JP3941164B2 - Crystallization method and apparatus - Google Patents

Crystallization method and apparatus Download PDF

Info

Publication number
JP3941164B2
JP3941164B2 JP16992497A JP16992497A JP3941164B2 JP 3941164 B2 JP3941164 B2 JP 3941164B2 JP 16992497 A JP16992497 A JP 16992497A JP 16992497 A JP16992497 A JP 16992497A JP 3941164 B2 JP3941164 B2 JP 3941164B2
Authority
JP
Japan
Prior art keywords
laser
substrate
amorphous silicon
irradiation
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16992497A
Other languages
Japanese (ja)
Other versions
JPH1116836A (en
Inventor
仁 中原
肇 秋元
睦子 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16992497A priority Critical patent/JP3941164B2/en
Publication of JPH1116836A publication Critical patent/JPH1116836A/en
Application granted granted Critical
Publication of JP3941164B2 publication Critical patent/JP3941164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はガラス基板上や酸化シリコン基板上に堆積したアモルファスシリコンを600℃以下の温度で結晶化させる技術に関する。
【0002】
【従来の技術】
パルスレーザによるアモルファスシリコンの結晶化は、基板の温度を比較的低く保てるため、耐熱温度の低いガラス基板上で多結晶シリコン薄膜を得る方法として注目されている。
【0003】
従来のパルスレーザを使ったアモルファスシリコン結晶化装置を図2(a)を用いて説明する。エキシマレーザ1から発せられたパルス状のレーザビーム2はレンズ系3を介してビームプロファイルを均一にするホモジナイザー4を通過後、投影レンズ6によってあらかじめアモルファスシリコン11を堆積した基板10上に照射される。基板全面を結晶化するために、上記ビーム照射位置は1パルス或いは数パルス毎に基板搬送機構8によって移動するようになっている(25)。試料基板上でのビームサイズは通常は大面積を少ないレーザショット数で結晶化できるように数mm角或いは幅数mmの線状である。なお、基板10には一般にガラス上に薄いシリコン酸化膜を堆積したものを用いるが、図2(a)ではシリコン酸化膜は基板の一部とみなして省略している。以後も特に断りのない限り、基板とはアモルファスシリコン薄膜11より下の部分を総称するものとする。
【0004】
図2(b)は従来の方法でレーザをアモルファスシリコンに照射したときの結晶化の様子を模式的に示す図である。幅の広いレーザビーム78がアモルファスシリコン膜96に照射されると、膜内の至る処で結晶核81が発生し、各々の結晶核が膜内で成長する。このとき発生する結晶核81の平均核発生間隔Lは核生成密度の平方根であり、通常用いるレーザアニール条件(室温基板)では概ね0.1乃至0.5μm程度である。この距離が得られる多結晶粒の大きさを決定する。結晶核81はほぼ完全にランダムな位置に発生するため、結晶粒の形状は不定形になる。
【0005】
また、従来の方法でより大きな多結晶粒を得るために、レーザパルスを同一の場所に複数回照射することで、1μm程度の粒径を持つ多結晶膜を得ることも行われている。なお、図2(b)では簡単化のために膜96の下にある基板は省略した。
【0006】
【発明が解決しようとする課題】
多結晶膜を電子素子として用いる場合、結晶粒が大きい方が電子や正孔の移動度を大きくできるため、より高性能の回路を構成することができる。しかし上記従来方法では、結晶粒の大きさがアモルファスシリコンの核生成密度で規定されてしまい、少なくとも薄膜トランジスタ等の電子素子で要求される数μm四方以上の大きさの結晶を得ることは困難であるという問題がある。
【0007】
また、複数回照射によって粒径を拡大したとしても、元の結晶核がランダムに発生しているため、結晶粒の位置は制御できない。このため、たまたま結晶粒界が電子素子の最も重要な部位(例えば薄膜トランジスタのチャネル部分)を横切ってしまった素子と、たまたま結晶粒界を含まない電子素子とが混在することになり、素子間のばらつきが非常に大きくなるという問題がある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明では、アモルファスシリコン薄膜を全面或いは一部分に堆積した基板にパルス幅が100ナノ秒以下のパルスレーザを照射して結晶化を行う方法で、まず始めに上記パルスレーザの上記基板上における照射領域Aの狭い方の幅が1μm以下になるように少なくとも1パルスのレーザ照射を行い、次に上記照射領域を含み且つ上記パルスレーザの上記基板上における照射領域Bの狭い方の幅が10μm以下になるように少なくとも1パルスのレーザ照射を行うことで上記アモルファスシリコン薄膜を多結晶化することを特徴とするアモルファスシリコン薄膜の結晶化方法が提供される。
【0009】
【発明の実施の形態】
本発明の原理及び実施の形態を図1及び図3を用いて説明する。
【0010】
アモルファスシリコンの融点はシリコン結晶の融点よりも200乃至300℃低いことはよく知られている。このため、図3(a)に示すように既に結晶核90が存在している膜95をちょうどアモルファスシリコンのみが溶融する温度になるようパルスレーザ照射78を行うと、溶融したアモルファスシリコンの過冷却状態が破れて核が発生する前に既存の結晶の成長が進行し(80)、結晶核90の周辺は一つの大きな結晶粒となる。このとき成長が進行する平均核成長距離rは基板温度や膜厚などの条件に依存し、通常用いるレーザアニール条件(室温基板)では2乃至5μm程度の距離になる。
【0011】
そこで、図3(b)に示す方法で、容易に大粒径の多結晶膜を得ることが可能になる。
【0012】
図3(b)ではまず始めに幅が概ね上記平均核発生間隔L以下の狭いレーザビーム照射79を行う。このような狭い幅では溶融した領域の幅方向にはほとんど一つの核しか発生しない。或いは、wが1μm以下であれば複数の核が発生しても複数回のパルスを与えることで優先的に一つの核だけを成長させることが可能である。この結果、アモルファスシリコン中のレーザ照射した領域のみが一つの種結晶91となる。
【0013】
次に、上記平均核成長距離rの2倍以下の幅の広いビーム77を照射する。このときは、新たな核が発生する前に、上記種結晶91が成長し(82)、膜の幅方向には一つの大きな結晶粒を成長することが可能になる。rはせいぜい2乃至5μm程度であるため、Wは10μm以下であればよい。また、wが上記平均核発生間隔L以下であれば、より確実に単一の核生成のみを行うことが可能になる。なお、図3では簡単化のために膜96の下にある基板は省略した。
【0014】
図1は本発明の一実施例の構成を示す図である。図3で示した2回のレーザ照射79及び77のエネルギ密度は、ともにアモルファスシリコンが溶融する程度のものであり、同一で構わない。従って、一つのレーザビームをスリット或いは誘電体多層膜ビームマスクなどで広狭2本のレーザに分離し、レーザ照射場所をWずつ移動しながら連続して結晶化を行うことが可能である。
【0015】
図1の実施例では、エキシマレーザ1から発せられたレーザビーム2はレンズ系3,ホモジナイザー4を通過し、均一な面光源となる。その後ミラー7で方向を変えたビームはビームマスク20上に設けた二つのスリット41及び42を通過し、2本の幅の異なるラインビームとなる。上記2本のビームは投影レンズ6によって基板10上に縮小投影される。図1の下図は基板10上でのビーム照射の様子を斜視図として示したものである。上記二本のビームは細い線状になって基板10上へ照射される(30,28)。二つの照射領域の幅はそれぞれ基板上で上記W及び上記wになるように投影レンズ6は調整される。基板10はエキシマレーザの1ショット毎に太いレーザーの幅Wだけ矢印25で示した方向へ基板搬送機構8によって移動する。従って、ビーム照射領域30の右側は堆積したシリコン膜11がレーザ照射によって多結晶化した領域31,左側が未照射領域32になる。この動作を繰り返すことで、まず幅の狭いレーザビームで核生成を行い、次に幅広いビームで既存の核を成長するという作業を連続して行うことができる。
【0016】
本実施例では多結晶化した領域31は図1の拡大図に示したように、幅Wの領域にさまざまな幅の矩形結晶粒ができた状態になっている。本実施例では照射領域制限手段として単純スリットからなるビームマスクを用いたが、シリンドリカルレンズなどの光学系を組み合わせてビームを分割集光しても良い。また、本実施例では配置の関係上ミラー7で光路を変えているが、上記ミラーは本発明に必須の要件ではない。
【0017】
図4は本発明の他の一実施例を示す図である。本実施例では、ビームマスク20上には一本の幅W′の線状のスリット41と、複数の一辺がw′の矩形のスリット40が配置されている。スリット40は各々間隔W′で配置されている。ビームマスク20を通過したレーザは基板10上でW′→W,w′→wになるように投影される。ここでは簡単化のため、投影光学系は省略している。本実施例による方法では概ね正方形のスリット40を図4のように配置することで、種結晶29の位置を二次元的に規定することが可能になり、多結晶領域31は縦横共にきちんと配列した矩形の結晶粒からなる。本実施例では種結晶を作るためのスリットとして一辺w′の矩形を用いたが、直径がw′の円形等、類似した形状であっても良い。また、上記縮小投影系で縦横の縮小比率が同じとしたが、縦横の縮小比率は異なっていても構わない。
【0018】
【発明の効果】
本発明により、低温プロセスにおいて電子素子に十分な大きさの粒径の多結晶シリコン薄膜を簡便な方法で得ることができ、高性能薄膜トランジスタなどが実現可能になる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す図。
【図2】従来のパルスレーザを用いたアモルファスシリコン膜の結晶化方法を示す図。
【図3】本発明の作用を説明する図。
【図4】本発明の他の一実施例を示す図。
【符号の説明】
1…エキシマレーザ、2…レーザビーム、3…光学系、4…ホモジナイザー、6…投影レンズ、7…ミラー、8…基板搬送機構、10…基板、11…シリコン薄膜、20…ビームマスク、25…基板移動方向、28…幅の狭いレーザビームが照射される領域、29…種結晶領域、30…幅の広いレーザビームが照射される領域、31…結晶化した領域、32…未照射領域、40…矩形スリット、41…幅の広いスリット、42…幅の狭いスリット、77…幅の広いレーザ、78…レーザパルス、79…幅の狭いレーザ、80…既存結晶の成長、81…核発生、82…既存結晶の成長、90…既存の種結晶、91…狭いレーザによって形成した種結晶、95…種結晶を含むアモルファスシリコン薄膜、96…アモルファスシリコン薄膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for crystallizing amorphous silicon deposited on a glass substrate or a silicon oxide substrate at a temperature of 600 ° C. or lower.
[0002]
[Prior art]
Crystallization of amorphous silicon by a pulsed laser is attracting attention as a method for obtaining a polycrystalline silicon thin film on a glass substrate having a low heat-resistant temperature because the temperature of the substrate can be kept relatively low.
[0003]
A conventional amorphous silicon crystallization apparatus using a pulse laser will be described with reference to FIG. A pulsed laser beam 2 emitted from an excimer laser 1 passes through a lens system 3 and then passes through a homogenizer 4 that makes the beam profile uniform, and then is irradiated onto a substrate 10 on which amorphous silicon 11 has been deposited in advance by a projection lens 6. . In order to crystallize the entire surface of the substrate, the beam irradiation position is moved by the substrate transport mechanism 8 every pulse or several pulses (25). The beam size on the sample substrate is usually a linear shape of several mm square or several mm wide so that a large area can be crystallized with a small number of laser shots. The substrate 10 is generally formed by depositing a thin silicon oxide film on glass, but in FIG. 2A, the silicon oxide film is omitted as a part of the substrate. Hereinafter, unless otherwise specified, the substrate is a generic term for the portion below the amorphous silicon thin film 11.
[0004]
FIG. 2B is a diagram schematically showing the state of crystallization when the amorphous silicon is irradiated with laser by the conventional method. When the amorphous silicon film 96 is irradiated with a wide laser beam 78, crystal nuclei 81 are generated throughout the film, and each crystal nucleus grows in the film. The average nucleation interval L of the crystal nuclei 81 generated at this time is the square root of the nucleation density, and is about 0.1 to 0.5 μm under the normally used laser annealing conditions (room temperature substrate). The size of the polycrystalline grain from which this distance is obtained is determined. Since the crystal nuclei 81 are generated almost completely at random positions, the shape of the crystal grains becomes indefinite.
[0005]
In order to obtain larger polycrystalline grains by the conventional method, a polycrystalline film having a grain size of about 1 μm is also obtained by irradiating the same place with a laser pulse a plurality of times. In FIG. 2B, the substrate under the film 96 is omitted for simplification.
[0006]
[Problems to be solved by the invention]
In the case of using a polycrystalline film as an electronic element, a larger crystal grain can increase the mobility of electrons and holes, so that a higher performance circuit can be configured. However, in the above conventional method, the size of crystal grains is defined by the nucleation density of amorphous silicon, and it is difficult to obtain crystals having a size of several μm square or more required for electronic devices such as thin film transistors. There is a problem.
[0007]
Even if the grain size is expanded by multiple irradiations, the position of the crystal grains cannot be controlled because the original crystal nuclei are randomly generated. For this reason, an element in which a crystal grain boundary happens to cross the most important part of an electronic device (for example, a channel portion of a thin film transistor) and an electronic device that happens to not include a crystal grain boundary are mixed. There is a problem that the variation becomes very large.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is a method of performing crystallization by irradiating a substrate having an amorphous silicon thin film deposited on the entire surface or a part thereof with a pulse laser having a pulse width of 100 nanoseconds or less. Laser irradiation of at least one pulse is performed so that the narrower width of the irradiation region A on the substrate is 1 μm or less, and then the irradiation region B of the pulse laser including the irradiation region on the substrate is irradiated. There is provided a method for crystallizing an amorphous silicon thin film characterized in that the amorphous silicon thin film is polycrystallized by performing laser irradiation of at least one pulse so that the narrower width becomes 10 μm or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The principle and embodiment of the present invention will be described with reference to FIGS.
[0010]
It is well known that the melting point of amorphous silicon is 200 to 300 ° C. lower than the melting point of silicon crystals. For this reason, when the pulse laser irradiation 78 is performed so that only the amorphous silicon is melted in the film 95 in which the crystal nucleus 90 already exists as shown in FIG. 3A, the molten amorphous silicon is supercooled. Before the state breaks and nuclei are generated, the growth of existing crystals proceeds (80), and the periphery of the crystal nuclei 90 becomes one large crystal grain. At this time, the average nucleus growth distance r at which the growth proceeds depends on conditions such as the substrate temperature and the film thickness, and is a distance of about 2 to 5 μm under the normally used laser annealing conditions (room temperature substrate).
[0011]
Therefore, a polycrystalline film having a large grain size can be easily obtained by the method shown in FIG.
[0012]
In FIG. 3B, first, a narrow laser beam irradiation 79 having a width of approximately the average nucleus generation interval L or less is performed. With such a narrow width, only one nucleus is generated in the width direction of the melted region. Alternatively, if w is 1 μm or less, even if a plurality of nuclei are generated, it is possible to preferentially grow only one nucleus by giving a plurality of pulses. As a result, only the region irradiated with laser in the amorphous silicon becomes one seed crystal 91.
[0013]
Next, a beam 77 having a width not larger than twice the average nucleus growth distance r is irradiated. At this time, before the generation of new nuclei, the seed crystal 91 grows (82), and one large crystal grain can be grown in the width direction of the film. Since r is about 2 to 5 μm at most, W may be 10 μm or less. Further, if w is equal to or less than the average nucleation interval L, it is possible to perform only single nucleation more reliably. In FIG. 3, the substrate under the film 96 is omitted for simplification.
[0014]
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. The energy density of the two laser irradiations 79 and 77 shown in FIG. 3 is such that both amorphous silicon is melted and may be the same. Accordingly, it is possible to separate one laser beam into two wide and narrow lasers using a slit or a dielectric multilayer film beam mask, and to continuously perform crystallization while moving the laser irradiation place by W.
[0015]
In the embodiment of FIG. 1, the laser beam 2 emitted from the excimer laser 1 passes through the lens system 3 and the homogenizer 4 to become a uniform surface light source. Thereafter, the beam whose direction is changed by the mirror 7 passes through two slits 41 and 42 provided on the beam mask 20 and becomes two line beams having different widths. The two beams are reduced and projected onto the substrate 10 by the projection lens 6. The lower view of FIG. 1 shows a perspective view of the state of beam irradiation on the substrate 10. The two beams are irradiated onto the substrate 10 in the form of thin lines (30, 28). The projection lens 6 is adjusted so that the widths of the two irradiation areas are the above W and the above w on the substrate. The substrate 10 is moved by the substrate transport mechanism 8 in the direction indicated by the arrow 25 by the width W of the thick laser for each shot of the excimer laser. Accordingly, the right side of the beam irradiation region 30 is a region 31 where the deposited silicon film 11 is polycrystallized by laser irradiation, and the left side is an unirradiated region 32. By repeating this operation, it is possible to continuously perform nucleation with a narrow laser beam and then grow existing nuclei with a wide beam.
[0016]
In the present embodiment, the polycrystallized region 31 is in a state where rectangular crystal grains having various widths are formed in the region of width W as shown in the enlarged view of FIG. In this embodiment, a beam mask made of a simple slit is used as the irradiation area limiting means. However, the beam may be divided and condensed by combining an optical system such as a cylindrical lens. In this embodiment, the optical path is changed by the mirror 7 because of the arrangement, but the mirror is not an essential requirement for the present invention.
[0017]
FIG. 4 shows another embodiment of the present invention. In the present embodiment, one linear slit 41 having a width W ′ and a plurality of rectangular slits 40 having one side w ′ are arranged on the beam mask 20. The slits 40 are arranged at intervals W ′. The laser beam that has passed through the beam mask 20 is projected onto the substrate 10 so that W ′ → W and w ′ → w. Here, for the sake of simplicity, the projection optical system is omitted. In the method according to this embodiment, the substantially square slits 40 are arranged as shown in FIG. 4 so that the position of the seed crystal 29 can be defined two-dimensionally, and the polycrystalline regions 31 are arranged in the vertical and horizontal directions. It consists of rectangular crystal grains. In the present embodiment, a rectangle having a side w ′ is used as a slit for making a seed crystal, but a similar shape such as a circle having a diameter w ′ may be used. Further, although the vertical and horizontal reduction ratios are the same in the reduction projection system, the vertical and horizontal reduction ratios may be different.
[0018]
【The invention's effect】
According to the present invention, a polycrystalline silicon thin film having a grain size sufficient for an electronic device can be obtained by a simple method in a low-temperature process, and a high-performance thin film transistor or the like can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 shows a method for crystallizing an amorphous silicon film using a conventional pulse laser.
FIG. 3 is a diagram illustrating the operation of the present invention.
FIG. 4 is a diagram showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Excimer laser, 2 ... Laser beam, 3 ... Optical system, 4 ... Homogenizer, 6 ... Projection lens, 7 ... Mirror, 8 ... Substrate conveyance mechanism, 10 ... Substrate, 11 ... Silicon thin film, 20 ... Beam mask, 25 ... Direction of substrate movement, 28... Region irradiated with a narrow laser beam, 29... Seed crystal region, 30... Region irradiated with a wide laser beam, 31. ... rectangular slit, 41 ... wide slit, 42 ... narrow slit, 77 ... wide laser, 78 ... laser pulse, 79 ... narrow laser, 80 ... growth of existing crystal, 81 ... nucleation, 82 ... growth of existing crystal, 90 ... existing seed crystal, 91 ... seed crystal formed by narrow laser, 95 ... amorphous silicon thin film containing seed crystal, 96 ... amorphous silicon thin film.

Claims (3)

アモルファスシリコン薄膜を全面或いは一部分に堆積した基板にパルス幅が
100ナノ秒以下のパルスレーザを照射して結晶化を行う方法で、まず始めに上記パルスレーザの上記基板上における照射領域Aの狭い方の幅が1μm以下になるように少なくとも1パルスのレーザ照射を行い、次に上記照射領域を含み且つ上記パルスレーザの上記基板上における照射領域Bの狭い方の幅が10μm以下になるように少なくとも1パルスのレーザ照射を行うことで上記アモルファスシリコン薄膜を多結晶化することを特徴とする結晶化方法。
A method in which a substrate having an amorphous silicon thin film deposited on the entire surface or a part thereof is irradiated with a pulse laser having a pulse width of 100 nanoseconds or less to perform crystallization. First, the narrower irradiation area A of the pulse laser on the substrate is selected. At least one pulse of laser irradiation is performed so that the width of the laser beam is 1 μm or less, and at least the narrower width of the irradiation region B on the substrate including the irradiation region is 10 μm or less. A crystallization method characterized in that the amorphous silicon thin film is polycrystallized by performing laser irradiation of one pulse.
請求項1の結晶化方法で、上記照射領域Aの狭い方の幅が上記パルスレーザによって溶融したアモルファスシリコンが結晶化する際の平均核発生間隔以下であり、且つ上記照射領域Bの狭い方の幅が上記パルスレーザによって溶融したアモルファスシリコン中に結晶核が発生するまでの時間に既存の結晶核が成長する平均核成長距離の2倍以下であることを特徴とする結晶化方法。  2. The crystallization method according to claim 1, wherein the narrower width of the irradiation region A is equal to or less than an average nucleus generation interval when the amorphous silicon melted by the pulse laser is crystallized, and the irradiation region B is narrower. A crystallization method characterized in that the width is not more than twice the average nucleus growth distance at which existing crystal nuclei grow in the time until crystal nuclei are generated in amorphous silicon melted by the pulse laser. 請求項1或いは請求項2のアモルファスシリコン薄膜の結晶化方法を用いるレーザ結晶化装置で、各々少なくとも一つの上記照射領域A及び照射領域Bを同時に得るために、一つのパルスレーザから発せられたレーザビームを上記基板上に分離集光する手段と、上記レーザビームと上記基板との相対位置を少なくとも上記照射領域Bの狭い方の幅の精度で変えることが可能な照射位置移動機構とを有することを特徴とするレーザ結晶化装置。  3. A laser crystallization apparatus using the method for crystallizing an amorphous silicon thin film according to claim 1 or claim 2, wherein a laser emitted from one pulse laser is used to simultaneously obtain at least one irradiation region A and irradiation region B, respectively. Means for separating and condensing the beam on the substrate, and an irradiation position moving mechanism capable of changing the relative position between the laser beam and the substrate at least with the accuracy of the narrower width of the irradiation region B. A laser crystallization apparatus.
JP16992497A 1997-06-26 1997-06-26 Crystallization method and apparatus Expired - Lifetime JP3941164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16992497A JP3941164B2 (en) 1997-06-26 1997-06-26 Crystallization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16992497A JP3941164B2 (en) 1997-06-26 1997-06-26 Crystallization method and apparatus

Publications (2)

Publication Number Publication Date
JPH1116836A JPH1116836A (en) 1999-01-22
JP3941164B2 true JP3941164B2 (en) 2007-07-04

Family

ID=15895479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16992497A Expired - Lifetime JP3941164B2 (en) 1997-06-26 1997-06-26 Crystallization method and apparatus

Country Status (1)

Country Link
JP (1) JP3941164B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491571B2 (en) 1999-07-13 2004-01-26 日本電気株式会社 Method of forming semiconductor thin film

Also Published As

Publication number Publication date
JPH1116836A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
US8034698B2 (en) Systems and methods for inducing crystallization of thin films using multiple optical paths
US6495405B2 (en) Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
US6908835B2 (en) Method and system for providing a single-scan, continuous motion sequential lateral solidification
KR100873927B1 (en) Process and mask projection system for laser crystallization processing of semiconductor film regions on a substrate
US8715412B2 (en) Laser-irradiated thin films having variable thickness
US20090218577A1 (en) High throughput crystallization of thin films
TW200405474A (en) Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity, and a structure of such film regions
JP5068171B2 (en) System and method for producing a crystallographically controlled polysilicon film
JPH08236443A (en) Semiconductor crystal growing method and semiconductor manufacturing device
JP2004311935A (en) Method for making single crystal silicon film
JP2002261016A (en) MASK PATTERN DESIGN TO IMPROVE QUALITY UNIFORMITY IN LATERALLY CRYSTALLIZED POLYCRYSTALLINE Si FILM
KR100303138B1 (en) Method of crystallizing silicon thin film and manufacturing method of thin film transistor using the same
JP3859978B2 (en) Device for forming a laterally extending crystal region in a semiconductor material film on a substrate
JP2006196539A (en) Method and device for manufacturing polycrystalline semiconductor thin film
JP2008227077A (en) Masking structure for laser light, laser processing method, tft element, and laser processing apparatus
JP3941164B2 (en) Crystallization method and apparatus
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP2007207896A (en) Laser beam projection mask, laser processing method using same, laser processing apparatus
JP2009032942A (en) Crystal growth apparatus, and laser irradiation monitoring method
KR100575235B1 (en) Optical system using laser and crystallization method using thereof
JP4467276B2 (en) Method and apparatus for manufacturing semiconductor thin films
JP2005167007A (en) Manufacturing method of semiconductor thin film and thin film semiconductor element
JP2008147236A (en) Crystallizing apparatus and laser processing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term