JP3936792B2 - 連続式粉粒体温度制御装置 - Google Patents

連続式粉粒体温度制御装置 Download PDF

Info

Publication number
JP3936792B2
JP3936792B2 JP3581098A JP3581098A JP3936792B2 JP 3936792 B2 JP3936792 B2 JP 3936792B2 JP 3581098 A JP3581098 A JP 3581098A JP 3581098 A JP3581098 A JP 3581098A JP 3936792 B2 JP3936792 B2 JP 3936792B2
Authority
JP
Japan
Prior art keywords
temperature
temperature control
powder
granular material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3581098A
Other languages
English (en)
Other versions
JPH11230670A (ja
Inventor
雅昭 野坂
彦一 勝村
健二郎 松下
伸好 金沢
勉 大野
治 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsui Manufacturing Co Ltd
Original Assignee
Matsui Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Manufacturing Co Ltd filed Critical Matsui Manufacturing Co Ltd
Priority to JP3581098A priority Critical patent/JP3936792B2/ja
Publication of JPH11230670A publication Critical patent/JPH11230670A/ja
Application granted granted Critical
Publication of JP3936792B2 publication Critical patent/JP3936792B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Drying Of Solid Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、プラスチックなどの射出成形機に供給するプラスチックペレット等の粉粒体を、短時間で連続的に必要な温度に加熱あるいは冷却する連続式粉粒体温度制御装置に関する。
【0002】
【従来の技術】
プラスチックなどの射出成形機では、供給される原材料のプラスチックペレットなどの粉粒体は、射出直前に一定の温度で一定の乾燥度であることが要求される。この温度と乾燥度は、具体的には、プラスチックについては、含水率は数百〜数拾ppm、温度は100℃〜160℃程度であるが、粉粒体の種類、成形方法や形状に応じて定められ、さらに、定められた温度及び乾燥度に対するバラ付きの許容度はかなり厳しいものである。
【0003】
また、プラスチックなど、例えば、飲料ボトルの原料であるPET(ポリエチレンテレフタレート)等を上記したような射出直前に要求される高温で長時間乾燥すると加水分解反応が起こり、分子量の低下による製品強度の低下の問題、アセトアルデヒドの生成による製品への臭気の残留の問題等が発生する。さらに、高温状態が継続されると、材料としての性質が劣化する問題もある。したがって、高温状態はできるだけ短いことが要求されている。また、乾燥と加熱など、2種類の目標値を同時に達成するように制御するのは一般的に困難を伴うものである。
【0004】
このため、一般には、まず低温状態、つまり80℃〜140℃程度の温度で粉粒体を所定の乾燥度に乾燥し、射出成形機上の加熱機に搬送した後、所定温度の気体を加熱機に送りこんで加熱するという方法が取られている。
従来、この場合、加熱機としては充填層式のものがほとんどであった。図6は、このような従来の連続式粉粒体加熱機を有した射出成形機の全体構成の概略説明図である。
【0005】
このシステムは、乾燥機120、加熱機G、射出成形機130で構成され、射出成形の原材料である粉粒体mを乾燥機120で所定の乾燥度と予備温度に加熱し、加熱機Gで所定温度の気体を加熱機Gに吹き込んで加熱して、射出成形機130に供給する。
101は粉粒体加熱用の空気を送風する送風ブロア、102はその空気を加熱するヒータ、103は粉粒体mを滞留させ加熱するための昇温槽、104は加熱用済み後の還流気体から粉粒体の浮遊粒子などを回収する排気フィルタ、105は、加熱気体で加熱され排出され、射出成形機130に供給される粉粒体mの温度を測る粉粒体温度測定センサである。
【0006】
ヒータ102には、そのヒータ102で加熱された空気の温度を測る加熱気体温度センサ107と、ヒータ102によって加熱気体の温度を一定温度に制御する加熱気体温度調節器108が設けられている。フィーダ111は、乾燥機120から乾燥された粉粒体mを供給する。
このような加熱機Gの場合、予め設定された値に制御された一定温度の加熱気体を充填層形式の昇温槽103に吹き込む構成であるため、加熱後の粉粒体の温度を常に希望の温度に保つことは困難であった。
【0007】
つまり、加熱後の粉粒体の温度は、加熱気体の温度と量、粉粒体の入口温度、昇温槽103を貫流する粉粒体の量、言い換えれば、粉粒体の昇温槽103内での滞留時間の4つの条件の平衡の結果に左右されるものであるが、その制御が困難であった。これは、粉粒体の入口温度と貫流量は、加熱機G側では、制御できないもので、それに対応して、加熱気体の温度と量を制御しなかればならないが、粉粒体の貫流量が相当量あるなどの条件のため、制御の時間遅れがあり、その時間遅れが、粉粒体の入口温度と貫流量の変化に追いつかないためであった。
【0008】
この問題は、特に、加熱用に供給された粉粒体の入口温度に変化があった場合に、その変化に追随することができないという形で現れていた。
また、充填層形式の場合、過剰に加熱気体を吹き込むと粉粒体が加熱気体に同伴され吹き飛んでしまうので、吹き込む加熱気体の量をあまり多くできず、その分、粉粒体の滞留時間を長く設計しなければならない。このため、装置が大型化するばかりでなく、前述の加水分解反応等に起因する問題を引き起こしていた。
【0009】
この滞留時間の問題は、昇温槽として、主に乾燥用として知られている連続式流動槽を用いると、加熱時間が短くなり、解決することができる。しかし、従来の連続式流動槽では、乾燥を主としているので、排出される粉粒体温度を一定に制御することはあまり考慮されていなかった。また、加熱対象とする粉粒体の量単位が小さいので、その温度制御も時間的に追随性の良いものが要求されていた。
【0010】
さらに、排気フィルタの目詰まりによるフィルタの掃除、交換というメンテナンスの問題もあった。
また、1台で、加熱だけでなく、冷却もすることができれば、用途別に別の装置を設置する必要もなく、コストダウンを図ることができる。
【0011】
【発明が解決しようとする課題】
本発明は上記の問題点に鑑みて提案されたもので、プラスチックなどの射出成形機に供給する粉粒体を、短時間で正確に希望温度に加熱のみならず冷却もすることができ、保守性のよい連続式粉粒体温度制御装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明は従来、専ら乾燥用として認識されていた連続式流動槽の、制御対象を少量単位で捉え局部加熱がないという特性に注目し、その温度制御性を改善することによって、その特性を有効利用し、プラスチックなどの射出成形機に供給する粉粒体に要求される正確、高温度、短時間、連続の加熱あるいは冷却を可能とするという、全く新規な発想の下に発明されたものである。
【0013】
即ち、請求項1に記載の連続式粉粒体温度制御装置は、粉粒体が連続的に供給され排出される温度制御槽に、所定温度の気体を吹き込むことによって、成形機などに排出供給される粉粒体の温度を制御するもので、温度制御槽は、粉粒体を供給するフィーダと、排出する排出ダンパと、流動床と、流動床との間に間隙を有した仕切板とを備えて多段式床傾斜型構造をなし、フィーダと排出ダンパを動作させて、粉粒体を、間隙を通過させながら流動床上を移動させて、温度制御槽内の粉粒体の滞留量を一定範囲内に保持しながら流動させるようにした連続式流動槽であり、本連続式粉粒体温度制御装置は、粉粒体が流動しているときに、温度制御槽から排出される粉粒体の実温度を測定し、その実温度と目標温度との関係から、温度制御槽内に流動する粉粒体に対し吹き込む気体の気体温度を自動的に繰り返し設定制御して、その粉粒体の排出温度を目標温度にするようにしている。
【0014】
ここで、連続式粉粒体温度制御装置とは、温度制御槽に粉粒体の供給を連続的に受け、その供給を受けた粉粒体の流れを、少量単位で捉え、途切れ無く所定温度の気体を吹き込み、粉粒体を所定温度にしてから、後工程に供給するものをいい、粉粒体を加熱する場合だけでなく、冷却する場合も含むものである。
この発明では、温度制御後の粉粒体の実温度を測定し、その実温度をフィードバックして、自動的に気体温度を制御することによって、目標温度を実現するようにしている点を特徴とする。粉粒体の流れを、少量単位で捉え、途切れ無く温度制御するため、制御効果の伝達が早く、その点を利用して、自動制御することによって、追随性の良い温度制御を実現したものである。
【0015】
請求項2に記載の連続式粉粒体温度制御装置は、請求項1に比べ、温度制御の基礎データとして、温度制御槽に吹き込む気体の気体温度も用いている点が相違している。このように制御対象の入口側のデータも含めて制御判断すると、所定の気体温度にされる前の気体に温度変動があった場合にも、対応することができ、制御性がさらによくなる。
【0016】
また、連続式流動槽を用いているので、粉粒体が流れとして、少量単位で捉えられ、途切れ無く処理され、制御空気が、粉粒体に均一に行き渡り、局所加熱あるいは冷却が発生せず、短時間で、正確に目標温度を達成することができ、ムラがない。
【0017】
さらに、多段式床傾斜型の連続式流動槽であるため、制御対象の粉粒体は、傾斜床にそって、順に多段式のより高い温度用の槽に移動して行き、粉粒体の移動が滑らかで、温度制御効果が高く、また、最終段のものだけが排出されるので、温度制御の不完全な粉粒体が、次工程に排出供給されることがない。
【0018】
請求項3に記載の連続式粉粒体温度制御装置は、請求項1または2において、気体温度の設定制御は比例、積分制御であることを特徴とする。請求項4に記載の連続式粉粒体温度制御装置は、請求項1〜3のいずれかにおいて、前記温度制御槽内に、温度制御に用いられた気体から非気体成分を捕集する排気バッフルを設けている。ここで、排気バッフルとは、用済みの気体に含まれている粉粒体の浮遊粒子のうち、比較的大きい粒子は槽内に戻し、最終製品に悪影響する微粒子は排気とともに槽外へ出し、排気フィルタで捕集できるようにしたものである。
【0019】
したがって、一般の排気フィルタだけでは、用済み気体に含まれる比較的大きい浮遊粒子なども区別なく収集するため、目詰まりを起こしやすく、その清掃、交換が頻繁で、保守性に問題があったが、このような排気バッフルを合わせ用いることによって、排気フィルタが目詰まりすることが少なくなり、保守性が向上する。
【0020】
請求項5に記載の連続式粉粒体温度制御装置は、請求項1〜4のいずれかにおいて、前記温度制御槽の外側に熱媒体を流すジャケットを設け、または/かつ、前記温度制御槽の内部に熱媒体を流す管を設けている。温度制御槽に、所定温度の気体を吹き込むだけでなく、外側には熱媒体を流すジャケット、内部には熱媒体を流す管を設けているので、温度制御槽の熱容量が大きくなり、制御対象の粉粒体の量に対して、温度制御槽を小型化することができ、装置全体を小型化することができる。
【0021】
このジャケットや管に流す熱媒体も、適当な温度測定手段、温度調節手段を設けることによって、温度制御をすることができるものであり、また、加熱用にも、冷却用にも用いることができるものである。請求項6に記載の連続式粉粒体温度制御装置は、請求項1〜5のいずれかにおいて、前記温度制御槽に吹き込む気体を加熱する加熱手段を有し、または/かつ、前記温度制御槽に吹き込む気体を冷却する冷却手段を有し、粉粒体を加熱または/かつ冷却するようにしたものである。
【0022】
もともと、本発明の温度制御の概念には、加熱の場合、冷却の場合も含まれるものであるが、特に、加熱手段、冷却手段を明記して、そのいずれか一方、あるいは双方ができるようにしたことを明確にしたものである。請求項7に記載の連続式粉粒体温度制御装置は、請求項1〜6のいずれかにおいて、プラスチックなどの射出成形機の原料供給口に設置され、前記射出成形機に必要な所定温度の粉粒体を連続的に供給するようにしたものである。
【0023】
本発明の連続式粉粒体温度制御装置は、短時間で、連続的に、希望温度の粉粒体を供給できる点を特徴とするが、そのような性質が特に要求されるプラスチックなどの射出成形機用として、その連続式粉粒体温度制御装置を構成したものである。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明の連続式粉粒体温度制御装置の一例の全体構成を示す概略説明図である。
連続式粉粒体温度制御装置Aにおいて、1は粉粒体mの温度制御用気体を送風する送風ブロア、2は温度制御用気体を所定温度にするヒータ、3は粉粒体mを連続流動的に温度制御するための連続式流動槽を用いた温度制御槽、4は用済み気体の微小浮遊粒子を収集する排気フィルタ、5は温度制御槽3から排出され次工程に供給される粉粒体mの実温度を測る実温度センサ、6は実温度センサで測定した実温度に基づき粉粒体の温度調節信号を発生する粉粒体温度調節器、7は粉粒体mの温度制御用気体の気体温度を測る気体温度センサ、8は気体温度センサ7で測定した気体温度と粉粒体温度調節器6からの信号に基づき、ヒータ2への制御信号を出力する気体温度調節器である。
【0025】
9は温度制御槽3から排出され次工程に供給される粉粒体mが、その排出部付近に滞留する量を検知するためのレベル計、10はレベル計9からの信号に応じて、フィーダの運転を高速、あるいは低速に切換制御するインバータ、11は温度制御槽3に粉粒体mを供給するフィーダ、12は、用済み空気を還流させる排気ダクトである。
【0026】
ここでは、温度制御用気体として空気を用いる場合を説明するが、これに限るものではない。
これより、連続式流動槽を用いた温度制御槽3について、詳しく説明する。
この温度制御槽3は、多段式であって、その槽は、仕切板34及び排出セキ35によって仕切られて4つの槽、第1制御槽3a、第2制御槽3b、第3制御槽3c、排出槽3dに分かれている。温度制御用空気を通過させて粉粒体に吹き込ませるようにする流動床33は、第1制御槽3aから第3制御槽3cの方向に、また、重力の方向に傾斜している。
【0027】
仕切板34は、この流動床33との間に間隙を設けて設置され、一方、排出セキ35の下部は、開閉可能な排出ダンパ36となっており、これを閉じたときには、流動床33との間隙はなくなり、開いたときには、流動床33との間に大きな開口部を生じるようになっている。また、仕切板34の上部は、温度制御槽の高さの半分程度の位置まで達しているが、排出セキ35の上部は、それに比べ、低い位置となっている。
【0028】
この傾斜流動床33には、それぞれの制御槽3a〜3cに合わせて区分され、それぞれに風量調整弁32を設けた送風口31を介して、ヒータ2で所定の温度にされた空気が送り込まれ、それぞれの制御槽3a〜3c内の粉粒体mに温度制御用空気が吹き込まれるようになっている。
ついで、この連続式粉粒体温度制御装置Aを用いた粉粒体の温度制御、つまり、加熱あるいは冷却の方法について説明する。ここでは、前工程で、粉粒体は、すでに適度の乾燥度に乾燥されており、また次工程が、この連続式粉粒体温度制御装置Aに直結されているとして説明するが、これに限るものではない。
【0029】
次工程の運転信号がOFFの場合、つまり、次工程と制御装置Aが連続運転中に、次工程がなんらかの理由で停止したような場合、レベル計9が粉粒体なしの信号を送り出している時にはフィーダ11は運転し、粉粒体mを供給する。一方、レベル計9が粉粒体ありの信号を送り出せば、フィーダ11は停止し、粉粒体mの供給を止める。こうして、次工程への粉粒体の過剰滞留が阻止される。
【0030】
また、このとき、気体温度調節器8の設定値は、手動で適切な値に設定され、一定の気体温度の温度制御用空気が供給される。これは、このような異常状態では、温度制御の機能が完全には発揮されないため、温度制御用空気の温度を、長時間加熱しても粉粒体に悪影響を及ぼさない温度に切り替えて、次工程の運転再開を待つためである。
【0031】
次工程の運転がONの場合、フィーダ11は運転し、粉粒体mは、温度制御槽3に連続供給され、温度制御槽3からは、温度制御された粉粒体mが次工程に連続的に排出供給される。
この場合、レベル計9が粉粒体なしの信号を送り出している時にはフィーダ11はインバータ10の作用により高速運転し、一方、レベル計9が粉粒体ありの信号を送り出せば、フィーダ11はインバータ10の作用により低速運転して、粉粒体mの供給量を加減して、温度制御槽3内の粉粒体mの滞留量を一定範囲内に保つ。
【0032】
フィーダ11によって温度制御槽3内に供給された粉粒体mは、温度制御用空気と激しく接触し、流動層となって温度制御用空気と熱交換しながら、制御槽3a〜3c内を浮遊しつつ、順に第1制御槽3a、第2制御槽3b、第3制御槽3cと移動して行き、排出槽3dから排出される。粉粒体mは、第1制御槽3aと第2制御槽3bとの間、第2制御槽3bと第3制御槽3cとの間では、仕切板34の下の間隙を通り、流動床33の傾きの作用もあって、順にとなりの制御槽へと移動していく。
【0033】
この場合、粉粒体mは、それぞれの制御槽3a〜3c内で、それぞれ風量調節された温度制御用空気を送風口31から受けて浮遊するが、第1制御槽3a、第2制御槽3bへの風量は低い目に設定されており、また仕切板34の上部も高いものとなっているので、粉粒体mが、仕切板34の上部を越えて、となりの制御槽、あるいは排出槽3dへ移動することはない。
【0034】
一方、第3制御槽3cへの風量は多い目に設定されており、また、排出セキ35の上部は、仕切板34の上部より低く設定されており、通常は、すべての粉粒体mは、第3制御槽3cから排出槽3dへ移動する際には、排出セキ35を越えて移動するようになっている。
こうして、全ての粉粒体mは、所定の温度制御を各制御槽3a〜3cで順に万遍なく受けてから排出されるようになっている。また、温度制御を多段に分けているので、制御効率がよい。加えて、制御対象の粉粒体が流動層となり、小さい量単位となるので、制御時間が短くなり、連続的に供給され排出されるので、高温維持時間が短くなる。また、いわゆる、ショートカットや、異常滞留もさける事ができ、さらに、局部加熱や局部冷却も避けることができる。
【0035】
また、排出セキ35の高さを変えることで、温度制御槽3内の粉粒体の滞留量を調整することができる。
次に、本発明の特徴とする温度の自動制御について説明する。
この連続式粉粒体温度制御装置Aにおいては、温度制御槽3から排出される粉粒体mの実温度と温度制御用空気の気体温度を測定して、その実温度と気体温度と粉粒体の目標温度との関係から、その気体温度を自動的に制御して、粉粒体をその目標温度にするようにしている。この場合、気体温度を用いずに、実温度だけで制御してもよい。
【0036】
気体温度調節器8の気体温度の設定値は、基本的には比例制御を用いて、粉粒体温度調節器6に設定されている粉粒体目標温度と実温度センサ5の測定値との偏差によって決定される。図2は、そのような温度制御の一例を示すグラフである。
図2は、目標温度150℃、比例帯幅100℃で、粉粒体温度調節器6の出力100%の時の温度制御用空気の温度設定値を250℃、粉粒体温度調節器6の出力0%の時の温度設定値を150℃に設定した場合を示すものである。
【0037】
図2に示すように、実温度が目標温度150℃に一致した時、気体温度調節器8への制御出力は50%になり、この時の気体湿度は200℃に設定される。実温度が設定値に一致していない時には、例えば実温度が目標温度以下の130℃の時には気体温度調節器8への制御出力は70%になり、気体温度は220℃に設定される。実温度が目標温度以上の170℃の時には気体温度調節器8への制御出力は30%になり、気体温度は180℃に設定され、実温度が目標温度に近づく様に制御される。
【0038】
しかし、気体温度が200℃で、粉粒体温度が150℃になるとは限らず、この様な比例制御だけでは通常は残留偏差が発生するので、積分動作を加えて残留偏差を解消する。積分動作が加わると、偏差が発生している間、偏差を解消する方向に偏差に応じた速度で制御出力が除々に変化し、つまり気体設定温度が徐々に変化し、偏差が解消された時点で積分動作による制御出力の変化はなくなる。実際には比例制御と積分動作は同時進行で行われ、両方の制御出力が加算されたものが制御出力となる。
【0039】
このようにして、粉粒体実温度が扮粒体目標温度に−致するよう温度制御用空気の気体温度の設定が自動的に行われる。この自動設定は0.5秒毎に繰り返し更新される。
一方、気体温度調節器8は気体温度を気体設定温度に一致させるように、同様の制御を行う。ただし、この場合は制御出力によりヒータを直接駆動する。
【0040】
本発明の場合、上述したように制御対象が小量単位に捉えられる流動層なので、このような設定変更の効果がすぐに実温度に反映される。したがって、これを上記のように、自動的にくり返し設定するようにしておくと、短い時間で、実温度が目標温度になるように自動制御され、その後は、目標温度の粉粒体mが次工程に連続的に排出供給される。
【0041】
このようにしておくと、運転中に、温度制御槽3内を貫流する粉粒体mの量が変化したり、温度制御槽3に供給される乾燥された粉粒体mの温度が変化しても、気体温度調節器8の設定気体温度が自動修正され、温度制御槽3から次工程に排出供給される粉粒体mの実温度は、短時間で目標温度に維持され、環境変化に左右されずに、安定的に信頼性の高い温度制御をすることができる。
【0042】
次に、本発明の他の特徴とする排気バッフルについて説明する。
温度制御槽3の上部には、温度制御に使用された用済み空気を排気し、粉粒体の浮遊粒子を捕集するための排気部37が設けられ、排気部37には、排気バッフル38と排気口39が有る。排気バッフル38は、用済みの空気に含まれている非気体成分、例えば、粉粒体の浮遊粒子などを、トラップなどを用いて分級して捕集し、大きい粒子などは、再利用することができるようにしたものである。
【0043】
したがって、排気口39から排気ダクト12を通って送風ブロア1に貫流する排気から浮遊粒子などを除去するための排気フィルタ4は、すぐに目詰まりすることがなく、清掃、交換の回数が減り、保守性が向上する。また、大きい粒子は再利用されるので、資源活用の点でも優れている。
次に、本発明の連続式粉粒体温度制御装置の他の実施態様について説明する。図3は、そのような本発明の連続式粉粒体温度制御装置の他例の全体構成を示す概略説明図である。
【0044】
この連続式粉粒体温度制御装置Bは、図1の連続式粉粒体温度制御装置Aに比べて、温度制御用気体を加熱する加熱手段のヒータだけでなく、温度制御用気体を冷却する冷却手段を設けている点が相違するだけなので、他の共通する部分については、同じ符号を付して重複する説明を省略する。
この連続式粉粒体温度制御装置Bには、温度制御用気体を冷却する冷却手段として、冷却コイル13とその熱源である冷凍機14が更に備えられている点を特徴とする。冷却手段としては、冷凍機等を熱源とした冷却コイルを例示しているが、これに限るものではない。また、連続式粉粒体温度制御装置Bにおいて、加熱手段であるヒータ2を用いず、冷却手段だけを用いることもできるし、連続式粉粒体温度制御装置Aのように加熱手段だけを用いるものとすることもできる。
【0045】
冷却手段を用いた場合、加熱手段と同様に、温度制御槽3から排出される粉粒体mの実温度と温度制御用空気の気体温度と目標温度との関係から、気体温度調節器8を用いて、乾燥機から供給される粉粒体mの温度が、目標温度に比べて高い場合でも、実温度を下げて目標温度にすることができる。また、加熱手段と冷却手段とを併用すれば、必要に応じて、粉粒体を加熱することも、また、冷却することも、一台の連続式粉粒体温度制御装置ですることができ、別々の専用装置を設ける必要がなく、設置場所の節約、コストダウンを図ることができる。
【0046】
次に、本発明の連続式粉粒体温度制御装置のさらに他の実施態様について説明する。図4は、そのような本発明の連続式粉粒体温度制御装置の他例の要部構成を示す概略説明図である。
この連続式粉粒体温度制御装置Cは、図1の連続式粉粒体温度制御装置Aに比べて、温度制御槽3に所定温度の温度制御用気体を吹き込むだけでなく、更に、外側には熱媒体を流すジャケット、内部には熱媒体を流す管を設けている点が、相違するだけなので、他の共通する部分については、同じ符号を付して重複する説明を省略する。
【0047】
ジャケット15は、温度制御槽3の外周を囲むように設けられた中空円柱状の形状をしており、その円柱の内周と外周の間は中空となっており、水や空気などの熱媒体が流れるようになっている。管16は、温度制御槽3の内部の第1〜3制御槽3a〜3cの内部に伸びているパイプ状のもので、水や空気などの熱媒体が流れるようになっている。ジャケット15と管16には、熱媒体が流れ、温度制御用空気による温度制御を補助する。
【0048】
このジャケット15と管16は、両方設けてもよいし、それぞれ一方だけを設けてもよい。また、このジャケット15や管16に流す熱媒体も、適当な温度測定手段、温度調節手段を設けることによって、温度制御をすることができるものであり、また、加熱用にも、冷却用にも用いることができるものである。
このようにすると、温度制御槽の熱容量が大きくなり、制御対象の粉粒体の量単位に対して、温度制御槽を小型化することができ、装置全体を小型化することができる。
最後に、本発明の特徴が最も良く発揮されるプラスチックなどの射出成形機に用いられる本発明の連続式粉粒体温度制御装置の例について説明する。図5は、このような連続式粉粒体温度制御装置を有した射出成形機の一例の全体構成を示す概略説明図である。ここでは、プラスチック成形に用いられる場合について説明する。
【0049】
図において、Aは本発明の連続式粉粒体温度制御装置、120は乾燥機、130は射出成形機であり、乾燥機120と射出成形機130は、図6を用いて従来例として説明したものと同じものである。
このシステムでは、連続式粉粒体温度制御装置Aは、射出成形機130の原料投入口に設けられ、乾燥機120よりプラスチック成形品の原料であるプラスチックペレットの供給を受けて、連続的に短時間で必要な温度に加熱して、プラスチック射出成形機130に排出供給する。
【0050】
プラスチックペレットは、乾燥機120では、80℃〜150℃の温度で2〜4時間程度をかけて数百〜数十ppmの含水率に乾燥され、連続式粉粒体温度制御装置Aで目標温度に加熱されて、プラスチック射出成形機130に供給される。
乾燥の段階では、プラスチックの性質の低下を防止するために、できるだけ低温で行うことが望ましい。一方、プラスチック射出成形機130では、プラスチックペレットを加熱溶融させ、金型内へ射出するが、この時間は同様の理由で、なるべく短くすることが望ましい。そのため、できるだけ高温度で安定したプラスチックペレットが成形機130に供給されることが望ましい。本発明の連続式粉粒体温度制御装置Aは、そのような要求に十分に応えるものである。
【0051】
【発明の効果】
以上の説明から理解されるように、請求項1〜7に記載の本発明の連続式粉粒体温度制御装置によれば、専ら乾燥用として認識されていた連続式流動槽の特性に注目し、その温度制御性を改善することによって、その特性を利用し、プラスチックなどの射出成形機に供給する粉粒体に要求される正確、高温度、短時間、連続の加熱あるいは冷却を可能にする。
【0052】
特に、請求項1に記載の連続式粉粒体温度制御装置によれば、粉粒体が連続的に供給され排出される温度制御槽に、所定温度の気体を吹き込むことによって、成形機などに排出供給される粉粒体の温度を制御するもので、温度制御槽から排出される粉粒体の実温度を測定し、その実温度と目標温度との関係から、温度制御槽に吹き込む気体の気体温度を自動的に制御して、粉粒体を目標温度にするようにしているので、制御単位が小さく供給単位毎に温度制御するため、制御効果の伝達が早く、その点を利用して自動制御することによって、短時間で追随性のよい温度制御を実現することができる。また、高温時間が短いので、前述の加水分解反応等に起因する問題を引き起こす事もない。
【0053】
請求項2に記載の連続式粉粒体温度制御装置によれば、請求項1の効果に加え、温度制御の基礎データとして、温度制御槽に吹き込む気体の気体温度も用いているので、制御対象の入口側のデータも含めて制御判断することになり、所定の気体温度にされる前の気体に温度変動があった場合にも対応することができ、環境変化への追随性が向上し、制御性がさらによくなる。
【0054】
また、前記温度制御槽として連続式流動槽を用いているので、粉粒体が適切な制御単位で処理され、制御空気が、粉粒体に均一に行き渡り、局所加熱あるいは冷却が発生せず、短時間で、正確に目標温度を達成することができムラがない。
【0055】
さらに、連続式流動槽として多段式床傾斜型の連続式流動槽を用いているので、制御対象の粉粒体は、傾斜床にそって、順に多段式のより高い温度の部分に移動して行き、粉粒体の移動が滑らかで、温度制御効果がたかく、また、最終段のものだけが排出されるので、温度制御が不完全なものが、次工程に排出供給されることがない。
【0056】
請求項4に記載の連続式粉粒体温度制御装置によれば、請求項1〜3の効果に加え、前記温度制御槽内に、温度制御に用いられた気体から非気体成分を捕集し再利用する排気バッフルを設けているので、資源の有効利用が図れ、排気フィルタが目詰まりすることが少なくなり、保守性が向上する。請求項5に記載の連続式粉粒体温度制御装置によれば、請求項1〜4の効果に加え、前記温度制御槽の外側に熱媒体を流すジャケットを設け、または/かつ、前記温度制御槽の内部に熱媒体を流す管を設けているので、温度制御槽の熱容量が大きくなり、制御対象の粉粒体の量に対して、温度制御槽を小型化することができ、装置全体を小型化することができる。
【0057】
請求項6に記載の連続式粉粒体温度制御装置によれば、請求項1〜5の効果に加え、温度制御槽に吹き込む気体を加熱する加熱手段を有し、または/かつ、温度制御槽に吹き込む気体を冷却する冷却手段を有し、粉粒体を加熱または/かつ冷却するようにしているので、粉粒体の加熱、冷却、あるいはその双方とも、一台の装置ですることができるので、設置場所の節約、コストダウンを図ることができる。
【0058】
請求項7に記載の連続式粉粒体温度制御装置によれば、請求項1〜6の効果に加え、プラスチックなどの射出成形機の原料供給口に設置され、射出成形機に必要な所定温度の粉粒体を連続的に供給するようにしているので、短時間、連続的、安定した高温度の供給を要求するプラスチックなどの射出成形機に相応しい。
【図面の簡単な説明】
【図1】本発明の連続式粉粒体温度制御装置の一例の全体構成を示す概略説明図
【図2】本発明の連続式粉粒体温度制御装置における温度制御の一例を示すグラフ
【図3】本発明の連続式粉粒体温度制御装置の他例の全体構成を示す概略説明図
【図4】本発明の連続式粉粒体温度制御装置の他例の要部構成を示す概略説明図
【図5】本発明の連続式粉粒体温度制御装置を有した射出成形機の一例の全体構成を示す概略説明図
【図6】従来の連続式粉粒体加熱機を有した射出成形機の全体構成を示す概略説明図
【符号の説明】
A、B、C 連続式粉粒体温度制御装置
m 粉粒体
1 送風ブロア
2 ヒータ
3 温度制御槽
4 排気フィルタ
5 実温度センサ
6 粉粒体温度調節器
7 気体温度センサ
8 気体温度調節器
13 冷却コイル
14 冷凍機
15 ジャケット
16 管
31 送風口
32 風量調整弁
33 流動床
38 排気バッフル
120 乾燥機
130 射出成形機

Claims (7)

  1. 粉粒体が連続的に供給され排出される温度制御槽内の粉粒体に、所定温度の気体を吹き込むことによって、成形機などに排出供給される粉粒体の温度を制御する連続式粉粒体温度制御装置であって、
    前記温度制御槽は、粉粒体を供給するフィーダと、排出する排出ダンパと、流動床と、該流動床との間に間隙を有した仕切板とを備えて多段式床傾斜型構造をなし、該フィーダと該排出ダンパを動作させて、粉粒体を、前記間隙を通過させながら前記流動床上を移動させて、前記温度制御槽内の粉粒体の滞留量を一定範囲内に保持しながら、流動させるようにした連続式流動槽であり、
    前記粉粒体が流動しているときに、前記温度制御槽から排出される粉粒体の実温度を測定し、その実温度と目標温度との関係から、前記温度制御槽内に流動する粉粒体に対し吹き込む気体の気体温度を自動的に繰り返し設定制御して、その粉粒体の排出温度を前記目標温度にするようにした連続式粉粒体温度制御装置。
  2. 粉粒体が連続的に供給され排出される温度制御槽内の粉粒体に、所定温度の気体を吹き込むことによって、成形機などに排出供給される粉粒体の温度を制御する連続式粉粒体温度制御装置であって、
    前記温度制御槽は、粉粒体を供給するフィーダと、排出する排出ダンパと、流動床と、該流動床との間に間隙を有した仕切板とを備えて多段式床傾斜型構造をなし、該フィーダと該排出ダンパを動作させて、粉粒体を、前記間隙を通過させながら前記流動床上を移動させて、前記温度制御槽内の粉粒体の滞留量を一定範囲内に保持しながら、流動させるようにした連続式流動槽であり、
    前記粉粒体が流動しているときに、前記温度制御槽から排出される粉粒体の実温度と温度制御槽に吹き込む気体の気体温度とを測定し、これらの温度と目標温度との関係から、前記気体温度を自動的に繰り返し設定制御して、その粉粒体の排出温度を前記目標温度にするようにした連続式粉粒体温度制御装置。
  3. 請求項1または2において、
    前記気体温度の設定制御は比例、積分制御であることを特徴とする連続式粉粒体温度制御装置。
  4. 請求項1〜3のいずれかにおいて、
    前記温度制御槽内に、温度制御に用いられた気体から非気体成分を捕集する排気バッフルを設けた連続式粉粒体温度制御装置。
  5. 請求項1〜4のいずれかにおいて、
    前記温度制御槽の外側に熱媒体を流すジャケットを設け、または/かつ、前記温度制御槽の内部に熱媒体を流す管を設けた連続式粉粒体温度制御装置。
  6. 請求項1〜5のいずれかにおいて、
    前記温度制御槽に吹き込む気体を加熱する加熱手段を有し、または/かつ、前記温度制御槽に吹き込む気体を冷却する冷却手段を有し、粉粒体を加熱または/かつ冷却する連続式粉粒体温度制御装置。
  7. 請求項1〜6のいずれかにおいて、
    前記連続式粉粒体温度制御装置は、プラスチックなどの射出成形機の原料供給口に設置され、前記射出成形機に必要な所定温度の粉粒体を連続的に供給する連続式粉粒体温度制御装置。
JP3581098A 1998-02-18 1998-02-18 連続式粉粒体温度制御装置 Expired - Lifetime JP3936792B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3581098A JP3936792B2 (ja) 1998-02-18 1998-02-18 連続式粉粒体温度制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3581098A JP3936792B2 (ja) 1998-02-18 1998-02-18 連続式粉粒体温度制御装置

Publications (2)

Publication Number Publication Date
JPH11230670A JPH11230670A (ja) 1999-08-27
JP3936792B2 true JP3936792B2 (ja) 2007-06-27

Family

ID=12452296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3581098A Expired - Lifetime JP3936792B2 (ja) 1998-02-18 1998-02-18 連続式粉粒体温度制御装置

Country Status (1)

Country Link
JP (1) JP3936792B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993569B2 (ja) * 2006-10-02 2012-08-08 月島機械株式会社 流動乾燥機及び被乾燥物の乾燥方法
JP5713801B2 (ja) * 2011-05-31 2015-05-07 三菱重工業株式会社 流動層乾燥装置
JP6567879B2 (ja) * 2014-07-01 2019-08-28 株式会社カワタ 成形材料の事前処理方法、事前処理装置、および射出成形方法
CN108607488B (zh) * 2018-05-08 2020-11-10 广西汇元锰业有限责任公司 二氧化锰化合石头粉浆化***及其控制方法
WO2022203080A1 (ja) 2021-03-25 2022-09-29 住友重機械工業株式会社 材料予熱装置及び、射出装置

Also Published As

Publication number Publication date
JPH11230670A (ja) 1999-08-27

Similar Documents

Publication Publication Date Title
FI106742B (fi) Menetelmä ja laite korkeapaineisen hiukkasmaisen materiaalin käsittelemiseksi
US6449875B1 (en) Method of heating bulk material, especially granular plastic material
EP2186613B1 (en) High-efficiency system for dehumidifying and/or drying plastic materials
JP4546215B2 (ja) 乾燥ホッパにおける粒状物を通過するガス流量制御方法及び装置
US4584366A (en) Process for the crystallizing, drying and aftercondensation of polycondensates
US7343700B2 (en) Automatic control of the drying of particulate material
HU218059B (hu) Keringő fluidágyas reaktor, valamint eljárás az ágyhőmérséklet szabályozására egy keringő fluidágyas reaktorban
EP2447027B1 (en) A dehumidification process for granular plastic material and a dehumidification plant operating according to the process
JP3936792B2 (ja) 連続式粉粒体温度制御装置
CN112912219B (zh) 用于快速且高效地加热塑料颗粒以准备用于在塑化装置中加工的方法和装置
JP5737928B2 (ja) 乾燥粉粒体の製造方法
JP2019038258A (ja) 粒状のプラスチック材料の射出成形の方法及びシステム
US5182871A (en) Apparatus for drying bulk materials
CN112240680B (zh) 粉粒体材料的干燥装置及粉粒体材料的干燥方法
WO2021074847A1 (en) Plant for drying granular polymeric material and related drying process
JP4142832B2 (ja) 連続式粉粒体温度制御装置
CN101579610A (zh) 用于松散材料的快速热处理的设备和方法
EP3978853A1 (en) A vertical dryer silo
JPH07103655A (ja) 粉粒体材料の乾燥方法とその装置
CN205929129U (zh) 一种电缆料制造***
KR960010018B1 (ko) 유동층 킬른내의 주조용 고사의 열재생중 토출사를 조절하기 위한 방법과 장치
JP3660439B2 (ja) 連続流動乾燥方法
JP3059879B2 (ja) 流動層利用の造粒制御装置
CA2312511A1 (en) Process and apparatus for drying granulates
JP2023084816A (ja) 横型連続伝導伝熱式乾燥機の運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term