JP3939394B2 - Electrophotographic photoreceptor and image forming method using the photoreceptor - Google Patents

Electrophotographic photoreceptor and image forming method using the photoreceptor Download PDF

Info

Publication number
JP3939394B2
JP3939394B2 JP12413797A JP12413797A JP3939394B2 JP 3939394 B2 JP3939394 B2 JP 3939394B2 JP 12413797 A JP12413797 A JP 12413797A JP 12413797 A JP12413797 A JP 12413797A JP 3939394 B2 JP3939394 B2 JP 3939394B2
Authority
JP
Japan
Prior art keywords
αcal
molecular orbital
calculated value
pcal
polarizability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12413797A
Other languages
Japanese (ja)
Other versions
JPH10312071A (en
Inventor
光幸 三森
考行 庄田
美貴子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP12413797A priority Critical patent/JP3939394B2/en
Priority to US09/078,503 priority patent/US5932384A/en
Publication of JPH10312071A publication Critical patent/JPH10312071A/en
Application granted granted Critical
Publication of JP3939394B2 publication Critical patent/JP3939394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真用感光体に関するものである。さらに詳しくは有機系の光導電性物質を含有する感光層を有する高感度の電子写真用感光体に関するものである。
【0002】
【従来の技術】
従来、電子写真用感光体の感光層にはセレン、硫化カドミウム、酸化亜鉛等の無機系の光導電性物質が、広く用いられていた。しかしながら、セレン、硫化カドミウムは毒物として回収が必要であり、セレンは熱により結晶化するための耐熱性に劣り、硫化カドミウム、酸化亜鉛は耐湿性に劣り、また酸化亜鉛は耐刷性がないなどの欠点を有しており、新規な感光体の開発の努力が続けられている。最近は、有機系の光導電性物質を電子写真用感光体の感光層に用いる研究が進み、そのいくつかが実用化された。有機系の光導電性物質は無機系のものに比し、軽量である、成膜が容易である、感光体の製造が容易である、種類によっては透明な感光体を製造できる等の利点を有する。
【0003】
最近は、電荷キャリヤーの発生と移動の機能を別々の化合物に分担させる、いわゆる機能分離型の感光体が高感度化に有効であることから、開発の主流となっており、このタイプによる有機系感光体の実用化も行なわれている。
電荷キャリヤーの移動媒体(以下、「CTM」と略す。)としては、ポリビニルカルバゾールなどの高分子光導電性化合物を用いる場合と低分子光導電性化合物をバインダーポリマー中に分散溶解する場合とがある。
【0004】
【発明が解決しようとする課題】
特に、有機系の低分子光導電性化合物は、バインダーとして皮膜性、可とう性、接着性などのすぐれたポリマーを選択することができるので容易に機械的特性の優れた感光体を得ることができる(例えば、特開昭63−172161号公報、特開昭63−174053号公報、特開平4−267261号公報、特公平5−15259号公報参照)。
【0005】
ここで、電子写真用感光体として要求される性能を挙げると、(1)暗所におけるコロナ放電による帯電性が高いこと、(2)コロナ帯電による表面電位の暗所における減衰が小さいこと、(3)光照射による表面電位の減衰が大きいこと、(4)光照射後の残留電位が小さいこと、(5)繰り返し使用した時の表面電位の変動や感度の低下、残留電位の蓄積等が少なく耐久性にすぐれていることなどがある。
【0006】
特に残留電位が大きい場合、露光部にも電荷が残り、トナー現像を行なうと、非画線部にもトナーが現像され、いわゆるカブリ画像となる。また、プリンターなどで多く用いられる反転現像においては、画像濃度あるいはコントラストが低下し、極端な場合には画線部にトナーが付着しない欠陥が生じ、いわゆる白ぬけ画像となる。これはいずれも画像の再現性を著しく低下させ、実用に供し得ない。近年、反転現像方式のレーザープリンター等の普及により、フタロシアニン系顔料などの長波長光用電荷発生材料との組合せに適した高感度で残留電位が低く、かつ移動度が高く、耐久性にすぐれたCTMの開発が強く望まれている。
【0007】
【課題を解決するための手段】
本発明者らは高感度、低残留電位、高移動度で、高耐久性の電子写真用感光体を提供する有機系の低分子光導電性化合物について鋭意研究したところ特定のパラメータを満たす分子が好適であることを見出し本発明に至った。即ち、本発明の要旨は、導電性支持体上に電荷発生物質及び電荷輸送物質を含有する感光層を有する電子写真感光体において、該電荷輸送物質のPM3パラメータを使った半経験的分子軌道計算を用いた構造最適化計算による(以下これを単に半経験的分子軌道計算によるとする)分極率αの計算値αcalが、次式
αcal>70(Å^3)
を満たし、かつ半経験的分子軌道計算による双極子モーメントPの計算値Pcalが、次式
Pcal<1.8(D)
を満たし、しかも
αcal/Mw>0.11(Å^3)
又は
αcal/V>0.11
(αcal:半経験的分子軌道計算による分極率の計算値、Mw:分子量、V:半経験的分子軌道法により求めた分子構造における分子のvan der Waals体積の計算値)を満たすものであって、更に
αcal/Pcal>70(Å^3/D)
(αcal:半経験的分子軌道計算による分極率の計算値、Pcal:半経験的分子軌道計算による双極子モーメントPの計算値)を満たすものであり、
前記電荷発生物質としてX線回折スペクトルのブラック角(2θ±0.2°)9.3°、10.6°、13.2°、15.1°、15.7°、16.1°、20.8°、23.3°、27.1°に強い回折ピークを示すチタニウムオキシフタロシアニン顔料を含有し、露光光として750〜850nmの光を用いることを特徴とする電子写真感光体に存する。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
有機電荷輸送物質の半経験的分子軌道計算による分極率αの計算値αcalが、次式
αcal>70(Å^3)
を満たし、かつ半経験的分子軌道計算による双極子モーメントPの計算値Pcalが、次式
Pcal<1.8(D)
を満たす物質が、高い移動度を示し、この有機電荷輸送物質と電荷発生物質を用いることによって、帯電性、感度、残留電位等に優れた電子写真感光体が得られる。
【0009】
本発明において有機電荷輸送剤の分極率、双極子能率は半経験的分子軌道計算により求めた。分子軌道法ではシュレディンガー方程式で用いる波動関数を、原子軌道の線形結合で表される分子軌道からなるスレーター行列式で近似し、その波動関数を構成する分子軌道をつじつまの合った場(self−consistent field、略してSCF)の近似を用いて求めることにより全エネルギー、波動関数および波動関数の期待値として種々の物理量を計算できる。つじつまの合った場の近似により分子軌道を求める際、計算時間のかかる積分計算を種々の実験値を使ってパラメータし近似することにより計算時間を短縮するのが半経験的分子軌道法である。本発明では半経験的パラメータとしてPM3パラメータセットを用い半経験的分子軌道計算プログラムMOPACのバージョンMOPAC93を用いて計算した(PM3及びMOPACに関してはJ.J.P Stewart,Journal of Computer−Aided Molecular Design,,1(1990)ならびにその中の引用文献を参照)。
【0010】
本発明者らは、上記特定のパラメータを有する電荷輸送剤が優れた性能を示す理由について、以下のように考察した。
即ち、本発明者らは、有機電子輸送機構に、隣接電子輸送剤間の軌道の重なりと、電場(局所電場を含む)に対する電荷分布の変化が大きく関与していることに着目し、該電荷輸送物質の分極率及び双極子モーメントについて考察を行った。
【0011】
電荷輸送剤は、その電子雲の広がりが大きいほど、電荷輸送層内で隣接電荷輸送剤との電子雲の重なりが大きくなるため電子の移動が行われやすくなり、その結果移動度が大きくなると考えられる。一方、電子雲の広がりが大きいほど、電子は正電荷を持つ原子核からの束縛が弱くなり、電場がかかった際に生じる電荷分布の変化は大きくなると考えられる。従って、電荷輸送剤の移動度は、分子に電場がかかることにより生じる電荷分布の変化に起因する分極の度合いを示す物理量である分極率が大きいほど大きくなると考えられる。
【0012】
又、双極子モーメントの大きな有機電荷輸送剤は、電荷輸送層にキャリア(有機電荷輸送剤イオン)が存在するとき、キャリアの電荷と周辺の有機電荷輸送剤の双極子モーメントとに働く相互作用エネルギーが大きく、大きな安定化エネルギーを得ることから、隣接有機電荷輸送剤分子との間で電荷輸送する際の活性化エネルギーが大きくなる。それ故双極子能率がある程度小さいことを満たすことは、高い移動度を実現するため重要な要素となると考えられる。
【0013】
以上の理由より、上記特定の分極率及び双極子モーメントを示す電荷輸送剤が高い移動度を示すと考察した。
分極率の計算値αcalは、好ましくはαcal>80(Å^3)であり、更に好ましくは、αcal>85(Å^3)であり、更に好ましくは、αcal>90(Å^3)である。
【0014】
また、双極子モーメントの計算値Pcalは、好ましくは、Pcal<1.7(D)であり、更に好ましくはPcal<1.65(D)である。又αcal/Pcalの値は、好ましくはαcal/Pcal>75(Å^3/D)であり、より好ましくは、αcal/Pcal>80(Å^3/D)である。
請求項1を満たす分子において、分子量あたりの分極率の計算値の大きさ
αcal/Mw>0.11(Å^3)
(αcal:半経験的分子軌道計算による分極率の計算値、Mw:分子量)
又は、単位体積あたりの分極率の計算値の大きさ
αcal/V>0.11
(αcal:半経験的分子軌道計算による分極率の計算値、V:半経験的分子軌道法により求めた分子構造における分子のvan der Waals体積の計算値)を満たす物質が、高い移動度を示し、この有機電荷輸送物質と電荷発生物質を用いることによって、帯電性、感度、残留電位等に優れた電子写真感光体が得られる。
【0015】
これは、同じ分極率の分子の場合、分子量の小さい物の方が、感光体中により多いモル数存在することになるため、発明の効果が強くでていると考えられる。これらの値は、好ましくは、αcal/Mw>0.115(Å^3)、αcal/V>0.115を満たすことは高移動度、高感度化の点において好ましく、より好ましくは、αcal/Mw>0.12(Å^3)、αcal/V>0.12である。
該電荷輸送物質の分子量は一万以下が好ましい。
【0016】
又、該電荷輸送物質の半経験的分子軌道計算によるイオン化ポテンシャルの計算値が7.9〜8.3eVであることは、高感度、低残留電位の意味において、好ましい。
電荷輸送物質と電荷発生物質のイオン化ポテンシャルの差は0.4eV以内、さらには0.3eVであることが、高感度という意味において好ましい。また、電荷発生層と電荷輸送層のイオン化ポテンシャルの差が0.2eV以内、さらには0.1eV以内であることは、高感度という意味において好ましい。
【0017】
有機電荷輸送物質の分極率、双極子モーメント、イオン化ポテンシャルはMOPAC93を用い容易に求められる。
本発明によれば、有機電荷輸送物質について、分極率及び双極子モーメントを、合成することなく、計算により求めることにより、電子写真感光体における適否が推定できるので、適切な有機電荷輸送物質を使用して、電子写真感光体の製造を容易に行うことができる。
【0018】
本発明における、有機電荷輸送物質の具体例としては例えば以下のようなものが挙げられる。
構造は、考えうる、種々の初期構造から出発し、最安定構造を求めた。単一の構造にならない場合は、これらの平均値を求めた。
【0019】
【表1】

Figure 0003939394
【0020】
【表2】
Figure 0003939394
【0021】
本発明の電子写真感光体は、請求項1〜13を満たす電荷輸送物質を1種、または、2種以上含有する感光層を有する。
電子写真感光体の感光層の形態としては、種々のものが知られているが、本発明の電子写真感光体の感光層としてはそのいずれであっても良い。
感光層(光伝導層)は、電荷発生層、電荷輸送層をこの順に積層したもの、あるいは、逆に積層したものである積層型、さらには電荷輸送媒体中に電荷発生材料(電荷発生物質)の粒子を分散したいわゆる分散型など、いずれの構成も用いることができる。
【0022】
たとえばバインダー中に電荷輸送媒体と必要に応じ、増感剤となる色素や、電子吸引性化合物を添加した感光層、光を吸収すると極めて高い効率で電荷キャリヤーを発生する電荷発生材料(光伝導性粒子)と電荷輸送媒体をバインダー中に添加した感光層、電荷輸送媒体とバインダーからなる電荷発生層と光を吸収すると極めて高い効率で電荷キャリアーを発生する電荷発生材料からなるあるいはこれとバインダーからなる電荷発生層を積層した感光層等があげられる。
【0023】
これらの感光層には、有機光伝導体として優れた性能を有する公知の他のアリールアミン化合物、ヒドラゾン化合物、スチルベン化合物を混合してもよい。
本発明においては、特定パラメータを満たす電荷輸送媒体を含有する電荷発生層と電荷輸送層(電荷移動層)の2層からなる感光層の電荷輸送層中に用いる場合に、特に感度が高く、残留電位が小さく、かつ、繰り返し使用した場合に、表面電位の変動や感度の低下、残留電位の蓄積等が小さく、耐久性に優れた感光体を得ることができる。
【0024】
具体的には通常、電荷発生材料を直接蒸着あるいはバインダーとの分散液として塗布して電荷発生層を作成し、その上に、前記電荷輸送媒体を含む有機溶剤溶液をキャストするか、あるいは電荷輸送媒体をバインダー等とともに溶解し、その分散液を塗布することにより、電荷輸送層を作成してなる積層型感光体であるが、電荷発生層と電荷輸送層の積層順序は逆の構成でも良い。
【0025】
また電荷発生材料と電荷輸送材料とが、バインダー中に分散、溶解した状態で伝導性支持体上に塗布した一層型感光体であってもよい。
電荷発生材料としては、セレン、セレン−テルル合金、セレン−ヒ素合金、硫化カドミウム、アモルファスシリコン等の無機光伝導性粒子;無金属フタロシアニン、金属含有フタロシアニン、ペリノン系顔料、チオインジゴ、キナクリドン、ペリレン系顔料、アントラキノン系顔料、アゾ系顔料、ビスアゾ系顔料、トリスアゾ系顔料、テトラキス系アゾ顔料、シアニン系顔料等の有機光伝導性粒子が挙げられる。更に、多環キノン、ピリリウム塩、チオピリリウム塩、インジゴ、アントアントロン、ピラントロン等の各種有機顔料、染料が使用できる。中でも無金属フタロシアニン、銅、塩化インジウム、塩化ガリウム、錫、オキシチタニウム、亜鉛、バナジウム等の金属又はその酸化物、塩化物の配位したフタロシアニン類、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ類等のアゾ顔料が好ましい。
【0026】
さらにその中でも、金属含有又は無金属フタロシアニンと、上記電荷輸送材料を組合せるとレーザー光に対する感度が向上した感光体が得られ、特に、導電性支持体上に、少なくとも、電荷発生材料と電荷輸送材料とを含有する感光層を有する電子写真用感光体において、該電荷発生材料として、X線回折スペクトルのブラック角(2θ±0.2°)27.3°に主たる回折ピークを示すオキシチタニウムフタロシアニンを含有する電子写真感光体が好ましい。
【0027】
この様にして得られる電子写真用感光体は高感度で、残留電位が低く帯電性が高く、かつ、繰返しによる変動が小さく、特に、画像濃度に影響する帯電安定性が良好であることから、高耐久性感光体として用いることができる。又750〜850nmの領域の感度が高いことから、特に半導体レーザープリンター用感光体に適している。
【0028】
電荷発生材料として使用される好ましいオキシチタニウムフタロシアニンはそのX線回折スペクトルにおいて、ブラック角(2θ±0.2°)の27.3°に主たる回折ピークを有する。前記の「主たる回折ピーク」とは、そのX線回折スペクトルにおける強度が一番強い(高い)ピークを指す。
使用されるオキシチタニウムフタロシアニンの粉末X線スペクトルは、ブラック角(2θ±0.2°)27.3°の回折ピークが主たるピークであり、そのピーク以外は細かい条件によって種々ふれるが、27.3°のピーク強度に対していずれのピークもその強度(ピーク高さの比較)は50%以下であるものが、電子写真用感光体として、帯電性、感度等の点から好ましい。
【0029】
前記のX線回折スペクトルのブラック角(2θ±0.2°)27.3°に主たる回折ピークを示すオキシチタニウムフタロシアニン粒子はバインダーポリマーおよび必要に応じ他の有機光導電性化合物、色素、電子吸引性化合物等と共に溶剤に溶解あるいは分散し、こうして得られる塗布液を塗布乾燥して電荷発生層を得る。例えば前記のX線回折スペクトルのブラック角(2θ±0.2°)27.3°に主たる回折ピークを示すオキシチタニウムフタロシアニンとX線回折スペクトルのブラック角(2θ±0.2°)9.3°、13.2°、26.2°および27.1°に主たる回折ピークを示すオキシチタニウムフタロシアニンとを用いること、又は前記のX線回折スペクトルのブラック角(2θ±0.2°)27.3°に主たる回折ピークを示すオキシチタニウムフタロシアニンとX線回折スペクトルのブラック角(2θ±0.2°)8.5°、12.2°、13.8°、16.9°、22.4°、28.4°および30.1°に主たる回折ピークを示すジクロロスズフタロシアニンとを用いることは好ましい。
【0030】
【実施例】
実施例1
X線回折スペクトルにおいて、ブラック角(2θ±0.2°)9.3°、10.6°、13.2°、15.1°、15.7°、16.1°、20.8°、23.3°、27.1°に強い回折ピークを示すチタニウムオキシフタロシアニン顔料1.0部をジメトキシエタン14部に加え、サンドグラインダーで分散処理をした後、ジメトキシエタン14部と4−メトキシ−4−メチルペンタノン−2 (三菱化学(株)社製)14部を加え希釈し、さらに、ポリビニルブチラール(電気化学工業(株)社製、商品名デンカブチラール#6000−C)0.5部と、フェノキシ樹脂(ユニオンカーバイド(株)社製、商品名UCAR(商標登録)PKHH)0.5部をジメトキシエタン6部、4−メトキシ−4−メチルペンタノン−2 6部の混合溶媒に溶解した液と混合し、分散液を得た。この分散液を75μmに膜厚のポリエステルフィルムに蒸着されたアミノ蒸着層の上に乾燥後の重量が0.4g/m2 になる様にワイヤーバーで塗布した後、乾燥して電荷発生層を形成させた。
この上に前記表−1の化合物No.1 70部と下記に示すポリカーボネート樹脂
【0031】
【化2】
Figure 0003939394
【0032】
100部をテトラヒドロフラン900部に溶解した塗布液を塗布、乾燥し、膜厚20μmの電荷輸送層を形成させた。
このようにして得た2層からなる感光層を有する電子写真感光体によって感度すなわち半減露光量を測定したところ0.42μJ/cm2 であった。
半減露光量はまず、感光体を暗所で50μAのコロナ電流により負帯電させ、次いで20ルックスの白色光を干渉フィルターに通して得られた780nmの光(露光エネルギー10μW/cm2 )で露光し、表面電位が−450Vから−225Vまで減衰するのに要する露光量を測定することにより求めた。さらに露光時間を9.9秒とした時の表面電位を残留電位として測定したところ、−1Vであった。この操作を2000回繰り返したが、残留電位の上昇はみられなかった。
【0033】
又該電荷輸送層の電界強度E=2e+5 (V/cm)、温度21℃下におけるホールドリフト移動度をTOF法により測定したところ、2.2e−5 (cm2 /Vs)であった。
該電荷輸送物質(前記表−1の化合物No.1)のイオン化ポテンシャル、分極率及び双極子モーメントを、MOPAC93により計算したところ、イオン化ポテンシャル=8.07eV、分極率αcal=93.7(Å^3)及び双極子モーメントPcal=0.79(D)であった。
【0034】
実施例2
実施例1で用いたアリールアミン系化合物の代わりに、前記表−1の化合物No.2を用いる以外は実施例1と同様にして電子写真感光体を得た。
次いで実施例1と同様にして感度、残留電位、移動度、を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0035】
実施例3
実施例1で用いたアリールアミン系化合物の代わりに、前記表−1の化合物No.4を用いる以外は実施例1と同様にして電子写真感光体を得た。
次いで実施例1と同様にして感度、残留電位、移動度、を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0036】
比較例1
実施例1で用いたアリールアミン系化合物の代わりに、下記に示す比較化合物1を用いる以外は実施例1と同様にして電子写真感光体を得た。
比較化合物1
【0037】
【化3】
Figure 0003939394
【0038】
次いで実施例1と同様にして感度、残留電位、移動度を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0039】
比較例2
実施例1で用いたアリールアミン系化合物の代わりに、下記に示す比較化合物2を用いる以外は実施例1と同様にして電子写真感光体を得た。
比較化合物2
【0040】
【化4】
Figure 0003939394
【0041】
次いで実施例1と同様にして感度、残留電位、移動度を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0042】
比較例3
実施例1で用いたアリールアミン系化合物の代わりに、下記に示す比較化合物3を用いる以外は実施例1と同様にして電子写真感光体を得た。
比較化合物3
【0043】
【化5】
Figure 0003939394
【0044】
次いで実施例1と同様にして感度、残留電位、移動度を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0045】
比較例4
実施例1で用いたアリールアミン系化合物の代わりに、下記に示す比較化合物4を用いる以外は実施例1と同様にして電子写真感光体を得た。
比較化合物4
【0046】
【化6】
Figure 0003939394
【0047】
次いで実施例1と同様にして感度、残留電位、移動度を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0048】
比較例5
実施例1で用いたアリールアミン系化合物の代わりに、下記に示す比較化合物5を用いる以外は実施例1と同様にして電子写真感光体を得た。
比較化合物5
【0049】
【化7】
Figure 0003939394
【0050】
次いで実施例1と同様にして感度、残留電位、移動度を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0051】
比較例6
実施例1で用いたアリールアミン系化合物の代わりに、下記に示す比較化合物6を用いる以外は実施例1と同様にして電子写真感光体を得た。
比較化合物6
【0052】
【化8】
Figure 0003939394
【0053】
次いで実施例1と同様にして感度、残留電位、移動度を測定し、イオン化ポテンシャル、分極率及び双極子モーメントを計算した。この結果を実施例1の感光体についての測定結果と共に表−2に示す。
【0054】
【表3】
Figure 0003939394
【0055】
表−2より、明らかに実施例1、2、3の化合物は比較例1、2、3、4、5、6の化合物に比べ、移動度、又は感度、残留電位、に優れた数値を示すことがわかる。
【0056】
【発明の効果】
本発明の電子写真感光体は移動度、感度が非常に高く、かつ、かぶりの原因となる残留電位が小さく、とくに光疲労が少ないために繰返し使用による残留電位の蓄積や、表面電位および感度の変動が小さく耐久性に優れるという特徴を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor. More particularly, the present invention relates to a high-sensitivity electrophotographic photoreceptor having a photosensitive layer containing an organic photoconductive substance.
[0002]
[Prior art]
Conventionally, inorganic photoconductive materials such as selenium, cadmium sulfide, and zinc oxide have been widely used in the photosensitive layer of electrophotographic photoreceptors. However, selenium and cadmium sulfide must be recovered as poisonous substances, selenium is inferior in heat resistance for crystallization by heat, cadmium sulfide and zinc oxide are inferior in moisture resistance, and zinc oxide is not in printing durability. Therefore, efforts to develop new photoreceptors are continuing. Recently, research on using organic photoconductive substances for the photosensitive layer of electrophotographic photoreceptors has progressed, and some of them have been put to practical use. Compared to inorganic materials, organic photoconductive materials are lighter, easier to form films, easier to manufacture photoreceptors, and can produce transparent photoreceptors depending on the type. Have.
