JP3935556B2 - Insulating material and manufacturing method thereof - Google Patents

Insulating material and manufacturing method thereof Download PDF

Info

Publication number
JP3935556B2
JP3935556B2 JP14458197A JP14458197A JP3935556B2 JP 3935556 B2 JP3935556 B2 JP 3935556B2 JP 14458197 A JP14458197 A JP 14458197A JP 14458197 A JP14458197 A JP 14458197A JP 3935556 B2 JP3935556 B2 JP 3935556B2
Authority
JP
Japan
Prior art keywords
foam
oxygen
carbon dioxide
heat insulating
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14458197A
Other languages
Japanese (ja)
Other versions
JPH10318666A (en
Inventor
浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP14458197A priority Critical patent/JP3935556B2/en
Publication of JPH10318666A publication Critical patent/JPH10318666A/en
Application granted granted Critical
Publication of JP3935556B2 publication Critical patent/JP3935556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫、冷凍庫、住宅の壁材等に使用される断熱材に関する。
【0002】
【従来の技術】
従来、冷蔵庫、冷凍庫等の断熱材として、発泡ウレタン等の発泡体をそのまま用いたり、発泡ウレタン又は他の多孔質体をガスバリヤー性包材で真空包装したものが使用されている。
また、連続した気泡を有する発泡体を真空包装して、該気泡内を真空にして断熱効果を高めた断熱材も使用されている。
【0003】
【発明が解決しようとする課題】
しかし、冷蔵庫、冷凍庫等の断熱材として、発泡ウレタン等の発泡体を使用した場合、断熱効果が充分でなく、省エネタイプの冷蔵庫、冷凍庫としては問題がある。
発泡体をガスバリヤー性包材で真空包装したものは、断熱効果は高まるが、発泡ウレタンを使用した場合、発泡のために使用されたガス、残留溶剤、或いは分解により発生する炭酸ガス又は有機ガス等が、時間の経過と伴に密封包装体内に発生して真空度を低下させ、その結果断熱効果が低下するという問題が生じている。
また、連続気泡を有する発泡体は、強度的に問題があり、真空度を上げると、気泡が潰れて断熱効果が低下することがあり、作業性に問題が残る。
【0004】
【課題を解決するための手段】
上記問題を解決するために、断熱材の構成及びその製造方法を下記のようにした。発泡体又は多孔質体を包装袋に密封した断熱材であって、発泡体又は多孔質体の気泡又は空気孔の中の空気を酸素又は炭酸ガスで置換した発泡体又は多孔質体と、発泡体又は多孔質体の気泡又は空気孔の中に存在する物質を吸着する物質、又は該物質と反応する物質を、ガスバリヤー性の容器或いは包装袋の中に密封し、気泡又は空気孔の中に存在する物質を吸着或いは反応させることにより気泡又は空気孔から取り除き、該気泡又は空気孔の中を真空状態にして断熱効果を高めたことを特徴とする断熱材とした。また、前記発泡体又は多孔質体の気泡又は空気孔の中に存在する物質が酸素又は炭酸ガスであり、更に該酸素と反応する物質が鉄系酸素吸収剤であり、また該炭酸ガスと反応する物質がアルカリ金属又はアルカリ土類金属の酸化物又は水酸化物からなる炭酸ガス吸収剤である断熱材とした。
【0005】
そして、該断熱材の製造方法は、発泡体又は多孔質体と、発泡体又は多孔質体の気泡又は空気孔の中の空気を酸素又は炭酸ガスで置換した発泡体又は多孔質体の気泡又は空気孔の中に存在する物質を吸着する物質、又は該物質と反応する物質を、ガスバリヤー性の容器或いは包装袋の中に密封し、密封状態で室温に一定時間保存し、気泡又は空気孔の中に存在する物質を、該吸着物質又は反応物質に吸着或いは反応させることにより、気泡又は空気孔から取り除き、該気泡又は空気孔の中を真空状態にして断熱効果を高めることを特徴とする断熱材の製造方法とした。また、発泡体又は多孔質体を酸素気流中或いは酸素を充満した容器内に配置し、発泡体又は多孔質体の気泡又は空気孔の中を酸素で置換し、而る後、発泡体又は多孔質体の気泡又は空気孔の中の空気を酸素で置換した発泡体又は多孔質体と鉄系酸素吸収剤とを、ガスバリヤー性の容器或いは包装袋の中に密封し、該気泡又は空気孔の中の酸素を該鉄系酸素吸収剤と反応させて除去し、該気泡又は空気孔の中を真空状態にして断熱効果を高める断熱材の製造方法とした。更に、発泡体又は多孔質体を炭酸ガス気流中或いは炭酸ガスを充満した容器内に配置し、該発泡体又は多孔質体の気泡又は空気孔の中を炭酸ガスで置換し、而る後、発泡体又は多孔質体の気泡又は空気孔の中の空気を炭酸ガスで置換した発泡体又は多孔質体とアルカリ金属又はアルカリ土類金属の酸化物又は水酸化物からなる炭酸ガス吸収剤とを、ガスバリヤー性の容器或いは包装袋の中に密封し、該気泡又は空気孔の中の炭酸ガスを該炭酸ガス吸収剤と反応させて除去し、該気泡又は空気孔の中を真空状態にして断熱効果を高める断熱材の製造方法とした。
【0006】
即ち、本発明の断熱材は、発泡体又は多孔質体の気泡又は空気孔の中の空気を、一旦酸素又は炭酸ガス等のガスで置換し、その後ガス置換した発泡体又は多孔質体を、酸素又は炭酸ガスを吸収する物質(例えば、鉄系酸素吸収剤、又は酸化カルシウムや水酸化カルシウム等の炭酸ガス吸収剤)と一緒にガスバリヤー性包装袋の中に密封し、発泡体又は多孔質体の気泡又は空気孔の中の酸素又は炭酸ガスを鉄系酸素吸収剤、又は炭酸ガス吸収剤に吸収又は反応させて、発泡体又は多孔質体の気泡又は空気孔の中を真空にして発泡体又は多孔質体の断熱効果を高めたものである。
尚、前記鉄系酸素吸収剤及び炭酸ガス吸収剤は、酸素又は炭酸ガスを吸収するだけでなく、酸素又は炭酸ガスと反応して、酸素又は炭酸ガスを別の化合物にして完全に固定する場合も含むものとする。以下吸収剤は同様の意味を有するものとする。
また、該吸収剤による「吸収」は、ガス状物と反応してガス状物を固体にすることも含むものとする。
【0007】
そして、本発明の断熱材の製造方法は、発泡体又は多孔質体の気泡又は空気孔の中の空気を、一旦酸素又は炭酸ガス等のガスで置換する工程を取り、その後ガス置換した発泡体又は多孔質体を、酸素吸収剤又は炭酸ガス吸収剤と一緒にガスバリヤー性包装袋の中に密封し、密封状態で室温に保存して、発泡体又は多孔質体の気泡又は空気孔の中の酸素又は炭酸ガスを鉄系酸素吸収剤、又は炭酸ガス吸収剤に吸収して、発泡体又は多孔質体の気泡又は空気孔の中を真空にする工程を採用したものである。
【0008】
そのため、本発明の製造方法においては、例えば酸素置換した発泡体を鉄系酸素吸収剤と一緒に、ガスバリヤー性包装袋を用いて真空包装機で真空包装するだけで、発泡体の気泡は時間の経過と伴に酸素が鉄系酸素吸収剤に吸収されて真空になり、発泡体は高い断熱効果を示すようになる。
従来、発泡体を高真空にするには、発泡体をガスバリヤー性包装袋に入れて、真空ポンプで長時間かけて脱気する必要があった。特に、発泡体が独立気泡を有する場合は、気泡中の空気は発泡体の材質のガス透過度に従って、気泡を形成する膜から徐々に透過するので、真空ポンプを用いて気泡の中を真空にすることは殆ど不可能であった。そのため、発泡体の独立気泡を真空にして断熱効果を高めることは実用的でなかった。
本発明においては、発泡体が独立気泡の場合でも、置換された気泡の中の酸素炭酸ガスは、真空包装時に取り除く必要がなく、発泡体の周囲に付着している空気及びガスバリヤー性包装体の中に存在する空気だけを脱気すればよいので、通常の真空包装のスピードで断熱材を生産することができる。
【0009】
【発明の実施の形態】
以下、図面を参照にしながら本発明を詳細に説明する。
図1は本発明の断熱材の一例を示す模式断面図である。
図2は本発明の断熱材に使用する発泡体の斜視図である。
図3は本発明の断熱材に使用するガスバリヤー性積層材の模式断面図であり、図4はガスバリヤー性積層材を用いて作成したガスバリヤー性包装袋の模式平面図である。
図5は本発明の断熱材に使用する酸素吸収体の平面図であり、図6は本発明の断熱材に使用する炭酸ガス吸収体の平面図である。
図7は本発明の断熱材を製造するときの説明図であり、図8は実施例2により本発明の断熱材を製造するときの説明図である。
図9は比較例により作製した断熱材の模式断面図である。
【0010】
本発明の断熱材は、図1に示すように、基本的には、気泡が真空状態になっている真空孔4を有する発泡体3とガス吸収剤5がガスバリヤー性包装袋2の中に密封されたものである。
そして、真空孔4は、発泡体の気泡の中の空気を一旦酸素又は炭酸ガスで置換した後、密封包装袋を室温に保存中に、密封包装体の中で、その気泡中の酸素又は炭酸ガスをガス吸収剤5(酸素吸着剤又は炭酸ガス吸着剤)で吸収、除去して真空にしたものである。
【0011】
本発明の断熱材は、以下のように製造される。
先ず、公知の方法により、図2に示すように、発泡ポリエチレン、発泡ポリプロピレン、発泡ウレタン、発泡スチレン等のような発泡体3を作製する。
発泡体3の気泡4aは、発泡体の製造方法によって異なるが、独立気泡又は連続気泡となっている。本発明においてはいずれも使用可能であるが、独立気泡を有する発泡体がより好適である。
発泡体の気泡の中は、発泡体を作るときの発泡剤の種類によって異なるが、発泡体の製造時は、気泡の中には窒素又は炭酸ガスが入っている場合が多い。
しかし、発泡体を空気中に放置すると発泡体の気泡4aの中は、空気によって置換され、通常、空気が入った状態になっている。
【0012】
本発明においては、発泡ポリエチレン、発泡ポリプロピレン、発泡ウレタン、発泡スチレン等いずれの材質の発泡体も使用できるが、発泡体3の気泡4aを酸素で置換する場合は、酸素透過度の大きい発泡ポリエチレン、発泡ポリプロピレンを使用すれば、気泡4aのガス置換が比較的速くできる。
ガス置換を炭酸ガスで行う場合は、上記発泡ポリエチレン、発泡ポリプロピレン、発泡ウレタン、発泡スチレンの炭酸ガス透過度は、いずれも、酸素ガス透過度の約3倍もあるので、ガス置換は比較的速くできる。
【0013】
本発明に使用されるガスバリヤー性包装袋2は、図3に示すように、ガスバリヤー性積層材から作製される。
ガスバリヤー性積層材2aは、図3に示すように、通常、ヒートシール層11、ガスバリヤー層12、耐熱樹脂層13から構成される。
ガスバリヤー性積層材2aは、発泡体、及び酸素吸収剤又は炭酸ガス吸収剤を密封し、更に、外部から空気、水蒸気、その他のガスが密封包装体の中に透過しないようにするため、ガスバリヤー層12が必要である。
ガスバリヤー層としては、通常、アルミニウム箔(以下Al箔とする)が使用されるが、Al箔以外に、PETフィルムにアルミニウム(以下Alとする)を真空蒸着又はスパッタリング等によって薄膜層を形成して使用する場合がある。
【0014】
また、Al箔の代わりに、シリカ、アルミナ等のセラミックをPETフィルム等のプラスチックフィルムに真空蒸着又はスパッタリング等によって薄膜層を形成して使用する場合もある。
セラミックとしては、この他に、酸化インジウム錫(ITO)、又は、亜鉛、錫、チタン、ジルコニウム、バナジウム、バリウム、クロム等の金属酸化物、窒化珪素、炭化珪素等が使用できる。
セラミック薄膜層の厚さは50〜3000Åの範囲で使用でき、好ましくは、300〜1000Åである。
また、Al蒸着面又はセラミック蒸着面と内面のPEとの接着性をよくするために、アンカーコート層が設けられる。
【0015】
ガスバリヤー性積層材2aは、発泡体、及び酸素吸収剤又は炭酸ガス吸収剤を完全に密封し、且つそのシール強度の大きなものが要求されるため、ヒートシール層11としてはPEやPP等が多く使用される。
また、PEやPPは水蒸気に対して優れたガスバリヤー性を示すので、ガスバリヤー層として、Al蒸着PETやセラミックの蒸着PETを使用した場合は、水蒸気のバリヤー層としての役割を果たす。
【0016】
ガスバリヤー性積層材2aは、発泡体、及び酸素吸収剤又は炭酸ガス吸収剤をヒートシールによって密封するので、ガスバリヤー性積層材の表面は、ヒートシールバーの熱に対して耐えられる程度の耐熱性が必要である。
耐熱樹脂層13としては、主としてPETフィルム、PPフィルム、ナイロンフィルム等が使用される。
【0017】
本発明に使用するガスバリヤー性包装袋2は、上記のように(内面)ヒートシール層11/ガスバリヤー層12/耐熱樹脂層13(表面)から構成されるガスバリヤー性積層材2aを用いて、ヒートシールして作製されるが、図4に示すように、三方シール袋が多く使用される。
本発明に使用するガスバリヤー性包装袋2としては、三方シール袋に限らず、各種製袋方式による袋が使用できるが、発泡体及びガス吸収体を真空包装により密封するためには、シール性に優れた三方シール袋が好適である。
また、ガスバリヤー性包装袋2の代わりに、射出成形法や真空・圧空成形法等により、発泡体及びガス吸収剤を収納できる形状に成形し、これに蓋材をシールしたものも使用することもできる。勿論、これらの成形品及び蓋材はいずれもガスバリヤー性を有することは当然である。
【0018】
本発明に用いられるガス吸収剤5としては、鉄系酸素吸収剤や炭酸ガス吸収剤が使用される。
鉄系酸素吸収剤としては、空気中の酸素と反応して三二酸化鉄(Fe2 3 )になる活性酸化鉄を主成分とするものが使用される。
炭酸ガス吸収剤としては、アルカリ金属又はアルカリ土類金属の酸化物又は水酸化物が用いられる。特に、酸化カルシウム又は水酸化カルシウムはコストが安く、取扱が便利なため好適である。
上記鉄系酸素吸収剤や炭酸ガス吸収剤は、酸素又は炭酸ガスの吸収を良くするために、粒状又は粉体にしたものをガス透過性のよい包材に入れて使用する。
例えば、PET/PEからなる積層材に、粒状物又は粉体がこぼれない程度の微小の孔を開けた包材を用いて、図5又は図6に示すように、粒状又は粉体にした鉄系酸素吸収剤又は炭酸ガス吸収剤を封入し、酸素吸収体16又は炭酸ガス吸収体17として使用する。
また、上記孔空き積層材の代わりに、PEやPP等の不織布を用いて、前記と同様に、酸素吸収体16又は炭酸ガス吸収体17を作製して使用してもよい。
【0019】
発泡体3の気泡4aを酸素で置換するには、次の方法が用いられる。
図7(a)に示すように、ガス供給用配管21、ガス吸引用配管22、バルブA23及びバルブB24を設けた耐圧容器20に、発泡体3を複数枚入れて密閉する。
耐圧容器20の大きさは、発泡体3の大きさ及び断熱材の生産能力に応じて適宜選定される。
発泡体3を入れた耐圧容器20は、バルブA23を閉じ、バルブB24を開いて、ガス吸引用配管22を真空ポンプ(図示せず)に接続して、真空ポンプを稼働させて耐圧容器20内を減圧にする。
【0020】
次いで、ガス供給用配管21を酸素ガスボンベ(図示せず)に接続し、バルブB24を閉じ、バルブA23を開いて、ガス供給用配管21を通して耐圧容器20内に酸素(O2 濃度99.99%)を供給し、耐圧容器20内にO2 を充満する。更にO2 を吹き込んで耐圧容器20内を僅かに加圧状態にする。
一定時間加圧して、耐圧容器内及び発泡体の周囲にO2 を充分に浸透させた後、バルブA23を閉じ、バルブB24を開いて、耐圧容器20内のO2 を排気し、更に真空ポンプを稼働して耐圧容器20内を真空にする。耐圧容器20内の真空度が1mmHg程度になったとき、バルブB24を閉じ、バルブA23を開いて、ガス供給用配管21からO2 を供給して耐圧容器内を再びO2 によって加圧して、一定時間(8〜12時間)保持して、発泡体の気泡を酸素で置換する。
【0021】
尚、上記においては、発泡体3の気泡4aをO2 で置換する方法について説明したが、炭酸ガス(CO2 )を用いて、同様に気泡4aを炭酸ガスで置換しても、本発明の目的は達成される。
また、発泡体をO2 又はCO2 の気流中に配置して、発泡体の気泡4aをO2 又はCO2 で置換することもできる。
【0022】
発泡体3の気泡4aが酸素によって十分置換されない場合は、耐圧容器20内を酸素によって数回置換することにより、気泡4aを完全に酸素で置換することができる。
耐圧容器20内のO2 圧力を上げることにより、発泡体3の気泡4aへのO2 透過速度が大きくなるので、O2 置換に要する時間を短縮することができる。
しかし、耐圧容器への最初のO2 供給は、耐圧容器内及び発泡体に残留する空気を追い出すために使用されるので、圧力はあまり高くする必要はない。
2 圧力は、耐圧容器20内の発泡体の量や耐圧容器20のO2 置換回数により0.1〜1.0気圧(ゲージ圧として)の範囲で適宜選定される。
また、O2 の温度を上げることにより、気泡4aへのO2 透過速度が大きくなるので、O2 置換を促進するために、耐圧容器20を蒸気等で加熱し、耐圧容器20内のO2 温度を40〜80℃にすることが好ましい。
2 温度が80度を超える場合は、気泡の膜壁が柔らかくなり、気泡が破壊し易くなる等の問題がある。又、再度冷却するのにかなりの時間を要する等の、作業性に問題が生じる。
【0023】
しかし、純度の高いO2 ガスは、引火等により可燃物を急激に燃焼させる作用があり、可燃性ガスと同様な取扱が必要であるので、圧力はできるだけ低く抑え、温度も高温にしない方がよい。
尚、O2 の代わりに炭酸ガスを用いて、発泡体3の気泡4aを置換する場合は、炭酸ガスの温度及び圧を上げても引火、燃焼の危険性がないので、耐圧容器20の仕様範囲内で2〜3気圧まで上げて、炭酸ガス置換を促進することができる。
【0024】
上記のように、発泡体3の気泡4aをO2 で置換した発泡体3は、図7(b)に示すように、気泡4aはO2 で置換されて酸素置換孔4bとなっている。
このO2 置換した発泡体3を、直ちに、酸素吸収体16と一緒に、ガスバリヤー性包装袋に入れて密封して、図7(b)に示すように、酸素置換包装袋1aとする。
酸素で置換した発泡体3は、空気中に放置すると、気泡の中の酸素が再び空気で置換されることになるので、速やかにガスバリヤー性包装袋の中に、酸素吸収体16と一緒に入れて密封する必要がある。
ガスバリヤー性包装袋による密封包装は真空包装が好ましい。
耐圧容器から取り出した発泡体3は、短時間ではあるが、空気に曝されるので、発泡体の周囲には空気が付着した状態になる。
真空包装をすることにより、発泡体3の周囲の空気は除去されるので、真空包装された発泡体3の気泡4aの中はO2 で置換された状態が維持される。
【0025】
更に、上記酸素置換包装袋1aを室温に保存することにより、図7(b)に示した酸素置換孔4bの中のO2 は、酸素吸収体16の中の鉄系酸素吸収剤と反応して、徐々に取り除かれ気泡4aの中は減圧状態になる。
時間の経過と伴に、酸素置換孔4bの中のO2 は更に除去され、最終的には酸素置換孔4b(気泡)の中は真空状態となり、図7(c)に示すように、真空孔4に変わり、真空孔4を有する断熱材1となる。
即ち、気泡を真空孔に変えることにより、断熱効果が高まり、断熱性に優れた断熱材を得ることができる。
【0026】
また、発泡体3の気泡4aを炭酸ガスで置換した場合は、発泡体と一緒に、酸化カルシウム又は水酸化カルシウム等の炭酸ガス吸収剤をガスバリヤー性包装袋2の中に入れて真空包装により密封する。
【0027】
【実施例】
以下、実施例に基づいて更に詳しく説明する。
(実施例1)
公知の押出し成形法により、独立気泡を有するPE製の発泡体を作製し、これを横200mm、縦200mm、厚さ20mmのサイズに裁断して、図2に示すような発泡体3を作成した。
一方、鉄系酸素吸収剤として、三菱ガス化学(株)製のエージレス(商品名)200gを孔空きのPET12μ/ PE40μの積層材で、三方シールしたサイズ100mm×140mmの袋に入れてヒートシールして、図5に示すような酸素吸収体16を作成した。この酸素吸収体16は空気中の酸素を吸収しないように、PET12μ/ Al 7μ/ PE40μからなる袋に入れて保存した。
また、ガスバリヤー性包装袋2として、図4に示すように、下記仕様の三方シール袋を作成した。
包材仕様:PET12μ/ Al 9μ/ PE60μ、
袋サイズ:230mm×240mm
袋形態:シール幅8mmで三方シールの袋
【0028】
図7(a)に示すように、上記PE製発泡体3を10枚重ねて耐圧容器20に入れて蓋を閉めた後、バルブA23を閉め、バルブB24を開いて、ガス吸引用配管22を真空ポンプに接続し、真空ポンプを稼働させて、耐圧容器20の空気を排除した。
耐圧容器20の中の真空度が1mmHgになったとき、真空ポンプを稼働させながら、バルブA23を開き、酸素ボンベ(O2 濃度99.99%)に接続しているガス供給用配管21から耐圧容器20の中にO2 を送り、耐圧容器20の中の空気を完全に排除した。
次いで、バルブB24を閉じ、耐圧容器20の中にO2 を送り続けて、耐圧容器20の内圧を0.8気圧にした。
更に、耐圧容器20の外側に設けてある加熱装置に蒸気を送り耐圧容器を加熱し、耐圧容器20のO2 温度を60度に上げた。
この状態で8時間維持して発泡体の気泡をO2 で置換した。その後、耐圧容器20の外側に冷却水を流して中のO2 を40℃まで冷却した。
【0029】
次に、図7(a)に示すように、バルブB24を開いて、耐圧容器20の中のO2 を徐々に排出して、耐圧容器20の圧を常圧に戻した。このとき、急激に耐圧容器20の圧力を下げると、発泡体の気泡が膨張して破壊することがあるので注意が必要である。
次いで、バルブA23を開いて、耐圧容器20の中にO2 を送り、加熱されたO2 を排出すると共に、発泡体3を冷却した。発泡体3が約40℃程度になった時点で、耐圧容器20の蓋を開いて、発泡体3を取り出し、これを前記鉄系酸素吸収体4bと一緒に、前記ガスバリヤー性包装袋2の中に入れ、直ちに真空包装機で真空包装して、図7(b)に示すような酸素置換包装袋1aを得た。
この酸素置換包装袋1aを室温(約20℃)に2日間保存して、図7(c)に示すように、保存中に発泡体3の酸素置換孔4bが真空孔4に変わった断熱材1を得た。
前記酸素置換包装袋1aを室温に保存中に、発泡体3の酸素置換孔4bの中のO2 は、ガスバリヤー性包装袋2の中に透過し、更に酸素吸収体16の中の鉄系酸素吸収剤と反応して除去されるので、時間の経過と伴に、酸素置換孔4bの中のO2 はなくなり、図7(b)における酸素置換孔4bは、図7(c)に示すような真空孔4に変わる。
【0030】
(実施例2)
実施例1と同様に、PE製発泡体3とガスバリヤー性包装袋2を作製した。
また、炭酸ガス吸収体として、酸化カルシウム(CaO)20gと水酸化カルシウム(Ca(OH)2 )30gを、実施例1と同様に、孔空き積層材からなる三方シール袋に入れてヒートシールして、図6に示すような炭酸ガス吸収体17を作成した。
【0031】
次に、実施例1と同様に、 図8(a)に示すように、上記PE製発泡体3を10枚重ねて耐圧容器20に入れて、耐圧容器20の空気を排除した。
耐圧容器20の中の真空度が1mmHgになったとき、真空ポンプを稼働させながら、バルブA23を開き、炭酸ガスボンベ(CO2 濃度99.99%)に接続しているガス供給用配管21から耐圧容器20の中に炭酸ガス(CO2 )を送り、耐圧容器20の中の空気を完全に排除した。
次いで、バルブB24を閉じ、耐圧容器20の中にCO2 を送り続けて、耐圧容器20の内圧を1.5気圧にした。
更に、耐圧容器20の外側に設けてある加熱装置に蒸気を送り耐圧容器を加熱し、耐圧容器20のCO2 温度を70度に上げた。
この状態で4時間維持して発泡体の気泡をCO2 で置換した。その後、耐圧容器20の外側に冷却水を流して中のCO2 を40℃まで冷却した。
【0032】
次に、図8(a)に示すように、バルブB24を開いて、耐圧容器20の中のCO2 を徐々に排出して、耐圧容器20の圧を常圧に戻した。
次いで、バルブA23を開いて、耐圧容器20の中にCO2 を送り、加熱されたCO2 を排出すると共に、発泡体3を冷却した。発泡体3が約40℃程度になった時点で、耐圧容器20の蓋を開いて、発泡体3を取り出し、これを前記炭酸ガス吸収体17と一緒に、前記ガスバリヤー性包装袋2の中に入れ、直ちに真空包装機で真空包装して、図8(b)に示すような炭酸ガス置換包装袋1bを得た。
実施例1と同様に、この炭酸ガス置換包装袋1bを室温(約20℃)に2日間保存して、図8(c)に示すように、炭酸ガス置換孔4cが真空孔4に変わった断熱材1を得た。
【0033】
(比較例1)
実施例1と同様に、PE製発泡体3とガスバリヤー性包装袋2を作製した。
このPE製発泡体3をガスバリヤー性包装袋2に入れて、実施例1と同様に真空包装して、図9(a)に示すような断熱材A10aを得た。
尚、上記断熱材A10aの気泡の中は空気が入った状態のままである。
【0034】
(比較例2)
実施例1で用いたPE製発泡体3、酸素吸収体16及びガスバリヤー性包装袋2を使用して、PE製発泡体3と酸素吸収体16を、ガスバリヤー性包装袋2で、通常の方法により真空包装して図9(b)に示すような断熱材B10bを得た。
尚、上記断熱材B10bの気泡の中は空気中の酸素が酸素吸収体16に吸収されなくなり、残りの窒素が入った状態のものである。
【0035】
(比較例3)
実施例2で用いたPE製発泡体3、炭酸ガス吸収体17及びガスバリヤー性包装袋2を使用して、PE製発泡体3と炭酸ガス吸収体17を、ガスバリヤー性包装袋2で、通常の方法により真空包装して図9(c)に示すような断熱材C10cを得た。
尚、上記断熱材C10cの気泡の中は空気が入った状態のままである。
【0036】
(熱伝導率試験)
実施例1、2及び比較例1、2、3で作製した断熱材について、熱伝導率を測定した。
測定方法は、JIS A 1412に準拠して、昭和電工(株)製の熱伝導率計を用いて、13℃と35℃との温度差における熱伝導率を測定した。
測定結果は表1に示すとおりで、実施例1、2で作製した断熱材はいずれも比較例に比較して熱伝導率が小さく、断熱効果に優れていた。
【0037】
【表1】

Figure 0003935556
【0038】
【発明の効果】
本発明の断熱材は、発泡体又は多孔質体の気泡又は空気孔の中の空気を、一旦酸素又は炭酸ガス等のガスで置換し、その後ガス置換した発泡体又は多孔質体を、鉄系酸素吸収剤、又は炭酸ガス吸収剤と一緒にガスバリヤー性包装袋の中に密封し、発泡体又は多孔質体の気泡又は空気孔の中の酸素又は炭酸ガスを鉄系酸素吸収剤、又は炭酸ガス吸収剤に吸収して、気泡又は空気孔の中を真空にして断熱効果を高めたものである。
そのため、本発明の製造方法においては、例えば酸素又は炭酸ガス置換した発泡体を鉄系酸素吸収体又は炭酸ガス吸収体と一緒に、ガスバリヤー性包装袋を用いて真空包装機で真空包装するだけで、発泡体の気泡は時間の経過と伴に酸素又は炭酸ガスが鉄系酸素吸収体又は炭酸ガス吸収体に吸収されて真空になり、発泡体は優れた断熱効果を示すようになる。
従って、従来のように、発泡体の気泡を真空にするために、真空ポンプで長時間かけて脱気する必要がなくなった。特に、独立気泡を有する発泡体の場合でも、容易に真空孔を有する発泡体にすることができる。
そのため、独立気泡を有する発泡体を用いて、断熱効果の優れた断熱材を作製する場合でも、従来の真空包装のスピードで断熱材を作製することがきるので、作業能率が向上し、コスト低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の断熱材の一例を示す模式断面図である。
【図2】本発明の断熱材に使用する発泡体の斜視図である。
【図3】本発明の断熱材に使用するガスバリヤー性積層材の模式断面図である。
【図4】ガスバリヤー性積層材を用いて作成したガスバリヤー性包装袋の模式平面図である。
【図5】本発明の断熱材に使用する酸素吸収体の平面図である。
【図6】本発明の断熱材に使用する炭酸ガス吸収体の平面図である。
【図7】本発明の断熱材を製造するときの説明図である。
【図8】実施例2により本発明の断熱材を製造するときの説明図である。
【図9】比較例により作製した断熱材の模式断面図である。
【符号の説明】
1 断熱材
1a 酸素置換包装袋
1b 炭酸ガス置換包装袋
2 ガスバリヤー性包装袋
2a ガスバリヤー性積層材
3 発泡体
4 真空孔
4a 気泡
4b 酸素置換孔
4c 炭酸ガス置換孔
5 ガス吸収剤
5a 鉄系酸素吸収剤
5b 炭酸ガス吸収剤
10a 断熱材A(比較例1で作製)
10b 断熱材B(比較例2で作製)
10c 断熱材C(比較例3で作製)
11 ヒートシール層
12 ガスバリヤー層
13 耐熱樹脂層
14 シール部
15 孔空き積層材
16 酸素吸収体
17 炭酸ガス吸収体
20 耐圧容器
21 ガス供給用配管
22 ガス吸引用配管
23 バルブA
24 バルブB
25 酸素
26 炭酸ガス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating material used for a refrigerator, a freezer, a wall material of a house, and the like.
[0002]
[Prior art]
Conventionally, as a heat insulating material for a refrigerator, a freezer or the like, a foamed material such as foamed urethane is used as it is, or a foamed urethane or other porous material is vacuum-packed with a gas barrier packaging material.
In addition, a heat insulating material is also used in which a foam having continuous bubbles is vacuum packaged and the inside of the bubbles is evacuated to enhance the heat insulating effect.
[0003]
[Problems to be solved by the invention]
However, when a foamed material such as urethane foam is used as a heat insulating material for a refrigerator, a freezer or the like, the heat insulating effect is not sufficient, and there is a problem as an energy saving type refrigerator or freezer.
When the foam is vacuum-packed with a gas barrier packaging material, the heat insulation effect is enhanced, but when foamed urethane is used, the gas used for foaming, the residual solvent, or carbon dioxide or organic gas generated by decomposition Etc. occur in the sealed package with the passage of time, and the degree of vacuum is lowered, resulting in a problem that the heat insulation effect is lowered.
Moreover, the foam which has an open cell has a problem in intensity | strength, and when a vacuum degree is raised, a bubble may be crushed and the heat insulation effect may fall, and a problem remains in workability | operativity.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the constitution of the heat insulating material and the manufacturing method thereof were as follows. A heat insulating material in which a foam or a porous body is sealed in a packaging bag, Air in the bubbles or air holes of the foam or porous body was replaced with oxygen or carbon dioxide gas A foam or porous body, a substance that adsorbs a substance present in the bubbles or air holes of the foam or porous body, or a substance that reacts with the substance is placed in a gas barrier container or packaging bag. Insulation characterized by sealing, removing from the bubbles or air holes by adsorbing or reacting substances present in the bubbles or air holes, and increasing the heat insulation effect by making the bubbles or air holes in a vacuum state A material was used. In addition, the substance present in the bubbles or air holes of the foam or porous body is oxygen or carbon dioxide, and the substance that reacts with oxygen is an iron-based oxygen absorbent, and reacts with the carbon dioxide. The insulating material is a carbon dioxide gas absorbent composed of an oxide or hydroxide of an alkali metal or alkaline earth metal.
[0005]
And the manufacturing method of this heat insulating material is a foam or a porous body, Air in the bubbles or air holes of the foam or porous body was replaced with oxygen or carbon dioxide gas A substance that adsorbs or reacts with a substance present in bubbles or air holes of a foam or a porous body is sealed in a gas barrier container or packaging bag, and is sealed at room temperature. It is stored for a certain period of time, and the substance present in the bubbles or air holes is removed from the bubbles or air holes by adsorbing or reacting with the adsorbed substances or reactants, and the bubbles or air holes are evacuated. It was set as the manufacturing method of the heat insulating material characterized by improving the heat insulation effect. Further, the foam or porous body is placed in an oxygen stream or in a container filled with oxygen, and the bubbles or air holes of the foam or porous body are replaced with oxygen. Air in the foam or porous body of the foam or porous body was replaced with oxygen The foam or porous body and the iron-based oxygen absorber are sealed in a gas barrier container or packaging bag, and oxygen in the bubbles or air holes is reacted with the iron-based oxygen absorber to remove it. The air bubble or air hole is evacuated to increase the heat insulation effect. Further, the foam or porous body is placed in a carbon dioxide gas stream or in a container filled with carbon dioxide gas, and the bubbles or air holes of the foam or porous body are replaced with carbon dioxide gas. Air bubbles in the foam or porous body or air in the air holes were replaced with carbon dioxide. A foam or porous body and a carbon dioxide absorbent composed of an oxide or hydroxide of an alkali metal or alkaline earth metal are sealed in a gas barrier container or packaging bag, and the bubbles or air holes are sealed. The carbon dioxide contained therein was removed by reacting with the carbon dioxide absorbent, and the inside of the bubbles or air holes was evacuated to provide a heat insulating material manufacturing method that enhances the heat insulating effect.
[0006]
That is, the heat insulating material of the present invention is a foam or porous body in which bubbles or air in the foam or porous body is once replaced with a gas such as oxygen or carbon dioxide, and then the gas is replaced. Sealed in a gas barrier packaging bag together with a substance that absorbs oxygen or carbon dioxide (for example, iron-based oxygen absorbent, or carbon dioxide absorbent such as calcium oxide or calcium hydroxide), foam or porous Bubbles or air bubbles in body or porous body are absorbed or reacted with iron-based oxygen absorbent or carbon dioxide absorbent, and the foam or air hole in foam or porous body is evacuated to foam The heat insulating effect of the body or porous body is enhanced.
The iron-based oxygen absorbent and the carbon dioxide absorbent not only absorb oxygen or carbon dioxide, but also react with oxygen or carbon dioxide to completely fix oxygen or carbon dioxide as another compound. Shall also be included. Hereinafter, the absorbent has the same meaning.
Further, “absorption” by the absorbent includes reacting with a gaseous substance to make the gaseous substance a solid.
[0007]
And the manufacturing method of the heat insulating material of this invention is the foam which carried out the process of replacing the air in the bubble of a foam or a porous body, or air once with gas, such as oxygen or a carbon dioxide gas, and gas-substituted after that. Alternatively, the porous body is sealed in a gas barrier packaging bag together with an oxygen absorbent or a carbon dioxide absorbent, and stored in a sealed state at room temperature, so that the foam or the porous body has air bubbles or air holes. The oxygen or carbon dioxide gas is absorbed into the iron-based oxygen absorbent or the carbon dioxide absorbent, and the process of evacuating the bubbles or air holes of the foam or porous body is employed.
[0008]
For this reason, in the production method of the present invention, for example, the oxygen-substituted foam is vacuum-packed with a vacuum packaging machine using a gas barrier packaging bag together with an iron-based oxygen absorbent, and bubbles in the foam are kept for a long time. With the progress of this, oxygen is absorbed by the iron-based oxygen absorbent and becomes a vacuum, and the foam exhibits a high heat insulating effect.
Conventionally, in order to make a foam into a high vacuum, it was necessary to put the foam in a gas barrier packaging bag and deaerate it with a vacuum pump for a long time. In particular, when the foam has closed cells, the air in the bubbles gradually permeates from the film forming the bubbles according to the gas permeability of the material of the foam, so the inside of the bubbles is evacuated using a vacuum pump. It was almost impossible to do. Therefore, it has not been practical to increase the heat insulation effect by making the closed cells of the foam vacuum.
In the present invention, even when the foam is a closed cell, the oxygen carbon dioxide in the substituted bubble does not need to be removed during vacuum packaging, and the air and gas barrier packaging that adheres to the periphery of the foam. Since it is only necessary to deaerate the air present in the inside, the heat insulating material can be produced at the speed of normal vacuum packaging.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of the heat insulating material of the present invention.
FIG. 2 is a perspective view of a foam used for the heat insulating material of the present invention.
FIG. 3 is a schematic cross-sectional view of a gas barrier laminate used for the heat insulating material of the present invention, and FIG. 4 is a schematic plan view of a gas barrier packaging bag prepared using the gas barrier laminate.
FIG. 5 is a plan view of an oxygen absorber used for the heat insulating material of the present invention, and FIG. 6 is a plan view of a carbon dioxide gas absorber used for the heat insulating material of the present invention.
FIG. 7 is an explanatory diagram when the heat insulating material of the present invention is manufactured, and FIG. 8 is an explanatory diagram when the heat insulating material of the present invention is manufactured according to the second embodiment.
FIG. 9 is a schematic cross-sectional view of a heat insulating material produced according to a comparative example.
[0010]
As shown in FIG. 1, the heat insulating material of the present invention basically includes a foam 3 having a vacuum hole 4 in which bubbles are in a vacuum state and a gas absorbent 5 in a gas barrier packaging bag 2. It is sealed.
The vacuum hole 4 is formed by temporarily replacing the air in the foam bubbles with oxygen or carbon dioxide gas, then storing the sealed packaging bag at room temperature, and in the sealed package body oxygen or carbon dioxide in the bubbles. The gas is absorbed and removed by a gas absorbent 5 (oxygen adsorbent or carbon dioxide adsorbent) and evacuated.
[0011]
The heat insulating material of the present invention is manufactured as follows.
First, as shown in FIG. 2, a foam 3 such as foamed polyethylene, foamed polypropylene, foamed urethane, foamed styrene or the like is prepared by a known method.
The bubble 4a of the foam 3 is a closed cell or an open cell, although it varies depending on the method of manufacturing the foam. Any of them can be used in the present invention, but a foam having closed cells is more preferable.
The foam bubbles vary depending on the type of foaming agent used to make the foam, but when the foam is produced, the bubbles often contain nitrogen or carbon dioxide.
However, if the foam is left in the air, the bubbles 4a of the foam are replaced with air, and normally air is in the state.
[0012]
In the present invention, foams of any material such as foamed polyethylene, foamed polypropylene, foamed urethane, and foamed styrene can be used. However, when the bubbles 4a of the foam 3 are replaced with oxygen, the foamed polyethylene having a high oxygen permeability, If foamed polypropylene is used, gas replacement of the bubbles 4a can be performed relatively quickly.
When gas replacement is performed with carbon dioxide, the carbon dioxide permeability of the foamed polyethylene, foamed polypropylene, foamed urethane, and foamed styrene is about 3 times the oxygen gas permeability, so the gas replacement is relatively fast. it can.
[0013]
The gas barrier packaging bag 2 used in the present invention is produced from a gas barrier laminate as shown in FIG.
As shown in FIG. 3, the gas barrier laminate 2 a is usually composed of a heat seal layer 11, a gas barrier layer 12, and a heat resistant resin layer 13.
The gas barrier laminate 2a seals the foam and the oxygen absorbent or carbon dioxide absorbent, and further prevents gas, water vapor and other gases from permeating into the sealed package from the outside. A barrier layer 12 is required.
As the gas barrier layer, an aluminum foil (hereinafter referred to as Al foil) is usually used. In addition to the Al foil, a thin film layer is formed by vacuum deposition or sputtering of aluminum (hereinafter referred to as Al) on a PET film. May be used.
[0014]
In some cases, instead of Al foil, ceramic such as silica or alumina is used by forming a thin film layer on a plastic film such as PET film by vacuum deposition or sputtering.
In addition to these, indium tin oxide (ITO), metal oxides such as zinc, tin, titanium, zirconium, vanadium, barium, chromium, silicon nitride, silicon carbide, and the like can be used as the ceramic.
The thickness of the ceramic thin film layer can be used in the range of 50 to 3000 mm, preferably 300 to 1000 mm.
An anchor coat layer is provided in order to improve the adhesion between the Al vapor deposition surface or the ceramic vapor deposition surface and PE on the inner surface.
[0015]
Since the gas barrier laminate 2a is required to completely seal the foam and the oxygen absorbent or carbon dioxide absorbent and have a high sealing strength, the heat seal layer 11 may be made of PE or PP. Used a lot.
In addition, PE and PP exhibit excellent gas barrier properties against water vapor, so when Al vapor-deposited PET or ceramic vapor-deposited PET is used as the gas barrier layer, it functions as a vapor barrier layer.
[0016]
Since the gas barrier laminate 2a seals the foam and the oxygen absorbent or carbon dioxide absorbent by heat sealing, the surface of the gas barrier laminate 2 has a heat resistance enough to withstand the heat of the heat seal bar. Sex is necessary.
As the heat resistant resin layer 13, a PET film, a PP film, a nylon film or the like is mainly used.
[0017]
As described above, the gas barrier packaging bag 2 used in the present invention uses the gas barrier laminate 2a composed of the heat seal layer 11 / gas barrier layer 12 / heat resistant resin layer 13 (surface) as described above. Although it is manufactured by heat sealing, as shown in FIG. 4, a three-side sealing bag is often used.
The gas barrier packaging bag 2 used in the present invention is not limited to a three-sided sealing bag, but bags of various bag making methods can be used. In order to seal the foam and the gas absorber by vacuum packaging, the sealing property is A three-side sealed bag excellent in the above is suitable.
Also, instead of using the gas barrier packaging bag 2, use the one that is molded into a shape that can accommodate the foam and the gas absorbent by the injection molding method, the vacuum / pneumatic molding method, etc., and sealed with the lid. You can also. Of course, it is natural that both of these molded articles and lid materials have gas barrier properties.
[0018]
As the gas absorbent 5 used in the present invention, an iron-based oxygen absorbent or a carbon dioxide absorbent is used.
As an iron-based oxygen absorber, iron sesquioxide (Fe) reacts with oxygen in the air. 2 O Three The main component is an active iron oxide.
As the carbon dioxide absorbent, oxides or hydroxides of alkali metals or alkaline earth metals are used. In particular, calcium oxide or calcium hydroxide is preferable because of its low cost and convenient handling.
In order to improve the absorption of oxygen or carbon dioxide, the iron-based oxygen absorbent and carbon dioxide absorbent are used in the form of granules or powder in a packaging material having good gas permeability.
For example, as shown in FIG. 5 or FIG. 6, iron that has been made granular or powdered using a packaging material in which minute holes are formed in the laminated material made of PET / PE so that the granular material or powder does not spill. A system oxygen absorbent or a carbon dioxide absorbent is enclosed and used as the oxygen absorber 16 or the carbon dioxide absorbent 17.
Moreover, you may produce and use the oxygen absorber 16 or the carbon dioxide gas absorber 17 similarly to the above using nonwoven fabrics, such as PE and PP, instead of the said perforated laminated material.
[0019]
In order to replace the bubbles 4a of the foam 3 with oxygen, the following method is used.
As shown in FIG. 7A, a plurality of foams 3 are put in a pressure vessel 20 provided with a gas supply pipe 21, a gas suction pipe 22, a valve A23 and a valve B24 and sealed.
The size of the pressure vessel 20 is appropriately selected according to the size of the foam 3 and the production capacity of the heat insulating material.
The pressure vessel 20 containing the foam 3 closes the valve A23, opens the valve B24, connects the gas suction pipe 22 to a vacuum pump (not shown), operates the vacuum pump, To reduced pressure.
[0020]
Next, the gas supply pipe 21 is connected to an oxygen gas cylinder (not shown), the valve B24 is closed, the valve A23 is opened, and the oxygen (O 2 The concentration 99.99%) is supplied and O in the pressure vessel 20 is supplied. 2 To charge. Further O 2 Is blown to make the pressure vessel 20 slightly pressurized.
Pressurize for a certain period of time in the pressure vessel and around the foam. 2 After sufficiently infiltrating the valve, the valve A23 is closed and the valve B24 is opened, 2 And the vacuum pump is operated to evacuate the pressure vessel 20. When the degree of vacuum in the pressure vessel 20 is about 1 mmHg, the valve B24 is closed, the valve A23 is opened, and the gas supply pipe 21 2 Supply the inside of the pressure vessel again. 2 And pressurizing and holding for a certain time (8 to 12 hours) to replace bubbles in the foam with oxygen.
[0021]
In the above, the bubbles 4a of the foam 3 are O 2 The method of replacing with carbon dioxide gas (CO 2 The object of the present invention can be achieved even if the bubbles 4a are similarly replaced with carbon dioxide gas.
In addition, foam 2 Or CO 2 Placed in the air current of 2 Or CO 2 Can also be substituted.
[0022]
When the bubbles 4a of the foam 3 are not sufficiently replaced with oxygen, the bubbles 4a can be completely replaced with oxygen by replacing the inside of the pressure resistant container 20 with oxygen several times.
O in the pressure vessel 20 2 By increasing the pressure, O to the bubbles 4a of the foam 3 is increased. 2 Since the transmission speed increases, O 2 The time required for replacement can be shortened.
But the first O to the pressure vessel 2 Since the supply is used to expel air remaining in the pressure vessel and in the foam, the pressure need not be too high.
O 2 The pressure depends on the amount of foam in the pressure vessel 20 and the O in the pressure vessel 20. 2 It is appropriately selected within the range of 0.1 to 1.0 atm (as gauge pressure) depending on the number of substitutions.
O 2 By increasing the temperature of the bubble 4a, 2 Since the transmission speed increases, O 2 In order to promote the replacement, the pressure vessel 20 is heated with steam or the like, and the O 2 The temperature is preferably 40 to 80 ° C.
O 2 When the temperature exceeds 80 degrees, there is a problem that the film wall of the bubbles becomes soft and the bubbles are easily broken. In addition, there is a problem in workability such that it takes a considerable time to cool again.
[0023]
However, high purity O 2 Since the gas has the action of burning the combustible material rapidly by ignition or the like, and the same handling as the combustible gas is necessary, it is preferable that the pressure is kept as low as possible and the temperature is not high.
O 2 In the case where the bubbles 4a of the foam 3 are replaced by using carbon dioxide instead of the above, there is no risk of ignition or combustion even if the temperature and pressure of the carbon dioxide is increased. Carbon dioxide replacement can be promoted by increasing to ~ 3 atm.
[0024]
As described above, the bubbles 4a of the foam 3 are 2 As shown in FIG. 7B, the foam 3 replaced with 2 To form an oxygen substitution hole 4b.
This O 2 The substituted foam 3 is immediately put in a gas barrier packaging bag together with the oxygen absorber 16 and sealed to obtain an oxygen substitution packaging bag 1a as shown in FIG. 7B.
When the foam 3 replaced with oxygen is left in the air, the oxygen in the bubbles is again replaced with air. Therefore, the foam 3 is quickly put in the gas barrier packaging bag together with the oxygen absorber 16. Need to be sealed.
The sealed packaging with the gas barrier packaging bag is preferably vacuum packaging.
Although the foam 3 taken out from the pressure vessel is exposed to air for a short time, air is attached around the foam.
Since the air around the foam 3 is removed by vacuum packaging, the bubbles 4a of the foam 3 vacuum packed are O 2 The state replaced with is maintained.
[0025]
Further, by storing the oxygen-substituted packaging bag 1a at room temperature, the oxygen-substituted packaging bag 1a is stored in the oxygen-substituted hole 4b shown in FIG. 2 Reacts with the iron-based oxygen absorbent in the oxygen absorber 16 and is gradually removed, and the bubble 4a is decompressed.
Over time, O in the oxygen substitution hole 4b 2 Is finally removed, and the oxygen substitution hole 4b (bubble) is finally in a vacuum state, and is changed to the vacuum hole 4 as shown in FIG. 7C, so that the heat insulating material 1 having the vacuum hole 4 is obtained.
That is, by changing the bubbles to vacuum holes, the heat insulating effect is enhanced, and a heat insulating material having excellent heat insulating properties can be obtained.
[0026]
When the bubbles 4a of the foam 3 are replaced with carbon dioxide, a carbon dioxide absorbent such as calcium oxide or calcium hydroxide is placed in the gas barrier packaging bag 2 together with the foam, and vacuum packaging is performed. Seal.
[0027]
【Example】
Hereinafter, it demonstrates in more detail based on an Example.
Example 1
A PE foam having closed cells was produced by a known extrusion molding method, and this was cut into a size of 200 mm in width, 200 mm in length, and 20 mm in thickness to produce a foam 3 as shown in FIG. .
On the other hand, as an iron-based oxygen absorber, AGELESS (trade name) 200g manufactured by Mitsubishi Gas Chemical Co., Ltd. is put into a 100mm x 140mm size bag sealed with three-sided PET12μ / PE40μ laminated material and heat sealed. Thus, an oxygen absorber 16 as shown in FIG. 5 was prepared. This oxygen absorber 16 was stored in a bag made of PET 12 μ / Al 7 μ / PE 40 μ so as not to absorb oxygen in the air.
Moreover, as the gas barrier packaging bag 2, as shown in FIG.
Packaging material specifications: PET12μ / Al 9μ / PE60μ,
Bag size: 230mm x 240mm
Bag type: Three-sided seal with 8mm seal width
[0028]
As shown in FIG. 7 (a), 10 PE foams 3 are stacked and placed in the pressure vessel 20 and the lid is closed, then the valve A23 is closed, the valve B24 is opened, and the gas suction pipe 22 is connected. It connected to the vacuum pump and operated the vacuum pump, and the air of the pressure vessel 20 was excluded.
When the degree of vacuum in the pressure vessel 20 becomes 1 mmHg, the valve A23 is opened while operating the vacuum pump, and the oxygen cylinder (O 2 From the gas supply pipe 21 connected to the concentration 99.99%) into the pressure vessel 20. 2 The air in the pressure vessel 20 was completely eliminated.
Next, the valve B24 is closed, and the pressure vessel 20 is filled with O. 2 The internal pressure of the pressure vessel 20 was set to 0.8 atm.
Further, steam is sent to a heating device provided outside the pressure vessel 20 to heat the pressure vessel, 2 The temperature was raised to 60 degrees.
Maintain in this state for 8 hours to eliminate foam bubbles. 2 Replaced with. Thereafter, the cooling water is allowed to flow outside the pressure vessel 20 and the inside O 2 Was cooled to 40 ° C.
[0029]
Next, as shown in FIG. 7A, the valve B24 is opened, and the O 2 in the pressure vessel 20 is opened. 2 Was gradually discharged to return the pressure in the pressure vessel 20 to normal pressure. At this time, if the pressure in the pressure vessel 20 is suddenly lowered, care must be taken because the foam bubbles may expand and break.
Next, the valve A23 is opened, and the pressure vessel 20 is filled with O. 2 And heated O 2 And the foam 3 was cooled. When the foam 3 reaches about 40 ° C., the lid of the pressure-resistant container 20 is opened, the foam 3 is taken out, and this is put together with the iron-based oxygen absorber 4b into the gas barrier packaging bag 2 It was put in and immediately vacuum-packed with a vacuum packaging machine to obtain an oxygen-substituted packaging bag 1a as shown in FIG. 7 (b).
The oxygen-substituted packaging bag 1a is stored at room temperature (about 20 ° C.) for 2 days, and the oxygen-substituted hole 4b of the foam 3 is changed to the vacuum hole 4 during storage as shown in FIG. 7 (c). 1 was obtained.
During storage of the oxygen-substituted packaging bag 1a at room temperature, O in the oxygen-substituted hole 4b of the foam 3 2 Passes through the gas barrier packaging bag 2 and further reacts and is removed by reacting with the iron-based oxygen absorbent in the oxygen absorber 16, so that the time in the oxygen substitution hole 4b increases with time. O 2 The oxygen substitution hole 4b in FIG. 7B is changed to a vacuum hole 4 as shown in FIG. 7C.
[0030]
(Example 2)
In the same manner as in Example 1, a PE foam 3 and a gas barrier packaging bag 2 were produced.
As carbon dioxide absorbers, 20 g of calcium oxide (CaO) and calcium hydroxide (Ca (OH) 2 ) 30 g was put in a three-sided sealing bag made of a perforated laminated material and heat-sealed in the same manner as in Example 1 to prepare a carbon dioxide absorber 17 as shown in FIG.
[0031]
Next, as in Example 1, as shown in FIG. 8A, 10 pieces of the PE foam 3 were stacked and placed in the pressure vessel 20 to eliminate air in the pressure vessel 20.
When the degree of vacuum in the pressure vessel 20 becomes 1 mmHg, the valve A23 is opened while operating the vacuum pump, and the carbon dioxide gas cylinder (CO 2 Carbon dioxide (CO) from the gas supply pipe 21 connected to the concentration 99.99%) into the pressure vessel 20 2 ) And the air in the pressure vessel 20 was completely eliminated.
Next, the valve B24 is closed, and the pressure vessel 20 is filled with CO. 2 The internal pressure of the pressure vessel 20 was set to 1.5 atm.
Furthermore, steam is sent to a heating device provided outside the pressure vessel 20 to heat the pressure vessel, and the CO 2 in the pressure vessel 20 is heated. 2 The temperature was raised to 70 degrees.
This state is maintained for 4 hours, and the foam bubbles are changed to CO. 2 Replaced with. Thereafter, the cooling water is allowed to flow outside the pressure vessel 20 and the CO inside 2 Was cooled to 40 ° C.
[0032]
Next, as shown in FIG. 8A, the valve B24 is opened and the CO 2 in the pressure vessel 20 is opened. 2 Was gradually discharged to return the pressure in the pressure vessel 20 to normal pressure.
Next, the valve A23 is opened and the pressure vessel 20 is filled with CO. 2 The heated CO 2 And the foam 3 was cooled. When the foam 3 reaches about 40 ° C., the lid of the pressure vessel 20 is opened, the foam 3 is taken out, and the foam 3 is put together with the carbon dioxide absorber 17 in the gas barrier packaging bag 2. And immediately vacuum-packed with a vacuum packaging machine to obtain a carbon dioxide-substituted packaging bag 1b as shown in FIG. 8 (b).
Similarly to Example 1, the carbon dioxide gas replacement packaging bag 1b was stored at room temperature (about 20 ° C.) for 2 days, and the carbon dioxide gas replacement hole 4c was changed to the vacuum hole 4 as shown in FIG. A heat insulating material 1 was obtained.
[0033]
(Comparative Example 1)
In the same manner as in Example 1, a PE foam 3 and a gas barrier packaging bag 2 were produced.
This PE foam 3 was put in the gas barrier packaging bag 2 and vacuum-packed in the same manner as in Example 1 to obtain a heat insulating material A10a as shown in FIG.
The air bubbles in the heat insulating material A10a remain in a state where air enters.
[0034]
(Comparative Example 2)
Using the PE foam 3, the oxygen absorber 16 and the gas barrier packaging bag 2 used in Example 1, the PE foam 3 and the oxygen absorber 16 were combined with the gas barrier packaging bag 2 in the usual manner. By vacuum packaging by the method, a heat insulating material B10b as shown in FIG. 9B was obtained.
The air bubbles in the heat insulating material B10b are in a state where oxygen in the air is not absorbed by the oxygen absorber 16 and the remaining nitrogen is contained.
[0035]
(Comparative Example 3)
Using the PE foam 3, the carbon dioxide absorber 17 and the gas barrier packaging bag 2 used in Example 2, the PE foam 3 and the carbon dioxide absorber 17 were combined with the gas barrier packaging bag 2. Vacuum packaging was performed by a normal method to obtain a heat insulating material C10c as shown in FIG.
The air bubbles in the heat insulating material C10c remain in an air-filled state.
[0036]
(Thermal conductivity test)
About the heat insulating material produced in Examples 1, 2 and Comparative Examples 1, 2, 3, thermal conductivity was measured.
The measuring method measured the thermal conductivity in the temperature difference of 13 degreeC and 35 degreeC using the heat conductivity meter by Showa Denko Co., Ltd. based on JISA1412.
The measurement results are as shown in Table 1, and both of the heat insulating materials produced in Examples 1 and 2 had a smaller thermal conductivity than the comparative examples and were excellent in the heat insulating effect.
[0037]
[Table 1]
Figure 0003935556
[0038]
【The invention's effect】
In the heat insulating material of the present invention, the foam or porous body is replaced with a gas such as oxygen or carbon dioxide gas, and then the foam or porous body is replaced with an iron-based material. Seal in a gas barrier packaging bag together with an oxygen absorbent or carbon dioxide absorbent, and oxygen or carbon dioxide in bubbles or air holes of the foam or porous body. It is absorbed in the gas absorbent, and the inside of the bubbles or air holes is evacuated to enhance the heat insulating effect.
Therefore, in the production method of the present invention, for example, a foam obtained by substituting oxygen or carbon dioxide gas is vacuum packaged by a vacuum packaging machine using a gas barrier packaging bag together with an iron-based oxygen absorber or carbon dioxide gas absorber. Thus, with the passage of time, oxygen or carbon dioxide gas is absorbed by the iron-based oxygen absorber or carbon dioxide absorber to form a vacuum, and the foam has an excellent heat insulating effect.
Therefore, it is no longer necessary to deaerate with a vacuum pump over a long period of time in order to evacuate the foam bubbles as in the prior art. In particular, even in the case of a foam having closed cells, it can be easily made into a foam having vacuum holes.
Therefore, even when using a foam with closed cells to produce a heat insulating material with an excellent heat insulating effect, the heat insulating material can be produced at the speed of conventional vacuum packaging, improving work efficiency and reducing costs. Can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a heat insulating material of the present invention.
FIG. 2 is a perspective view of a foam used for the heat insulating material of the present invention.
FIG. 3 is a schematic cross-sectional view of a gas barrier laminate used for the heat insulating material of the present invention.
FIG. 4 is a schematic plan view of a gas barrier packaging bag made using a gas barrier laminate.
FIG. 5 is a plan view of an oxygen absorber used in the heat insulating material of the present invention.
FIG. 6 is a plan view of a carbon dioxide absorber used for the heat insulating material of the present invention.
FIG. 7 is an explanatory diagram when manufacturing the heat insulating material of the present invention.
FIG. 8 is an explanatory view when the heat insulating material of the present invention is manufactured according to Example 2.
FIG. 9 is a schematic cross-sectional view of a heat insulating material manufactured according to a comparative example.
[Explanation of symbols]
1 Insulation
1a Oxygen replacement packaging bag
1b Carbon dioxide replacement bag
2 Gas barrier packaging bag
2a Gas barrier laminate
3 Foam
4 Vacuum holes
4a bubbles
4b Oxygen substitution hole
4c Carbon dioxide gas substitution hole
5 Gas absorbent
5a Iron-based oxygen absorber
5b Carbon dioxide absorbent
10a Thermal insulation material A (produced in Comparative Example 1)
10b Heat insulation material B (produced in Comparative Example 2)
10c Insulation C (produced in Comparative Example 3)
11 Heat seal layer
12 Gas barrier layer
13 Heat-resistant resin layer
14 Sealing part
15 Perforated laminate
16 Oxygen absorber
17 Carbon dioxide absorber
20 Pressure vessel
21 Gas supply piping
22 Gas suction piping
23 Valve A
24 Valve B
25 oxygen
26 Carbon dioxide

Claims (5)

発泡体又は多孔質体を包装袋に密封した断熱材であって、発泡体又は多孔質体の気泡又は空気孔の中の空気を酸素又は炭酸ガスで置換した発泡体又は多孔質体と、発泡体又は多孔質体の気泡又は空気孔の中に存在する物質を吸着する物質、又は該物質と反応する物質を、ガスバリヤー性の容器或いは包装袋の中に密封し、気泡又は空気孔の中に存在する物質を吸着或いは反応させることにより気泡又は空気孔から取り除き、該気泡又は空気孔の中を真空状態にして断熱効果を高めたことを特徴とする断熱材。A heat insulating material in which a foam or porous body is sealed in a packaging bag, the foam or porous body in which bubbles or air in the air holes of the foam or porous body are replaced with oxygen or carbon dioxide, and foaming A substance that adsorbs or reacts with a substance present in a bubble or air hole of a body or a porous body is sealed in a gas barrier container or packaging bag, and the substance inside the bubble or air hole is sealed. removed from the bubble or air hole by adsorbing or reacting material present in, insulation material, characterized in that an increased heat insulating effect by the inside of the bubble or the air holes in the vacuum state. 前記の酸素と反応する物質が鉄系酸素吸収剤であり、また前記の炭酸ガスと反応する物質がアルカリ金属又はアルカリ土類金属の酸化物又は水酸化物からなる炭酸ガス吸収剤であることを特徴とする請求項1に記載の断熱材。The substance that reacts with the oxygen is an iron-based oxygen-absorbing agent and substances that react with the carbon dioxide gas is carbon dioxide gas absorbent consisting of oxides or hydroxides of alkali metals or alkaline earth metals The heat insulating material according to claim 1, wherein the heat insulating material is a heat insulating material. 発泡体又は多孔質体の気泡又は空気孔の中の空気を酸素又は炭酸ガスで置換した発泡体又は多孔質体と、発泡体又は多孔質体の気泡又は空気孔の中に存在する物質を吸着する物質、又は該物質と反応する物質を、ガスバリヤー性の容器或いは包装袋の中に密封し、密封状態で室温に一定時間保存し、気泡又は空気孔の中に存在する物質を、該吸着物質又は反応物質に吸着或いは反応させることにより、気泡又は空気孔から取り除き、該気泡又は空気孔の中を真空状態にして断熱効果を高めることを特徴とする断熱材の製造方法。 Adsorbs the foam or porous body in which the air in the bubbles or air holes of the foam or porous body is replaced with oxygen or carbon dioxide, and the substance present in the bubbles or air holes of the foam or porous body The substance that reacts with or reacts with the substance is sealed in a gas barrier container or packaging bag, and is stored in a sealed state at room temperature for a certain period of time. by adsorption or reaction to a substance or reactant removed from the bubble or the air hole, a manufacturing method of the heat insulating material, characterized in that to improve the heat insulating effect by the inside of the bubble or the air holes in the vacuum state. 発泡体又は多孔質体を酸素気流中或いは酸素を充満した容器内に配置し、該発泡体又は多孔質体の気泡又は空気孔の中を酸素で置換し、而る後、発泡体又は多孔質体の気泡又は空気孔の中の空気を酸素で置換した発泡体又は多孔質体と鉄系酸素吸収剤とを、ガスバリヤー性の容器或いは包装袋の中に密封し、該気泡又は空気孔の中の酸素を該鉄系酸素吸収剤と反応させて除去し、該気泡又は空気孔の中を真空状態にして断熱効果を高めることを特徴とする断熱材の製造方法。The foam or porous body is placed in an oxygen stream or in a container filled with oxygen, and the bubbles or air holes of the foam or porous body are replaced with oxygen. body and foam or porous body of air in the bubbles or the air hole was replaced by oxygen, the iron based oxygen absorber, sealed in a gas barrier property of the container or packaging bag, bubble or the air the oxygen in the pores is removed by reaction with iron-based oxygen absorbing agent, method for producing a heat insulating material, characterized in that to improve the heat insulating effect by the inside of the bubble or the air holes in the vacuum state. 発泡体又は多孔質体を炭酸ガス気流中或いは炭酸ガスを充満した容器内に配置し、該発泡体又は多孔質体の気泡又は空気孔の中を炭酸ガスで置換し、而る後、発泡体又は多孔質体の気泡又は空気孔の中の空気を炭酸ガスで置換した発泡体又は多孔質体とアルカリ金属又はアルカリ土類金属の酸化物又は水酸化物からなる炭酸ガス吸収剤とを、ガスバリヤー性の容器或いは包装袋の中に密封し、該気泡又は空気孔の中の炭酸ガス酸素を該炭酸ガス吸収剤と反応させて除去し、該気泡又は空気孔の中を真空状態にして断熱効果を高めることを特徴とする断熱材の製造方法。The foam or porous body was placed in a container filled with carbon dioxide gas stream or carbon dioxide gas, through the air bubbles or air holes of the foam or porous material was replaced with carbon dioxide gas, after而Ru, foam Alternatively, a foam or porous body obtained by replacing air in a bubble or air hole of a porous body with carbon dioxide gas and a carbon dioxide gas absorbent composed of an oxide or hydroxide of an alkali metal or alkaline earth metal, and a gas sealed in a barrier of the container or packaging bag, a carbon dioxide gas oxygen in the bubble or the air hole is removed by reaction with carbon dioxide gas absorbent, the inside of the bubble or the air holes in the vacuum A method of manufacturing a heat insulating material characterized by enhancing the heat insulating effect.
JP14458197A 1997-05-20 1997-05-20 Insulating material and manufacturing method thereof Expired - Fee Related JP3935556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14458197A JP3935556B2 (en) 1997-05-20 1997-05-20 Insulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14458197A JP3935556B2 (en) 1997-05-20 1997-05-20 Insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10318666A JPH10318666A (en) 1998-12-04
JP3935556B2 true JP3935556B2 (en) 2007-06-27

Family

ID=15365471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14458197A Expired - Fee Related JP3935556B2 (en) 1997-05-20 1997-05-20 Insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3935556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060239A (en) * 2017-11-24 2019-06-03 에임트 주식회사 Method of manufacturing vacuum insulation using CO2 purging

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598283B2 (en) 2001-12-21 2003-07-29 Cabot Corporation Method of preparing aerogel-containing insulation article
JP4215745B2 (en) * 2005-05-20 2009-01-28 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator using vacuum heat insulating material, and manufacturing method of vacuum heat insulating material
EP1916465B1 (en) * 2006-10-26 2013-10-23 Vestel Beyaz Esya Sanayi Ve Ticaret A.S. Vacuumed heat barrier
KR101260557B1 (en) 2010-01-05 2013-05-06 엘지전자 주식회사 Vacuum insulation pannel and method for fabricating the same
JP7192497B2 (en) * 2016-07-11 2022-12-20 三菱瓦斯化学株式会社 Insulating material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060239A (en) * 2017-11-24 2019-06-03 에임트 주식회사 Method of manufacturing vacuum insulation using CO2 purging
KR102068096B1 (en) * 2017-11-24 2020-01-20 에임트 주식회사 Method of manufacturing vacuum insulation using CO2 purging

Also Published As

Publication number Publication date
JPH10318666A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
JP4779684B2 (en) Vacuum insulation box
JP5198167B2 (en) Vacuum insulation box
JPS61119895A (en) Vacuum heat-insulating unit and manufacture thereof
KR20070089252A (en) Thermal insulator
JP3507776B2 (en) refrigerator
JP2007238141A (en) Vacuum container
JP3935556B2 (en) Insulating material and manufacturing method thereof
JP2003262296A (en) Vacuum heat insulating material and refrigerator using the same
CN107110588A (en) Adsorbent and vacuum heat insulation materials and refrigeration machine including it
JP2009287791A (en) Vacuum heat insulating housing
JPH0763469A (en) Vacuum heat insulating member
EP0733185A1 (en) Vacuum stabilizer and method for the manufacture thereof
JPH06281089A (en) Vacuum heat-insulating material
JPS61206900A (en) Method of housing adsorbent into insulating space of vacuum insulated double wall vessel for storing low boiling-point liquefied gas and adsorbent vessel
JPH10169889A (en) Heat insulation material pack
JP2009018826A (en) Vacuum heat insulating box body
JP2007093164A (en) Refrigerator
JPS59137777A (en) Heat-insulator pack
JP2020056454A (en) Gas adsorption device and vacuum heat insulating material
CN206766742U (en) A kind of heat insulation tank heat-insulation plate for external structure for preparing liquid nitrogen
JPH10235766A (en) Adiabatic material, its production, and adiabatic box
JPH08291965A (en) Vacuum thermal insulating material
WO2020251011A1 (en) Vacuum container, precursor of same, and method for producing vacuum container
JPH0383637A (en) Heat insulating structure
JPH08152258A (en) Vacuum heat insulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees