JP3935553B2 - Aging method of reformed coal and aged reformed coal - Google Patents

Aging method of reformed coal and aged reformed coal Download PDF

Info

Publication number
JP3935553B2
JP3935553B2 JP9658297A JP9658297A JP3935553B2 JP 3935553 B2 JP3935553 B2 JP 3935553B2 JP 9658297 A JP9658297 A JP 9658297A JP 9658297 A JP9658297 A JP 9658297A JP 3935553 B2 JP3935553 B2 JP 3935553B2
Authority
JP
Japan
Prior art keywords
coal
temperature
less
medium
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9658297A
Other languages
Japanese (ja)
Other versions
JPH10279969A (en
Inventor
正樹 飯島
清通 太尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9658297A priority Critical patent/JP3935553B2/en
Priority to IDP00200100605D priority patent/ID29498A/en
Priority to IDP980400A priority patent/ID20131A/en
Priority to US09/045,792 priority patent/US6068671A/en
Priority to CNB981080839A priority patent/CN1139747C/en
Priority to AU60575/98A priority patent/AU729391B2/en
Publication of JPH10279969A publication Critical patent/JPH10279969A/en
Priority to US10/053,648 priority patent/US20020104258A1/en
Priority to US10/932,014 priority patent/US7524341B2/en
Application granted granted Critical
Publication of JP3935553B2 publication Critical patent/JP3935553B2/en
Priority to US12/382,382 priority patent/US7766985B2/en
Priority to US12/382,381 priority patent/US7744662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【0001】
【発明の属する技術分野】
本発明は、中低質炭を高温に加熱し、冷却したものを、更に、熟成処理して得られた低自然発火性、低吸湿性、高発熱量の石炭及びその製造方法に関する。
【0002】
【従来の技術】
中低質炭は、石炭化度の低い石炭であり、代表的なものは褐炭や高揮発分の亜瀝青炭であり、通常、亜瀝青炭以下の低品位のものを中低質炭という。中低質炭は、その埋蔵量の豊富さや低硫黄分のものが多いことから、今後の利用が増えるものと考えられる。しかし、中低質炭は水分含有量が多く、したがって重量当たりの発熱量が低く、さらに乾燥した中低質炭は吸湿性が高く、また自然発火しやすいという欠点があり、利用拡大の障害となっていた。
【0003】
このため、一つの方法として、これらの中低質炭を80〜150℃で乾燥する方法(通常乾燥ともいう)が行われてきた。しかし、この方法で石炭を乾燥させた場合、乾燥炭は自然発火性が強くなる上、依然として吸湿性が高い。したがって、乾燥後の輸送および貯蔵時に大気中の水分を吸収して、元の表面付着水分のみを除去した状態(乾燥前と同じ内部水分の状態)に戻ってしまい易く、自然発火性が高いために、輸送、貯蔵には不向きで、山元発電等、採掘場所での使用に限られていた。
【0004】
他の方法として、水分を蒸発させ、親水性酸素含有基を分解し、タールの揮散を防ぐ方法として、180〜300℃未満で乾燥する方法が知られている。この方法では、前記高温急熱後、急冷する方法による改質炭に比べて、発熱量の向上は不十分であり、長期の自然発火性の改善は不十分である。
【0005】
更に他の方法として、特公昭57−11596号公報では、中低質炭を300〜500℃に急速に加熱した後、急速に冷却して処理することにより改質炭を得る方法が開示されている。この方法では、自然発火性の改善や脱水による発熱量の向上は大きいが、自然発火特性の安定性が未だ十分ではないので、得られた石炭の発火防止などについて、総合的な考慮の下に慎重な対策を講じる必要があった。
【0006】
このように、従来のいずれの方法によっても、中低質炭から低自然発火性、低吸湿性、高発熱量の性質を備えた改質炭を得ることは困難であった。
【0007】
【発明が解決しようとする課題】
本発明は以上の実情に鑑みてなされたもので、発明の目的は中低質炭から低自然発火性、低吸湿性、高発熱量の性質を備えた改質炭を得ることである。
【0008】
【課題を解決するための手段】
本発明者らは、高温急熱後、急冷する方法により得られた改質炭を特定の条件下で熟成させることにより、自然発火性が低く低吸湿性が維持された改質炭を得ることができることを見いだし、本発明を完成するに至った。
すなわち本発明は、中低質炭を180〜300℃未満に加熱し150℃以下に冷却して得られた改質炭、又は、中低質炭を昇温速度100℃/分以上で300〜500℃に加熱し降温速度50℃/分以上で250℃以下に冷却して得られた改質炭を、70℃以下に冷却した後、大気の遮断下に、1ヶ月以上保存することを特徴とする改質炭の熟成方法及びそのようにして得られた熟成改質炭を提供するものである。
【0009】
また、本発明は、上記改質炭を、酸素濃度12 vol %以下、温度100℃以下の雰囲気下で1ヶ月以上保存することを特徴とする改質炭の熟成方法及びそのようにして得られた熟成改質炭を提供するものである。
【0010】
【発明の実施の形態】
本発明で、中低質炭とは、カーボン含有量がドライアッシュフリー(以下d.a.f.と記す)基準で80重量パーセント以下で、かつ平衡水分が8重量パーセント以上のものをいい、具体的には、褐炭や高揮発分の亜瀝青炭が挙げられる。
【0011】
中低質炭の水分には、表面付着水と内部水分(平衡水分という)があり、表面付着水は100℃以下の乾燥で除去することができる。
内部水分は80〜150℃で乾燥することにより半分程度まで低下させることができる。しかしながら、150℃以下の加熱乾燥では、中低質炭の改質は起こらず、乾燥炭の吸湿性は高いままであり、大気中に放置すると大気中の水分を吸収して元の平衡水分にもどってしまう。
【0012】
一方、180〜300℃程度で加熱処理すると、フェノール基やカルボキシル基などの親水性の含酸素基が熱分解を起こす。加熱によって石炭中の内部水分が除去されるとともに、フェノール基やカルボキシル基などの親水性の含酸素基が分解されることにより、H20、CO2が発生し、疎水性となり、石炭の吸湿性が低下する。また石炭中の酸素含有量の低減により、不活性化し、自然発火がある程度抑制される。
【0013】
更に、300℃以上に加熱すると、平衡水分が低下し始め、350℃以上では著しく減少し、通常乾燥による平衡水分の1/2以下になる。同時に、石炭中のタール分も液状化して石炭の細孔を通って表面ににじみ出してくる。このことは、石炭表面の走査型電子顕微鏡による観察及び比表面積の測定により石炭の比表面積が著しく減少していることにより明らかである。例えば、原料の石炭で比表面積が1.7m2/gであったものが430℃で加熱処理したものでは0.1m2/g程度に低下する。
即ち、低中質炭を加熱、急冷することにより、細孔内及び石炭表面に滲出したタールが石炭表面で固化し表面を被覆することにより、石炭の吸湿性および反応性が低下する。
【0014】
更に、450℃を超え、500℃付近に加熱すると、平衡水分は更に低下するが、走査型電子顕微鏡による観察及び比表面積の測定から分かるように、石炭の表面に亀裂が入り、比表面積も2.4m2/g程度に急増する。
500℃を超えて加熱すると、石炭はもろくなり、壊れ易く形状を保ちにくくなってきたり、微粉の発生が増加するなどの問題が生じる。
【0015】
また、加熱時間が長いと、タールやCO等の可燃分が散逸し易いので、100℃/分以上の速度で加熱するのが好ましい。これにより、可燃性物質の損失を防ぎ、加熱処理用高温ガスに混入する可燃性物質の量を抑えることができる。
【0016】
また、加熱に使用するガスは、酸素濃度が高いと、石炭表面の可燃分の過剰な酸化(損失)あるいは易燃焼成分の着火や、炭塵爆発等の危険があることから、酸素濃度12vol%以下の不活性気体や、高温ガスにスチームを10vol%以上含有させたもの、あるいはスチーム単独が用いられるが、酸素濃度4vol%以下のガスであることが最も好ましい。
【0017】
加熱時間が長いと、可燃分が散逸し易いので、加熱後の冷却も急速である必要があり、50℃/分以上の速さで250℃以下に急冷することが好ましい。
冷却用のガスとしては、上記の加熱に使用する前のガス、または加熱に使用後のガスを熱交換により冷却したもの等が使用される。
上記のように高温に加熱し、冷却処理して得られ、原料炭より異なる物性(例えば自然発火性、吸湿性、発熱量)を示すように変質させた石炭を改質炭という。
【0018】
しかしながら、このようにして得られた改質炭もなお、ハンドリング上自然発火防止の点では安定性が十分とはいえず、本発明では、改質炭をさらに、熟成処理することを特徴としている。
熟成は、改質炭の貯炭時の平均貯炭温度が所定温度以下で、空気の実質的な遮断下で、又は、低酸素濃度で、あるいは不活性ガスの雰囲気下に所定期間改質炭を貯蔵することにより、行うことができる。
【0019】
一般に、石炭は温度の上昇とともに酸素と反応しやすくなるので、40〜50℃を第1警戒温度、50〜60℃を第2警戒温度とし、70℃を超えると急激に酸素との反応速度が大きくなり、従って、空気に接触すると徐々に酸化が進み、昇温して発火する危険があるので、通常、約70℃を貯炭の第1危険温度とし、約80℃を貯炭の第2危険温度としている。
また、酸素濃度が12%以下では、あるいは、空気の流通が遮断されていれば空気中の酸素は徐々に消費されるので貯蔵石炭の内部は酸素濃度21%以下になり、石炭の貯蔵時に自然発火する危険はほとんどない。
従って、貯炭時に堆積した石炭層が70℃に冷却されている状態では空気に触れても(また空気の流通が遮断されていれば空気中の酸素は徐々に消費されるので)貯蔵時に自然発火する危険はほとんどない。
【0020】
上記で、大気の実質的な遮断下に、又は、低酸素濃度で、あるいは不活性ガスの雰囲気下にとは、酸素濃度12 vol %以下、温度100℃以下、好ましくは、酸素濃度12 vol %以下、湿度60%以下、温度100℃以下の条件である。
【0021】
改質炭の熟成期間は、上記貯炭条件によるが、1ヶ月以上、好ましくは2ヶ月以上、特に好ましくは3ヶ月以上であり、熟成させることにより、改質炭の貯炭時の自然発火性が改善される。
【0022】
熟成の具体的方法としては、改質炭を竪穴、採掘跡、トンネル、容器、サイロ、運搬船、車輌等の貯蔵設備に入れ、大気の流通、雨水の侵入を遮断ないし抑制して、貯炭量に応じて、温度、湿度、酸素濃度を監視しながら所定期間保存する。更に好ましくは、貯炭を適当な大きさの升目に区切り、升目ごとの上部、中部、下部の条件を測定して、これらの値を制御することが好ましい。
【0023】
貯蔵設備には、不活性ガス装入(又は循環)パイプ、ブロワー、温度調節用熱交換器、散水設備等が用いられる。
不活性ガスとしては、窒素、二酸化炭素、燃焼排ガス、加熱改質に使用した後のガスを水洗冷却して脱塵、脱タールを行った後のガス等酸素濃度が低いものが使用できる。
さらに、温度が十分低い場合では大気を使用することができるし、また、湿度がある程度高く、温度がある温度以下である場合も大気を使用することができる。
【0024】
大気の流通、雨水の侵入を遮断ないし抑制したり、不活性ガスで置換又は流通させるには、貯蔵設備の種類により、種々の方法を用いることができる。例えば、改質炭を採掘跡の窪地に積み入れ上から耐熱、耐水性シート類で覆う方法、改質炭を竪穴に積み入れ上から原料炭を被せ、改質炭底部から加熱改質に使用した後のガスを水洗したガスを通過させる方法、斜度を持つトンネルに上部から改質炭を入れシャッターを閉じ下部取り出し口を閉じ不活性ガスを送る方法、ドラム缶、サイロないしガスホルダーのような容器様のものに入れそのまま密封する方法、運搬船に積み込み運搬時に運搬船の燃焼排ガスを冷却して流通する方法等が挙げられる。
上記で、耐熱、耐水性シート類としては、帆布、各種耐熱性合成樹脂シート、金属製カバー等が挙げられる。
【0025】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(1)原料炭及び改質炭の性質は以下の方法で測定された。
平衡水分:熱処理後の石炭を飽和食塩水デシケーター(75%湿度)に入れたものを、JIS M8812に準じて測定した。
揮発分:JIS M8812に準じて測定した。
発熱量:JIS M8814に準じて測定した。
比表面積:BET法により窒素ガスを使用して測定した。
石炭表面の観察:走査型電子顕微鏡を使用して100〜1000倍で撮影した。
(2)保存条件及び自然発火テスト
熟成時の改質炭の温度、湿度、及び酸素濃度は、以下のように測定された。
(a)温度:縦、横、深さ方向に50cm間隔で配置した熱電対(CA線)による。
(b)湿度および酸素濃度:貯炭設備石炭接触壁面の内側30cmの周上に50cm間隔で、さらに中央部に深さ方向50cm間隔で配置したサンプリング管により吸引したガスを分析した。
自然発火性テストは試験装置1または2を用いて行った。
(c)試験装置1による方法:試料温度と周囲の雰囲気温度の差がなくなるようにした断熱型自然発火性測定装置を使用した。200メッシュ以下に粉砕した乾燥試料をサンプル室に充填し窒素ガスにより所定の基底温度まで加熱した後、試験用酸素濃度のガスに切り換えて試料温度の変化を追跡する。昇温データより、アレニウスの関係を用いて昇温速度を求め、各種試料炭の昇温速度を相対比較して自然発火性を評価した。
(d)試験装置2による方法:直径約30cmの保温された試験装置内に試験温度に予熱された乾燥試料を充填して、試験用酸素濃度、温度、通気量を制御されたガスを導入し装置内に配置された熱電対群で試料の温度変化を追跡する。各種試料炭の温度変化(最大昇温速度)を相対比較して自然発火性を評価した。
【0026】
(実施例1)
原料炭に、カナダ炭を用いた(ASTM基準では高揮発分瀝青炭に属する)。その性状は下記に示す通りである。原料の中低質炭の性質(表面水分を除去した後の値)平衡(内部)水分:11.0wt%灰分:10.2wt%揮発分:38.4wt%固定炭素:40.4wt%発熱量(平衡水分基準)5700kcal/kg原料炭を粒径1インチ以下に粉砕し、110℃で通常乾燥を行って表面水分を除去した後、2t/dの割合で熱処理用流動層に導入し、100℃/minの昇温速度で400℃に急速加熱した後、直ちに冷却用流動層で50℃/minの降温速度で70℃に急冷し改質炭としてとり出した。急速加熱用熱ガス発生炉は灯油で運転され加熱用高温ガスは炉排ガスで酸素濃度4vol%以下にされた。
【0027】
上記のようにして得られた急冷後の改質炭を、試験的に、輸送船槽を模擬した鋼製タンク内にバラ積みし、密閉して、船舶動力を得た後の燃焼排ガスを模擬した酸素濃度約5%のイナートガスをタンク内に供給した。輸送相当期間45日中の改質炭の置かれた雰囲気は、平均温度55℃、湿度60%、酸素濃度4%であった。熟成された改質炭は、平衡水分5.4%、揮発分35%、発熱量6100kcal/kgであり、低吸湿性で、高発熱量であり輸送および使用に適するものであった。取り出し後、火力発電所の貯炭場に夏期3ヶ月間堆積放置したが、自然発火は起こらなかった。
【0028】
(実施例
原料の炭は、米国西部炭であり、その性状は下記に示す通りである。原料の中低質炭の性質(表面水分を除去した後の値)平衡(内部)水分:23.7wt%灰分:6.8wt%揮発分:35.3wt%固定炭素:34.2wt%発熱量(平衡水分基準):4820kcal/kg石炭を粒径1インチ以下に粉砕し、通常乾燥を行って表面水分を除去した後、2.5t/dの割合で熱処理用流動層に導入し、280℃に急速加熱した後、冷却用流動層で150℃に急冷し改質炭としてとり出した。急速加熱用熱ガス発生炉は灯油で運転され、加熱用高温ガスは炉排ガスであり酸素濃度4vol%以下であった。冷却用流動層から排出された改質炭を、内径3m、長さ5m、傾斜度60度のコンクリート製トンネル構造体に落とし込み、急速加熱後のガスを水洗したガスの一部をトンネル下部から加え、70日間、平均で温度50℃、湿度60%、酸素濃度12%で貯蔵した。熟成後の改質炭の水分は水分測定装置内で約5日後には平衡水分12%に達するが、原料炭に比べ平衡水分値ははるかに小さく、石炭の吸湿性が低下した。熟成後の改質炭の発熱量は、5620kcal/kgであり、輸送および使用に適するものであった。得られた熟成炭の自然発火性テストを行ったが、自然発火性が著しく改善されていた。試験装置2により測定した改質炭の熟成期間中の最大上昇温度の変化を図1に示す。なお、測定は導入ガスに空気を使用し、基底温度70℃で行った。図から判るように、改質直後に比較して熟成60〜70日後の熟成炭の昇温性は1/8〜1/9に低下し、原料炭(未乾燥)の約1/4、乾燥炭の1/10に低下していることが判った。
【0029】
【発明の効果】
高温急速加熱・急冷処理した改質炭を、本発明の熟成処理を行うことにより、低吸湿性、高発熱量を維持したまま、自然発火性を低下させることができた。
【図面の簡単な説明】
【図1】改質炭の熟成日数と最大上昇温度の関係を示す図である。
●は未乾燥原料炭の最大上昇温度を示す。
○は乾燥原料炭の最大上昇温度を示す。
+は改質炭の熟成日数と最大上昇温度を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to low pyrophoric, low hygroscopic, high calorific value coal obtained by further heating and cooling medium-low quality coal to a high temperature and a method for producing the same.
[0002]
[Prior art]
Medium and low quality coal is coal with a low degree of coalification, and typical ones are lignite and highly volatile sub-bituminous coal, and usually low-grade coal below sub-bituminous coal is called medium and low quality coal. Medium and low quality coal is thought to increase in the future because of its rich reserves and low sulfur content. However, medium- and low-quality coal has a high moisture content, so the calorific value per weight is low, and dry medium- and low-quality coal has the disadvantage of being highly hygroscopic and easily ignited, which is an obstacle to expanding its use. It was.
[0003]
For this reason, as one method, a method of drying these medium and low quality coals at 80 to 150 ° C. (usually referred to as drying) has been performed. However, when coal is dried by this method, dry coal has high pyrophoric properties and still has high hygroscopicity. Therefore, it absorbs moisture in the atmosphere during transportation and storage after drying, and it tends to return to a state where only the original surface moisture is removed (the same internal moisture state as before drying), and is highly pyrophoric. In addition, it was unsuitable for transportation and storage, and was limited to use at mining sites such as Yamamoto Electric Power.
[0004]
As another method, as a method for evaporating moisture, decomposing a hydrophilic oxygen-containing group, and preventing volatilization of tar, a method of drying at 180 to 300 ° C. is known. In this method, the calorific value is not sufficiently improved and the long-term pyrogenicity is not sufficiently improved as compared with the reformed coal obtained by rapid cooling after the high temperature rapid heating.
[0005]
As another method, Japanese Examined Patent Publication No. 57-11596 discloses a method of obtaining a modified coal by rapidly heating a medium-low quality coal to 300 to 500 ° C. and then rapidly cooling and treating it. . In this method, the pyrogenicity is improved and the calorific value is greatly improved by dehydration. However, the stability of the pyrophoric properties is still not sufficient. It was necessary to take careful measures.
[0006]
As described above, it has been difficult to obtain modified coal having low pyrophoric properties, low hygroscopicity, and high calorific value from medium to low quality coal by any of the conventional methods.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a modified coal having properties of low pyrophoric property, low hygroscopicity, and high calorific value from medium to low quality coal.
[0008]
[Means for Solving the Problems]
The present inventors obtain a modified coal having a low pyrophoric property and a low hygroscopicity by aging the modified coal obtained by the method of rapid cooling after high temperature rapid heating under specific conditions. The present invention has been completed.
That is, the present invention is a modified coal obtained by heating medium-low quality coal to less than 180-300 ° C. and cooling to 150 ° C. or less, or medium-low quality coal, 300-500 ° C. at a temperature rising rate of 100 ° C./min or more. The reformed coal obtained by cooling to 250 ° C. or less at a temperature lowering rate of 50 ° C./min or more after cooling to 70 ° C. or less and then stored for 1 month or more in a shut-off atmosphere. The present invention provides a method for aging modified coal and the aged modified coal thus obtained.
[0009]
The present invention also provides a method for aging a modified coal characterized by storing the modified coal in an atmosphere having an oxygen concentration of 12 vol % or less and a temperature of 100 ° C or less for one month or more, and thus obtained. Aged modified coal is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the medium and low quality coal is one having a carbon content of 80% by weight or less on a dry ash-free (hereinafter referred to as daf) basis and an equilibrium moisture of 8% by weight or more. Specifically, lignite And highly volatile sub-bituminous coal.
[0011]
The water of medium and low quality coal includes surface adhering water and internal water (referred to as equilibrium water), and the surface adhering water can be removed by drying at 100 ° C. or lower.
The internal moisture can be reduced to about half by drying at 80 to 150 ° C. However, heat drying at 150 ° C or lower does not cause the modification of medium and low quality coal, and the dry coal remains highly hygroscopic. If left in the atmosphere, it absorbs moisture in the atmosphere and returns to the original equilibrium moisture. End up.
[0012]
On the other hand, when heat treatment is performed at about 180 to 300 ° C., hydrophilic oxygen-containing groups such as phenol groups and carboxyl groups cause thermal decomposition. Heating removes internal moisture from the coal and decomposes hydrophilic oxygen-containing groups such as phenol groups and carboxyl groups, generating H 2 O and CO 2 , making them hydrophobic and absorbing moisture from the coal. Sex is reduced. In addition, by reducing the oxygen content in the coal, it is inactivated and spontaneous combustion is suppressed to some extent.
[0013]
Further, when heated to 300 ° C. or higher, the equilibrium moisture starts to decrease, and when heated to 350 ° C. or higher, the equilibrium moisture decreases significantly, and becomes half or less of the equilibrium moisture due to normal drying. At the same time, the tar content in the coal liquefies and oozes to the surface through the pores of the coal. This is apparent from the fact that the specific surface area of coal is significantly reduced by observation of the surface of the coal with a scanning electron microscope and measurement of the specific surface area. For example, by way specific surface area in the raw material coal was 1.7 m 2 / g was heat treated at 430 ° C. decreased to about 0.1 m 2 / g.
That is, by heating and quenching low-medium coal, tar exuded in the pores and on the coal surface is solidified on the coal surface and coats the surface, thereby reducing the hygroscopicity and reactivity of the coal.
[0014]
Furthermore, when the temperature exceeds 450 ° C. and is heated to around 500 ° C., the equilibrium moisture further decreases, but as can be seen from observation with a scanning electron microscope and measurement of the specific surface area, the surface of the coal cracks and the specific surface area is also 2 It increases rapidly to about 4m 2 / g.
When heated above 500 ° C., the coal becomes brittle and easily breaks, making it difficult to maintain its shape, and the generation of fine powder increases.
[0015]
In addition, if the heating time is long, combustible components such as tar and CO are likely to be dissipated, so it is preferable to heat at a rate of 100 ° C./min or more. Thereby, the loss of a combustible substance can be prevented and the quantity of the combustible substance mixed in the high temperature gas for heat treatment can be suppressed.
[0016]
Also, if the gas used for heating has a high oxygen concentration, there is a risk of excessive oxidation (loss) of combustible components on the coal surface, ignition of easily combustible components, or explosion of coal dust. The following inert gas, high-temperature gas containing 10 vol% or more of steam, or steam alone is used, but a gas having an oxygen concentration of 4 vol% or less is most preferable.
[0017]
If the heating time is long, combustible components are likely to dissipate, so cooling after heating needs to be rapid, and it is preferable to rapidly cool to 250 ° C. or less at a rate of 50 ° C./min or more.
As the gas for cooling, the gas before being used for the above heating or the gas after being used for the heating is cooled by heat exchange or the like.
Coal obtained by heating to a high temperature and cooling as described above and modified so as to exhibit different physical properties (eg, pyrophoricity, hygroscopicity, calorific value) than the raw coal is called modified coal.
[0018]
However, the modified coal thus obtained is still not sufficiently stable in terms of handling to prevent spontaneous ignition, and the present invention is characterized by further aging the modified coal. .
Aging means storing the reformed coal for a specified period of time when the average coal storage temperature during the storage of the reformed coal is below a predetermined temperature, under substantial air shutoff, at a low oxygen concentration, or in an inert gas atmosphere. This can be done.
[0019]
Generally, coal easily reacts with oxygen as the temperature rises, so 40-50 ° C is the first warning temperature, 50-60 ° C is the second warning temperature, and when it exceeds 70 ° C, the reaction rate with oxygen suddenly increases. Therefore, when it comes into contact with air, oxidation gradually proceeds, and there is a danger that the temperature will rise and ignite. Therefore, normally, about 70 ° C is the first dangerous temperature for coal storage, and about 80 ° C is the second dangerous temperature for coal storage. It is said.
Also, if the oxygen concentration is 12% or less, or if air circulation is interrupted, oxygen in the air will be consumed gradually, so the inside of the stored coal will have an oxygen concentration of 21% or less. There is almost no risk of ignition.
Therefore, when the coal layer deposited during coal storage is cooled to 70 ° C, even if it is exposed to air (and oxygen in the air is gradually consumed if the air flow is interrupted), it spontaneously ignites during storage. There is almost no danger to do.
[0020]
In the above description, the oxygen concentration is 12 vol % or less, the temperature is 100 ° C. or less, and preferably the oxygen concentration is 12 vol % under a substantial shut-off of the atmosphere, a low oxygen concentration, or an inert gas atmosphere. Hereinafter, the conditions are a humidity of 60% or less and a temperature of 100 ° C. or less .
[0021]
The aging period of the modified coal is 1 month or more, preferably 2 months or more, and particularly preferably 3 months or more, depending on the above coal storage conditions. By aging, the spontaneous combustion property of the modified coal is improved. Is done.
[0022]
As a concrete method of aging, the reformed coal is put into storage facilities such as pits, mines, tunnels, containers, silos, transport ships, vehicles, etc. Accordingly, the temperature, humidity, and oxygen concentration are monitored and stored for a predetermined period. More preferably, it is preferable to divide the coal storage into appropriately sized grids and to measure these conditions by measuring the conditions of the upper, middle and lower parts of each grid.
[0023]
As the storage facility, an inert gas charging (or circulation) pipe, a blower, a temperature adjusting heat exchanger, a watering facility, or the like is used.
As the inert gas, there can be used nitrogen, carbon dioxide, combustion exhaust gas, and a gas having a low oxygen concentration such as a gas after washing and cooling to remove dust and perform tar removal.
Furthermore, the atmosphere can be used when the temperature is sufficiently low, and the atmosphere can also be used when the humidity is high to some extent and the temperature is below a certain temperature.
[0024]
Various methods can be used depending on the type of storage equipment to block or suppress the circulation of the atmosphere and the intrusion of rainwater, or to replace or circulate with an inert gas. For example, a method of loading reformed coal into a depression in a mining site and covering it with heat-resistant and water-resistant sheets, loading reformed coal into a pit, covering it with coking coal, and using it for heat reforming from the bottom of the reformed coal After passing the washed gas, the method of passing the gas through the tunnel with the slope, the method of feeding the reformed coal from the upper part, closing the shutter and closing the lower outlet, sending the inert gas, such as drum can, silo or gas holder Examples include a method of sealing in a container-like one, and a method of cooling and distributing the combustion exhaust gas of the transport ship during loading and transport.
In the above, examples of the heat and water resistant sheets include canvas, various heat resistant synthetic resin sheets, metal covers and the like.
[0025]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
(1) The properties of raw coal and modified coal were measured by the following method.
Equilibrium moisture: A heat-treated coal placed in a saturated saline desiccator (75% humidity) was measured according to JIS M8812.
Volatile content: Measured according to JIS M8812.
Calorific value: Measured according to JIS M8814.
Specific surface area: Measured using nitrogen gas by BET method.
Observation of coal surface: Photographed at 100 to 1000 times using a scanning electron microscope.
(2) Storage conditions and spontaneous ignition test The temperature, humidity, and oxygen concentration of the reformed coal during aging were measured as follows.
(a) Temperature: According to thermocouples (CA wires) arranged at 50 cm intervals in the vertical, horizontal, and depth directions.
(b) Humidity and Oxygen Concentration: Coal storage facility The gas sucked by a sampling tube arranged at intervals of 50 cm on the circumference of 30 cm inside the coal contact wall and further at intervals of 50 cm in the depth direction at the center was analyzed.
The spontaneous ignition test was performed using the test apparatus 1 or 2.
(c) Method by the test apparatus 1: An adiabatic pyrophoricity measuring apparatus in which the difference between the sample temperature and the ambient atmosphere temperature was eliminated was used. A dry sample pulverized to 200 mesh or less is filled into a sample chamber, heated to a predetermined base temperature with nitrogen gas, and then switched to a gas having a test oxygen concentration to track the change in sample temperature. From the temperature rise data, the rate of temperature rise was determined using the Arrhenius relationship, and the pyrophoric properties were evaluated by comparing the rate of temperature rise of various sample coals.
(d) Method by the test apparatus 2: A dry sample preheated to a test temperature is filled in a test apparatus having a diameter of about 30 cm and a gas with controlled oxygen concentration, temperature, and air flow rate is introduced. The temperature change of the sample is tracked by a thermocouple group arranged in the apparatus. The pyrogenicity was evaluated by comparing the temperature changes (maximum heating rate) of various types of sample charcoal.
[0026]
Example 1
Canadian coal was used as the raw coal (according to ASTM standards, it belongs to high volatile bituminous coal). The properties are as shown below. Properties of medium and low quality coal (value after removing surface moisture) Equilibrium (internal) moisture: 11.0 wt% ash content: 10.2 wt% volatile content: 38.4 wt% fixed carbon: 40.4 wt% calorific value ( Equilibrium moisture standard) 5700 kcal / kg raw coal was pulverized to a particle size of 1 inch or less, dried at 110 ° C. to remove surface moisture, and then introduced into a heat treatment fluidized bed at a rate of 2 t / d. After rapidly heating to 400 ° C. at a rate of temperature increase of / min, it was immediately cooled to 70 ° C. at a rate of temperature decrease of 50 ° C./min in a fluidized bed for cooling and taken out as modified coal. The hot gas generating furnace for rapid heating was operated with kerosene, and the high temperature gas for heating was reduced to an oxygen concentration of 4 vol% or less in the furnace exhaust gas.
[0027]
The modified coal after quenching obtained as described above is experimentally stacked in a steel tank simulating a transport tank, sealed, and simulated for combustion exhaust gas after obtaining ship power. The inert gas having an oxygen concentration of about 5% was supplied into the tank. The atmosphere in which the modified coal was placed during the transportation equivalent period of 45 days was an average temperature of 55 ° C., a humidity of 60%, and an oxygen concentration of 4%. The aged modified coal had an equilibrium moisture content of 5.4%, a volatile content of 35%, a calorific value of 6100 kcal / kg, a low hygroscopic property, a high calorific value, and was suitable for transportation and use. After removal, it was left undisturbed for 3 months in the summer in the coal yard of the thermal power plant, but no spontaneous ignition occurred.
[0028]
(Example 2 )
The raw charcoal is US West charcoal, and its properties are as shown below. Properties of medium and low quality coal (value after removing surface moisture) Equilibrium (internal) Moisture: 23.7 wt% Ash content: 6.8 wt% Volatile content: 35.3 wt% Fixed carbon: 34.2 wt% Calorific value ( Equilibrium moisture standard): 4820 kcal / kg coal was pulverized to a particle size of 1 inch or less, usually dried to remove surface moisture, and then introduced into a heat treatment fluidized bed at a rate of 2.5 t / d. After rapid heating, it was rapidly cooled to 150 ° C. in a cooling fluidized bed and taken out as modified coal. The hot gas generating furnace for rapid heating was operated with kerosene, and the hot gas for heating was furnace exhaust gas, and the oxygen concentration was 4 vol% or less. The reformed coal discharged from the fluidized bed for cooling is dropped into a concrete tunnel structure with an inner diameter of 3m, a length of 5m, and an inclination of 60 degrees. And stored for 70 days at an average temperature of 50 ° C., humidity of 60% and oxygen concentration of 12%. The moisture content of the modified coal after aging reaches 12% of equilibrium moisture after about 5 days in the moisture measuring device, but the equilibrium moisture value is much smaller than that of the raw coal, and the hygroscopicity of the coal is reduced. The calorific value of the modified coal after aging was 5620 kcal / kg, which was suitable for transportation and use. The obtained aged coal was subjected to a pyrogenicity test, and the pyrogenicity was remarkably improved. A change in the maximum temperature rise during the aging period of the modified coal measured by the test apparatus 2 is shown in FIG. The measurement was performed using air as the introduced gas at a base temperature of 70 ° C. As can be seen from the figure, the temperature rise of the aged coal after 60 to 70 days after aging is reduced to 1/8 to 1/9 compared to immediately after the reforming, about 1/4 of the raw coal (undried) and dried. It was found to be 1/10 that of charcoal.
[0029]
【The invention's effect】
By subjecting the reformed coal subjected to high-temperature rapid heating / cooling treatment to the aging treatment of the present invention, it was possible to reduce pyrophoricity while maintaining low hygroscopicity and high calorific value.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the number of days of aging of reformed coal and the maximum temperature rise.
● indicates the maximum temperature rise of undried coking coal.
○ indicates the maximum rising temperature of dry raw coal.
+ Indicates the maturation days and maximum rise temperature of the modified coal.

Claims (6)

中低質炭を180〜300℃未満に加熱し150℃以下に冷却して得られた改質炭、又は、中低質炭を昇温速度100℃/分以上で300〜500℃に加熱し降温速度50℃/分以上で250℃以下に冷却して得られた改質炭を、70℃以下に冷却した後、大気の遮断下に、1ヶ月以上保存することを特徴とする改質炭の熟成方法。  Heated medium low-grade coal to less than 180-300 ° C. and cooled to 150 ° C. or lower, or medium-low quality coal heated to 300-500 ° C. at a rate of temperature rise of 100 ° C./min or higher to lower the temperature Maturation of modified coal, characterized in that the modified coal obtained by cooling to 50 ° C or less at 50 ° C / min or more is cooled to 70 ° C or less and then stored for one month or more in the atmosphere shut off. Method. 大気の遮断下が、石炭採掘後の跡地に設けられた窪地に改質炭を入れその上を耐熱、耐水性シート類で覆って得られる条件である請求項1に記載の改質炭の熟成方法。   The aging of the reformed coal according to claim 1, wherein the blockage of the atmosphere is a condition obtained by putting the reformed coal in a depression provided in the former site after coal mining and covering it with heat and water resistant sheets. Method. 中低質炭を180〜300℃未満に加熱し150℃以下に冷却して得られた改質炭、又は、中低質炭を昇温速度100℃/分以上で300〜500℃に加熱し降温速度50℃/分以上で250℃以下に冷却して得られた改質炭を、酸素濃度12 vol %以下、温度100℃以下の雰囲気下で1ヶ月以上保存することを特徴とする改質炭の熟成方法。Heated medium low-grade coal to less than 180-300 ° C. and cooled to 150 ° C. or lower, or medium-low quality coal heated to 300-500 ° C. at a rate of temperature rise of 100 ° C./min or higher to lower the temperature A modified coal obtained by cooling at 50 ° C./min to 250 ° C. is stored for 1 month or longer in an atmosphere having an oxygen concentration of 12 vol % or less and a temperature of 100 ° C. or less . Aging method. 中低質炭を180〜300℃未満に加熱し150℃以下に冷却して得られた改質炭、又は、中低質炭を昇温速度100℃/分以上で300〜500℃に加熱し降温速度50℃/分以上で250℃以下に冷却して得られた改質炭を、70℃以下に冷却した後、大気の遮断下に1ヶ月以上保存して得られた熟成改質炭。   Heated medium low-grade coal to less than 180-300 ° C. and cooled to 150 ° C. or lower, or medium-low quality coal heated to 300-500 ° C. at a rate of temperature rise of 100 ° C./min or higher to lower the temperature An aged modified coal obtained by cooling a reformed coal obtained by cooling to 50 ° C. or less at 50 ° C./min or more to 70 ° C. or less, and then storing it for 1 month or more under the interruption of the atmosphere. 大気の遮断下が、石炭採掘後の跡地に設けられた窪地に改質炭を入れその上を耐熱、耐水性シート類で覆って得られる条件である請求項4に記載の熟成改質炭。   5. The aged modified coal according to claim 4, wherein the blockage of the atmosphere is a condition obtained by putting the modified coal in a depression provided in the former site after coal mining and covering it with heat and water resistant sheets. 中低質炭を180〜300℃未満に加熱し150℃以下に冷却して得られた改質炭、又は、中低質炭を昇温速度100℃/分以上で300〜500℃に加熱し降温速度50℃/分以上で250℃以下に冷却して得られた改質炭を、酸素濃度12 vol %以下、温度100℃以下の雰囲気下で1ヶ月以上保存して得られた熟成改質炭。Heated medium low-grade coal to less than 180-300 ° C. and cooled to 150 ° C. or lower, or medium-low quality coal heated to 300-500 ° C. at a rate of temperature rise of 100 ° C./min or higher to lower the temperature Aged modified coal obtained by storing modified coal obtained by cooling to 50 ° C./min to 250 ° C. in an atmosphere having an oxygen concentration of 12 vol % or less and a temperature of 100 ° C. or less for one month or more.
JP9658297A 1997-03-31 1997-03-31 Aging method of reformed coal and aged reformed coal Expired - Lifetime JP3935553B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP9658297A JP3935553B2 (en) 1997-03-31 1997-03-31 Aging method of reformed coal and aged reformed coal
IDP00200100605D ID29498A (en) 1997-03-31 1998-03-20 METHODS AND EQUIPMENT OF COAL DRYING, METHODS FOR PRESERVING COAL WHICH THE QUALITY HAS BEEN IMPROVED, THE COAL WHICH HAS BEEN ENHANCED, AND THE PROCESSES AS WELL AS A SYSTEM TO PRODUCE THE QUALITY OF THE COAL WHICH HAS BEEN IMPROVED
IDP980400A ID20131A (en) 1997-03-31 1998-03-20 METHODS AND EQUIPMENT OF COAL DRYING, METHODS FOR OLD STORAGE OF REFORMED COAL AND REFORMED OLD COAL STORAGE, AND PROCESSES AND SYSTEMS FOR PRODUCTION OF REFORMED COAL STONE
US09/045,792 US6068671A (en) 1997-03-31 1998-03-23 Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
CNB981080839A CN1139747C (en) 1997-03-31 1998-03-30 Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
AU60575/98A AU729391B2 (en) 1997-03-31 1998-03-31 Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
US10/053,648 US20020104258A1 (en) 1997-03-31 2002-01-24 Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
US10/932,014 US7524341B2 (en) 1997-03-31 2004-09-02 Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
US12/382,382 US7766985B2 (en) 1997-03-31 2009-03-16 Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
US12/382,381 US7744662B2 (en) 1997-03-31 2009-03-16 Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9658297A JP3935553B2 (en) 1997-03-31 1997-03-31 Aging method of reformed coal and aged reformed coal

Publications (2)

Publication Number Publication Date
JPH10279969A JPH10279969A (en) 1998-10-20
JP3935553B2 true JP3935553B2 (en) 2007-06-27

Family

ID=14168949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9658297A Expired - Lifetime JP3935553B2 (en) 1997-03-31 1997-03-31 Aging method of reformed coal and aged reformed coal

Country Status (1)

Country Link
JP (1) JP3935553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349176A (en) * 2022-01-27 2022-04-15 欧秋香 Artificial wetland for enhancing pollutant absorption of emergent aquatic plants and use method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534670B2 (en) * 2008-12-26 2014-07-02 電源開発株式会社 Simple estimation method of spontaneous ignition, solid fuel production method, and solid fuel production facility
JP2011111529A (en) * 2009-11-26 2011-06-09 Kobe Steel Ltd Ignition-resistant coal and method for producing the same
JP5412418B2 (en) 2010-12-17 2014-02-12 三菱重工業株式会社 Coal inactivation processing equipment
CN106062482A (en) * 2014-03-13 2016-10-26 三菱重工业株式会社 Power generating system using low quality coal
JP7066327B2 (en) * 2017-03-29 2022-05-13 Ube株式会社 Curing method of reformed charcoal
JP6402235B1 (en) * 2017-12-08 2018-10-10 新日鉄住金エンジニアリング株式会社 Method for producing modified coal
JP6988622B2 (en) * 2018-03-22 2022-01-05 日本製鉄株式会社 How to determine the spontaneous combustion of char and how to determine the spontaneous combustion of coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349176A (en) * 2022-01-27 2022-04-15 欧秋香 Artificial wetland for enhancing pollutant absorption of emergent aquatic plants and use method thereof

Also Published As

Publication number Publication date
JPH10279969A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
US7744662B2 (en) Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
US5711769A (en) Process for passivation of reactive coal char
ES2441204T3 (en) Coal treatment
US7695535B2 (en) Process for in-situ passivation of partially-dried coal
JP3935553B2 (en) Aging method of reformed coal and aged reformed coal
US5601692A (en) Process for treating noncaking coal to form passivated char
CA1280382C (en) Process for heat treatment of coal
JP4893136B2 (en) Blast furnace operation method using woody biomass
BRPI0618018A2 (en) process and system for the preparation of a passive carbonaceous material, processes for reducing inherent moisture and / or increasing specific energy of a carbonaceous material, for perfecting the coking characteristics of non-coking carbonaceous material, for abruptly cooling hot passive carbonized material and apparatus to passivate carbonaceous material
US20130055631A1 (en) Post torrefaction biomass pelletization
JPS5974189A (en) Stabilization of coal
JP6402235B1 (en) Method for producing modified coal
KR20200142254A (en) Slurry for Fire Extinguishment and Repressing Spontaneous Combustion in Coal Stockpiles
US4518393A (en) Coal based cement cover for coal pile
JPS6065097A (en) Improvement of coal
JP2012143676A (en) Method of using woody biomass
JPS6332839B2 (en)
US4308668A (en) Process for heat treatment of coal
JP2024514270A (en) Method for providing raw materials for an industrial process - Patents.com
US4586935A (en) Method of preparing coal to increase its calorific value and making it safe for storage and transport
JP6219185B2 (en) Method for producing modified coal and modified coal
RU2098450C1 (en) Continuous method for processing non-coking coal to produce stable semicoke (versions)
Strakhov et al. Changes in lignite on industrial storage
Ellmart COMMERCIAL-SCALE DRYING OF LOW RANK WESTERN COALS PART I. RAIL SHIPMENT TEST OBSERVATIONS
JPS60248791A (en) Moving bed type dry distiller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

EXPY Cancellation because of completion of term