[0003]
Recently, so-called function-separated type photoconductors, which share the functions of charge carrier generation and transfer with different compounds, are effective in achieving high sensitivity, and this has become the mainstream of development. Photoconductors have also been put into practical use.
As a charge carrier transfer medium (hereinafter abbreviated as “CTM”), there are a case where a high molecular weight photoconductive compound such as polyvinyl carbazole is used and a case where a low molecular weight photoconductive compound is dispersed and dissolved in a binder polymer. .
[0004]
[Problems to be solved by the invention]
In particular, organic low-molecular photoconductive compounds can select a polymer having excellent film properties, flexibility, adhesiveness, etc. as a binder, so that a photoconductor excellent in mechanical properties can be easily obtained. (See, for example, JP-A-63-172161, JP-A-63-174053, JP-A-4-267261, and JP-B-5-15259).
[0005]
Here, the performance required for the electrophotographic photoreceptor is as follows: (1) high chargeability due to corona discharge in a dark place; (2) small attenuation of surface potential due to corona charge in the dark place; 3) Attenuation of surface potential by light irradiation is large, (4) Residual potential after light irradiation is small, (5) Surface potential fluctuations and sensitivity decrease when used repeatedly, accumulation of residual potential is small, etc. It has excellent durability.
[0006]
In particular, when the residual potential is large, the charge remains in the exposed area, and when toner development is performed, the toner is also developed in the non-image area and a so-called fog image is formed. In reversal development often used in printers or the like, the image density or contrast decreases, and in an extreme case, a defect in which toner does not adhere to the image line portion occurs, resulting in a so-called whitened image. All of these remarkably reduce the reproducibility of the image and cannot be put to practical use. In recent years, with the spread of reversal development laser printers, etc., high sensitivity and low residual potential suitable for combination with charge generation materials for long wavelength light such as phthalocyanine pigments, high mobility, and excellent durability The development of CTM is highly desired.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied an organic low-molecular photoconductive compound that provides a high-sensitivity, low residual potential, high mobility, and highly durable electrophotographic photoreceptor. As a result, the present invention was found to be suitable. That is, the gist of the present invention is a semi-empirical molecular orbital calculation using the PM3 parameter of a charge transport material in an electrophotographic photoreceptor having a photosensitive layer containing a charge generation material and a charge transport material on a conductive support. The calculated value αcal of the polarizability α by the structure optimization calculation using the following (hereinafter referred to simply as semi-empirical molecular orbital calculation) is expressed by the following equation: αcal> 70 (Å ^ 3)
And the calculated value Pcal of the dipole moment P by semi-empirical molecular orbital calculation is Pcal <1.8 (D)
It meets, moreover
αcal / Mw> 0.11 (Å ^ 3)
Or
αcal / V> 0.11
(Αcal: calculated value of polarizability by semiempirical molecular orbital calculation, Mw: molecular weight, V: calculated value of van der Waals volume of molecule in molecular structure obtained by semiempirical molecular orbital method) And more
αcal / Pcal> 70 (Å ^ 3 / D)
(Αcal: calculated value of polarizability by semiempirical molecular orbital calculation, Pcal: calculated value of dipole moment P by semiempirical molecular orbital calculation),
X-ray diffraction spectrum black angle (2θ ± 0.2 °) of 9.3 °, 10.6 °, 13.2 °, 15.1 °, 15.7 °, 16.1 ° as the charge generation material, An electrophotographic photoreceptor comprising a titanium oxyphthalocyanine pigment having strong diffraction peaks at 20.8 °, 23.3 °, and 27.1 °, and using 750 to 850 nm light as exposure light .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The calculated value αcal of the polarizability α by the semi-empirical molecular orbital calculation of the organic charge transport material is expressed by the following formula αcal> 70 (Å ^ 3)
And the calculated value Pcal of the dipole moment P by semi-empirical molecular orbital calculation is Pcal <1.8 (D)
A material satisfying the above conditions exhibits high mobility, and by using this organic charge transport material and charge generation material, an electrophotographic photoreceptor excellent in chargeability, sensitivity, residual potential and the like can be obtained.
[0009]
In the present invention, the polarizability and dipole efficiency of the organic charge transfer agent were determined by semiempirical molecular orbital calculation. In the molecular orbital method, a wave function used in the Schrödinger equation is approximated by a slater determinant composed of molecular orbitals represented by a linear combination of atomic orbitals, and the molecular orbits constituting the wave function are self-consistent fields (self-consistent). Various physical quantities can be calculated as the total energy, wave function, and expected value of the wave function by using an approximation of field (abbreviated as SCF). The semi-empirical molecular orbital method shortens the calculation time by parameterizing and approximating the integral calculation, which requires a long calculation time, using various experimental values when calculating the molecular orbital by approximating the appropriate field. In the present invention, the PM3 parameter set was used as a semi-empirical parameter, and calculation was performed using a version MOPAC 93 of a semi-empirical molecular orbital calculation program MOPAC (for PM3 and MOPAC, JJ P Stewart, Journal of Computer-Aided Molecular Design, 4 , 1 (1990) and references cited therein).
[0010]
The present inventors considered the reason why the charge transfer agent having the above specific parameters exhibits excellent performance as follows.
That is, the present inventors pay attention to the fact that orbital overlap between adjacent electron transfer agents and change in charge distribution with respect to the electric field (including local electric field) are greatly involved in the organic electron transport mechanism. The polarizability and dipole moment of the transport material were discussed.
[0011]
A charge transport agent is considered to have a greater mobility as a result of the larger electron cloud spread, the greater the overlap of the electron cloud with the adjacent charge transport agent in the charge transport layer. It is done. On the other hand, it is considered that the greater the spread of the electron cloud, the weaker the electrons are bound from positively charged nuclei, and the greater the change in charge distribution that occurs when an electric field is applied. Therefore, it is considered that the mobility of the charge transfer agent increases as the polarizability, which is a physical quantity indicating the degree of polarization due to the change in charge distribution caused by the electric field applied to the molecule, increases.
[0012]
In addition, an organic charge transfer agent having a large dipole moment has an interaction energy that acts on the carrier charge and the dipole moment of the surrounding organic charge transfer agent when carriers (organic charge transfer agent ions) are present in the charge transfer layer. Since a large stabilization energy is obtained, the activation energy for charge transport between adjacent organic charge transfer agent molecules is increased. Therefore, satisfying that the dipole efficiency is somewhat small is considered to be an important factor for achieving high mobility.
[0013]
For the above reasons, it was considered that the charge transfer agent exhibiting the specific polarizability and dipole moment showed high mobility.
The calculated value αcal of the polarizability is preferably αcal> 80 (Å ^ 3), more preferably αcal> 85 (Å ^ 3), and more preferably αcal> 90 (Å ^ 3). .
[0014]
The calculated value Pcal of the dipole moment is preferably Pcal <1.7 (D), and more preferably Pcal <1.65 (D). The value of αcal / Pcal is preferably αcal / Pcal> 75 (Å ^ 3 / D), and more preferably αcal / Pcal> 80 (Å ^ 3 / D).
In the molecule satisfying claim 1, the calculated value of the polarizability per molecular weight αcal / Mw> 0.11 (Å ^ 3)
(Αcal: calculated value of polarizability by semi-empirical molecular orbital calculation, Mw: molecular weight)
Or, the magnitude αcal / V> 0.11 of the calculated polarizability per unit volume
Substances satisfying (αcal: calculated value of polarizability by semi-empirical molecular orbital calculation, V: calculated value of van der Waals volume of molecule in molecular structure obtained by semi-empirical molecular orbital method) show high mobility By using this organic charge transport material and charge generation material, an electrophotographic photoreceptor excellent in chargeability, sensitivity, residual potential and the like can be obtained.
[0015]
In the case of molecules having the same polarizability, it is thought that the effect of the invention is stronger because the smaller molecular weight is present in a larger number of moles in the photoreceptor. These values preferably satisfy αcal / Mw> 0.115 (Å ^ 3) and αcal / V> 0.115 in terms of high mobility and high sensitivity, and more preferably αcal / M Mw> 0.12 (Å ^ 3) and αcal / V> 0.12.
The molecular weight of the charge transport material is preferably 10,000 or less.
[0016]
In addition, it is preferable in terms of high sensitivity and low residual potential that the calculated ionization potential of the charge transport material by semi-empirical molecular orbital calculation is 7.9 to 8.3 eV.
The difference in ionization potential between the charge transport material and the charge generation material is preferably within 0.4 eV, more preferably 0.3 eV, in the sense of high sensitivity. Further, the difference in ionization potential between the charge generation layer and the charge transport layer is preferably within 0.2 eV, more preferably within 0.1 eV, in the sense of high sensitivity.
[0017]
The polarizability, dipole moment, and ionization potential of the organic charge transport material can be easily obtained using MOPAC93.
According to the present invention, the suitability of the electrophotographic photosensitive member can be estimated by calculating the polarizability and dipole moment of the organic charge transporting material without synthesis, so that an appropriate organic charge transporting material is used. Thus, the electrophotographic photosensitive member can be easily manufactured.
[0018]
Specific examples of the organic charge transport material in the present invention include the following.
The structure started from various possible initial structures and the most stable structure was determined. When a single structure was not obtained, the average value was obtained.
[0019]
[Table 1]
Figure 0003939394
[0020]
[Table 2]
Figure 0003939394
[0021]
The electrophotographic photoreceptor of the present invention has a photosensitive layer containing one kind or two or more kinds of charge transport materials satisfying claims 1 to 13.
Various forms of the photosensitive layer of the electrophotographic photosensitive member are known, and any of the photosensitive layers of the electrophotographic photosensitive member of the present invention may be used.
The photosensitive layer (photoconductive layer) includes a charge generation layer, a charge transport layer laminated in this order, or a laminate type obtained by laminating in reverse order, and a charge generation material (charge generation material) in a charge transport medium. Any configuration such as a so-called dispersion type in which the above particles are dispersed can be used.
[0022]
For example, a charge transport medium in the binder and, if necessary, a dye as a sensitizer, a photosensitive layer to which an electron-withdrawing compound is added, a charge generating material that generates charge carriers with very high efficiency when absorbing light (photoconductive Particles) and a photosensitive layer in which a charge transport medium is added to a binder, a charge generation layer composed of a charge transport medium and a binder, and a charge generation material which generates charge carriers with extremely high efficiency when absorbing light, or a binder Examples thereof include a photosensitive layer having a charge generation layer laminated thereon.
[0023]
These photosensitive layers may be mixed with other known arylamine compounds, hydrazone compounds, and stilbene compounds having excellent performance as organic photoconductors.
In the present invention, when used in a charge transport layer of a photosensitive layer composed of two layers of a charge generation layer containing a charge transport medium satisfying a specific parameter and a charge transport layer (charge transfer layer), the sensitivity is particularly high and the residual When the potential is small and it is repeatedly used, it is possible to obtain a photoconductor excellent in durability with small fluctuations in surface potential, reduction in sensitivity, accumulation of residual potential, and the like.
[0024]
Specifically, usually a charge generation material is directly deposited or applied as a dispersion with a binder to form a charge generation layer, and an organic solvent solution containing the charge transport medium is cast on the charge generation layer, or charge transport is performed. The multilayer photoconductor is prepared by dissolving the medium together with a binder and applying the dispersion, thereby forming a charge transport layer. However, the order of stacking the charge generation layer and the charge transport layer may be reversed.
[0025]
Alternatively, a single-layer type photoreceptor in which a charge generating material and a charge transporting material are dispersed and dissolved in a binder and coated on a conductive support may be used.
Examples of charge generation materials include inorganic photoconductive particles such as selenium, selenium-tellurium alloy, selenium-arsenic alloy, cadmium sulfide, amorphous silicon; metal-free phthalocyanine, metal-containing phthalocyanine, perinone pigment, thioindigo, quinacridone, perylene pigment And organic photoconductive particles such as anthraquinone pigments, azo pigments, bisazo pigments, trisazo pigments, tetrakis azo pigments, cyanine pigments. Furthermore, various organic pigments and dyes such as polycyclic quinone, pyrylium salt, thiopyrylium salt, indigo, anthanthrone, and pyranthrone can be used. Among them, metal-free phthalocyanine, copper, indium chloride, gallium chloride, tin, oxytitanium, zinc, vanadium and other metals or oxides thereof, chloride coordinated phthalocyanines, monoazo, bisazo, trisazo, polyazo and other azo pigments Is preferred.
[0026]
Further, among them, when a metal-containing or metal-free phthalocyanine and the above charge transport material are combined, a photoreceptor having improved sensitivity to laser light can be obtained. In particular, at least a charge generating material and a charge transport material are provided on a conductive support. In the electrophotographic photoreceptor having a photosensitive layer containing a material, an oxytitanium phthalocyanine showing a main diffraction peak at a black angle (2θ ± 0.2 °) of 27.3 ° in an X-ray diffraction spectrum as the charge generating material An electrophotographic photosensitive member containing is preferred.
[0027]
The electrophotographic photoreceptor thus obtained has high sensitivity, low residual potential and high chargeability, and small fluctuation due to repetition, and particularly good charging stability that affects image density. It can be used as a highly durable photoconductor. Further, since the sensitivity in the region of 750 to 850 nm is high, it is particularly suitable for a photoreceptor for a semiconductor laser printer.
[0028]
The preferred oxytitanium phthalocyanine used as the charge generating material has a main diffraction peak at 27.3 ° of the black angle (2θ ± 0.2 °) in its X-ray diffraction spectrum. The “main diffraction peak” refers to a peak having the strongest (high) intensity in the X-ray diffraction spectrum.
The powder X-ray spectrum of the oxytitanium phthalocyanine used has a diffraction peak with a black angle (2θ ± 0.2 °) of 27.3 ° as a main peak, and other than the peak, it varies depending on fine conditions. In terms of chargeability, sensitivity, etc., it is preferable for the electrophotographic photoreceptor to have an intensity (comparison of peak height) of 50% or less with respect to the peak intensity of °.
[0029]
The oxytitanium phthalocyanine particles exhibiting a main diffraction peak at a black angle (2θ ± 0.2 °) of 27.3 ° in the X-ray diffraction spectrum are a binder polymer and other organic photoconductive compounds, dyes, and electron withdrawing as required. The charge generation layer is obtained by dissolving or dispersing in a solvent together with the active compound and coating and drying the coating solution thus obtained. For example, oxytitanium phthalocyanine showing a main diffraction peak at a black angle (2θ ± 0.2 °) of 27.3 ° in the X-ray diffraction spectrum and a black angle (2θ ± 0.2 °) of 9.3 in the X-ray diffraction spectrum. 27. Use oxytitanium phthalocyanine showing main diffraction peaks at °, 13.2, 26.2 and 27.1 °, or the black angle (2θ ± 0.2 °) of the X-ray diffraction spectrum. Oxytitanium phthalocyanine showing a main diffraction peak at 3 ° and black angle (2θ ± 0.2 °) of X-ray diffraction spectrum of 8.5 °, 12.2 °, 13.8 °, 16.9 °, 22.4 It is preferable to use dichlorotin phthalocyanine which exhibits main diffraction peaks at °, 28.4 ° and 30.1 °.
[0030]
【Example】
Example 1
In X-ray diffraction spectrum, black angle (2θ ± 0.2 °) 9.3 °, 10.6 °, 13.2 °, 15.1 °, 15.7 °, 16.1 °, 20.8 ° After adding 1.0 part of titanium oxyphthalocyanine pigment showing strong diffraction peaks at 23.3 ° and 27.1 ° to 14 parts of dimethoxyethane and dispersing with a sand grinder, 14 parts of dimethoxyethane and 4-methoxy- Dilute by adding 14 parts of 4-methylpentanone-2 (Mitsubishi Chemical Corporation), and further 0.5 parts of polyvinyl butyral (Electrochemical Industry Co., Ltd., trade name Denka Butyral # 6000-C) And 0.5 part of phenoxy resin (trade name UCAR (registered trademark) PKHH, manufactured by Union Carbide Corp.) dissolved in a mixed solvent of 6 parts dimethoxyethane and 6 parts 4-methoxy-4-methylpentanone-2 Liquid and mixed to obtain a dispersion. This dispersion was applied on a vapor deposition layer deposited on a polyester film having a thickness of 75 μm with a wire bar so that the weight after drying was 0.4 g / m 2 , and then dried to form a charge generation layer. Formed.
On top of this, compound no. 1 70 parts and the polycarbonate resin shown below.
[Chemical 2]
Figure 0003939394
[0032]
A coating solution prepared by dissolving 100 parts in 900 parts of tetrahydrofuran was applied and dried to form a charge transport layer having a thickness of 20 μm.
The sensitivity, that is, the half-exposure amount was measured by the electrophotographic photosensitive member having the two-layered photosensitive layer thus obtained, and it was 0.42 μJ / cm 2 .
The half-exposure amount is obtained by first negatively charging the photoconductor with a corona current of 50 μA in the dark, and then exposing it with 780 nm light (exposure energy 10 μW / cm 2 ) obtained by passing 20 lux of white light through an interference filter. It was determined by measuring the exposure amount required for the surface potential to decay from -450V to -225V. Furthermore, when the surface potential when the exposure time was 9.9 seconds was measured as a residual potential, it was -1V. This operation was repeated 2000 times, but no increase in residual potential was observed.
[0033]
The hole drift mobility of the charge transport layer at an electric field intensity E = 2e + 5 (V / cm) and a temperature of 21 ° C. measured by the TOF method was 2.2e-5 (cm 2 / Vs).
When the ionization potential, polarizability, and dipole moment of the charge transport material (compound No. 1 in Table 1) were calculated by MOPAC93, the ionization potential = 8.07 eV and the polarizability αcal = 93.7 (Å ^). 3) and the dipole moment Pcal = 0.79 (D).
[0034]
Example 2
Instead of the arylamine compound used in Example 1, the compound No. 1 in Table 1 was used. An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that 2.
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0035]
Example 3
Instead of the arylamine compound used in Example 1, the compound No. 1 in Table 1 was used. An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that 4 was used.
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0036]
Comparative Example 1
An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that Comparative Compound 1 shown below was used in place of the arylamine compound used in Example 1.
Comparative compound 1
[0037]
[Chemical 3]
Figure 0003939394
[0038]
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0039]
Comparative Example 2
An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the following comparative compound 2 was used instead of the arylamine compound used in Example 1.
Comparative compound 2
[0040]
[Formula 4]
Figure 0003939394
[0041]
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0042]
Comparative Example 3
An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that Comparative Compound 3 shown below was used instead of the arylamine compound used in Example 1.
Comparative compound 3
[0043]
[Chemical formula 5]
Figure 0003939394
[0044]
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0045]
Comparative Example 4
An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the following comparative compound 4 was used instead of the arylamine compound used in Example 1.
Comparative compound 4
[0046]
[Chemical 6]
Figure 0003939394
[0047]
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0048]
Comparative Example 5
An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the following comparative compound 5 was used instead of the arylamine compound used in Example 1.
Comparative compound 5
[0049]
[Chemical 7]
Figure 0003939394
[0050]
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0051]
Comparative Example 6
An electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the following comparative compound 6 was used instead of the arylamine compound used in Example 1.
Comparative compound 6
[0052]
[Chemical 8]
Figure 0003939394
[0053]
Next, the sensitivity, residual potential, and mobility were measured in the same manner as in Example 1, and the ionization potential, polarizability, and dipole moment were calculated. The results are shown in Table 2 together with the measurement results for the photoreceptor of Example 1.
[0054]
[Table 3]
Figure 0003939394
[0055]
Table 2 clearly shows that the compounds of Examples 1, 2, and 3 are superior in mobility, sensitivity, or residual potential as compared with the compounds of Comparative Examples 1, 2, 3, 4, 5, and 6. I understand that.
[0056]
【The invention's effect】
The electrophotographic photosensitive member of the present invention has very high mobility and sensitivity, and has a small residual potential that causes fogging. Particularly, since there is little light fatigue, accumulation of residual potential due to repeated use, surface potential and sensitivity are low. It is characterized by small fluctuation and excellent durability.

Claims (3)

導電性支持体上に電荷発生物質及び電荷輸送物質を含有する感光層を有する電子写真感光体において、該電荷輸送物質のPM3パラメータを使った半経験的分子軌道計算を用いた構造最適化計算による(以下これを単に半経験的分子軌道計算によるとする)分極率αの計算値αcalが、次式
αcal>70(Å^3)
を満たし、かつ半経験的分子軌道計算による双極子モーメントPの計算値Pcalが、次式
Pcal<1.8(D)
を満たし、しかも
αcal/Mw>0.11(Å^3)
又は
αcal/V>0.11
(αcal:半経験的分子軌道計算による分極率の計算値、Mw:分子量、V:半経験的分子軌道法により求めた分子構造における分子のvan der Waals体積の計算値)を満たすものであって、更に
αcal/Pcal>70(Å^3/D)
(αcal:半経験的分子軌道計算による分極率の計算値、Pcal:半経験的分子軌道計算による双極子モーメントPの計算値)を満たすものであり、
前記電荷発生物質としてX線回折スペクトルのブラック角(2θ±0.2°)9.3°、10.6°、13.2°、15.1°、15.7°、16.1°、20.8°、23.3°、27.1°に強い回折ピークを示すチタニウムオキシフタロシアニン顔料を含有し、露光光として750〜850nmの光を用いることを特徴とする電子写真感光体。
In an electrophotographic photosensitive member having a photosensitive layer containing a charge generating material and a charge transport material on a conductive support, by structure optimization calculation using semi-empirical molecular orbital calculation using PM3 parameters of the charge transport material. The calculated value αcal of the polarizability α (hereinafter referred to simply as semi-empirical molecular orbital calculation) is expressed by the following equation: αcal> 70 (Å ^ 3)
And the calculated value Pcal of the dipole moment P by semi-empirical molecular orbital calculation is Pcal <1.8 (D)
And αcal / Mw> 0.11 (Å ^ 3)
Or αcal / V> 0.11
(Αcal: calculated value of polarizability by semiempirical molecular orbital calculation, Mw: molecular weight, V: calculated value of van der Waals volume of molecule in molecular structure obtained by semiempirical molecular orbital method) Furthermore, αcal / Pcal> 70 (Å ^ 3 / D)
(Αcal: calculated value of polarizability by semiempirical molecular orbital calculation, Pcal: calculated value of dipole moment P by semiempirical molecular orbital calculation),
X-ray diffraction spectrum black angle (2θ ± 0.2 °) of 9.3 °, 10.6 °, 13.2 °, 15.1 °, 15.7 °, 16.1 ° as the charge generation material, An electrophotographic photoreceptor comprising a titanium oxyphthalocyanine pigment having strong diffraction peaks at 20.8 °, 23.3 °, and 27.1 °, and using 750 to 850 nm light as exposure light.
露光光として、780nmの光を用いることを特徴とする、請求項1に記載の電子写真感光体。  2. The electrophotographic photosensitive member according to claim 1, wherein light having a wavelength of 780 nm is used as exposure light. 導電性支持体上に電荷発生物質及び電荷輸送物質を含有する感光層を有する電子写真感光体を用いる画像形成方法において、該電荷輸送物質のPM3パラメータを使った半経験的分子軌道計算を用いた構造最適化計算による(以下これを単に半経験的分子軌道計算によるとする)分極率αの計算値αcalが、次式
αcal>70(Å^3)
を満たし、かつ半経験的分子軌道計算による双極子モーメントPの計算値Pcalが、次式
Pcal<1.8(D)
を満たし、しかも
αcal/Mw>0.11(Å^3)
又は
αcal/V>0.11
(αcal:半経験的分子軌道計算による分極率の計算値、Mw:分子量、V:半経験的分子軌道法により求めた分子構造における分子のvan der Waals体積の計算値)を満たすものであって、更に
αcal/Pcal>70(Å^3/D)
(αcal:半経験的分子軌道計算による分極率の計算値、Pcal:半経験的分子軌道計算による双極子モーメントPの計算値)を満たすものであり、
前記電荷発生物質としてX線回折スペクトルのブラック角(2θ±0.2°)9.3°、10.6°、13.2°、15.1°、15.7°、16.1°、20.8°、23.3°、27.1°に強い回折ピークを示すチタニウムオキシフタロシアニン顔料を含有する電子写真感光体を、露光光として750〜850nmの光を用いて露光することを特徴とする画像形成方法。
In an image forming method using an electrophotographic photosensitive member having a photosensitive layer containing a charge generating material and a charge transport material on a conductive support, semi-empirical molecular orbital calculation using PM3 parameters of the charge transport material was used. The calculated value αcal of the polarizability α by structure optimization calculation (hereinafter simply referred to as semi-empirical molecular orbital calculation) is expressed by the following equation: αcal> 70 (Å ^ 3)
And the calculated value Pcal of the dipole moment P by semi-empirical molecular orbital calculation is Pcal <1.8 (D)
And αcal / Mw> 0.11 (Å ^ 3)
Or αcal / V> 0.11
(Αcal: calculated value of polarizability by semi-empirical molecular orbital calculation, Mw: molecular weight, V: calculated value of van der Waals volume of molecule in molecular structure obtained by semi-empirical molecular orbital method) Furthermore, αcal / Pcal> 70 (Å ^ 3 / D)
(Αcal: calculated value of polarizability by semiempirical molecular orbital calculation, Pcal: calculated value of dipole moment P by semiempirical molecular orbital calculation),
X-ray diffraction spectrum black angle (2θ ± 0.2 °) of 9.3 °, 10.6 °, 13.2 °, 15.1 °, 15.7 °, 16.1 ° as the charge generation material, An electrophotographic photosensitive member containing a titanium oxyphthalocyanine pigment showing strong diffraction peaks at 20.8 °, 23.3 °, and 27.1 ° is exposed using 750 to 850 nm light as exposure light. Image forming method.
JP12413797A 1997-05-14 1997-05-14 Electrophotographic photoreceptor and image forming method using the photoreceptor Expired - Fee Related JP3939394B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12413797A JP3939394B2 (en) 1997-05-14 1997-05-14 Electrophotographic photoreceptor and image forming method using the photoreceptor
US09/078,503 US5932384A (en) 1997-05-14 1998-05-14 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12413797A JP3939394B2 (en) 1997-05-14 1997-05-14 Electrophotographic photoreceptor and image forming method using the photoreceptor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005321718A Division JP2006072386A (en) 2005-11-07 2005-11-07 Image forming apparatus

Publications (2)

Publication Number Publication Date
JPH10312071A JPH10312071A (en) 1998-11-24
JP3939394B2 true JP3939394B2 (en) 2007-07-04

Family

ID=14877845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12413797A Expired - Fee Related JP3939394B2 (en) 1997-05-14 1997-05-14 Electrophotographic photoreceptor and image forming method using the photoreceptor

Country Status (1)

Country Link
JP (1) JP3939394B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835668B2 (en) * 1999-12-20 2011-12-14 三菱化学株式会社 Electrophotographic photoreceptor
JP2006113612A (en) * 1999-12-20 2006-04-27 Mitsubishi Chemicals Corp Electrophotographic photoreceptor
JP2002040680A (en) * 2000-05-17 2002-02-06 Mitsubishi Chemicals Corp Image-forming method and image-forming device
JP2002214807A (en) * 2001-01-17 2002-07-31 Mitsubishi Chemicals Corp Electrophotographic photoreceptor
JP2002214810A (en) * 2001-01-23 2002-07-31 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, coating liquid for electric charge transport layer and method for producing the electrophotographic photoreceptor
JP2004226801A (en) * 2003-01-24 2004-08-12 Konica Minolta Holdings Inc Organic photoreceptor, image forming method, and image forming apparatus
JP2004226800A (en) * 2003-01-24 2004-08-12 Konica Minolta Holdings Inc Organic photoreceptor, image forming method, and image forming apparatus
JP2004240184A (en) * 2003-02-06 2004-08-26 Konica Minolta Holdings Inc Organic photoreceptor, image forming method, and image forming apparatus
JP2004252052A (en) * 2003-02-19 2004-09-09 Konica Minolta Holdings Inc Organic photoreceptor, image forming method and apparatus
EP1930778A1 (en) 2005-09-28 2008-06-11 Mitsubishi Chemical Corporation Electrophotographic photosensitive body, image-forming device using same and cartridge
JP2006293391A (en) * 2006-06-26 2006-10-26 Mitsubishi Chemicals Corp Coating liquid and electrophotographic photoreceptor
JP2007293372A (en) * 2007-08-10 2007-11-08 Mitsubishi Chemicals Corp Electrophotographic photoreceptor and electrophotographic method
US8871413B2 (en) 2007-09-20 2014-10-28 Mitsubishi Chemical Corporation Toners for electrostatic-image development, cartridge employing toner for electrostatic-image development, and image-forming apparatus
JP2009104123A (en) * 2007-10-03 2009-05-14 Mitsubishi Chemicals Corp Image-forming apparatus and cartridge
JP2009104124A (en) * 2007-10-03 2009-05-14 Mitsubishi Chemicals Corp Image forming apparatus and cartridge
JP5622681B2 (en) * 2011-07-28 2014-11-12 京セラドキュメントソリューションズ株式会社 Positively charged single layer type electrophotographic photosensitive member and image forming apparatus
JP2013029777A (en) * 2011-07-29 2013-02-07 Kyocera Document Solutions Inc Positive charging monolayer electrophotographic photoreceptor and image forming apparatus
JP5645779B2 (en) * 2011-08-30 2014-12-24 京セラドキュメントソリューションズ株式会社 Positively charged single layer type electrophotographic photosensitive member and image forming apparatus

Also Published As

Publication number Publication date
JPH10312071A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
JP3939394B2 (en) Electrophotographic photoreceptor and image forming method using the photoreceptor
US5932384A (en) Electrophotographic photoreceptor
JP2526969B2 (en) Electrophotographic photoreceptor
JPH10312070A (en) Electrophotographic photoreceptor
JP2006072386A (en) Image forming apparatus
JP4010739B2 (en) Electrophotographic photosensitive member and electrophotographic method
JP2007293372A (en) Electrophotographic photoreceptor and electrophotographic method
JP3785021B2 (en) Electrophotographic photoreceptor
JP3743161B2 (en) Electrophotographic photoreceptor and method for producing the same
JP3910005B2 (en) Electrophotographic photoreceptor
TWI392979B (en) Electrophotographic photoconductor
JPH10115945A (en) Electrophotographic photoreceptor and electrophotographic device
JPH0854746A (en) Electrophotographic photoreceptor
JPH08262762A (en) Electrophotographic photoreceptor
JPH10312069A (en) Electrophotographic photorecept0r
JP2001350282A (en) Electrophotographic photoreceptor
JPH0659467A (en) Single layer positively charged electrophotographic sensitive body
JPH0466350B2 (en)
JP2956405B2 (en) Laminated electrophotographic photoreceptor and paint for charge generation layer
JP3548258B2 (en) Electrophotographic photoreceptor
JPH1090926A (en) Electrophotographic organic photoreceptor
JPH10228125A (en) Electrophotographic photoreceptor
JP2002328480A (en) Electrophotographic photoreceptor
JP2005189766A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JPH0915879A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041215

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees