JP3938508B2 - Rust prevention method for fire-fighting piping of refillable fire extinguishing equipment - Google Patents

Rust prevention method for fire-fighting piping of refillable fire extinguishing equipment Download PDF

Info

Publication number
JP3938508B2
JP3938508B2 JP2002095978A JP2002095978A JP3938508B2 JP 3938508 B2 JP3938508 B2 JP 3938508B2 JP 2002095978 A JP2002095978 A JP 2002095978A JP 2002095978 A JP2002095978 A JP 2002095978A JP 3938508 B2 JP3938508 B2 JP 3938508B2
Authority
JP
Japan
Prior art keywords
fire extinguishing
pipe
fire
extinguishing pipe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002095978A
Other languages
Japanese (ja)
Other versions
JP2003290380A (en
Inventor
山田  均
裕毅雄 吉葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2002095978A priority Critical patent/JP3938508B2/en
Publication of JP2003290380A publication Critical patent/JP2003290380A/en
Application granted granted Critical
Publication of JP3938508B2 publication Critical patent/JP3938508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Pipeline Systems (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、湿式スプリンクラ消火設備或いは消火薬液充填配管消火設備等の充水式消火設備に関し、特に充水式消火設備の消火配管の錆を防止する防錆方法に関するものである。
【0002】
【従来の技術】
湿式スプリンクラ消火設備や、ヘッド付配管に消火薬液を充填させて警戒する消火薬液充填配管消火設備においては、配管施工直後、液が漏れないこと等を確認するための耐圧試験等が行わる。
耐圧試験とは、配管内を水或いは空気で満たし所定の高圧力をかけ、漏れがないかを確認する試験である。この耐圧試験に合格すると試験後に所定の水や消火薬液を満たして警戒状態に入る。
【0003】
【発明が解決しようとする課題】
ところでこのような構成の消火設備の配管は、建物の天井裏を這わせるために、空調ダクトなど他の設備を避けなければならない。そのため、このような消火設備の配管は、上下に迂回起伏する起伏配管を有することがある。このような起伏配管には、注水の際に空気が溜まってしまう所謂空気溜まりが出来てしまいなかなか抜け切ることがない。
【0004】
そして、従来この空気溜まりに溜まった酸素によって消火設備配管が錆びてしまうという問題があった。これに対しては、必要に応じて空気溜まりの出来る気溜まり部(配管高位部)に気抜き弁を設けて気抜きをすることで対応していた。しかしながら、このような従来の方法においては、まず、気抜き弁を設けなければならないここと、更に配管の手間や気抜き作業が煩わしい等の問題があった。
【0005】
この発明は、上述のような課題を解決するためになされたもので、配管に窒素ガスなどの不活性ガスを注入して、この空気溜まりの酸素を不活性ガスで希釈することにより配管が錆びる問題を解消することができる充水式消火設備の消火配管の防錆方法を得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る充水式消火設備の消火配管の防錆方法は、閉鎖型ノズルが設けられた消火配管を有し、消火配管に消火用液を充填し、火災発生時に閉鎖型ノズルから消火用液を放射して消火する充水式消火設備の消火配管の防錆方法であって、消火配管にガス供給口と排出口を設け、上記消火配管の水又は空気による耐圧試験工程の後、もしくは上記消火配管の不活性ガスによる耐圧試験工程の前又は後に、排出口を閉じてガス供給口から消火配管内に不活性ガスを充填する加圧工程と、ガス供給口を閉じて排出口から消火配管内の圧を抜く減圧工程とを有し、加圧工程と減圧工程とを複数回交互に繰り返すことにより消火配管内の酸素濃度を希釈する。
【0007】
さらに、この発明に係る充水式消火設備の消火配管の防錆方法は、閉鎖型ノズルが設けられた消火配管を有し、消火配管に消火用液を充填し、火災発生時に閉鎖型ノズルから消火用液を放射して消火する充水式消火設備の消火配管の防錆方法であって、消火配管に少なくとも気溜まり部を挟んでガス供給口と排出口を設け、上記消火配管の水又は空気による耐圧試験工程の後、もしくは上記消火配管の不活性ガスによる耐圧試験工程の前又は後に、排出口を開いてガス供給口から消火配管内に不活性ガスを充填するブロー工程と、排出口における排気の酸素濃度を測定する濃度測定工程とを有し、濃度測定工程において酸素濃度が所定濃度に達するまでブロー工程を行うことにより消火配管内の酸素濃度を希釈する。
【0008】
【発明の実施の形態】
実施の形態1.
図1は湿式スプリンクラ消火設備を示す配管系統図である。図2は消火薬液充填配管消火設備を示す配管系統図である。
尚、以下消火水または消火薬液である消火用液を閉鎖型ノズルを取り付けた配管に平時より満圧した消火設備を充水式消火設備と称する。
【0009】
図1において、湿式スプリンクラ消火設備10には、水槽1、ポンプ2、送水本管(縦管)3、各階において送水本管3から分岐して開閉弁4および流水検知弁5を介して天井裏に敷設されるスプリンクラ配管(消火配管)6、スプリンクラ配管6に接続される閉鎖型スプリンクラヘッド7(閉鎖型ノズル)、スプリンクラ配管6の末端に接続された末端試験弁8Aが設けられている。
【0010】
また、不活性ガス供給口(弁付)9A,9Bが、ポンプ2の直後に逆止弁V1を介して設けられた、流水検知弁5の直後に設けられ、排出口である排気口(弁付)8Aは末端試験弁を兼用している。送水本管3の最上端には排出口である気抜き用弁8Bが設けられ、一方、最下端には排水弁8Cが設けられている。スプリンクラ配管6の途中には高い起伏6Aと低い起伏6Bとが存在している。一方、減圧弁12付の窒素ボンベ13を有する不活性ガス供給装置11が配置されている。
【0011】
図2において、消火薬液充填配管消火設備20には、水及び薬液兼用の液槽21、ポンプ22、送水本管23、送水本管23から分岐して開閉弁24および流水検知弁25を介して天井部などに敷設される消火配管26、消火配管26に接続される閉鎖型ヘッド27(閉鎖型ノズル)が設けられている。また、ガス供給口(弁付)29A,29Bがポンプ22直後に逆止弁V2を介して設けられたり流水検知弁25直後に設けられ、排出口である排気排水弁28Aが消火配管26の末端に設けられている。送水本管23の最上端には排出口である気抜き用弁28Bが設けられ、ポンプ22直後に逆止弁V2を介して排水弁28Cが設けられている。消火配管26の途中には高い起伏26Aと低い起伏26Bとが存在している。また、減圧弁32付の窒素ボンベ33を有する不活性ガス供給装置31が設けられている。
【0012】
次に耐圧試験について説明する。耐圧試験には、水による耐圧試験と空気による耐圧試験とがある。
【0013】
1)水による耐圧試験
図1に示される湿式スプリンクラ消火設備10では、設備施工直後、水槽1からポンプ2でスプリンクラ配管6に水を張り、図示しない所定の昇圧装置などでスプリンクラ配管6内を試験圧(21気圧)にまで昇圧させる。そして、スプリンクラヘッド7や配管接続部の漏れなどを検査する。これに合格すると、そのまま警戒圧まで減圧され警戒状態に入る。
【0014】
図2に示される消火薬液充填配管消火設備20では、設備施工直後、水を入れた液槽21からポンプ22で消火配管26に水を張り、図示しない所定の昇圧装置で消火配管26内を試験圧にまで昇圧させる。そして、閉鎖型ヘッド27や配管接続部の漏れなどを検査する。これに合格すると、今度は液槽21に消火薬剤が投入され水と混合され所定の濃度の消火薬液が作られる。次に消火薬液も管内の水で希釈させないため管内の水抜き作業が行われる。
【0015】
消火薬液充填配管消火設備20の水抜き作業に関しては、以下のように(a)自重式水抜き作業と(b)圧送式水抜き作業とがある。
【0016】
(a)自重式水抜き作業
図2において、気抜き用弁28Bと排水弁28Cとを開いて送水本管23の水を水の自重によって抜く。また、不活性ガス供給口29Bと排気排水弁28Aとを開いて消火配管26の水を水の自重によって抜く。(流水検知弁25内の水抜きは流水検知弁25に備えられている図示しない排水弁にて行う。)
【0017】
(B)圧送式水抜き作業
図2において、気抜き用弁28Bから不活性ガスを入れた後、排水弁28Cを開き、送水本管23から圧力排水する。その後、排水弁28Cを閉じてから排気排水弁28Aを開いて消火配管26から圧力排水する。(この作業は後述する(B)、2)ブロー方式の消火薬液充填配管消火設備における防錆方法に関連している。)
なお、これらいずれの水抜き作業においても、ポンプ22回り配管(フート弁22Aから排水弁28Cまで)の水抜きを別途行うか、水抜きはせずに先にポンプ22回り配管を消火薬液で置換するかが必要である。
ここでは、後者の場合の説明をすると、送水本管23の排水後、排水弁28Cのみを開いてポンプ22を適当な時間稼働することにより、ポンプ22回り配管の水を排水するとともに消火薬液で置換して、排水弁28Cを閉じる。この時点でポンプ22回り配管以外の管内は空気が入った空配管状態となる。
【0018】
2)空気による耐圧試験
図1及び図2において、設備施工直後、湿式スプリンクラ消火設備10や消火薬液充填配管消火設備20のガス供給口9A,29Aから、図示しないエアーコンプレッサで空気を試験圧まで注入し、所定時間後の減圧があれば配管の接続部に石鹸水を塗布するなどをして漏れを検査する。合格後は、末端試験弁8Aや排気排水弁28Aを開放して大気圧にする。
【0019】
次に、本願発明の充水式消火設備の消火配管の防錆方法について説明する。
(A).水による耐圧試験後、排水させた空配管状態の場合
1)加圧減圧方式
図1及び図2において、酸素希釈をする配管の順番は、例えば送水本管3,23のあと各スプリンクラ配管6,消火配管26とする。また、作業を行う前に、流水検知弁5,25に接続する全ての開閉弁4,24を閉じて、送水本管3,23の基端に設けたガス供給口9A,29Aに、不活性ガス供給装置11,31を連結して、排出口8B、28Bを閉じ、不活性ガス供給装置11,31から不活性ガスを管3,23内に入れ、例えば5気圧(ゲージ圧)程度に加圧して供給口9A、29Aを閉じる(加圧工程)。所定時間待機した後に、あるいはすぐに気抜き用弁8B、28Bを開いて排気させ、例えば大気圧にまで減圧させる(減圧工程)。この不活性ガスの加圧減圧(加圧工程/減圧工程)を繰り返し(一度でもよい)、酸素濃度を希釈する。
次に、例えば最上階の開閉弁4,24を開いて、上記と同様に不活性ガス供給装置11,31から不活性ガスを供給口9A、29Aを介して管3、23、6、26内に入れ、所定時間待機した後に、あるいはすぐに末端試験弁8A又は排気排水弁28Aを開いて排気させ、管3、23、6、26内を大気圧にまで減圧させる。この不活性ガスの加圧減圧(加圧工程/減圧工程)を繰り返し(一度でもよい)、管内の酸素濃度を希釈する。その後は、順次階下のスプリンクラ配管6または消火配管26に対して同様な加圧減圧(加圧工程/減圧工程)を実施し、全ての配管について終える。
ところで、低い起伏6B、26Bの残水の一部は、排気口8A、28Aを開いた時に排気の勢いに乗って排出されることがあるが、低い起伏26Bに水抜き弁を立下げて残水を除くようにしてもよい。
【0020】
その後、図1に示される湿式スプリンクラ消火設備10では、開閉弁4を開いてポンプ2を稼働して送水本管3とスプリンクラ配管6に通水する。気抜き用弁28Bと末端試験弁8Aから水が出てきたところで弁8B、8Aを閉じ、全てのスプリンクラ配管6について行うと満水完了となる。高い起伏6Aに気溜まりは残るが、酸素希釈されているので錆は殆ど発生することはない。
【0021】
一方、図2に示される消火薬液充填配管消火設備20では、開閉弁24を開いてポンプ22を稼働して送水本管23と消火配管26に薬液を通す。気抜き用弁28Bと排気排水弁28Aから薬液が出てきたところで弁8B、8Aを閉じ、全てのスプリンクラ配管6について行うと薬液充満となる。高い起伏26Aなどに気溜まりは残るが、酸素希釈されているので錆は殆ど発生することはない。
【0022】
2)ブロー方式
図1及び図2において、流水検知弁5,25に接続する全ての開閉弁4,24を閉じて、送水本管3,23の基端に設けたガス供給口9A,29Aに不活性ガス供給装置11,31を連結して、気抜き用弁8B、28Bを開いて、不活性ガス供給装置11,31から不活性ガスを管3,23内に入れ、ブローを行い(ブロー工程)、気抜き用弁8B、28Bで酸素濃度を測定し(濃度測定工程)、所定の希釈濃度、例えば5%に達した所でブローを止め、ガス供給口9A、29A、気抜き用弁8B、28Bを閉じる。
次に、例えば最上階の開閉弁4,24、及び末端試験弁8A、排気排水弁28Aを開いて、上記と同様に不活性ガスのブロー(ブロー工程)を行い、末端試験弁8A,排気排水弁28Aで酸素濃度を測定し(濃度測定工程)、所定の希釈濃度に達した所でブローを止める。
その後は順次、階下のスプリンクラ配管6または消火配管26に対して同様なブローを行い(ブロー工程)、排出口で酸素濃度を測定し(濃度測定工程)、全ての配管について終える。
【0023】
その後、図1に示される湿式スプリンクラ消火設備10では、開閉弁4を開いてポンプ2を稼働して送水本管3とスプリンクラ配管6に通水する。気抜き用弁8Bと末端試験弁8Aから水が出てきたところで閉じ、全てのスプリンクラ配管6について行うと満水完了となる。高い起伏26Aに気溜まりは残るが、酸素希釈されているので錆が殆ど発生しない。
【0024】
一方、図2に示される消火薬液充填配管消火設備20では、開閉弁24を開いてポンプ22を稼働して送水本管23と消火配管26に薬液を通す。気抜き用弁28Bと排気排水弁28Aから薬液が出てきたところで閉じ、全てのスプリンクラ配管6について行うと薬液充満となる。高い起伏26Aに気溜まりは残るが、酸素希釈されているので錆が殆ど発生しない。
【0025】
(B).水による耐圧試験後、排水する前の、気溜まりを有する満水状態の配管場合
1)加圧減圧方式
図1に示される湿式スプリンクラ消火設備10においては、流水検知弁5に接続する全ての開閉弁4を閉じて、各スプリンクラ配管6の基端に設けたガス供給口9Bに、不活性ガス供給装置11を連結して、排出口8Aを閉じ、不活性ガス供給装置11から不活性ガスを管6内に入れ、加圧して供給口を閉じる(加圧工程)。所定時間待機した後に、スプリンクラ配管の他端に設けた排出口8Aを開いて排気させ、例えば大気圧にまで減圧させる(減圧工程)。この不活性ガスの加圧減圧(加圧工程/減圧工程)を繰り返し(一度でもよい)、酸素濃度を希釈する。必要に応じて送水本管3についてもガス供給口9Bの代わりに不活性ガス供給口9Aを用いて同様に行う。ところで、加圧した後、排圧すると排気口8Aから排水されることにより、気溜まりの酸素は希釈されるので錆が殆ど発生しない。
(図2に示される消火薬液充填配管消火設備20については、耐圧試験用に使われた水における気溜まりを希釈させても、耐圧用水は一旦捨てられて薬液を充填することになるため、希釈は意味がない。)
【0026】
2)ブロー方式
図1に示される湿式スプリンクラ消火設備10では、流水検知弁5に接続する全ての開閉弁4を閉じて、スプリンクラ配管6の両端に設けたガス供給口9Bと排出口8Aとにより(ガス供給口と排気口の位置は、気溜まりの発生する高い起伏部6Aを挟んで前後に設けられると十分である)、上記ブロー方式と同様に、端末試験弁8Aを開いたままガス供給口9Aに不活性ガスを入れて不活性ガスのブロー(ブロー工程)を行い、排出口8Aで酸素濃度を測定し(濃度測定工程)、所定の希釈濃度に達した所でブローを止める。以上のことを、各スプリンクラ配管6にて行い、必要に応じて送水本管3についても開閉弁4を閉じて、その後、開閉弁4を開いて末端試験弁8Aを開き、適当に排水排気して警戒状態に入る。気溜まりは残るが、酸素希釈されているので錆は殆ど発生することはない。
【0027】
図2に示される消火薬液充填配管消火設備20では、耐圧試験で使った水を抜く場合、気抜き弁28Bから不活性ガスのブローを行って押し出す方法をとる。このようにすると、排水と酸素希釈を同時にできて合理的である。
このため、開閉弁24を閉じて気抜き用弁28Bから不活性ガスを入れてから、排水弁28Cを開き、送水本管23から圧力排水をする。その後、排水弁28Cを閉じてから各排気排水弁28Aを順次開いて各消火配管26から圧力排水をする。水が抜けきったところでガスのブロー状態(ブロー工程)となり、排水弁28Cと排気排水弁28Aで酸素濃度を測定し(濃度測定工程)、所定の希釈濃度に達した所でブローを止める。
このあと、ポンプ22により前述のようにポンプ回りの配管を薬液で満たし、その後、配管23,26内を薬液で満す。その際は排出口28B、28Aを開いておき、排出口から薬液が出てきたところで排出口28B、28Aを閉じる。気溜まりは残るが、酸素希釈されているので錆が殆ど発生しない。
【0028】
(C).空気(ガス)による耐圧試験をする場合
1)耐圧試験を空気で行う場合
図1及び図2において、空気で耐圧試験をした後は、排気管(3,23,6,26)内を大気圧にさせ、排水弁8C、28Cを開いてポンプ2,22を回し、ポンプ回りの配管に消火用液を満たしたところで排水弁8C、28Cを閉じる。その後の操作は、上記(A)と同様に加圧減圧方式あるいはブロー方式を行えばよい。その後、上記(A)と同様にポンプで消火用水または薬液を送り込んで送水本管3,23と各スプリンクラ配管6または消火配管26を液で満たす。気溜まりは残るが、酸素希釈されているので錆は殆ど発生することはない。
【0029】
2)耐圧試験を不活性ガスで行う場合
図1及び図2において、配管施工直後、耐圧試験のために、たとえば流水検知弁5,25に接続する全ての開閉弁4,24を開いて、ガス供給口9A,29Aに、不活性ガス供給装置11,31を連結して、不活性ガスを入れて試験圧まで全配管を加圧する。耐圧試験を終えてからは、上記(C)と同様に加圧減圧方式あるいはブロー方式を行えばよい。
その後、ポンプ2,22で消火用水または薬液を送り込んで送水本管3,23と各スプリンクラ配管6または消火配管26を液で満たす。気溜まりは残るが、酸素希釈されているので錆は殆ど発生することはない。
なお、上記において、不活性ガスによる酸素希釈の後に耐圧試験を行ってもよい。
【0030】
ところで、気溜まりを少なくするために、真空ポンブなどで配管(3,23,6,26)内をガス抜き(真空引き)するようにしてもよい。このようにすると、ガスだまりの量が少なくなるので、錆の量が少なくなる。酸素濃度希釈の後でも真空引きをすると、気溜まりの量が少なくなるので、錆の量が更に少なくなる。
【0031】
なお、上記実施の形態以外に、以下のようにしてもよい。
すなわち、作業を行う配管の順序、加圧圧力、減圧圧力、供給口排出口の位置、加圧減圧の繰り返し回数、加圧中の待機時間については適宜選択するとよい。 供給口排出口の位置については、酸素濃度を希釈したい配管の端同士を選ぶと効率的である。また、垂直管を扱う場合、不活性ガスに空気より重いガスを使うときは供給口には下端を、排出口には上端を選び、軽いガスを使うときは供給口には上端を、排出口には下端を選ぶと効率的である。
【0032】
また、加圧圧力は高い方が、加圧減圧の繰り返し回数は多い方が酸素濃度を希釈しやすい。加圧減圧方式において、加圧中の待機時間は長い方がその間空気と混ざり合うので、多少は酸素濃度を希釈しやすい。
また、加圧減圧方式において、圧力や繰り返し回数を決めるには、酸素濃度が例えば5%になるよう机上で算定して決めるか、排気口で酸素濃度を計測して終了の判断をしてもよい。
【0033】
また、供給口や、排出口は複数でもよい。例えば、供給口はガス供給口9A、29A一つとし、排出口としては、気抜き用弁8B、28Bと全ての排出口8A、28Aを開くようにしてもよい。(予め全ての開閉弁4,24は開いておく) また、上記実施例の作業を配管系統ごとに区切って行ってもよい。例えば、送水本管3,23についてはガス供給口9A、29Aと気抜き用弁8B、28Bを使って酸素濃度希釈をし、各スプリンクラ配管6や各消火配管26についてはガス供給口9B、29Bと排出口8A又は排気排水弁28Aを使って酸素濃度希釈をするようにしてもよい。
【0034】
また、上記実施例では加圧減圧方式とブロー方式のいずれかを選択しているが、両者取り合わせて行ってもよい。例えば、加圧の途中でブローさせたり、ブローの途中で加圧に切り替えたりしてもよい。
【0035】
【発明の効果】
また、この発明に係る充水式消火設備の消火配管の防錆方法は、閉鎖型ノズルが設けられた消火配管を有し、消火配管に消火用液を充填し、火災発生時に閉鎖型ノズルから消火用液を放射して消火する充水式消火設備の消火配管の防錆方法であって、消火配管にガス供給口と排出口を設け、消火配管の水又は空気による耐圧試験工程の後、もしくは消火配管の不活性ガスによる耐圧試験工程の前又は後に、排出口を閉じてガス供給口から消火配管内に不活性ガスを充填する加圧工程と、ガス供給口を閉じて排出口から消火配管内の圧を抜く減圧工程とを有し、加圧工程と減圧工程とを複数回交互に繰り返すことにより消火配管内の酸素濃度を希釈する。そのため、不活性ガスの加圧と減圧により、空気溜まりの酸素が不活性ガスで希釈され配管が錆びる問題が解消される。
【0036】
さらに、この発明に係る充水式消火設備の消火配管の防錆方法は、閉鎖型ノズルが設けられた消火配管を有し、消火配管に消火用液を充填し、火災発生時に閉鎖型ノズルから消火用液を放射して消火する充水式消火設備の消火配管の防錆方法であって、消火配管に少なくとも気溜まり部を挟んでガス供給口と排出口を設け、消火配管の水又は空気による耐圧試験工程の後、もしくは消火配管の不活性ガスによる耐圧試験工程の前又は後に、排出口を開いてガス供給口から消火配管内に不活性ガスを充填するブロー工程と、排出口における排気の酸素濃度を測定する濃度測定工程とを有し、濃度測定工程において酸素濃度が所定濃度に達するまでブロー工程を行うことにより消火配管内の酸素濃度を希釈する。そのため、不活性ガスのブローにより、空気溜まりの酸素が不活性ガスで希釈され配管が錆びる問題が解消される。
【図面の簡単な説明】
【図1】 湿式スプリンクラ消火設備を示す配管系統図である。
【図2】 消火薬液充填配管消火設備を示す配管系統図である。
【符号の説明】
6 スプリンクラ配管(消火配管)、7 スプリンクラヘッド(閉鎖型ノズル)、8A 末端試験弁(排出口)、9A,29A ガス供給口、11,31 不活性ガス供給装置、26 消火配管、27 閉鎖型ヘッド(閉鎖型ノズル)、28A 排気排水弁(排出口)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-filling fire-extinguishing equipment such as a wet sprinkler fire-extinguishing equipment or a fire extinguishing chemical solution-filled pipe fire-extinguishing equipment, and more particularly to a rust prevention method for preventing rusting of a fire-extinguishing pipe of a water-filling fire extinguishing equipment.
[0002]
[Prior art]
In the wet sprinkler fire extinguishing equipment and the fire extinguishing chemical liquid filling pipe fire extinguishing equipment to be alerted by filling the pipe with head with extinguishing chemical liquid, a pressure resistance test for confirming that the liquid does not leak is performed immediately after the pipe construction.
The pressure resistance test is a test in which the inside of a pipe is filled with water or air, a predetermined high pressure is applied, and whether there is any leakage is confirmed. If this pressure test is passed, after entering the test, a predetermined water or fire extinguishing liquid is filled and a warning state is entered.
[0003]
[Problems to be solved by the invention]
By the way, the piping of the fire extinguishing equipment having such a configuration must avoid other equipment such as an air-conditioning duct so that the ceiling of the building can be turned upside down. Therefore, the piping of such a fire extinguishing equipment may have a undulation pipe that detours up and down. In such undulating pipes, a so-called air reservoir in which air accumulates during water injection is not easily removed.
[0004]
Conventionally, there has been a problem that the fire extinguishing equipment piping is rusted by oxygen accumulated in the air reservoir. This has been dealt with by providing an air vent valve in the air reservoir (pipe high portion) where air can be stored as needed. However, in such a conventional method, there is a problem that a vent valve must be provided first, and that the labor of piping and the venting work are troublesome.
[0005]
The present invention has been made to solve the above-described problems. The pipe is rusted by injecting an inert gas such as nitrogen gas into the pipe and diluting the oxygen in the air pocket with the inert gas. It aims at obtaining the rust prevention method of the fire extinguishing piping of the rechargeable fire extinguishing equipment that can solve the problem.
[0006]
[Means for Solving the Problems]
The rust prevention method for a fire extinguishing pipe of a water-filled fire extinguishing equipment according to the present invention has a fire extinguishing pipe provided with a closed type nozzle, and the fire extinguishing pipe is filled with a fire extinguishing liquid, and when the fire occurs, the fire extinguishing pipe is used for extinguishing the fire. A rust prevention method for a fire extinguishing pipe of a water- filled fire extinguishing system that emits a liquid to extinguish the gas, and a gas supply port and a discharge port are provided in the fire extinguishing pipe, and after the pressure test process with water or air in the fire extinguishing pipe Before or after the pressure-resistant test process with inert gas in the above-mentioned fire extinguishing pipe, close the discharge port and pressurize the gas supply port to fill the fire extinguishing pipe with inert gas, and close the gas supply port and extinguish the fire from the exhaust port A decompression step of releasing the pressure in the pipe, and diluting the oxygen concentration in the fire extinguishing pipe by alternately repeating the pressurization step and the decompression step a plurality of times.
[0007]
Furthermore, the rust prevention method for the fire-extinguishing pipe of the water-filled fire extinguishing equipment according to the present invention has a fire-extinguishing pipe provided with a closed-type nozzle, and the fire-extinguishing pipe is filled with a fire-extinguishing liquid, and when the fire occurs, A method for rust prevention of a fire extinguishing pipe of a water-filled fire extinguishing system that emits fire extinguishing liquid, and is provided with a gas supply port and an exhaust port with at least a gas reservoir in the fire extinguishing pipe. After the pressure test process with air, or before or after the pressure test process with the inert gas of the above-mentioned fire extinguishing pipe, a blow process for opening the exhaust port and filling the fire extinguishing pipe with the inert gas from the gas supply port, and the exhaust port And a concentration measuring step for measuring the oxygen concentration of the exhaust gas in the exhaust gas, and the oxygen concentration in the fire extinguishing pipe is diluted by performing a blowing step until the oxygen concentration reaches a predetermined concentration in the concentration measuring step.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a piping system diagram showing a wet sprinkler fire extinguishing facility. FIG. 2 is a piping system diagram showing a fire extinguishing liquid filling pipe fire extinguishing equipment.
Hereinafter, fire extinguishing equipment in which a fire extinguishing water or a fire extinguishing liquid, which is a fire extinguishing liquid, is fully filled in a pipe equipped with a closed nozzle from normal time is referred to as a water-filled fire extinguishing equipment.
[0009]
In FIG. 1, a wet sprinkler fire extinguishing system 10 includes a water tank 1, a pump 2, a water supply main pipe (longitudinal pipe) 3, a branch from the water supply main pipe 3 at each floor, and an open / close valve 4 and a flowing water detection valve 5. A sprinkler pipe (fire extinguishing pipe) 6 laid on the pipe, a closed sprinkler head 7 (closed nozzle) connected to the sprinkler pipe 6, and a terminal test valve 8A connected to the end of the sprinkler pipe 6 are provided.
[0010]
Further, inert gas supply ports (with valves) 9A and 9B are provided immediately after the flowing water detection valve 5 provided via the check valve V1 immediately after the pump 2, and are exhaust ports (valves) that are discharge ports. Append) 8A also serves as a terminal test valve. A vent valve 8B, which is a discharge port, is provided at the uppermost end of the water supply main pipe 3, while a drain valve 8C is provided at the lowermost end. In the middle of the sprinkler pipe 6, there are a high undulation 6A and a low undulation 6B. On the other hand, an inert gas supply device 11 having a nitrogen cylinder 13 with a pressure reducing valve 12 is arranged.
[0011]
In FIG. 2, the fire extinguishing chemical filling pipe fire extinguishing equipment 20 branches from a liquid tank 21 for water and chemicals, a pump 22, a water supply main 23, and a water supply main 23, via an opening / closing valve 24 and a flowing water detection valve 25. A fire extinguishing pipe 26 laid on the ceiling or the like, and a closed head 27 (closed nozzle) connected to the fire extinguishing pipe 26 are provided. Gas supply ports (with valves) 29A and 29B are provided immediately after the pump 22 via the check valve V2 or immediately after the flowing water detection valve 25, and an exhaust / drain valve 28A serving as a discharge port is provided at the end of the fire-extinguishing pipe 26. Is provided. A vent valve 28B as a discharge port is provided at the uppermost end of the water supply main pipe 23, and a drain valve 28C is provided immediately after the pump 22 via a check valve V2. In the middle of the fire extinguishing pipe 26, there are a high undulation 26A and a low undulation 26B. Further, an inert gas supply device 31 having a nitrogen cylinder 33 with a pressure reducing valve 32 is provided.
[0012]
Next, the pressure resistance test will be described. The pressure test includes a water pressure test and an air pressure test.
[0013]
1) Withstand pressure test with water In the wet sprinkler fire extinguishing equipment 10 shown in FIG. 1, immediately after installation of the equipment, water is sprinkled from the water tank 1 to the sprinkler pipe 6 with the pump 2, and the inside of the sprinkler pipe 6 is tested with a predetermined booster not shown. The pressure is increased to a pressure (21 atm). Then, the leakage of the sprinkler head 7 and the pipe connection portion is inspected. If this is passed, the pressure is reduced to the warning pressure as it is, and the warning state is entered.
[0014]
In the fire extinguishing chemical solution filling pipe fire extinguishing equipment 20 shown in FIG. 2, immediately after the construction of the equipment, water is put into the fire extinguishing pipe 26 from the liquid tank 21 filled with water by the pump 22, and the inside of the fire extinguishing pipe 26 is tested by a predetermined booster (not shown). Boost to pressure. Then, leakage of the closed head 27 and the pipe connection portion is inspected. If this is passed, a fire extinguisher is put into the liquid tank 21 and mixed with water to make a fire extinguisher liquid having a predetermined concentration. Next, since the fire extinguishing liquid is not diluted with the water in the pipe, the water is drained from the pipe.
[0015]
Regarding the water draining operation of the fire extinguishing liquid filling pipe fire extinguishing equipment 20, there are (a) a self-weight draining operation and (b) a pressure-feed draining operation as follows.
[0016]
(A) Self-weight type water draining operation In FIG. 2, the vent valve 28B and the drain valve 28C are opened, and the water in the water supply main 23 is drained by its own weight. Further, the inert gas supply port 29B and the exhaust drain valve 28A are opened, and the water in the fire extinguishing pipe 26 is drained by its own weight. (Draining in the flowing water detection valve 25 is performed by a drain valve (not shown) provided in the flowing water detection valve 25.)
[0017]
(B) Pressure-feeding water draining operation In FIG. 2, after putting an inert gas from the venting valve 28 </ b> B, the drain valve 28 </ b> C is opened and pressure drainage is performed from the water feeding main pipe 23. Then, after closing the drain valve 28C, the exhaust drain valve 28A is opened, and pressure drainage is performed from the fire extinguishing pipe 26. (This operation will be described later (B), 2). It relates to a rust prevention method in a fire extinguishing equipment filled with a blow-type extinguishing chemical solution. )
In any of these draining operations, draining the piping around the pump 22 (from the foot valve 22A to the drain valve 28C) separately or replacing the piping around the pump 22 with a fire extinguishing chemical without draining the water. It is necessary to do.
Here, the latter case will be described. After draining the water main 23, only the drain valve 28C is opened and the pump 22 is operated for an appropriate period of time to drain the water around the pump 22 and use a fire extinguishing chemical. Replace and close the drain valve 28C. At this time, the inside of the pipe other than the pipe around the pump 22 is in an empty pipe state containing air.
[0018]
2) Pressure resistance test with air In FIGS. 1 and 2, air is injected up to the test pressure with an air compressor (not shown) from the gas supply ports 9A and 29A of the wet sprinkler fire extinguishing equipment 10 and the fire extinguishing chemical solution-filled pipe fire extinguishing equipment 20 immediately after construction of the equipment. If there is decompression after a predetermined time, the soap is applied to the connection part of the pipe to check for leaks. After passing the test, the terminal test valve 8A and the exhaust / drain valve 28A are opened to the atmospheric pressure.
[0019]
Next, the rust prevention method of the fire extinguishing piping of the water-filling type fire extinguishing equipment of the present invention will be described.
(A). In the case of an empty pipe that has been drained after a pressure test with water 1) Pressurization and depressurization method In FIGS. 1 and 2, the order of the pipes for oxygen dilution is, for example, the sprinkler pipes 6, The fire extinguishing pipe 26 is used. Before the work is performed, all the on-off valves 4 and 24 connected to the flowing water detection valves 5 and 25 are closed, and the gas supply ports 9A and 29A provided at the base ends of the water supply main pipes 3 and 23 are inactive. The gas supply devices 11 and 31 are connected, the discharge ports 8B and 28B are closed, and the inert gas is put into the pipes 3 and 23 from the inert gas supply devices 11 and 31, for example, to about 5 atm (gauge pressure). The supply ports 9A and 29A are closed by pressing (pressurizing step). After waiting for a predetermined time or immediately, the venting valves 8B and 28B are opened and exhausted to reduce the pressure to, for example, atmospheric pressure (decompression step). This inert gas pressurization and depressurization (pressurization step / depressurization step) is repeated (or once) to dilute the oxygen concentration.
Next, for example, the uppermost opening / closing valves 4 and 24 are opened, and the inert gas is supplied from the inert gas supply devices 11 and 31 through the supply ports 9A and 29A into the pipes 3, 23, 6, and 26 in the same manner as described above. Then, after waiting for a predetermined time, or immediately, the end test valve 8A or the exhaust / drain valve 28A is opened to evacuate, and the inside of the pipes 3, 23, 6 and 26 is reduced to atmospheric pressure. This inert gas pressurization and depressurization (pressurization step / depressurization step) is repeated (or once) to dilute the oxygen concentration in the tube. After that, the same pressurization and depressurization (pressurization process / decompression process) is sequentially performed on the sprinkler pipe 6 or the fire extinguishing pipe 26 on the downstairs, and all the pipes are finished.
By the way, a part of the remaining water of the low undulations 6B and 26B may be discharged on the exhaust force when the exhaust ports 8A and 28A are opened. You may make it remove water.
[0020]
Thereafter, in the wet sprinkler fire extinguishing equipment 10 shown in FIG. 1, the on-off valve 4 is opened and the pump 2 is operated to pass water through the water supply main pipe 3 and the sprinkler pipe 6. When water comes out from the venting valve 28B and the terminal test valve 8A, the valves 8B and 8A are closed, and when all the sprinkler pipes 6 are used, the water filling is completed. Although the high undulations 6A remain in the air, rust hardly occurs because the oxygen is diluted.
[0021]
On the other hand, in the fire extinguishing chemical solution filling pipe fire extinguishing equipment 20 shown in FIG. 2, the on-off valve 24 is opened and the pump 22 is operated to pass the chemical solution through the water supply main 23 and the fire extinguishing pipe 26. When the chemical solution comes out from the vent valve 28B and the exhaust / drain valve 28A, the valves 8B and 8A are closed, and if all the sprinkler pipes 6 are used, the chemical solution is filled. Although the air bubbles remain in the high undulations 26A and the like, rust hardly occurs because the oxygen is diluted.
[0022]
2) Blow method In FIGS. 1 and 2, all the on-off valves 4 and 24 connected to the flowing water detection valves 5 and 25 are closed, and the gas supply ports 9A and 29A provided at the base ends of the water supply main pipes 3 and 23 are connected. The inert gas supply devices 11 and 31 are connected, the venting valves 8B and 28B are opened, the inert gas is supplied from the inert gas supply devices 11 and 31 into the pipes 3 and 23, and blown (blow) Step), the oxygen concentration is measured by the venting valves 8B and 28B (concentration measuring step), the blow is stopped when a predetermined dilution concentration, for example, 5% is reached, and the gas supply ports 9A and 29A are vented. Close 8B and 28B.
Next, for example, the opening / closing valves 4 and 24 on the top floor, the end test valve 8A, and the exhaust drainage valve 28A are opened, and the inert gas is blown (blow process) in the same manner as described above. The oxygen concentration is measured with the valve 28A (concentration measuring step), and the blow is stopped when a predetermined dilution concentration is reached.
Thereafter, similar blow is sequentially performed on the sprinkler pipe 6 or the fire-extinguishing pipe 26 in the downstairs (blow process), the oxygen concentration is measured at the discharge port (concentration measurement process), and all the pipes are finished.
[0023]
Thereafter, in the wet sprinkler fire extinguishing equipment 10 shown in FIG. 1, the on-off valve 4 is opened and the pump 2 is operated to pass water through the water supply main pipe 3 and the sprinkler pipe 6. When water comes out from the venting valve 8B and the terminal test valve 8A, it is closed and when all the sprinkler pipes 6 are used, the water is completely filled. Although the high undulations 26 </ b> A remain, there is almost no rust because they are diluted with oxygen.
[0024]
On the other hand, in the fire extinguishing chemical solution filling pipe fire extinguishing equipment 20 shown in FIG. 2, the on-off valve 24 is opened and the pump 22 is operated to pass the chemical solution through the water supply main 23 and the fire extinguishing pipe 26. When the chemical solution comes out from the venting valve 28B and the exhaust / drain valve 28A, it closes and when all the sprinkler pipes 6 are used, the chemical solution is filled. Although the high undulations 26 </ b> A remain, there is almost no rust because they are diluted with oxygen.
[0025]
(B). 1) Pressurized pressure reduction system In the wet sprinkler fire extinguishing equipment 10 shown in FIG. 1, all open / close valves connected to the flowing water detection valve 5 after the pressure test with water and before draining. 4 is closed, an inert gas supply device 11 is connected to a gas supply port 9B provided at the base end of each sprinkler pipe 6, a discharge port 8A is closed, and an inert gas is piped from the inert gas supply device 11 6 and pressurizing to close the supply port (pressurizing step). After waiting for a predetermined time, the discharge port 8A provided at the other end of the sprinkler pipe is opened and exhausted, and the pressure is reduced to, for example, atmospheric pressure (decompression step). This inert gas pressurization and depressurization (pressurization step / depressurization step) is repeated (or once) to dilute the oxygen concentration. If necessary, the water main 3 is similarly used by using the inert gas supply port 9A instead of the gas supply port 9B. By the way, if the pressure is exhausted after the pressurization, drainage is performed from the exhaust port 8A, and the oxygen in the air pocket is diluted, so that almost no rust is generated.
(With regard to the fire extinguishing chemical solution filling pipe fire extinguishing equipment 20 shown in FIG. 2, even if the reservoir in the water used for the pressure resistance test is diluted, the pressure resistant water is once discarded and filled with the chemical solution. Is meaningless.)
[0026]
2) Blow method In the wet sprinkler fire extinguishing equipment 10 shown in FIG. 1, all the on-off valves 4 connected to the flowing water detection valve 5 are closed, and the gas supply ports 9B and the discharge ports 8A provided at both ends of the sprinkler pipe 6 are used. (It is sufficient that the gas supply port and the exhaust port are provided in front of and behind the high undulating portion 6A where the air pockets are generated.) As with the blow method, the gas supply is performed with the terminal test valve 8A open. An inert gas is introduced into the port 9A, the inert gas is blown (blow process), the oxygen concentration is measured at the discharge port 8A (concentration measurement process), and the blow is stopped when a predetermined dilution concentration is reached. The above is performed in each sprinkler pipe 6, and the on / off valve 4 is also closed on the water supply main pipe 3 as necessary, and then the on / off valve 4 is opened and the end test valve 8A is opened to appropriately drain and exhaust. Enter the alert state. Although the air remains, rust is hardly generated because it is diluted with oxygen.
[0027]
In the fire extinguishing chemical solution filling pipe fire extinguishing equipment 20 shown in FIG. 2, when water used in the pressure resistance test is drained, an inert gas is blown from the vent valve 28B and pushed out. In this way, it is rational that drainage and oxygen dilution can be performed simultaneously.
For this reason, after closing the on-off valve 24 and putting an inert gas from the venting valve 28B, the drain valve 28C is opened and pressure drainage is performed from the water supply main pipe 23. Then, after closing the drain valve 28C, the exhaust drain valves 28A are sequentially opened to discharge the pressure from each fire extinguishing pipe 26. When water has completely drained, the gas is blown (blow process), the oxygen concentration is measured by the drain valve 28C and the exhaust drain valve 28A (concentration measurement process), and the blow is stopped when a predetermined dilution concentration is reached.
Thereafter, the pump 22 fills the piping around the pump with the chemical solution as described above, and then fills the piping 23 and 26 with the chemical solution. At that time, the outlets 28B and 28A are opened, and the outlets 28B and 28A are closed when the chemical solution comes out from the outlet. Although the air remains, almost no rust is generated because it is diluted with oxygen.
[0028]
(C). When performing a pressure test with air (gas) 1) When performing a pressure test with air In FIGS. 1 and 2, after performing a pressure test with air, the exhaust pipe (3, 23, 6, 26) is at atmospheric pressure. The drain valves 8C and 28C are opened, the pumps 2 and 22 are rotated, and the drain valves 8C and 28C are closed when the piping around the pump is filled with the fire-extinguishing liquid. Subsequent operations may be performed by the pressure-depressurization method or the blow method as in the case of (A). Thereafter, as in the case of (A), the water for fire extinguishing or the chemical is sent by the pump to fill the water supply main pipes 3 and 23 and each sprinkler pipe 6 or the fire extinguishing pipe 26 with the liquid. Although the air remains, rust is hardly generated because it is diluted with oxygen.
[0029]
2) When performing a pressure test with an inert gas In FIGS. 1 and 2, immediately after piping construction, for the pressure test, for example, all the open / close valves 4, 24 connected to the flowing water detection valves 5, 25 are opened and the gas is opened. The inert gas supply devices 11 and 31 are connected to the supply ports 9A and 29A, and an inert gas is added to pressurize all the pipes to the test pressure. After the pressure resistance test is completed, the pressurization / decompression method or the blow method may be performed in the same manner as in the above (C).
Thereafter, water for extinguishing or chemicals is sent in by the pumps 2 and 22 to fill the water supply main pipes 3 and 23 and each sprinkler pipe 6 or the fire extinguishing pipe 26 with the liquid. Although the air remains, rust is hardly generated because it is diluted with oxygen.
In the above, the pressure resistance test may be performed after oxygen dilution with an inert gas.
[0030]
By the way, in order to reduce air accumulation, the inside of the pipes (3, 23, 6, 26) may be degassed (evacuated) with a vacuum pump or the like. In this way, the amount of gas pool is reduced, so the amount of rust is reduced. If evacuation is performed even after dilution of the oxygen concentration, the amount of rust is reduced, so the amount of rust is further reduced.
[0031]
In addition to the above embodiment, the following may be used.
That is, the order of pipes to be operated, pressurizing pressure, depressurizing pressure, position of the supply port outlet, the number of times of pressurizing depressurization, and the standby time during pressurization may be appropriately selected. As for the position of the supply port discharge port, it is efficient to select the ends of the pipes where the oxygen concentration is to be diluted. When handling a vertical pipe, select a lower end for the supply port and a top end for the discharge port when using a gas heavier than air for the inert gas, and an upper end for the supply port when using a light gas. It is efficient to select the lower end.
[0032]
Further, the oxygen concentration is easier to dilute when the pressurization pressure is higher and the pressurization / decompression is repeated more frequently. In the pressurization and depressurization method, the longer the waiting time during pressurization, the more it mixes with the air during that time, so the oxygen concentration is somewhat diluted easily.
In addition, in the pressure reduction method, the pressure and the number of repetitions can be determined by calculating on the desk so that the oxygen concentration becomes 5%, for example, or by measuring the oxygen concentration at the exhaust port and determining the end. Good.
[0033]
Further, a plurality of supply ports and discharge ports may be provided. For example, the gas supply ports 9A and 29A may be provided as one supply port, and the vent valves 8B and 28B and all the discharge ports 8A and 28A may be opened as the discharge ports. (All on-off valves 4 and 24 are opened in advance.) Further, the operation of the above embodiment may be divided for each piping system. For example, the water supply mains 3 and 23 are diluted with oxygen concentrations using the gas supply ports 9A and 29A and the vent valves 8B and 28B, and the gas supply ports 9B and 29B are used for the sprinkler pipes 6 and the fire extinguishing pipes 26. The oxygen concentration may be diluted by using the discharge port 8A or the exhaust / drain valve 28A.
[0034]
Moreover, in the said Example, although the pressurization pressure reduction system and the blow system are selected, you may carry out together. For example, you may make it blow in the middle of pressurization, or you may switch to pressurization in the middle of blow.
[0035]
【The invention's effect】
Further, the rust prevention method of the fire-extinguishing pipe of the water-filled fire extinguishing equipment according to the present invention has a fire-extinguishing pipe provided with a closed-type nozzle, and fills the fire-extinguishing pipe with a fire extinguishing liquid. It is a rust prevention method for a fire extinguishing pipe of a water- filled fire extinguishing system that emits fire extinguishing liquid, providing a gas supply port and a discharge port in the fire extinguishing pipe, and after a pressure resistance test process with water or air in the fire extinguishing pipe, Alternatively, before or after the pressure test process with inert gas in the fire-extinguishing pipe, close the discharge port and pressurize the gas supply port to fill the fire-extinguishing pipe with inert gas, and close the gas supply port and extinguish the fire from the exhaust port. A decompression step of releasing the pressure in the pipe, and diluting the oxygen concentration in the fire extinguishing pipe by alternately repeating the pressurization step and the decompression step a plurality of times. Therefore, the problem that the oxygen in the air pocket is diluted with the inert gas and the piping is rusted by pressurization and decompression of the inert gas is solved.
[0036]
Furthermore, the rust prevention method for the fire-extinguishing pipe of the water-filled fire extinguishing equipment according to the present invention has a fire-extinguishing pipe provided with a closed-type nozzle, and the fire-extinguishing pipe is filled with a fire-extinguishing liquid, and when the fire occurs, A rust prevention method for a fire extinguishing pipe of a water-filled fire extinguishing system that emits a fire extinguishing liquid, and a gas supply port and a discharge port are provided in the fire extinguishing pipe with at least a reservoir part, and water or air in the fire extinguishing pipe After the pressure-resistant test process by or before or after the pressure-resistant test process by the inert gas of the fire extinguishing pipe, the blow process for opening the exhaust port and filling the fire extinguishing pipe with the inert gas from the gas supply port, and exhaust at the exhaust port A concentration measuring step for measuring the oxygen concentration of the fire extinguishing pipe, and performing a blowing step until the oxygen concentration reaches a predetermined concentration in the concentration measuring step to dilute the oxygen concentration in the fire extinguishing pipe. Therefore, the problem that the oxygen in the air pool is diluted with the inert gas and the pipe is rusted by the blowing of the inert gas is solved.
[Brief description of the drawings]
FIG. 1 is a piping diagram showing a wet sprinkler fire extinguishing facility.
FIG. 2 is a piping system diagram showing a fire extinguishing solution filled piping fire extinguishing equipment.
[Explanation of symbols]
6 Sprinkler piping (fire-extinguishing piping), 7 Sprinkler head (closed-type nozzle), 8A End test valve (discharge port), 9A, 29A Gas supply port, 11, 31 Inert gas supply device, 26 Fire-extinguishing piping, 27 Closed-type head (Closed nozzle), 28A Exhaust drain valve (discharge port).

Claims (2)

閉鎖型ノズルが設けられた消火配管を有し、該消火配管に消火用液を充填し、火災発生時に上記閉鎖型ノズルから上記消火用液を放射して消火する充水式消火設備の消火配管の防錆方法であって、
上記消火配管にガス供給口と排出口を設け、
上記消火配管の水又は空気による耐圧試験工程の後、もしくは上記消火配管の不活性ガスによる耐圧試験工程の前又は後に、上記排出口を閉じて上記ガス供給口から上記消火配管内に上記不活性ガスを充填する加圧工程と、
上記ガス供給口を閉じて上記排出口から上記消火配管内の圧を抜く減圧工程とを有し、
上記加圧工程と上記減圧工程とを複数回交互に繰り返すことにより上記消火配管内の酸素濃度を希釈する
ことを特徴とする充水式消火設備の消火配管の防錆方法。
Fire extinguishing pipe having a fire extinguishing pipe provided with a closed type nozzle, filling the fire extinguishing pipe with a fire extinguishing liquid, and radiating the fire extinguishing liquid from the closed type nozzle in the event of a fire Rust prevention method,
A gas supply port and a discharge port are provided in the fire extinguishing pipe,
After the pressure-resistant test process with water or air of the fire-extinguishing pipe, or before or after the pressure-resistant test process with an inert gas in the fire-extinguishing pipe, the exhaust port is closed and the inert gas enters the fire-extinguishing pipe from the gas supply port A pressurizing step for filling the gas;
A pressure reducing step of closing the gas supply port and releasing the pressure in the fire extinguishing pipe from the discharge port,
A method for rust prevention of a fire extinguishing pipe of a water-extinguishing type fire extinguishing equipment, wherein the oxygen concentration in the fire extinguishing pipe is diluted by alternately repeating the pressurizing step and the pressure reducing step a plurality of times.
閉鎖型ノズルが設けられた消火配管を有し、該消火配管に消火用液を充填し、火災発生時に上記閉鎖型ノズルから上記消火用液を放射して消火する充水式消火設備の消火配管の防錆方法であって、
上記消火配管に少なくとも気溜まり部を挟んでガス供給口と排出口を設け、
上記消火配管の水又は空気による耐圧試験工程の後、もしくは上記消火配管の不活性ガスによる耐圧試験工程の前又は後に、上記排出口を開いて上記ガス供給口から上記消火配管内に上記不活性ガスを充填するブロー工程と、
上記排出口における排気の酸素濃度を測定する濃度測定工程とを有し、
上記濃度測定工程において上記酸素濃度が所定濃度に達するまで上記ブロー工程を行うことにより上記消火配管内の酸素濃度を希釈する
ことを特徴とする充水式消火設備の消火配管の防錆方法。
Fire extinguishing pipe having a fire extinguishing pipe provided with a closed type nozzle, filling the fire extinguishing pipe with a fire extinguishing liquid, and radiating the fire extinguishing liquid from the closed type nozzle in the event of a fire Rust prevention method,
A gas supply port and a discharge port are provided in the fire extinguishing pipe with at least a gas reservoir portion interposed therebetween,
After the pressure test process with water or air of the fire extinguishing pipe, or before or after the pressure test process with an inert gas of the fire extinguishing pipe, the exhaust port is opened and the inert gas enters the fire extinguishing pipe from the gas supply port. A blow process for filling the gas;
A concentration measuring step for measuring the oxygen concentration of the exhaust gas at the exhaust port,
A method for rust prevention of a fire extinguishing pipe of a water-filled fire extinguishing system, wherein the oxygen concentration in the fire extinguishing pipe is diluted by performing the blowing step until the oxygen concentration reaches a predetermined concentration in the concentration measuring step.
JP2002095978A 2002-03-29 2002-03-29 Rust prevention method for fire-fighting piping of refillable fire extinguishing equipment Expired - Fee Related JP3938508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095978A JP3938508B2 (en) 2002-03-29 2002-03-29 Rust prevention method for fire-fighting piping of refillable fire extinguishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095978A JP3938508B2 (en) 2002-03-29 2002-03-29 Rust prevention method for fire-fighting piping of refillable fire extinguishing equipment

Publications (2)

Publication Number Publication Date
JP2003290380A JP2003290380A (en) 2003-10-14
JP3938508B2 true JP3938508B2 (en) 2007-06-27

Family

ID=29239243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095978A Expired - Fee Related JP3938508B2 (en) 2002-03-29 2002-03-29 Rust prevention method for fire-fighting piping of refillable fire extinguishing equipment

Country Status (1)

Country Link
JP (1) JP3938508B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005053692B3 (en) 2005-11-10 2007-01-11 Airbus Deutschland Gmbh Fire protection system for reducing the fire risk in an airplane, ship or building comprises a fuel cell for producing nitrogen-enriched cathode outgoing air and a line for feeding the outgoing air into a space
CA2625200C (en) 2005-11-10 2015-05-26 Airbus Deutschland Gmbh Fuel cell system for extinguishing fires
JP2008073227A (en) * 2006-09-21 2008-04-03 Nohmi Bosai Ltd Fire-fighting system and method for flooding water supply pipe
JP2008188416A (en) * 2007-01-10 2008-08-21 Bridgestone Corp Sprinkler piping member and sprinkler fire fighting apparatus
US20110000685A1 (en) * 2008-02-01 2011-01-06 Gengo Matsuoka Dry-type vacuum sprinkler system
US9526933B2 (en) 2008-09-15 2016-12-27 Engineered Corrosion Solutions, Llc High nitrogen and other inert gas anti-corrosion protection in wet pipe fire protection system
JP2010246699A (en) * 2009-04-15 2010-11-04 Nittan Co Ltd Negative-pressure and wet type sprinkler system
US20130168109A1 (en) 2010-09-16 2013-07-04 Holtec Gas Systems Packaged inerting system for fire protection sprinkler system and method of inerting a fire protection sprinkler system
JP6095432B2 (en) * 2013-03-22 2017-03-15 能美防災株式会社 Gas injection apparatus and method
KR101630742B1 (en) * 2015-01-16 2016-06-16 한국과학기술연구원 Wet type sprinkler system for preventing metal pipe corrosion
CN109707996A (en) * 2018-12-24 2019-05-03 中国电建集团山东电力建设第一工程有限公司 A kind of station boiler installation oxygen belt, acetylene belt connecton layout
CN114963009B (en) * 2022-06-23 2023-11-10 建安消防设备(浙江)有限公司 Control valve structure of household spraying system

Also Published As

Publication number Publication date
JP2003290380A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP3938508B2 (en) Rust prevention method for fire-fighting piping of refillable fire extinguishing equipment
US10799738B2 (en) High nitrogen and other inert gas anti-corrosion protection in wet pipe fire protection systems
CA2779127C (en) Controlled discharge gas vent and method of reducing corrosion in a dry fire protection sprinkler system
US20180126204A1 (en) Electrically Operated Gas Vents For Fire Protection Sprinkler Systems And Related Methods
JP2008073227A (en) Fire-fighting system and method for flooding water supply pipe
KR101938819B1 (en) Apparatus for drain, vent and water filling for wet type sprinkler systems and Method for drain, vent and water filling of wet type sprinkler systems
JP2017169843A (en) Water discharge and water filling method in secondary-side pipe of wet-type sprinkler system
US10486005B2 (en) Inhibiting oxygen corrosion in water supply systems, piping networks and water-based fire sprinkler systems
JP2012213414A (en) Hydrant device and method for draining water of the same
JP2008212323A (en) Sprinkler fire-extinguishing equipment
JP4762675B2 (en) Foam release test method and apparatus
CN207152919U (en) A kind of packaged type bidirectional flow fine spray extinguisher
JP2015147606A (en) Ammonia storage equipment
JP3099233B1 (en) Fire extinguishing equipment
KR101956159B1 (en) Apparatus for drain, vent and water filling for wet type sprinkler systems and Method for drain, vent and water filling of wet type sprinkler systems
JP3935040B2 (en) Leak inspection method for gas piping and leak inspection apparatus used therefor
KR102190478B1 (en) Firefighting water supply and drain apparatus of fire truck
JP3111810U (en) Indoor pressurized water supply system for buildings
JP2013000460A (en) Sprinkler fire extinguishing system and control method of the same
CN216725610U (en) Pressure-storage-free large-capacity fire extinguishing tank
CN207964172U (en) Fire hydrant test platform
JP2009172178A (en) Rust prevention method and device for sprinkler type firefighting equipment
JPH10234881A (en) Fire extinguishing equipment
JP5642638B2 (en) Sprinkler fire extinguishing equipment and control method thereof
JPH10205436A (en) Device for evacuating piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees