JP3935381B2 - Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device - Google Patents

Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device Download PDF

Info

Publication number
JP3935381B2
JP3935381B2 JP2002070401A JP2002070401A JP3935381B2 JP 3935381 B2 JP3935381 B2 JP 3935381B2 JP 2002070401 A JP2002070401 A JP 2002070401A JP 2002070401 A JP2002070401 A JP 2002070401A JP 3935381 B2 JP3935381 B2 JP 3935381B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor element
circuit board
circuit device
electronic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002070401A
Other languages
Japanese (ja)
Other versions
JP2003273319A (en
Inventor
一博 登
敏 池田
裕平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002070401A priority Critical patent/JP3935381B2/en
Publication of JP2003273319A publication Critical patent/JP2003273319A/en
Application granted granted Critical
Publication of JP3935381B2 publication Critical patent/JP3935381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばモータ駆動用としての、IGBT(絶縁ゲート型バイポーラトランジスタ)やダイオード等の半導体素子であってその両面に電極を有する半導体素子を有する電子回路装置、及び該電子回路装置の製造方法に関する。
【0002】
【従来の技術】
近年、モータ駆動装置に用いられる電子機器の高性能及び高機能化に伴い、上記モータ駆動装置における使用電流も増大し、上記モータ駆動装置に用いる半導体にも大電流対応が必要となっている。従来のモータ駆動装置としては図19に示すものがある。以下、図を参照しながら、従来のモータ駆動装置の一例について説明する。
図19において、1aはIGBT、1bはダイオード、3は高温半田、4は金属片、5は封止樹脂、6は半田、7は回路基板、10は放熱板、10aは凸部ネジ台、11はネジ、12は表面実装電子部品(受動素子)、13は表面実装電子部品(半導体素子)、14は金属ベース回路基板、15はシリコーングリース、18は金属線、19は金属リード、22は凸コネクター、23は凹コネクター、及び24は絶縁用樹脂である。
【0003】
以上のように構成される従来のモータ駆動装置の製造方法を以下に説明する。まず、IGBT1a及びダイオード1b等の半導体部品1を金属片4に高温半田3により接続する。次に、金属線18を用いて、IGBT1aとダイオード1bとの間、及びこれらの半導体部品1と金属リード19との間を電気的に接合する。尚、通常、金属線18は、アルミニウム線又は金線を使用する。例えばアルミニウムにてなる金属線18を用いた場合、半導体部品1の金属片4と接合した第1電極に対向して存在する第2電極への金属線18の接合は、アルミニウム線のウエッジボンディング方式を用いて接続する。半導体部品1の上記第2電極はアルミニウムにより形成されており、常温の状態で上記第2電極の表面におけるアルミニウムと、アルミニウムにてなる金属線18とを超音波エネルギーを印加しながら圧接すると、それぞれのアルミニウム表面の酸化膜が除去され、上記第2電極と上記金属線18との接合が得られる。半導体部品1の上記第2電極に接合された金属線18は、銅にスズメッキした金属リード19まで引き回され、金属リード19に上記ウエッジボンディング方式にて接合される。
【0004】
次に、半導体部品1及び金属線18の物理的保護と信頼性向上とを目的として、トランスファー成形技術又はインジェクション成形技術を用いて、半導体部品1及び金属線18を覆って封止樹脂5による封止を行なう。次に、金属リード19を金型により、金属片4と同じ面まで曲げ切断する。これらの工程により、半導体部品1、高温半田3、金属片4、金属線18、金属リード19、及び封止樹脂5により形成された、「TO―220」と呼ばれる電子部品が完成する。
【0005】
次に、金属ベース回路基板14の上に、クリーム半田を印刷した後、上記電子部品「TO−220」、凸コネクター22等の種々の電子部品を置き、該金属ベース回路基板14の全体を加熱炉に投入する。これにて上記クリーム半田を溶融し、その後常温に戻すことにより上記クリーム半田を硬化させ、硬化した半田6にて金属ベース回路基板14と、上記電子部品「TO−220」、凸コネクター22等の種々の電子部品とを電気的及び物理的に接合する。
次に電気的絶縁を図るために、封止樹脂24を金属ベース回路基板14の全体に塗布した後、上記種々の電子部品を有する金属ベース回路基板14の全体を減圧炉に投入して、封止樹脂24の内部に混在する気泡を取り除き、加熱炉に投入し封止樹脂24を硬化させる。
【0006】
次に、放熱板10にシリコーングリース15を塗布する。次に放熱板10に金属ベース回路基板14を密着させ、ネジにて固定する。次に、金属ベース回路基板14に実装された凸コネクター22と、回路基板7上に実装された凹コネクター23とを位置合わして凸コネクター22を凹コネクター23に差し込みながら、回路基板7を金属ベース回路基板14の凸部ネジ台10aに密着させ、ネジ11により固定する。
【0007】
以上の工程により、モータ駆動電流をスイッチング制御する上記電子部品「TO−220」を有する、放熱が必要な電子部品を金属ベース回路基板14に実装する工程と、上記電子部品「TO−220」を制御する回路が搭載され放熱の必要性のない回路基板7を組み合せる工程とが終了する。
【0008】
【発明が解決しようとする課題】
しかしながら、上述の構成では、金属線18と金属リード19による抵抗ロス、及び一定長さによる浮遊インダクタンスの発生がある。又、例えば上記電子部品「TO−220」は金属リード19を有するため、該電子部品「TO−220」の面積よりも広い面積が金属ベース回路基板14には必要であり、小型化、高密度化が困難であるという問題がある。
一方、電気製品における近年の軽薄短小化の動向に対応して、電気製品のモータ駆動装置も小型化及び高放熱化が求められている。しかしながら、高温半田3の内部に気泡が混在する場合には、半導体部品1により発生した熱の流れが気泡により遮られ、半導体部品1から金属片4への熱抵抗が増大する。このため気泡部分のみが高温になり、最悪の場合には半導体部品1を動作不能とする場合もある。
【0009】
又、図19に示すように、発熱する半導体部品1からの熱は、主に、金属片214、金属ベース回路基板14等を通して放熱板10へ伝わるという経路にて放熱される。このように従来のモータ駆動装置では、放熱用経路が限定されており、半導体部品1の放熱性を向上させるのが困難な構造である。
【0010】
又、上述のように、半導体部品1における上記第2電極への金属線18の接合は、アルミニウム線のウエッジボンディング方式を用いて接続されるが、従来の工程では、接合工法により金属線18の太さに制約があり、又、基板電極の配置により金属線18の長さに制約があり、配線抵抗を低減することは不可能である。このため、近年の半導体部品1の進歩によるオン抵抗の低減に対応することができず、電気信号の高周波化、大電流化によるノイズ増大が大きな問題となっている。
【0011】
本発明は、上述の問題点を解決するためになされたもので、小型で放熱性が良く、抵抗及び浮遊インダクタンスを低減可能な、両面電極半導体素子を有する電子回路装置、及び該電子回路装置の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明は以下のように構成する。
即ち、本発明の第1態様の電子回路装置は、回路基板と電気的に接続される金属片と、
互いに対向する第1面及び第2面に電極を有し上記回路基板の半導体素子実装面と上記金属片との間に積層して配置されて上記回路基板に実装される複数の半導体素子と、
上記第1面の第1電極に電気的に接続される突起電極と、を備え、ここで、
上記金属片には、上記半導体素子の上記第2面の第2電極が電気的に接続され、
上記回路基板の半導体素子実装面には、上記突起電極が電気的に接続され、該突起電極を介して上記半導体素子の上記第1電極と電気的に接続され、
上記積層された半導体素子同士間において上記突起電極は、上記第1電極及び上記第2電極を電気的に接続し、さらに、
上記半導体素子実装面に上記突起電極及び上記金属片を介して実装された上記半導体素子及び上記金属片を包囲してかつ上記回路基板と一体的に設けられ上記半導体素子が発する熱を伝達する絶縁樹脂材と、
上記絶縁樹脂材の外表面に設けられ上記絶縁樹脂材を介して上記熱を放散する放熱部材と、
を備えたことを特徴とする。
【0014】
又、上記第1電極、上記第2電極、及び上記突起電極は、アルミニウムにてなり、金メッキをすることができる。
【0015】
又、上記第1電極、上記第2電極、及び上記突起電極は、アルミニウムにてなり、上記突起電極は、金メッキされており、上記半導体素子は、当該半導体素子内への異種金属の侵入を防止するバリア金属を上記第1電極及び上記第2電極の直下に有してもよい。
【0016】
又、上記半導体素子は、上記第1面及び上記第2面に直交する当該半導体素子の側面に、当該半導体素子を保護する保護材を有してもよい。
【0017】
さらに本発明の第2態様の電子回路装置の製造方法は、互いに対向する第1面及び第2面に電極を有する半導体素子を複数層にて回路基板に実装してなる電子回路装置の製造方法であって、
上記第1面の第1電極に突起電極を電気的に接続し、
上記回路基板に電気的に接続される金属片に、上記第2面の第2電極を接続し、さらに複数の上記半導体素子間では上記突起電極にて上記第1電極及び上記第2電極を電気的に接続することで上記複数の半導体素子を積層し、
上記回路基板の半導体素子実装面に上記突起電極及び上記金属片を介して上記半導体素子を実装した後、該半導体素子が発する熱を伝達する絶縁樹脂材を、該半導体素子及び上記金属片を包囲してかつ上記回路基板及び上記熱を放散する放熱部材と一体的に上記半導体素子実装面側に設ける、
ことを特徴とする。
【0019】
【発明の実施の形態】
本発明の実施形態における、両面電極半導体素子を有する電子回路装置及び該電子回路装置の製造方法について、図を参照しながら以下に説明する。尚、各図において同じ構成部分については同じ符号を付している。
図1に示す本実施形態の電子回路装置201は、半導体素子211を回路基板215に実装した電子回路装置であって、突起電極212、金属片214、絶縁樹脂材216、及び放熱部材217を備える。電子回路装置201の構成について、さらに詳細に以下に説明する。
半導体素子211は、モータ等の駆動機器への駆動電流の制御系に用いられ、発熱するため放熱処置が必要な駆動用半導体素子であり、本実施形態では、IGBT(絶縁ゲート型バイポーラトランジスタ)211−iと、ダイオード211−dとから構成される。尚、本実施形態では、図示するように半導体素子211は、積層されることから、IGBT211−i−1、IGBT211−i−2、ダイオード211−d−1、及びダイオード211−d−2を有する。又、それぞれの半導体素子211は、互いに対向する第1面211a及び第2面211bを有し、第1面211aには第1電極222が設けられ第2面211bには第2電極223が設けられている。上記第1電極222には、図9〜図15を参照して後述する形成方法にて、突起した形状で金属製の突起電極212が形成される。又、本実施形態では、突起電極212の表面に金メッキが施される。尚、図1に示す例では、複数の半導体素子211をその厚み方向に積層した形態を採っている。
【0020】
213は、金属と金属の接合材である半田であり、213aは、放熱処置が必要な半導体素子211の接合に用いられる高温半田であり、本例ではIGBT211−i−1及びダイオード211−d−1と上記金属片214との接合に使用されている。一方、213bは、回路基板215上の銅電極215aとの接合に用いられる通常使用される半田である。
金属片214は、半導体素子211より発生した熱を放熱及び拡散すると同時に、半導体素子211が送出する電気信号を回路基板215へ伝達する導電性部材であり、回路基板215との接合を行う凸部214aを有する。又、回路基板215は、いわゆる両面実装可能な基板であり、半導体素子実装面215bに上述の半導体素子211が実装され、半導体素子実装面215bに対向する部品実装面には、弱電系の半導体素子で構成されている表面実装電子部品218、及び抵抗やコンデンサーなど受動部品219が半田付けされる。
【0021】
上記絶縁樹脂材216は、回路基板215の半導体素子実装面215bに上記突起電極212及び上記金属片214を介して実装された上記半導体素子211及び上記金属片214を包囲してかつ回路基板215と一体的に設けられ、半導体素子211が発する熱を伝達する樹脂材であり、又、半導体素子211の絶縁及び物理的保護の役割をも有する。よって絶縁樹脂材216は、上記半導体素子211及び上記金属片214をモールドしかつ上記半導体素子実装面215bに接触して回路基板215と一体的な構成となる。
上記放熱部材217は、アルミニウム製の放熱板であり、絶縁樹脂材216の外表面に設けられ絶縁樹脂材216を介して、半導体素子211が発した熱を放散する。
このような構造を有する電子回路装置201は、図2に示す回路構成を有する。図2に示す、「A」、「C」、「E」、「G」、及び「K」の各箇所は、図1に記された「A」、「C」、「E」、「G」、及び「K」の各箇所に対応する。
【0022】
上述のような構造を有する電子回路装置201の製造方法を、図3〜図8を用いて説明する。
上記IGBT211−i、及びダイオード211−dは、公知の半導体集積回路の形成方法にて半導体ウエハ上に格子状に複数形成されており、上述したように、第1面211a及び第2面211bに第1電極222及び第2電極223を有する。本実施形態では、第1電極222及び第2電極223はアルミニウムにてなる。第1工程では、このような半導体ウエハに形成されている例えば上記第1電極222に対して、図9〜図11を参照して後述する方法にて、突起電極212が形成される。本実施形態では、突起電極212もアルミニウムボールから形成される。次の第2工程では、アルミニウムにてなる部分の全て、つまり上記第1電極222、第2電極223、及び突起電極212に、ニッケル及び金メッキを施し、金で覆われた突起電極212を形成する。ニッケル及び金メッキの形成理由は、上述のように本例では突起電極がアルミニウムでありアルミニウムのままでは半田付けができないという問題を解決すると同時に、半田がアルミニウムにてなる第1電極222及び第2電極223から半導体素子211の内部に拡散し半導体素子211を損傷させる現象を防止するバリアメタルとしての機能を得るためである。尚、本実施形態では、無電解ニッケル及び金メッキの処理を行った。
該第2工程後、ウエハ状態にて形成されている半導体素子211をダイシング装置により個々の半導体素子211に切り分ける。切り分けられたIGBT211−i、及びダイオード211−dを図3に示す。
【0023】
次の第3工程では以下の動作がなされる。まず、窒素と水素の混合雰囲気で還元雰囲気状態を維持した350℃の高温炉内に金属片214を投入する。次に、溶融した高温半田213aを、上記高温炉の中で金属片214における半導体素子接合箇所214bに滴下する。次に、上記高温炉内にて、金属片214の半導体素子接合箇所214bに、図4に示すように、切り分けたIGBT211−i、及びダイオード211−dを載置し、さらに、上記IGBT211−i及びダイオード211−dにおける各第2電極223と、溶融した高温半田213aとの間に気泡が残らないように、IGBT211−i及びダイオード211−dと、金属片214とを相対的に押圧する。尚、本実施形態では、IGBT211−i及びダイオード211−dに金属片214を平行にして押圧して密着させている。次に、該密着状態を維持しながら、金属片214、並びにIGBT211−i及びダイオード211−dを冷却し、高温半田213aを凝固させる。該凝固後、IGBT211−i及びダイオード211−dが接合された金属片214を大気中に戻す。
【0024】
本実施形態では上述のように半導体素子211を積層することから、次の第4工程では、図5に示すように、金属片214上に高温半田213aにより接合されたIGBT211−i及びダイオード211−dの半導体素子211上に形成されている突起電極212上に、半導体素子211及び積層用の突起電極212を形成する。ここで、突起電極212を複数個積層してなる上記積層用の突起電極212を、積層用金属電極と呼び符号221を付す。尚、該積層用金属電極221の製造工程の詳細は、図14及び図15を参照して後述する。
【0025】
次の第5工程では、図6に示すように、回路基板215に形成されている銅電極215aにクリーム半田を印刷し、図5に示すような、半導体素子211、上記積層用金属電極221、及び金属片214が一体的に形成された部品230を、回路基板215の半導体素子実装面215b上の取付位置に置く。次に、上記部品230及び回路基板215を加熱することにより、上記クリーム半田を溶融し、その後常温に戻すことにより上記クリーム半田を凝固させ、積層用金属電極221、突起電極212、及び金属片214の上記凸部214aを、回路基板215の電極215aに電気的及び物理的に接合させる。
【0026】
次の第6工程では、図7に示すように、上記半導体素子実装面215bに対向する表面実装部品実装面215cに、通常の表面実装工程を用いて、放熱が不要な、半導体チップ状の表面実装電子部品218及び受動部品219を接合して、実装済部品231を作製する。
【0027】
次の第7工程では、図8に示すように、本実施形態では凹部232を有しアルミニウムにてなる放熱部材217に対して、上記凹部232に上記部品230を収納し上記回路基板215にて上記凹部232の蓋をするように放熱部材217と回路基板215とを密着する。そしてこの状態で、加熱装置235にて150℃に加熱された成形用の金型233内へ搬入する。そして、放熱部材217と回路基板215との間の空間、つまり上記凹部232へ、トランスファー成形機234にて絶縁樹脂材216をトランスファー成形工法により流し込む。上記絶縁樹脂材216は、半導体素子211が発する熱を伝達する樹脂材であればよく、本実施形態では、液状の熱硬化性エポキシ樹脂を用いている。注入された絶縁樹脂材216は、加熱されている金型233の温度によって硬化する。このとき、トランスファー成形機234による加圧力により、絶縁樹脂材216内に空気のボイドの発生もないことから、良好な絶縁性と放熱性を得ることができる。絶縁樹脂材216の硬化後、金型233から取り出して、図1に示す電子回路装置201が完成する。
【0028】
上述した、上記第1電極222への突起電極212の形成方法について、図9〜図11を参照して説明する。図9〜図11では、半導体素子211の第1面211aにあるアルミニウムにてなる第1電極222に突起電極212を形成する方法を示している。ここで、250は突起電極212となる金属ボール256を保持する接合ヘッド、251は上記接合ヘッド250に接続され第1電極222に突起電極212を形成するときに接合ヘッド250を介して上記金属ボール256を押圧する押圧装置、252は接合ヘッド250に接続され接合ヘッド250に金属ボール256を吸着保持させる吸引装置、253は接合ヘッド250に接続され第1電極222に突起電極212を形成するとき上記金属ボール256に超音波振動を作用させるための超音波振動装置、254は半導体素子211を載置して第1電極222に突起電極212を形成するときに半導体素子211を加熱する加熱ステージであり、及び255はこれらの各装置250〜254の動作制御を行う制御装置である。又、本実施形態では、金属ボール256はアルミニウムにてなり、接合ヘッド250の中央部には、上記吸引装置252に接続されている吸着用穴257が形成されている。又、吸着用穴257の開口部分には、金属ボール256の支持位置を一定としかつ金属ボール256を確実に支持するためのテーパー部257aを有する。
【0029】
このような構成において、まず、半導体素子211を加熱ステージ254上に固定する。加熱ステージ254の温度条件は、半導体素子211の表面温度が150℃〜300℃になるように設定する。次に、図10に示すように、上記吸引装置252にて接合ヘッド250の上記テーパー部257aに金属ボール256を吸着し保持する。次に、上記押圧装置251にて、金属ボール256が半導体素子211上の第1電極222に接触するように、接合ヘッド250を降下させ、さらに金属ボール256を第1電極222に適正な荷重条件258で押圧する。例えば、金属ボール256の直径が0.65mmの場合、上記荷電条件258は約10〜30N程度が適正である。さらに又、金属ボール256が第1電極222に接触したことを、接合ヘッド10に設置している接触検出センサーにて検出し、接触した瞬間から上記超音波振動装置253にて超音波振動259を、接合ヘッド250に印加する。本実施形態では、超音波振動259の周波数は、63.5kHz、出力は1〜2Wであり、印加時間は0.1〜0.3秒である。上述の荷重、加熱、及び超音波振動の作用により金属ボール256と第1電極222との金属接合を発生させ、接合が行われかつ成形され、突起電極212となる。金属ボール256の直径が0.65mmの場合、接合強度は約10〜30N程度となる。
【0030】
以上の工程により、図11に示すように、半導体素子211上の第1電極222に突起電極212の形成が終了する。次工程として、アルミニウムにてなる突起電極212を半田付け可能にするため、及び半導体素子211の内部に、異種金属が浸入するのを防止するため、突起電極212及び第1電極222を金属メッキする。本実施例では無電解メッキによりニッケル及び金をメッキした。該メッキ工程により、突起電極212の表面は金で覆われ、半田付けが可能になる金メッキ突起電極212になる。又、上記第1電極222は、金メッキで覆われた金メッキ第1電極222になる。
【0031】
上述のように本実施形態では突起電極212及び第1電極222に金属メッキを施したが、該工程は省略することもできる。即ち、図12及び図13に示すように、上記金属メッキ工程を省くため、上記アルミニウムにてなる金属ボール256に対して電解によりニッケル及び金メッキを形成した、金メッキ金属ボール256−1を用いる。又、半導体素子211の内部への異種金属の浸入防止効果を得るために、半導体素子211の内部であって第1電極222の直下にバリアメタル261を形成している。本実施形態では、バリアメタル261としてTiNを用いている。その他、金メッキ金属ボール256−1にて、第1電極222上に突起電極212を形成する動作は、上述の場合に同じである。
金メッキ金属ボール256−1及びバリアメタル261を用いる図12及び図13に示す方法では、図9〜図11に示す方法とは異なり、半導体素子211をメッキする工程は必要なくなる。
【0032】
次に、上述した、第4工程における積層用金属電極221の形成方法について説明する。
図9及び図10を参照して説明した方法と同じ工法により、図14及び図15に示すように、金メッキされた突起電極212上に、金メッキされた金属ボール256−1を、金と金とにより接合する。本実施形態では図1に示すように合計3段、重ねた。
【0033】
次に、図1に示すように下層に形成した例えばダイオード211−d−1の第1電極222に形成した突起電極212上に、ダイオード211−d−2の第2電極223を接合する工程について、図16及び図17を参照して説明する。
上述の場合と同様に、金属片214には高温半田213aにて、ダイオード211−d−1に対応する、下層の半導体素子211−1が取り付けられている。尚、該半導体素子211−1の第1電極222には金メッキされた突起電極212が形成されている。又、好ましくは、半導体素子211の上記第1面211a及び第2面211bに直交する当該半導体素子211の側面211c、この場合、半導体素子211−1の側面211cに、該側面211cを保護する保護材265を塗布する。該保護材265として、本例ではジャンクションコートレジンを塗布している。このような半導体素子211−1の突起電極212と、上層の半導体素子211−2における金メッキされた第2電極223とを図9及び図10を参照して説明した超音波振動を含む工法により接合する。尚、上記半導体素子211−2の側面にも上記保護材265を塗布している。
次に、図17に示すように、回路基板215と、半導体素子211−2の突起電極212及び金属片214との接合についても、図6を参照して説明した動作と同様に、回路基板215の銅電極215aにクリーム半田を印刷した後、全体を加熱することにより溶融し接合する表面実装技術を用いる。
【0034】
以上説明したような製造方法にて作製される電子回路装置201によれば、半導体素子211に対する電気的接続は、従来の金属線を用いず突起電極212等により行うことから、抵抗及び浮遊インダクタンスを低減することができ、又、装置構成を従来に比べて小型化することができる。さらに、発熱する半導体素子211、及び半導体素子211を取り付けた金属片214を、除熱効果のある絶縁樹脂材216にてモールドし、かつ上記金属片214を回路基板215に接続し、かつ絶縁樹脂材216が回路基板215の半導体素子実装面215bに接触することから、半導体素子211にて発した熱は、絶縁樹脂材216を伝達して放熱部材217から放散され、かつ金属片214及び絶縁樹脂材216を介して回路基板215へも伝達され回路基板215からも放散される。よって、従来に比べて放熱性に優れた電子回路装置を提供することができる。
【0035】
上述の実施形態では、金属片214はL字形にてなるが、該形状に限定されるものではなく、半導体素子211と回路基板215とを電気的に接続する形態であればよい。
又、放熱部材217についても、上述の実施形態では凹部232を有する形状であるが、該形状に限定されるものではない。
又、上述の実施形態では、金属片214と半導体素子211とは高温半田213aにて電気的及び物理的に接続したが、突起電極212を用いて接続することもできる。
又、上述の実施形態では、図14及び図15を参照して説明したように、突起電極212を複数段に重ねて半導体素子211と回路基板215とを電気的に接続したが、該形態に限定されるものでない。但し、従来のように金属線にて接続することを除く。
【0036】
又、上述の実施形態では、図1に示すように半導体素子211を複数層に重ねた形態を例に採ったが、図18に示すように、一層にて電子回路装置を構成することもできる。
上述したような各変形例においても、上記電子回路装置201が奏する上述の効果を勿論奏することができる。
【0037】
【発明の効果】
以上詳述したように本発明の第1態様の電子回路装置、及び第2態様の電子回路装置の製造方法によれば、半導体素子と回路基板との電気的接続を、従来の配線用ワイヤに変えて突起電極及び金属片を使用することにより、浮遊インダクタンスや導通抵抗の低減を図ることができ、又、回路装置の小型化を図ることができる。さらに、上記金属片及び上記半導体素子を絶縁樹脂材にてモールドし、かつ回路基板、絶縁樹脂材、及び放熱部材を一体化したことにより、半導体素子からの熱の放散を従来に比べて高めることができる。
【0038】
又、複数の半導体素子を積層するとき、積層された半導体素子間をも上記突起電極で接続することで、上述のように浮遊インダクタンスや導通抵抗の低減を図ることができる。
又、上記半導体素子の第1電極及び第2電極、並びに上記突起電極に金メッキを施すことで、これらの素材がアルミニウムにてなる場合であっても、半田接合を行うことが可能となる。
又、上記半導体素子の第1電極及び第2電極の直下にバリア金属を設けることで、半導体素子、特に上記第1電極及び第2電極には金メッキを施す必要がなくなる。
又、上記半導体素子の側面に保護材を設けることで、半導体素子の接合工程にて当該半導体素子の損傷を防止することができる。
【図面の簡単な説明】
【図1】 本発明の実施形態における電子回路装置の断面図である。
【図2】 図1に示す電子回路装置の回路図である。
【図3】 図1に示す電子回路装置の製造方法における一工程を説明するための図であって半導体素子に突起電極を形成した状態を示す図である。
【図4】 図1に示す電子回路装置の製造方法における一工程を説明するための図であって突起電極を形成した半導体素子を金属片に取り付けた状態を示す図である。
【図5】 図1に示す電子回路装置の製造方法における一工程を説明するための図であって半導体素子を積層した状態を示す図である。
【図6】 図1に示す電子回路装置の製造方法における一工程を説明するための図であって図5の状態に回路基板を取り付けた状態を示す図である。
【図7】 図1に示す電子回路装置の製造方法における一工程を説明するための図であって図6の回路基板に電子部品を装着した状態を示す図である。
【図8】 図1に示す電子回路装置の製造方法における一工程を説明するための図であって図7に示す実装済部品を金型内に装填した状態を示す図である。
【図9】 図1に示す電子回路装置の製造方法において半導体素子の電極へ突起電極を形成する工程を説明するための図であって金属ボールが接合ヘッドに保持されている状態を示す図である。
【図10】 図1に示す電子回路装置の製造方法において半導体素子の電極へ突起電極を形成する工程を説明するための図であって上記金属ボールを電極上へ押圧している状態を示す図である。
【図11】 図1に示す電子回路装置の製造方法において半導体素子の電極へ突起電極を形成する工程を説明するための図であって電極上に突起電極を形成した状態を示す図である。
【図12】 図1に示す電子回路装置の製造方法において半導体素子の電極へ突起電極を形成する他の工程を説明するための図である。
【図13】 図12に示す突起電極形成工程において突起電極が形成された状態を示す図である。
【図14】 図1に示す電子回路装置の製造方法において半導体素子の突起電極上へさらに突起電極を形成する工程を説明するための図であって金属ボールが接合ヘッドに保持されている状態を示す図である。
【図15】 図14に示す突起電極形成工程において突起電極が形成された状態を示す図である。
【図16】 図1に示す電子回路装置の製造方法において半導体素子の突起電極上へさらに半導体素子を接合する工程を説明するための図であって他の半導体素子が接合ヘッドに保持されている状態を示す図である。
【図17】 図16に示す工程にて半導体素子が積層された状態を示す図である。
【図18】 図1に示す電子回路装置の製造方法の変形例を示す図であって半導体素子が一層のみの場合を示す図である。
【図19】 従来の電子回路装置の構成を示す図である。
【符号の説明】
201…電子回路装置、211…半導体素子、211a…第1面、
211b…第2面、211c…側面、212…突起電極、214…金属片、
215…回路基板、215b…半導体素子実装面、216…絶縁樹脂材、
217…放熱部材、222…第1電極、223…第2電極、
261…バリアメタル、265…保護材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic circuit device having semiconductor elements such as IGBTs (insulated gate bipolar transistors) and diodes for driving a motor and having electrodes on both sides thereof, and a method of manufacturing the electronic circuit device About.
[0002]
[Prior art]
In recent years, with the increase in performance and functionality of electronic devices used in motor drive devices, the current used in the motor drive devices has increased, and the semiconductors used in the motor drive devices are also required to handle large currents. A conventional motor driving device is shown in FIG. Hereinafter, an example of a conventional motor driving device will be described with reference to the drawings.
In FIG. 19, 1a is an IGBT, 1b is a diode, 3 is high-temperature solder, 4 is a metal piece, 5 is a sealing resin, 6 is solder, 7 is a circuit board, 10 is a heat sink, 10a is a convex screw base, 11 Is a screw, 12 is a surface-mounted electronic component (passive element), 13 is a surface-mounted electronic component (semiconductor element), 14 is a metal base circuit board, 15 is silicone grease, 18 is a metal wire, 19 is a metal lead, 22 is a convex A connector, 23 is a concave connector, and 24 is an insulating resin.
[0003]
A method for manufacturing the conventional motor driving apparatus configured as described above will be described below. First, the semiconductor component 1 such as the IGBT 1 a and the diode 1 b is connected to the metal piece 4 by the high temperature solder 3. Next, the metal wire 18 is used to electrically join the IGBT 1 a and the diode 1 b and the semiconductor component 1 and the metal lead 19. Usually, the metal wire 18 uses an aluminum wire or a gold wire. For example, when a metal wire 18 made of aluminum is used, the bonding of the metal wire 18 to the second electrode existing opposite to the first electrode joined to the metal piece 4 of the semiconductor component 1 is performed by an aluminum wire wedge bonding method. Connect using. The second electrode of the semiconductor component 1 is formed of aluminum. When the aluminum wire on the surface of the second electrode and the metal wire 18 made of aluminum are pressed while applying ultrasonic energy in a room temperature state, respectively. The oxide film on the aluminum surface is removed, and the second electrode and the metal wire 18 are joined. The metal wire 18 joined to the second electrode of the semiconductor component 1 is routed to a metal lead 19 tin-plated on copper and joined to the metal lead 19 by the wedge bonding method.
[0004]
Next, for the purpose of physical protection of the semiconductor component 1 and the metal wire 18 and improvement of reliability, the semiconductor component 1 and the metal wire 18 are covered with a sealing resin 5 using a transfer molding technique or an injection molding technique. Stop. Next, the metal lead 19 is bent and cut to the same surface as the metal piece 4 by a mold. Through these steps, an electronic component called “TO-220” formed by the semiconductor component 1, the high-temperature solder 3, the metal piece 4, the metal wire 18, the metal lead 19, and the sealing resin 5 is completed.
[0005]
Next, after cream solder is printed on the metal base circuit board 14, various electronic parts such as the electronic component “TO-220” and the convex connector 22 are placed, and the entire metal base circuit board 14 is heated. Put it in the furnace. The cream solder is then melted, and then the cream solder is cured by returning to room temperature. The cured solder 6 is used for the metal base circuit board 14, the electronic component “TO-220”, the convex connector 22, etc. Various electronic components are electrically and physically joined.
Next, in order to achieve electrical insulation, a sealing resin 24 is applied to the entire metal base circuit board 14, and then the entire metal base circuit board 14 having the various electronic components is placed in a vacuum furnace and sealed. Bubbles mixed in the inside of the stop resin 24 are removed, and the sealing resin 24 is cured by putting it in a heating furnace.
[0006]
Next, silicone grease 15 is applied to the heat sink 10. Next, the metal base circuit board 14 is brought into close contact with the heat sink 10 and fixed with screws. Next, while aligning the convex connector 22 mounted on the metal base circuit board 14 and the concave connector 23 mounted on the circuit board 7 and inserting the convex connector 22 into the concave connector 23, the circuit board 7 is moved to the metal base. It is brought into close contact with the convex screw base 10 a of the circuit board 14 and fixed with screws 11.
[0007]
Through the above steps, the electronic component “TO-220” for switching control of the motor drive current is mounted on the metal base circuit board 14 and the electronic component “TO-220” is mounted. The process of assembling the circuit board 7 on which the circuit to be controlled is mounted and which does not require heat dissipation ends.
[0008]
[Problems to be solved by the invention]
However, in the above-described configuration, there is a resistance loss due to the metal wire 18 and the metal lead 19 and stray inductance due to a certain length. Further, for example, since the electronic component “TO-220” has the metal lead 19, an area larger than the area of the electronic component “TO-220” is necessary for the metal base circuit board 14, which is reduced in size and density. There is a problem that it is difficult to realize.
On the other hand, in response to the recent trend of miniaturization in electrical products, motor drive devices for electrical products are also required to be smaller and have higher heat dissipation. However, when bubbles are mixed inside the high-temperature solder 3, the heat flow generated by the semiconductor component 1 is blocked by the bubbles, and the thermal resistance from the semiconductor component 1 to the metal piece 4 increases. For this reason, only the bubble portion becomes high temperature, and in the worst case, the semiconductor component 1 may be disabled.
[0009]
Further, as shown in FIG. 19, heat from the semiconductor component 1 that generates heat is radiated mainly through a path that is transmitted to the heat radiating plate 10 through the metal piece 214, the metal base circuit board 14, and the like. Thus, in the conventional motor drive device, the heat dissipation path is limited, and it is difficult to improve the heat dissipation of the semiconductor component 1.
[0010]
Further, as described above, the joining of the metal wire 18 to the second electrode in the semiconductor component 1 is connected using the aluminum wire wedge bonding method. In the conventional process, the metal wire 18 is joined by the joining method. The thickness is limited, and the length of the metal wire 18 is limited depending on the arrangement of the substrate electrodes, and it is impossible to reduce the wiring resistance. For this reason, it is not possible to cope with the reduction in on-resistance due to the recent advancement of the semiconductor component 1, and the increase in noise due to the high frequency and large current of the electric signal is a big problem.
[0011]
The present invention has been made to solve the above-described problems, and is an electronic circuit device having a double-sided electrode semiconductor element that is small in size, has good heat dissipation, and can reduce resistance and stray inductance. An object is to provide a manufacturing method.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
That is, the electronic circuit device according to the first aspect of the present invention includes a metal piece electrically connected to the circuit board,
A plurality of semiconductor elements mounted on the circuit board by being stacked between the semiconductor element mounting surface of the circuit board and the metal piece having electrodes on the first surface and the second surface facing each other;
A protruding electrode electrically connected to the first electrode of the first surface, wherein
A second electrode of the second surface of the semiconductor element is electrically connected to the metal piece;
The protruding electrode is electrically connected to the semiconductor element mounting surface of the circuit board, and is electrically connected to the first electrode of the semiconductor element via the protruding electrode,
Between the stacked semiconductor elements, the protruding electrode electrically connects the first electrode and the second electrode, and
An insulation that surrounds the semiconductor element and the metal piece mounted on the semiconductor element mounting surface via the protruding electrode and the metal piece and is provided integrally with the circuit board and transmits heat generated by the semiconductor element. Resin material,
A heat dissipating member that is provided on the outer surface of the insulating resin material and dissipates the heat through the insulating resin material;
It is provided with.
[0014]
The first electrode, the second electrode, and the protruding electrode are made of aluminum and can be plated with gold.
[0015]
The first electrode, the second electrode, and the protruding electrode are made of aluminum, the protruding electrode is gold-plated, and the semiconductor element prevents foreign metals from entering the semiconductor element. A barrier metal may be provided directly below the first electrode and the second electrode.
[0016]
The semiconductor element may have a protective material for protecting the semiconductor element on a side surface of the semiconductor element orthogonal to the first surface and the second surface.
[0017]
Furthermore, the method for manufacturing an electronic circuit device according to the second aspect of the present invention is a method for manufacturing an electronic circuit device in which semiconductor elements having electrodes on the first and second surfaces facing each other are mounted on a circuit board in a plurality of layers. Because
Electrically connecting a protruding electrode to the first electrode on the first surface;
The second electrode on the second surface is connected to a metal piece that is electrically connected to the circuit board, and the first electrode and the second electrode are electrically connected by the protruding electrode between the plurality of semiconductor elements. By stacking the plurality of semiconductor elements,
After the semiconductor element is mounted on the semiconductor element mounting surface of the circuit board via the protruding electrode and the metal piece, an insulating resin material that transmits heat generated by the semiconductor element is surrounded by the semiconductor element and the metal piece. And provided on the semiconductor element mounting surface side integrally with the circuit board and the heat dissipation member that dissipates the heat,
It is characterized by that.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An electronic circuit device having a double-sided electrode semiconductor element and a method of manufacturing the electronic circuit device in an embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same component in each figure.
An electronic circuit device 201 of this embodiment shown in FIG. 1 is an electronic circuit device in which a semiconductor element 211 is mounted on a circuit board 215, and includes a protruding electrode 212, a metal piece 214, an insulating resin material 216, and a heat dissipation member 217. . The configuration of the electronic circuit device 201 will be described in further detail below.
The semiconductor element 211 is a driving semiconductor element that is used in a control system for driving current to a driving device such as a motor and generates heat and requires heat dissipation. In this embodiment, an IGBT (insulated gate bipolar transistor) 211 is used. -I and a diode 211-d. In the present embodiment, since the semiconductor element 211 is stacked as illustrated, the semiconductor element 211 includes the IGBT 211-i-1, the IGBT 211-i-2, the diode 211-d-1, and the diode 211-d-2. . Each semiconductor element 211 has a first surface 211a and a second surface 211b facing each other. The first electrode 222 is provided on the first surface 211a, and the second electrode 223 is provided on the second surface 211b. It has been. The first electrode 222 is formed with a protruding electrode 212 made of metal in a protruding shape by a forming method described later with reference to FIGS. In this embodiment, the surface of the protruding electrode 212 is plated with gold. Note that the example shown in FIG. 1 adopts a form in which a plurality of semiconductor elements 211 are stacked in the thickness direction.
[0020]
Reference numeral 213 denotes solder that is a metal-to-metal bonding material, and reference numeral 213a denotes high-temperature solder used for bonding the semiconductor element 211 that requires heat dissipation. In this example, the IGBT 211-i-1 and the diode 211-d- 1 and the metal piece 214 are used for joining. On the other hand, 213b is normally used solder used for joining with the copper electrode 215a on the circuit board 215.
The metal piece 214 is a conductive member that dissipates and diffuses the heat generated from the semiconductor element 211 and at the same time transmits an electrical signal sent from the semiconductor element 211 to the circuit board 215, and is a convex part that joins the circuit board 215. 214a. The circuit board 215 is a board that can be mounted on both sides. The above-described semiconductor element 211 is mounted on the semiconductor element mounting surface 215b, and the low-power semiconductor element is mounted on the component mounting surface facing the semiconductor element mounting surface 215b. The surface mount electronic component 218 configured by the above and the passive component 219 such as a resistor and a capacitor are soldered.
[0021]
The insulating resin material 216 surrounds the semiconductor element 211 and the metal piece 214 mounted on the semiconductor element mounting surface 215b of the circuit board 215 via the protruding electrode 212 and the metal piece 214, and A resin material that is integrally provided and transmits heat generated by the semiconductor element 211, and also has a role of insulating and physically protecting the semiconductor element 211. Therefore, the insulating resin material 216 molds the semiconductor element 211 and the metal piece 214 and comes into contact with the semiconductor element mounting surface 215b to be integrated with the circuit board 215.
The heat dissipating member 217 is an aluminum heat dissipating plate and dissipates heat generated by the semiconductor element 211 through the insulating resin material 216 provided on the outer surface of the insulating resin material 216.
The electronic circuit device 201 having such a structure has a circuit configuration shown in FIG. Each of “A”, “C”, “E”, “G”, and “K” shown in FIG. 2 is indicated by “A”, “C”, “E”, “G” shown in FIG. ”And“ K ”.
[0022]
A method for manufacturing the electronic circuit device 201 having the above-described structure will be described with reference to FIGS.
A plurality of the IGBTs 211-i and the diodes 211-d are formed in a lattice shape on the semiconductor wafer by a known method for forming a semiconductor integrated circuit, and as described above, on the first surface 211a and the second surface 211b. A first electrode 222 and a second electrode 223 are included. In the present embodiment, the first electrode 222 and the second electrode 223 are made of aluminum. In the first step, for example, the protruding electrode 212 is formed on the first electrode 222 formed on such a semiconductor wafer by a method described later with reference to FIGS. In the present embodiment, the protruding electrode 212 is also formed from an aluminum ball. In the next second step, nickel and gold plating are applied to all the portions made of aluminum, that is, the first electrode 222, the second electrode 223, and the protruding electrode 212 to form the protruding electrode 212 covered with gold. . The reason why nickel and gold plating are formed is that, as described above, in this example, the problem is that the protruding electrode is aluminum and soldering cannot be performed if aluminum is used, and at the same time, the first electrode 222 and the second electrode where the solder is aluminum. This is to obtain a function as a barrier metal that prevents a phenomenon in which the semiconductor element 211 is damaged by diffusing from 223 into the semiconductor element 211. In this embodiment, electroless nickel and gold plating are performed.
After the second step, the semiconductor element 211 formed in the wafer state is cut into individual semiconductor elements 211 by a dicing apparatus. The separated IGBT 211-i and diode 211-d are shown in FIG.
[0023]
In the next third step, the following operation is performed. First, the metal piece 214 is put into a 350 ° C. high temperature furnace maintained in a reducing atmosphere in a mixed atmosphere of nitrogen and hydrogen. Next, the melted high-temperature solder 213a is dropped on the semiconductor element joining portion 214b in the metal piece 214 in the high-temperature furnace. Next, in the high temperature furnace, as shown in FIG. 4, the separated IGBT 211-i and the diode 211-d are placed at the semiconductor element joining portion 214 b of the metal piece 214, and further, the IGBT 211-i The IGBT 211-i, the diode 211-d, and the metal piece 214 are relatively pressed so that no bubbles remain between the second electrodes 223 of the diode 211-d and the molten high-temperature solder 213a. In the present embodiment, the metal piece 214 is pressed in close contact with the IGBT 211-i and the diode 211-d in parallel. Next, while maintaining the close contact state, the metal piece 214, the IGBT 211-i, and the diode 211-d are cooled to solidify the high-temperature solder 213a. After the solidification, the metal piece 214 to which the IGBT 211-i and the diode 211-d are joined is returned to the atmosphere.
[0024]
In the present embodiment, since the semiconductor elements 211 are stacked as described above, in the next fourth step, as shown in FIG. 5, the IGBT 211-i and the diode 211- joined to the metal piece 214 by the high temperature solder 213a. The semiconductor element 211 and the stacked protruding electrode 212 are formed on the protruding electrode 212 formed on the semiconductor element 211 of d. Here, the above-mentioned laminated projecting electrode 212 formed by laminating a plurality of projecting electrodes 212 is referred to as a “stacking metal electrode” 221. The details of the manufacturing process of the metal electrode for lamination 221 will be described later with reference to FIGS.
[0025]
In the next fifth step, as shown in FIG. 6, the cream solder is printed on the copper electrode 215a formed on the circuit board 215, and as shown in FIG. 5, the semiconductor element 211, the metal electrode 221 for lamination, And the component 230 in which the metal piece 214 is integrally formed is placed at a mounting position on the semiconductor element mounting surface 215b of the circuit board 215. Next, the cream solder is melted by heating the component 230 and the circuit board 215, and then the cream solder is solidified by returning to room temperature, and then the metal electrode 221, the protruding electrode 212, and the metal piece 214 are laminated. The protrusion 214a is electrically and physically joined to the electrode 215a of the circuit board 215.
[0026]
In the next sixth step, as shown in FIG. 7, a semiconductor chip-like surface that does not require heat dissipation by using a normal surface mounting process on the surface mounting component mounting surface 215c facing the semiconductor element mounting surface 215b. The mounted electronic component 218 and the passive component 219 are joined to produce the mounted component 231.
[0027]
In the next seventh step, as shown in FIG. 8, in this embodiment, the component 230 is housed in the recess 232 with respect to the heat dissipation member 217 having the recess 232 and made of aluminum. The heat dissipation member 217 and the circuit board 215 are brought into close contact with each other so as to cover the concave portion 232. And in this state, it carries in into the metal mold | die 233 for shaping | molding heated by the heating apparatus 235 at 150 degreeC. Then, the insulating resin material 216 is poured into the space between the heat radiation member 217 and the circuit board 215, that is, the recess 232 by the transfer molding machine 234 by the transfer molding method. The insulating resin material 216 only needs to be a resin material that transmits heat generated by the semiconductor element 211. In this embodiment, a liquid thermosetting epoxy resin is used. The injected insulating resin material 216 is cured by the temperature of the mold 233 being heated. At this time, there is no generation of air voids in the insulating resin material 216 due to the pressure applied by the transfer molding machine 234, so that good insulation and heat dissipation can be obtained. After the insulating resin material 216 is cured, it is taken out from the mold 233, and the electronic circuit device 201 shown in FIG. 1 is completed.
[0028]
A method for forming the protruding electrode 212 on the first electrode 222 described above will be described with reference to FIGS. 9 to 11 show a method of forming the protruding electrode 212 on the first electrode 222 made of aluminum on the first surface 211 a of the semiconductor element 211. Here, reference numeral 250 denotes a bonding head that holds the metal ball 256 to be the protruding electrode 212, and reference numeral 251 denotes the metal ball via the bonding head 250 when the protruding electrode 212 is formed on the first electrode 222 by being connected to the bonding head 250. A pressing device that presses 256, a suction device 252 that is connected to the joining head 250 and sucks and holds the metal balls 256 on the joining head 250, and a 253 that is connected to the joining head 250 and forms the protruding electrode 212 on the first electrode 222. An ultrasonic vibration device 254 for causing ultrasonic vibration to act on the metal ball 256 is a heating stage that heats the semiconductor element 211 when the semiconductor element 211 is placed and the protruding electrode 212 is formed on the first electrode 222. , 255 are control devices that control the operation of each of these devices 250-254. In the present embodiment, the metal ball 256 is made of aluminum, and a suction hole 257 connected to the suction device 252 is formed in the center of the joining head 250. In addition, the opening portion of the suction hole 257 has a tapered portion 257 a for keeping the metal ball 256 at a fixed position and supporting the metal ball 256 reliably.
[0029]
In such a configuration, first, the semiconductor element 211 is fixed on the heating stage 254. The temperature condition of the heating stage 254 is set so that the surface temperature of the semiconductor element 211 is 150 ° C. to 300 ° C. Next, as shown in FIG. 10, the metal ball 256 is adsorbed and held on the tapered portion 257 a of the joining head 250 by the suction device 252. Next, with the pressing device 251, the bonding head 250 is lowered so that the metal ball 256 contacts the first electrode 222 on the semiconductor element 211, and the metal ball 256 is applied to the first electrode 222 at an appropriate load condition. Press at 258. For example, when the diameter of the metal ball 256 is 0.65 mm, the charging condition 258 is appropriately about 10 to 30 N. Further, the contact detection sensor installed in the bonding head 10 detects that the metal ball 256 has contacted the first electrode 222, and the ultrasonic vibration 259 is generated by the ultrasonic vibration device 253 from the moment of contact. And applied to the bonding head 250. In this embodiment, the frequency of the ultrasonic vibration 259 is 63.5 kHz, the output is 1 to 2 W, and the application time is 0.1 to 0.3 seconds. Metal bonding between the metal ball 256 and the first electrode 222 is generated by the action of the above-described load, heating, and ultrasonic vibration, and the bonding is performed and molded to form the protruding electrode 212. When the diameter of the metal ball 256 is 0.65 mm, the bonding strength is about 10 to 30N.
[0030]
Through the above steps, the formation of the protruding electrode 212 on the first electrode 222 on the semiconductor element 211 is completed as shown in FIG. As a next step, the protruding electrode 212 and the first electrode 222 are metal-plated so that the protruding electrode 212 made of aluminum can be soldered and to prevent foreign metals from entering the semiconductor element 211. . In this example, nickel and gold were plated by electroless plating. By the plating process, the surface of the protruding electrode 212 is covered with gold, and the gold-plated protruding electrode 212 that can be soldered is obtained. The first electrode 222 becomes the gold-plated first electrode 222 covered with gold plating.
[0031]
As described above, the metal plating is applied to the protruding electrode 212 and the first electrode 222 in the present embodiment, but this process may be omitted. That is, as shown in FIG. 12 and FIG. 13, in order to omit the metal plating step, a gold-plated metal ball 256-1 in which nickel and gold plating are formed by electrolysis on the metal ball 256 made of aluminum is used. Further, in order to obtain the effect of preventing the intrusion of dissimilar metals into the semiconductor element 211, a barrier metal 261 is formed inside the semiconductor element 211 and immediately below the first electrode 222. In this embodiment, TiN is used as the barrier metal 261. In addition, the operation of forming the protruding electrode 212 on the first electrode 222 with the gold-plated metal ball 256-1 is the same as described above.
In the method shown in FIGS. 12 and 13 using the gold-plated metal ball 256-1 and the barrier metal 261, the process of plating the semiconductor element 211 is not necessary, unlike the methods shown in FIGS. 9 to 11.
[0032]
Next, a method of forming the metal electrode for stacking 221 in the fourth step will be described.
By the same method as described with reference to FIGS. 9 and 10, as shown in FIGS. 14 and 15, a gold-plated metal ball 256-1 is placed on the gold-plated projecting electrode 212. To join. In this embodiment, as shown in FIG.
[0033]
Next, as shown in FIG. 1, for example, a step of bonding the second electrode 223 of the diode 211-d-2 on the protruding electrode 212 formed on the first electrode 222 of the diode 211-d-1 formed in the lower layer. This will be described with reference to FIGS. 16 and 17.
Similar to the above-described case, the lower semiconductor element 211-1 corresponding to the diode 211-d-1 is attached to the metal piece 214 by the high-temperature solder 213 a. Note that a gold-plated protruding electrode 212 is formed on the first electrode 222 of the semiconductor element 211-1. Preferably, the side surface 211c of the semiconductor element 211 perpendicular to the first surface 211a and the second surface 211b of the semiconductor element 211, in this case, the side surface 211c of the semiconductor element 211-1, is protected to protect the side surface 211c. Material 265 is applied. As the protective material 265, a junction coat resin is applied in this example. The protruding electrode 212 of the semiconductor element 211-1 and the gold-plated second electrode 223 of the upper semiconductor element 211-2 are bonded by the method including ultrasonic vibration described with reference to FIGS. 9 and 10. To do. The protective material 265 is also applied to the side surface of the semiconductor element 211-2.
Next, as shown in FIG. 17, the circuit board 215 is bonded to the protruding electrode 212 and the metal piece 214 of the semiconductor element 211-2 in the same manner as the operation described with reference to FIG. 6. After the cream solder is printed on the copper electrode 215a, a surface mounting technique is used in which the whole is heated and melted and bonded.
[0034]
According to the electronic circuit device 201 manufactured by the manufacturing method as described above, the electrical connection to the semiconductor element 211 is performed by the protruding electrode 212 or the like without using the conventional metal wire, so that the resistance and the floating inductance are reduced. In addition, the apparatus configuration can be reduced as compared with the conventional apparatus. Further, the semiconductor element 211 that generates heat, and the metal piece 214 to which the semiconductor element 211 is attached are molded with an insulating resin material 216 having a heat removal effect, the metal piece 214 is connected to the circuit board 215, and the insulating resin is used. Since the material 216 comes into contact with the semiconductor element mounting surface 215b of the circuit board 215, the heat generated by the semiconductor element 211 is transmitted through the insulating resin material 216 and dissipated from the heat radiating member 217, and the metal piece 214 and the insulating resin It is also transmitted to the circuit board 215 via the material 216 and is dissipated from the circuit board 215 as well. Therefore, it is possible to provide an electronic circuit device that is more excellent in heat dissipation than in the past.
[0035]
In the above-described embodiment, the metal piece 214 is L-shaped. However, the shape is not limited to this shape, and any shape may be used as long as the semiconductor element 211 and the circuit board 215 are electrically connected.
Further, the heat radiating member 217 has a shape having the recess 232 in the above-described embodiment, but is not limited to this shape.
In the above-described embodiment, the metal piece 214 and the semiconductor element 211 are electrically and physically connected by the high-temperature solder 213a, but may be connected by using the protruding electrode 212.
In the above-described embodiment, as described with reference to FIGS. 14 and 15, the semiconductor element 211 and the circuit board 215 are electrically connected by stacking the protruding electrodes 212 in a plurality of stages. It is not limited. However, the connection with a metal wire as in the conventional case is excluded.
[0036]
Further, in the above-described embodiment, an example in which the semiconductor element 211 is stacked in a plurality of layers as shown in FIG. 1 is taken as an example. However, as shown in FIG. 18, an electronic circuit device can be configured by one layer. .
Even in each of the modifications as described above, the above-described effects of the electronic circuit device 201 can be naturally obtained.
[0037]
【The invention's effect】
As described above in detail, according to the electronic circuit device of the first aspect of the present invention and the method of manufacturing the electronic circuit device of the second aspect, the electrical connection between the semiconductor element and the circuit board is made to the conventional wiring wire. By using a protruding electrode and a metal piece instead, stray inductance and conduction resistance can be reduced, and the circuit device can be reduced in size. Furthermore, the metal piece and the semiconductor element are molded with an insulating resin material, and the circuit board, the insulating resin material, and the heat dissipation member are integrated to increase heat dissipation from the semiconductor element as compared with the prior art. Can do.
[0038]
Further, when a plurality of semiconductor elements are stacked, the stray inductance and conduction resistance can be reduced as described above by connecting the stacked semiconductor elements with the protruding electrodes.
In addition, by performing gold plating on the first electrode and the second electrode of the semiconductor element and the protruding electrode, it is possible to perform solder bonding even when these materials are made of aluminum.
In addition, by providing a barrier metal immediately below the first electrode and the second electrode of the semiconductor element, it is not necessary to apply gold plating to the semiconductor element, particularly the first electrode and the second electrode.
In addition, by providing a protective material on the side surface of the semiconductor element, damage to the semiconductor element can be prevented in the bonding process of the semiconductor element.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electronic circuit device according to an embodiment of the present invention.
FIG. 2 is a circuit diagram of the electronic circuit device shown in FIG.
FIG. 3 is a view for explaining one step in the method of manufacturing the electronic circuit device shown in FIG. 1, and is a view showing a state in which a protruding electrode is formed on a semiconductor element.
4 is a view for explaining one step in the method of manufacturing the electronic circuit device shown in FIG. 1, and is a view showing a state in which a semiconductor element on which a protruding electrode is formed is attached to a metal piece. FIG.
5 is a view for explaining one step in the method of manufacturing the electronic circuit device shown in FIG. 1, and is a view showing a state in which semiconductor elements are stacked. FIG.
6 is a view for explaining one step in the method of manufacturing the electronic circuit device shown in FIG. 1, and is a view showing a state in which a circuit board is attached to the state shown in FIG. 5;
7 is a view for explaining one step in the method of manufacturing the electronic circuit device shown in FIG. 1, and is a view showing a state where electronic components are mounted on the circuit board of FIG.
8 is a view for explaining one step in the method of manufacturing the electronic circuit device shown in FIG. 1, and is a view showing a state where the mounted component shown in FIG. 7 is loaded in a mold.
9 is a view for explaining a process of forming a protruding electrode on an electrode of a semiconductor element in the method for manufacturing the electronic circuit device shown in FIG. 1, and showing a state in which a metal ball is held by a bonding head. is there.
10 is a view for explaining a step of forming a protruding electrode on an electrode of a semiconductor element in the method of manufacturing the electronic circuit device shown in FIG. 1, and showing a state in which the metal ball is pressed onto the electrode. It is.
11 is a view for explaining a step of forming a protruding electrode on an electrode of a semiconductor element in the method for manufacturing the electronic circuit device shown in FIG. 1, and is a view showing a state in which the protruding electrode is formed on the electrode.
12 is a view for explaining another process of forming a protruding electrode on an electrode of a semiconductor element in the method for manufacturing the electronic circuit device shown in FIG. 1; FIG.
13 is a view showing a state in which a protruding electrode is formed in the protruding electrode forming step shown in FIG. 12. FIG.
14 is a view for explaining a step of further forming a protruding electrode on the protruding electrode of the semiconductor element in the method of manufacturing the electronic circuit device shown in FIG. 1, and shows a state in which the metal ball is held by the bonding head. FIG.
15 is a view showing a state where protruding electrodes are formed in the protruding electrode forming step shown in FIG. 14;
16 is a view for explaining a step of further bonding a semiconductor element onto the protruding electrode of the semiconductor element in the method of manufacturing the electronic circuit device shown in FIG. 1, and another semiconductor element is held by the bonding head. It is a figure which shows a state.
17 is a view showing a state in which semiconductor elements are stacked in the step shown in FIG. 16;
FIG. 18 is a view showing a modification of the method for manufacturing the electronic circuit device shown in FIG. 1 and showing a case where there is only one semiconductor element.
FIG. 19 is a diagram showing a configuration of a conventional electronic circuit device.
[Explanation of symbols]
201 ... electronic circuit device, 211 ... semiconductor element, 211a ... first surface,
211b ... second surface, 211c ... side surface, 212 ... projection electrode, 214 ... metal piece,
215 ... Circuit board, 215b ... Semiconductor element mounting surface, 216 ... Insulating resin material,
217 ... Heat dissipation member, 222 ... First electrode, 223 ... Second electrode,
261 ... barrier metal, 265 ... protective material.

Claims (7)

回路基板と電気的に接続される金属片(214)と、
互いに対向する第1面及び第2面(211a、211b)に電極(222、223)を有し上記回路基板の半導体素子実装面(215b)と上記金属片との間に積層して配置されて上記回路基板に実装される複数の半導体素子(211)と、
上記第1面の第1電極(222)に電気的に接続される突起電極(212)と、を備え、ここで、
上記金属片には、上記半導体素子の上記第2面の第2電極(223)が電気的に接続され、
上記回路基板の半導体素子実装面には、上記突起電極が電気的に接続され、該突起電極を介して上記半導体素子の上記第1電極(222)と電気的に接続され、
上記積層された半導体素子同士間において上記突起電極は、上記第1電極及び上記第2電極を電気的に接続し、さらに、
上記半導体素子実装面(215b)に上記突起電極及び上記金属片を介して実装された上記半導体素子及び上記金属片を包囲してかつ上記回路基板と一体的に設けられ上記半導体素子が発する熱を伝達する絶縁樹脂材(216)と、
上記絶縁樹脂材の外表面に設けられ上記絶縁樹脂材を介して上記熱を放散する放熱部材(217)と、
を備えたことを特徴とする電子回路装置。
A metal piece (214) electrically connected to the circuit board;
The first surface and the second surface (211a, 211b) facing each other have electrodes (222, 223), and are disposed between the semiconductor element mounting surface (215b) of the circuit board and the metal piece. A plurality of semiconductor elements (211) mounted on the circuit board;
A protruding electrode (212) electrically connected to the first electrode (222) of the first surface, wherein:
A second electrode (223) on the second surface of the semiconductor element is electrically connected to the metal piece,
The protruding electrode is electrically connected to the semiconductor element mounting surface of the circuit board, and is electrically connected to the first electrode (222) of the semiconductor element via the protruding electrode,
Between the stacked semiconductor elements, the protruding electrode electrically connects the first electrode and the second electrode, and
The semiconductor element mounting surface (215b) surrounds the semiconductor element and the metal piece mounted via the protruding electrode and the metal piece, and is provided integrally with the circuit board and generates heat generated by the semiconductor element. An insulating resin material (216) for transmission;
A heat dissipating member (217) provided on the outer surface of the insulating resin material and dissipating the heat through the insulating resin material;
An electronic circuit device comprising:
上記第1電極、上記第2電極、及び上記突起電極は、アルミニウムにてなり、金メッキされている、請求項1記載の電子回路装置。  The electronic circuit device according to claim 1, wherein the first electrode, the second electrode, and the protruding electrode are made of aluminum and plated with gold. 上記第1電極、上記第2電極、及び上記突起電極は、アルミニウムにてなり、上記突起電極は、金メッキされており、上記半導体素子は、当該半導体素子内への異種金属の侵入を防止するバリア金属(261)を上記第1電極及び上記第2電極の直下に有する、請求項1記載の電子回路装置。  The first electrode, the second electrode, and the protruding electrode are made of aluminum, the protruding electrode is gold-plated, and the semiconductor element is a barrier that prevents foreign metal from entering the semiconductor element. The electronic circuit device according to claim 1, further comprising a metal (261) immediately below the first electrode and the second electrode. 上記半導体素子は、上記第1面及び上記第2面に直交する当該半導体素子の側面(211c)に、当該半導体素子を保護する保護材(265)を有する、請求項1から3のいずれかに記載の電子回路装置。  The said semiconductor element has a protective material (265) which protects the said semiconductor element in the side surface (211c) of the said semiconductor element orthogonal to the said 1st surface and the said 2nd surface, In any one of Claim 1 to 3 The electronic circuit device described. 互いに対向する第1面及び第2面(211a、211b)に電極(222、223)を有する半導体素子(211)を複数層にて回路基板(215)に実装してなる電子回路装置の製造方法であって、
上記第1面の第1電極(222)に突起電極(212)を電気的に接続し、
上記回路基板に電気的に接続される金属片(214)に、上記第2面の第2電極(223)を接続し、さらに複数の上記半導体素子間では上記突起電極にて上記第1電極及び上記第2電極を電気的に接続することで上記複数の半導体素子を積層し、
上記回路基板の半導体素子実装面(215b)に上記突起電極及び上記金属片を介して上記半導体素子を実装した後、該半導体素子が発する熱を伝達する絶縁樹脂材(216)を、該半導体素子及び上記金属片を包囲してかつ上記回路基板及び上記熱を放散する放熱部材(217)と一体的に上記半導体素子実装面側に設ける、
ことを特徴とする電子回路装置の製造方法。
A method of manufacturing an electronic circuit device, wherein a semiconductor element (211) having electrodes (222, 223) on a first surface and a second surface (211a, 211b) facing each other is mounted on a circuit board (215) in a plurality of layers. Because
Electrically connecting the protruding electrode (212) to the first electrode (222) on the first surface;
The second electrode (223) on the second surface is connected to the metal piece (214) electrically connected to the circuit board, and the first electrode and the projecting electrode are connected between the plurality of semiconductor elements. The plurality of semiconductor elements are stacked by electrically connecting the second electrodes,
After mounting the semiconductor element on the semiconductor element mounting surface (215b) of the circuit board via the protruding electrode and the metal piece, an insulating resin material (216) that transmits heat generated by the semiconductor element is formed on the semiconductor element. And provided on the semiconductor element mounting surface side integrally with the circuit board and the heat dissipating member (217) for dissipating the heat, surrounding the metal piece.
A method for manufacturing an electronic circuit device.
上記放熱部材は、上記絶縁樹脂材の外表面を包囲する凹形状を有する、請求項1から4のいずれかに記載の電子回路装置。 5. The electronic circuit device according to claim 1, wherein the heat dissipation member has a concave shape surrounding an outer surface of the insulating resin material . 上記放熱部材は、上記半導体素子及び上記金属片を包囲する凹形状を有する、請求項5記載の電子回路装置の製造方法。 6. The method of manufacturing an electronic circuit device according to claim 5, wherein the heat dissipation member has a concave shape surrounding the semiconductor element and the metal piece .
JP2002070401A 2002-03-14 2002-03-14 Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device Expired - Fee Related JP3935381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070401A JP3935381B2 (en) 2002-03-14 2002-03-14 Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070401A JP3935381B2 (en) 2002-03-14 2002-03-14 Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device

Publications (2)

Publication Number Publication Date
JP2003273319A JP2003273319A (en) 2003-09-26
JP3935381B2 true JP3935381B2 (en) 2007-06-20

Family

ID=29200979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070401A Expired - Fee Related JP3935381B2 (en) 2002-03-14 2002-03-14 Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device

Country Status (1)

Country Link
JP (1) JP3935381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123709B2 (en) 2014-01-31 2015-09-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147658A (en) * 2004-11-16 2006-06-08 Yaskawa Electric Corp Power module
JP2007116012A (en) * 2005-10-24 2007-05-10 Renesas Technology Corp Semiconductor device and power supply using same
JP5176276B2 (en) * 2006-01-24 2013-04-03 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP5003418B2 (en) * 2007-11-08 2012-08-15 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof
JP5511515B2 (en) * 2010-05-31 2014-06-04 株式会社日立製作所 Power converter
WO2014132425A1 (en) * 2013-02-28 2014-09-04 新電元工業株式会社 Electronic module and production method for same
CN104137259B (en) * 2013-02-28 2016-12-28 新电元工业株式会社 Electronic module and manufacture method thereof
CN104303289B (en) 2013-05-13 2017-10-24 新电元工业株式会社 Electronic module and its manufacture method
WO2016067393A1 (en) * 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
WO2016067383A1 (en) 2014-10-29 2016-05-06 新電元工業株式会社 Heat-dissipating structure
CN107078106B (en) 2014-10-29 2019-12-24 新电元工业株式会社 Heat radiation structure
JP6091035B2 (en) * 2014-10-29 2017-03-15 新電元工業株式会社 Heat dissipation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123709B2 (en) 2014-01-31 2015-09-01 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003273319A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP3923258B2 (en) Power control system electronic circuit device and manufacturing method thereof
JP4635564B2 (en) Semiconductor device
JP5975180B2 (en) Semiconductor module
JP4438489B2 (en) Semiconductor device
US8890310B2 (en) Power module package having excellent heat sink emission capability and method for manufacturing the same
US20170064808A1 (en) Electronic power module with enhanced thermal dissipation and manufacturing method thereof
JP4260263B2 (en) Semiconductor device
JP4254527B2 (en) Semiconductor device
US10763244B2 (en) Power module having power device connected between heat sink and drive unit
JP3935381B2 (en) Electronic circuit device having double-sided electrode semiconductor element and method of manufacturing the electronic circuit device
WO2020110170A1 (en) Semiconductor package and production method therefor, and semiconductor device
JP4967701B2 (en) Power semiconductor device
JP4526125B2 (en) High power semiconductor devices
CN111276447A (en) Double-side cooling power module and manufacturing method thereof
JP4784150B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4096741B2 (en) Semiconductor device
KR101994727B1 (en) Power module Package and Manufacturing Method for the same
CN113632214B (en) Semiconductor module and semiconductor device for the same
KR20180087330A (en) Metal slug for double sided cooling of power module
JP2010199505A (en) Electronic circuit device
JP7476540B2 (en) Semiconductor Device
JP2022053848A (en) Semiconductor device
JP4492257B2 (en) Semiconductor module and manufacturing method thereof
CN112786456A (en) Semiconductor package and related method
JP2004048084A (en) Semiconductor power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees