventionally, the floating of the frame is prevented by burying concrete trash generated by the dismantling of the existing building in the underground part or by leaving a part of the ground part until the water stop and mountain retaining works are completed.
[0003]
[Problems to be solved by the invention]
However, in the method of filling the concrete glass in the underground part, it is necessary to remove the filled concrete glass again, leading to an extension of the construction period and an increase in cost. In addition, the method of leaving the part of the ground to perform the demolition work not only makes it difficult to perform the demolition work, but also the inefficiency, and the remaining part becomes an obstacle, and the workability of water stop and mountain holding works Will also decline.
[0004]
In order to avoid such inconveniences, a method has also been proposed in which the buoyancy is reduced by pumping up the groundwater of the aquifer layer after rooting the waterstop and mountain retaining wall around the basement of the existing building. . In this method, when excavating a groove for constructing a waterstop / mountain wall, it is necessary to excavate while filling the excavation groove with a ditch wall stabilizing liquid (bentonite mud water, etc.) to prevent the collapse of the groove wall. Don't be. Therefore, another side wall is constructed inside the underground outer wall of the existing building, and the groove wall stabilizer is held in the space between the outer wall and the side wall of the existing building. It is necessary to dig a trench for the wall. As described above, in the construction method for constructing the water stop / mountain wall and pumping up the groundwater, it is necessary to construct the side wall, so that the construction period is extended and the cost is increased.
[0005]
The present invention has been made in view of the above points, and it is possible to prevent the existing building from being lifted by groundwater without extending the construction period and increasing the cost of the rebuilding work. The purpose is to provide a groundwater treatment method.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention described in claim 1 is a method for water stop and mountain stay construction of the underground part in the rebuilding work of an existing building composed of an above-ground part and an underground part, In the demolition process of demolishing the ground part of the existing building, the construction process of injecting the chemical solution into the aquifer in the ground so as to surround the foundation of the existing building, and the impermeable part It is characterized by comprising a pumping process for pumping groundwater from the aquifer layer in the enclosed ground, and an installation process for installing a water stop / mountain wall inside the impermeable portion.
[0007]
According to the present invention, by injecting the chemical solution into the aquifer layer in the ground, an impermeable portion composed of the aquifer layer into which the chemical solution is injected and the impermeable layer of the ground is formed, and this impermeable water Since groundwater is pumped from the ground under the foundation of the existing building surrounded by the part, the existing building will not be lifted by the buoyancy of the groundwater during the dismantling of the existing building. For this reason, it is not necessary to take measures to prevent the existing building from rising.
Further, since the injection of liquid medicine only in the aquifer, in comparison with the conventional method of constructing a waterproofing, mountain Tomekabe, Ru can be reduced construction period and cost.
And the groundwater pressure under a foundation can be reduced by providing the construction process which builds an impermeable part, and the pumping process which pumps up groundwater. And since the foundation bottom is surrounded by the impermeable portion, it is possible to prevent groundwater from flowing from the surrounding ground to the foundation and maintain a state in which the groundwater pressure is lowered. Therefore, it is not necessary to take measures such as backfilling the waste caused by dismantling in order to prevent the groundwater from floating during the dismantling of the existing building. it can.
In addition, since the water stop and mountain retaining wall are installed inside the impervious section, it is sufficient to construct it to a depth that can safely bear the passive earth pressure during excavation in underground construction. That is, since the depth of the water stop / mountain wall can be remarkably reduced, the construction period and cost of the water stop / mountain work can be reduced.
According to a second invention, in the first invention, the dismantling process is performed in parallel with the construction process and the pumping process.
According to the water stopping and mountain retaining method according to the present invention, the dismantling of the existing building and the construction of constructing the impermeable portion and pumping the groundwater from the ground surrounded by the impermeable portion can be performed in parallel. The construction period of the renovation work can be shortened.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 are diagrams for explaining a construction procedure for rebuilding an existing building to which the groundwater treatment method of the present invention is applied. FIG. 1 and FIG. 2 show a construction procedure from dismantling the existing building 10 having the above-ground part 10a and the underground part 10b to construct the water stop / mountain wall 12.
[0009]
In the present embodiment, first, as shown in FIG. 1, in parallel with the dismantling work of the ground part 10 a of the existing building 10, a work for constructing the impermeable part 14 so as to surround the foundation of the existing building 10 is performed. The impermeable portion 14 is constructed by injecting a chemical solution 18 into the aquifer layer 16, details of which will be described later.
[0010]
After constructing the impermeable portion 14, the pumping well 20 is excavated to the depth of each aquifer 16 and groundwater is pumped from each aquifer 16. This pumping work is performed at the latest before the possibility that the underground portion 10b is lifted by the buoyancy of the groundwater as the ground portion 10a is dismantled. After the groundwater pressure of each aquifer 16 is sufficiently lowered by pumping and the dismantling of the above-ground part 10a is completed, the work floor 22 is constructed at the ground surface level as shown in FIG. Then, the construction machine 24 and the like are installed on the work floor 22, and the water stop / mountain construction for constructing the water stop / mountain wall 12 is performed. Further, excavation of the renovated building indicated by the dotted line A in FIG. Underground construction such as excavation and pile construction to the depth.
[0011]
Next, the construction procedure of the impermeable portion 14 will be described. The impervious portion 14 is constructed by boring a hole for injecting a chemical solution from the floor surface of the basement 10b of the existing building 10 and injecting the chemical solution 18 into each aquifer 16 through the borehole. . That is, the impermeable part 14 is comprised by the impermeable layer of the ground, and the aquifer layer 16 in which the chemical | medical agent 18 was inject | poured.
[0012]
First, as shown in FIG. 3A, the chemical injection hole 32 is excavated by casing digging using the casing pipe 30. Next, as shown in FIG. 5B, after the seal grout 36 is filled inside the casing pipe 30 using the flexible pipe 34, the sleeve pipe 38 is sequentially connected as shown in FIG. The casing pipe 30 is inserted and installed inside the casing pipe 30 over its entire length. After the installation of the sleeve pipe 38, the casing pipe 30 is pulled out, and after a curing period until the seal grout 36 is solidified, the injection pipe 40 is placed inside the sleeve pipe 38 as shown in FIG. Insert to 16 depth.
[0013]
FIG. 4 is an enlarged view showing a state where the injection pipe 40 is inserted into the sleeve pipe 38. As shown in FIG. 4, the injection pipe 40 includes an injection portion 44 that is electrically connected to the inside and the outside, and seal portions 46 that are provided above and below the injection portion 44. The injection pipe 40 is inserted into the injection pipe 40 so that the injection part 44 is located inside the joint part 48 of the sleeve pipe 38. A sleeve valve 50 is provided at the joint portion 48 of the sleeve pipe 38, and the sleeve valve 50 is opened when the pressure inside the joint portion 48 exceeds a certain level. Further, the seal portion 46 of the injection pipe 40 is configured to ensure a sealing property between the outer periphery thereof and the inner peripheral surface of the sleeve pipe 38.
[0014]
After inserting the injection pipe 40 into the sleeve pipe 38, pressure water is supplied to the injection pipe 40 as shown in FIG. The supplied pressure water flows from the injection part 44 into the inner space of the joint part 48 of the injection pipe 40. As described above, since the internal space of the joint portion 48 is sealed at the upper and lower sides by the seal portion 46 of the injection pipe 40, the water pressure in this space increases as the pressure water flows. As a result, the sleeve valve 50 is opened, and a crack is generated in the solidified seal grout 36 and the surrounding water accumulation layer 16 due to the water pressure of the water flowing out of the sleeve pipe 38 through the valve.
[0015]
After the cracks are generated in the seal grout 36 and the aquifer layer 16 in this way, the chemical liquid 18 is supplied to the injection pipe 40 instead of water as shown in FIG. Thereby, the chemical | medical solution 18 is inject | poured into the aquifer 16 through the said crack. The generation of cracks due to such pressure water and the injection of the chemical solution 18 are performed for each aquifer layer 16.
[0016]
In the present embodiment, the chemical solution 18 is injected in two steps, a (cement + bentonite) type chemical solution is used as the primary injection, and a water glass type chemical solution is used as the secondary injection. However, the injection of the chemical liquid 18 may not be divided into two times, for example, a water glass-type chemical liquid may be injected once, and not only the water-glass type but also various liquid agents excellent in water impermeability are used as the chemical liquid. 18 can be used.
[0017]
As shown in the plan view of FIG. 5, the above steps are repeated at an appropriate interval so as to surround the base of the existing building 10 (an interval at which the drug solutions 18 injected from the adjacent drug solution injection holes 32 overlap each other). Thus, the impermeable portion 14 is constructed. Then, as described with reference to FIG. 2, after the groundwater in the aquifer layer 16 inside the impermeable portion 14 is pumped up, the water stop / mountain wall 12 is constructed.
[0018]
As described above, in the present embodiment, in the state where the impermeable portion 14 is constructed so as to surround the foundation under the existing building 10, groundwater is pumped from the ground inside the impermeable portion 14, thereby The groundwater pressure can be reduced sufficiently. In addition, since the bottom of the foundation is surrounded by the impermeable portion 14, it is possible to prevent groundwater from flowing from the surrounding ground to the bottom of the foundation, and to maintain a state in which the groundwater pressure is reduced. Therefore, according to the present embodiment, it is not necessary to take measures such as backfilling the waste generated by the demolition in the underground portion in order to prevent the floating due to the groundwater during the demolition of the existing building 10, and the construction period of the rebuilding work Shortening and cost reduction can be achieved. In addition, it is possible to proceed with the dismantling of the existing building 10 without waiting for the completion of the water stop / Yamadome construction (that is, the demolishing work and the water stop / Yamadome work can be performed in parallel). The construction period of the renovation work can be shortened.
[0019]
Furthermore, compared with the conventional method of pumping up groundwater after constructing a still water / mountain wall, the effects of shortening the construction period and reducing costs are obtained in the following points.
(1) In the above-mentioned conventional construction method, it is necessary to construct a still water / mountain wall to the depth of the aquifer layer containing the pressurized water that contributes to the buoyancy to the building frame. It is only necessary to construct a depth enough to safely bear the passive earth pressure during excavation during construction. That is, since the depth of the water stop / mountain wall can be remarkably reduced, the construction period and cost of the water stop / mountain work can be reduced.
(2) In the conventional method described above, it is necessary to construct a side wall in order to hold the groove wall stabilizing liquid, whereas in the present embodiment, such a side wall is unnecessary.
[0020]
【The invention's effect】
According to the present invention, during the dismantling of the existing building, the existing building is not lifted by the buoyancy of the groundwater, so that it is possible to make it unnecessary to prevent the existing building from being lifted. Accordingly, it is possible to prevent the existing building from being lifted by groundwater without causing an increase in the construction period of the rebuilding work and an increase in cost.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a construction procedure for rebuilding an existing building to which the groundwater treatment method of the present invention is applied, and shows a state in which a ground part of the existing building is being dismantled.
FIG. 2 is a diagram for explaining the construction procedure of rebuilding work of an existing building to which the groundwater treatment method of the present invention is applied; after dismantling the ground part of the existing building, a still water / mountain wall is constructed Indicates the state.
FIG. 3A to FIG. 3F are diagrams showing a procedure for constructing an impermeable portion.
FIG. 4 is an enlarged view showing a state where an injection pipe is inserted into a sleeve pipe.
FIG. 5 is a plan view showing a state in which an impermeable portion is constructed by injecting a chemical solution.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Existing building 12 Water stop and mountain retaining wall 14 Impervious part 16 Aquifer 18 Chemical solution 20 Pumping well

Claims (2)

地上部と地下部とから構成された既存建物の建て替え工事における前記地下部の止水・山留工事方法であって、
前記既存建物の地上部を解体する解体工程と、
前記既存建物の基礎下を取り囲むように、地盤内の滞水層へ薬液を注入して不透水部を構築する構築工程と、
当該不透水部で取り囲まれた地盤内の滞水層から地下水を揚水する揚水工程と、
前記不透水部の内側に止水・山留壁を設置する設置工程とを備えることを特徴とする止水・山留工事方法。
A water stop / mountain construction method for the underground part in the rebuilding work of an existing building composed of an above-ground part and an underground part,
A dismantling step of dismantling the ground part of the existing building;
A construction step of injecting a chemical solution into the aquifer layer in the ground so as to surround the foundation of the existing building and building an impermeable portion,
A pumping process for pumping up groundwater from the aquifer in the ground surrounded by the impermeable portion;
A water stop / mountain construction method comprising: an installation step of installing a water stop / mountain wall inside the impermeable portion.
前記解体工程は、前記構築工程及び前記揚水工程と並行して行うことを特徴とする請求項1に記載の止水・山留工事方法。The water stop / mountain construction method according to claim 1 , wherein the dismantling step is performed in parallel with the construction step and the pumping step.
JP2001227267A 2001-07-27 2001-07-27 Water stoppage / Yamadome construction method for rebuilding existing buildings Expired - Fee Related JP3941429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227267A JP3941429B2 (en) 2001-07-27 2001-07-27 Water stoppage / Yamadome construction method for rebuilding existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227267A JP3941429B2 (en) 2001-07-27 2001-07-27 Water stoppage / Yamadome construction method for rebuilding existing buildings

Publications (2)

Publication Number Publication Date
JP2003041568A JP2003041568A (en) 2003-02-13
JP3941429B2 true JP3941429B2 (en) 2007-07-04

Family

ID=19059960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227267A Expired - Fee Related JP3941429B2 (en) 2001-07-27 2001-07-27 Water stoppage / Yamadome construction method for rebuilding existing buildings

Country Status (1)

Country Link
JP (1) JP3941429B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378066B2 (en) * 2009-06-02 2013-12-25 鹿島建設株式会社 Mountain fastening method
JP2017214731A (en) * 2016-05-31 2017-12-07 日特建設株式会社 Injection outer pipe and chemical feeding method
JP7206544B2 (en) * 2019-02-22 2023-01-18 株式会社竹中工務店 impermeable wall

Also Published As

Publication number Publication date
JP2003041568A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
CN108396780B (en) Existing inspection well reconstruction method
JP2006265964A (en) Drainage treatment method
KR100914158B1 (en) Process of blocking water penetration and blocking earth collapsing by using impermeable wall without strut
CN112761644A (en) Suspension sinking vertical shaft well completion process
CN109403333A (en) A kind of soft lower hard water rich strata deep basal pit reversed construction method
CN212129150U (en) Deep basal pit precipitation well block structure
KR20070036244A (en) Pit working method forr undergrund floor railroad operation of elevator
JP4451553B2 (en) Buoyancy prevention structure and construction method thereof
KR100803921B1 (en) Pit working method forr undergrund floor railroad operation of elevator
KR101045625B1 (en) Construction method of retaining wall using cast-in-place pile
KR101975297B1 (en) Multi-wall construction method using multi-wall construction supporting files and supporting files used for construction of harbors, rivers, dams and concrete that can prevent the inflow of soil and water
JP2002115260A (en) Extension method for basement
CN212641468U (en) Pit-in-pit rapid construction structure
JP3941429B2 (en) Water stoppage / Yamadome construction method for rebuilding existing buildings
CN218439314U (en) Prospecting hole plugging device
JPH11303063A (en) Execution method for wall body type cast-in-place pile and excavator
KR101862761B1 (en) the method of constructing underground basic structure
JP2874906B2 (en) Shaft construction method
JPS5936058B2 (en) How to construct a structure using underground continuous walls
JP3208729B2 (en) Blistering prevention method and construction method of underground building
JP3728659B2 (en) Basement extension method
CN215857803U (en) Gushing karst fracture water plugging device
KR102676253B1 (en) Injection pipe for grouting of horizontal drainage layer and grouting method using the same
CN219952005U (en) Backfill district foundation ditch drainage device
CN214784012U (en) Take braced system work well waterproof construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees