JP3935302B2 - Bearing protection structure - Google Patents

Bearing protection structure Download PDF

Info

Publication number
JP3935302B2
JP3935302B2 JP2000058135A JP2000058135A JP3935302B2 JP 3935302 B2 JP3935302 B2 JP 3935302B2 JP 2000058135 A JP2000058135 A JP 2000058135A JP 2000058135 A JP2000058135 A JP 2000058135A JP 3935302 B2 JP3935302 B2 JP 3935302B2
Authority
JP
Japan
Prior art keywords
bearing
outer ring
receiving member
disc spring
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000058135A
Other languages
Japanese (ja)
Other versions
JP2001246525A (en
Inventor
彰浩 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitamura Machinery Co Ltd
Original Assignee
Kitamura Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitamura Machinery Co Ltd filed Critical Kitamura Machinery Co Ltd
Priority to JP2000058135A priority Critical patent/JP3935302B2/en
Publication of JP2001246525A publication Critical patent/JP2001246525A/en
Application granted granted Critical
Publication of JP3935302B2 publication Critical patent/JP3935302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Units (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸受ハウジングの中に軸受を備え、軸受で軸を回転支持する構造における軸受保護構造に関する。
【0002】
【従来の技術】
最近の工作機械においては、高速化が著しく進んで高速加工技術が確立されつつある。そして、刃物の進歩とともに主軸の回転の高速化やX、Y、Z軸の各軸の送りの高速化が進んだ。主軸の回転の高速化と、X、Y、Z軸の各軸の送りの高速化は、軸受の高速回転を伴う。ここで、例えば、プログラムミス等により、主軸が回転中にワークと衝突した場合、機械の主要部で回転を支えている主軸の軸受が回転中に衝撃力を直接受ける。また、加工中に急激な負荷や荷重等の力が主軸にかかった場合、加工中に主軸の軸受が急激な負荷や荷重等の力を直接受ける。これらの衝撃力や急激な負荷が軸受にかかると、主軸頭は、主軸の軸受が破壊する等の大きなダメージを受けていた。主軸の軸受が損傷すると、主軸アセンブリとして軸受ハウジングと共に主軸頭一式を交換する必要があった。このため、工作機械の修理、復旧のため、工作機械を長時間停止させなければならなかった。更に、主軸頭の交換や取替の他に、工作機械停止のため作業ができなかったことによる費用負担が莫大になる等、工場側に及ぼす損失が大きかった。
【0003】
上述のように、従来の主軸支持構造においては、軸受にかかる衝撃力や急激な負荷を吸収し調整する事に対応していなかった。
【0004】
【発明が解決しようとする課題】
本発明は、軸受が急激な荷重や衝撃等の力を受けても、軸受が受けたそのような荷重や衝撃等の力を吸収する、いわばショックアブソーバーの役目を果たす緩衝手段を、例えば、軸受と軸受ハウジングの間に組入れ、主軸や軸受を保護することを目的とする。
【0005】
【課題を解決するための手段】
本発明による好適な解決手段は、請求項1に記載の軸受保持構造である。
【0006】
【発明の実施の形態】
本発明は、軸受ハウジングの中に軸受を備え、軸受で軸を回転支持する構造における軸受保護構造に関する。
【0007】
本発明の典型例においては、軸受ハウジングの中に軸受を備え、軸受で軸を回転支持、軸受ハウジングの中で軸受に緩衝手段を接触させ、軸受が軸の軸心方向に所定値以上の力を受けると、軸受が受けた力を複数の緩衝手段が吸収する。
【0008】
本発明の別の実施例においては、軸受ハウジングの中で複数の軸受に複数の皿バネを接触させ、複数の軸受が主軸の軸心方向に所定値以上の力を受けると、複数の軸受が受けた力を複数の皿バネが吸収する。
【0009】
上述のように構成することにより、複数の軸受は、所定値以上の力を受けても、破壊されずに保護される。例えば、従来は、主軸に対して定格荷重Fkg×1.2すなわち定格荷重Fよりも20%増加した荷重を設計値としていたのに対し、本発明によれば、複数の緩衝手段(皿バネ)を取り付けると、定格荷重F×1.5の荷重を設計値とすることができる。つまり、設計値を30%増加させることが可能となる。
【0010】
【実施例】
図1は、本発明の好適な実施例による軸受保護構造の概略図である。
【0011】
工作機械は、コラム22と、ベース24と、サドル26と、テーブル28と、主軸頭30を有する。コラム22は、ベース24上に配置されている。コラム22の中には、主軸頭30が配置されている。主軸頭30は、モータ(図示せず)を駆動することによりZ方向に移動する。サドル26は、ベッド24上に配置されている。サドル26は、モータ32を駆動することにより、Y方向に移動する。サドル26上には、テーブル28が配置されている。テーブル28は、モータ(図示せず)を駆動することにより、X方向に移動する。
【0012】
は、図に示される工作機械の主軸頭の一部を拡大した図である。
【0013】
主軸頭30(図)は、軸受ハウジング34と、主軸36と、軸受38、40、42、44と、緩衝手段60、62を有する。軸受ハウジング34の内周面には、軸受38、40、42、44が配置されている。軸受38、40、42、44は、主軸36を回転支持している。軸受38は、内輪38aと、外輪38bと、転動体38cを有する。軸受38は、内輪38aと外輪38bの間に転動体を介在させている。軸受40は、内輪40aと、外輪40bと、転動体40cを有する。軸受40は、内輪40aと外輪40bの間に転動体40cを介在させている。軸受42は、内輪42aと、外輪42bと、転動体42cを有する。軸受42は、内輪42aと外輪42bの間に転動体42cを介在させている。軸受44は、内輪44aと、外輪44bと、転動体44cを有する。軸受44は、内輪44aと外輪44bの間に転動体44cを介在させている。
【0014】
軸受ハウジング34の内周面には、軸受止め48、52、56が配置されている。軸受止め48は、軸受38と軸受40の間に配置されている。軸受止め48は、軸受38の外軸38bと軸受40の外輪40bに接触している。軸受止め52は、軸受40と軸受42の間に配置されている。軸受止め52は、軸受40の外輪40bと軸受42の外輪42bに接触している。軸受止め56は、軸受42と軸受44の間に配置されている。軸受止め56は、軸受42の外輪42bと軸受44の外輪44bに接触している。主軸36の外周面には、軸受止め46、50、54が配置されている。軸受止め46は、軸受38と軸受40の間に配置されている。軸受止め46は、軸受38の内輪38aと軸受40の内輪40aに接触している。軸受止め50は、軸受40と軸受42の間に配置されている。軸受止め50は、軸受40の内輪40aと軸受42の内輪42aに接触している。軸受止め54は、軸受42と軸受44の間に配置されている。軸受止め54は軸受42の内輪42aと軸受44の内輪44aに接触している。
【0015】
また、軸受ハウジング34の内周面には、凸部58が形成されている。凸部58は、軸受ハウジング34の内周面に沿って形成されている。さらに、軸受ハウジング34の内周面上には、複数の緩衝手段60、62が軸受44と凸部58の間に配置されている。
【0016】
緩衝手段60は、受け部材60aと、皿バネ60b、60c、60dを有する。受け部材60aは、皿バネ60bに取り付けられている。皿バネ60bは、皿バネ60cに取り付けられている。皿バネ60cは、皿バネ60dに取り付けられている。皿バネ60dは、凸部58に取り付けられている。また、受け部材60aは、軸受44の外輪44bに一定圧力をかけた状態で接触して配置されている。受け部材60aが力を受けると、受け部材60aが受けた力は皿バネ60b、60c、60dに伝わる。したがって、受け部材60aが受けた力は、皿バネ60b、60c、60dにより吸収される。緩衝手段62は、受け部材62aと、皿バネ62b、62c、62dを有する。受け部材62aは、皿バネ62bに取り付けられている。皿バネ62bは、皿バネ62cに取り付けられている。
皿バネ62cは、皿バネ62dに取り付けられている。皿バネ62dは、凸部58に取り付けられている。また、受け部材62aは、軸受44の外輪44bに一定圧力をかけた状態で接触して配置されている。受け部材62aが力を受けると、受け部材62aが受けた力は皿バネ62b、62c、62dに伝わる。したがって、受け部材62aが受けた力は、皿バネ62b、62c、62dにより吸収される。
【0017】
例えば、プログラムミスにより、主軸36に工具を取付けたまま加工中にワークWと主軸36が干渉し、主軸36が主軸36の軸心方向の向きYに所定値以上の力を受けた場合、軸受38、40、42、44は、主軸36の軸心方向の向きYに所定値以上の力を受ける。つまり、軸受38、40、42、44は、予め機械の加工能力に基づいて計算された軸受の推力Fkgより大きな力を受ける。主軸36が受けた所定値以上の力は、軸受38の内輪38aと、軸受止め46と、軸受40の内輪40aと、軸受止め50と、軸受42の内輪42aと、軸受止め54と、軸受44の内輪44aに伝わる。軸受38の内輪38aに伝わった所定値以上の力は、軸受38の転動体38cに伝わり、軸受38の外輪38b伝わる。軸受40の内輪40aに伝わった所定値以上の力は、軸受40の転動体40cに伝わり、軸受40の外輪40b伝わる。軸受42の内輪42aに伝わった所定値以上の力は、軸受42の転動体42cに伝わり、軸受42の外輪42b伝わる。軸受44の内輪44aに伝わった所定値以上の力は、軸受44の転動体44cに伝わり、軸受44の外輪44b伝わる。軸受38の外輪38bに伝わった力は、軸受止め48を介して軸受40の外輪40bに伝わる。軸受40の外輪40bに伝わった力は、軸受止め52を介して軸受42の外輪42bに伝わる。軸受42の外輪42bに伝わった力は、軸受止め56を介して軸受44の外輪44bに伝わる。このため、軸受38は、主軸36の軸心方向の向きYに移動する。軸受止め48は、主軸36の軸心方向の向きYに移動する。軸受40は、主軸36の軸心方向の向きYに移動する。軸受止め52は、主軸36の軸心方向の向きYに移動する。軸受42は、主軸36の軸心方向の向きYに移動する。軸受止め56は、主軸36の軸心方向の向きYに移動する。軸受44は、主軸36の軸心方向の向きYに移動する。ここで、緩衝手段60、62は、軸受44の外輪44bに所定の圧力をかけた状態で接触している。したがって、軸受38が受けた力は、軸受38の内輪38aと、軸受38の転動体38cと、軸受38の外輪38bと、軸受止め48と、軸受40の外輪40bと、軸受止め52と、軸受42の外輪42bと、軸受止め56と、軸受44の外輪44bを介して緩衝手段60、62に吸収される。このため、軸受38の損傷が防止される。軸受40が受けた力は、軸受40の内輪40aと、軸受40の転動体40cと、軸受40の外輪40bと、軸受止め52と、軸受42の外輪42bと、軸受止め56と軸受44の外輪44bを介して緩衝手段60、62に吸収される。このため、軸受40の損傷が防止される。軸受42が受けた力は、軸受42の内輪42aと、軸受42の転動体42cと、軸受42の外輪42bと、軸受止め56と、軸受44の外輪44bを介して緩衝手段60、62に吸収される。このため、軸受42の損傷が防止される。軸受44が受けた力は、軸受44の内輪44aと、軸受44の転動体44cと、軸受44の外輪44bを介して緩衝手段60、62に吸収される。このため、軸受44の損傷が防止される。つまり、軸受38、40、42、44が所定値以上の力を受けると、緩衝手段60の皿バネ60b、60c、60dと、緩衝手段62の皿バネ62b、62c、62dがダンパーの役目をなし、軸受38、40、42、44を破壊することなく、受けた力を吸収して軸受38、40、42、44と主軸36を保護する。尚、緩衝手段60、62は、軸受44の外輪44bに所定の圧力をかけた状態で接触しているため、主軸が回転中であっても、静止していても軸受38、40、42、44の損傷は防止される。
【0018】
【発明の効果】
本発明によれば、軸受が軸の軸心方向に急激な荷重や衝撃等の力を受けても、それらの荷重や衝撃等の力が複数の緩衝手段(皿バネ)により吸収されるため、軸受の損傷が防止されて軸受が保護される。
【図面の簡単な説明】
【図1】 本発明の好適な実施例による軸受保護構造の概略図。
【図】 図に示される工作機械の主軸頭の一部を拡大した図。
【符号の説明】
34 軸受ハウジング
38、40、42、44 軸受
60、62 緩衝手段
30 主軸頭
36 主軸
38a、40a、42a、44a 内輪
38b、40b、42b、44b 外輪
38c、40c、42c、44c 転動体
60a、62a 受け部材
60b、60c、60d、62b、62c、62d 皿バネ
[0001]
BACKGROUND OF THE INVENTION
The present invention is provided with a bearing in a bearing housing, to the bearing protective structure in the structure for rotatably supporting the main shaft in bearings.
[0002]
[Prior art]
In recent machine tools, the speed is remarkably advanced and high-speed machining technology is being established. With the advancement of blades, the speed of rotation of the main spindle and the speed of feeding of each axis of the X, Y, and Z axes have progressed. Increasing the rotation speed of the main shaft and increasing the feed speed of each of the X, Y, and Z axes involves high-speed rotation of the bearing. Here, for example, when the main shaft collides with the workpiece during rotation due to a program error or the like, the bearing of the main shaft that supports the rotation of the main part of the machine directly receives an impact force during the rotation. Further, when a force such as a sudden load or load is applied to the spindle during machining, the spindle bearing directly receives a force such as a sudden load or load during machining. When such an impact force or a sudden load is applied to the bearing, the spindle head suffered a large damage such as destruction of the spindle bearing. If the spindle bearing is damaged, the spindle assembly must be replaced with the bearing housing as the spindle assembly. For this reason, the machine tool had to be stopped for a long time in order to repair and restore the machine tool. Furthermore, in addition to the spindle head replacement and replacement, there was a large loss on the factory side, such as the huge burden of expenses due to the inability to work because the machine tool stopped.
[0003]
As described above, the conventional spindle support structure does not support absorbing and adjusting the impact force or a sudden load applied to the bearing.
[0004]
[Problems to be solved by the invention]
The present invention relates to a shock absorber that acts as a shock absorber so as to absorb a force such as a load or an impact received by the bearing even if the bearing receives a sudden load or an impact such as an impact. The purpose of this is to protect the main shaft and bearings.
[0005]
[Means for Solving the Problems]
A preferred solution according to the present invention is the bearing holding structure according to claim 1.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is provided with a bearing in a bearing housing, to the bearing protective structure in the structure for rotatably supporting the main shaft in bearings.
[0007]
In a typical embodiment of the present invention, comprises a bearing in a bearing housing, to rotate the support of the main shaft in bearings, is contacted with a buffer means to the bearing in the bearing housing, the bearing is a predetermined value in the axial direction of the main axis When receiving the above force, the plurality of buffer means absorb the force received by the bearing.
[0008]
In another embodiment of the present invention, contacting a plurality of disc springs in a plurality of bearings in the bearing housing, the plurality of bearing receives a force greater than a predetermined value in the axial direction of the main shaft, a plurality of bearings Multiple disc springs absorb the received force.
[0009]
By configuring as described above, the plurality of bearings are protected without being destroyed even when a force of a predetermined value or more is applied. For example, in the past, the rated load Fkg × 1.2, that is, a load increased by 20% from the rated load F was used as the design value, whereas according to the present invention, a plurality of buffer means (disc springs) are used. When is attached, a load with a rated load F × 1.5 can be set as a design value. That is, the design value can be increased by 30%.
[0010]
【Example】
FIG. 1 is a schematic view of a bearing protection structure according to a preferred embodiment of the present invention.
[0011]
The machine tool includes a column 22, a base 24, a saddle 26, a table 28, and a spindle head 30. The column 22 is disposed on the base 24. A spindle head 30 is disposed in the column 22. The spindle head 30 moves in the Z direction by driving a motor (not shown). The saddle 26 is disposed on the bed 24. The saddle 26 moves in the Y direction by driving the motor 32. A table 28 is arranged on the saddle 26. The table 28 moves in the X direction by driving a motor (not shown).
[0012]
Figure 2 is an enlarged view of a part of a spindle head of a machine tool shown in FIG.
[0013]
The spindle head 30 (FIG. 1 ) has a bearing housing 34, a spindle 36, bearings 38, 40, 42 and 44, and buffer means 60 and 62. Bearings 38, 40, 42, and 44 are disposed on the inner peripheral surface of the bearing housing 34. The bearings 38, 40, 42 and 44 support the main shaft 36 in rotation. The bearing 38 includes an inner ring 38a, an outer ring 38b, and a rolling element 38c. The bearing 38 has a rolling element interposed between the inner ring 38a and the outer ring 38b. The bearing 40 includes an inner ring 40a, an outer ring 40b, and a rolling element 40c. The bearing 40 has a rolling element 40c interposed between an inner ring 40a and an outer ring 40b. The bearing 42 includes an inner ring 42a, an outer ring 42b, and a rolling element 42c. The bearing 42 has a rolling element 42c interposed between the inner ring 42a and the outer ring 42b. The bearing 44 includes an inner ring 44a, an outer ring 44b, and a rolling element 44c. The bearing 44 has a rolling element 44c interposed between the inner ring 44a and the outer ring 44b.
[0014]
Bearing stoppers 48, 52, and 56 are arranged on the inner peripheral surface of the bearing housing 34. The bearing stopper 48 is disposed between the bearing 38 and the bearing 40. The bearing stopper 48 is in contact with the outer shaft 38 b of the bearing 38 and the outer ring 40 b of the bearing 40. The bearing stopper 52 is disposed between the bearing 40 and the bearing 42. The bearing stopper 52 is in contact with the outer ring 40 b of the bearing 40 and the outer ring 42 b of the bearing 42. The bearing stopper 56 is disposed between the bearing 42 and the bearing 44. The bearing stopper 56 is in contact with the outer ring 42 b of the bearing 42 and the outer ring 44 b of the bearing 44. Bearing stops 46, 50, 54 are arranged on the outer peripheral surface of the main shaft 36. The bearing stopper 46 is disposed between the bearing 38 and the bearing 40. The bearing stopper 46 is in contact with the inner ring 38 a of the bearing 38 and the inner ring 40 a of the bearing 40. The bearing stopper 50 is disposed between the bearing 40 and the bearing 42. The bearing stopper 50 is in contact with the inner ring 40 a of the bearing 40 and the inner ring 42 a of the bearing 42. The bearing stopper 54 is disposed between the bearing 42 and the bearing 44. The bearing stopper 54 is in contact with the inner ring 42 a of the bearing 42 and the inner ring 44 a of the bearing 44.
[0015]
A convex portion 58 is formed on the inner peripheral surface of the bearing housing 34. The convex portion 58 is formed along the inner peripheral surface of the bearing housing 34. Further, on the inner peripheral surface of the bearing housing 34, a plurality of buffer means 60 and 62 are disposed between the bearing 44 and the convex portion 58.
[0016]
The buffer means 60 includes a receiving member 60a and disc springs 60b, 60c, and 60d. The receiving member 60a is attached to the disc spring 60b. The disc spring 60b is attached to the disc spring 60c. The disc spring 60c is attached to the disc spring 60d. The disc spring 60d is attached to the convex portion 58. Further, the receiving member 60a is arranged in contact with the outer ring 44b of the bearing 44 in a state where a constant pressure is applied. When the receiving member 60a receives a force, the force received by the receiving member 60a is transmitted to the disc springs 60b, 60c, and 60d. Therefore, the force received by the receiving member 60a is absorbed by the disc springs 60b, 60c, and 60d. The buffer means 62 includes a receiving member 62a and disc springs 62b, 62c, and 62d. The receiving member 62a is attached to the disc spring 62b. The disc spring 62b is attached to the disc spring 62c.
The disc spring 62c is attached to the disc spring 62d. The disc spring 62d is attached to the convex portion 58. The receiving member 62a is disposed in contact with the outer ring 44b of the bearing 44 in a state where a constant pressure is applied. When the receiving member 62a receives a force, the force received by the receiving member 62a is transmitted to the disc springs 62b, 62c, and 62d. Accordingly, the force received by the receiving member 62a is absorbed by the disc springs 62b, 62c, and 62d.
[0017]
For example, when a workpiece is attached to the main shaft 36 due to a program error and the workpiece W interferes with the main shaft 36 during machining, and the main shaft 36 receives a force greater than a predetermined value in the direction Y in the axial direction of the main shaft 36, the bearing 38, 40, 42 and 44 receive a force of a predetermined value or more in the direction Y of the main shaft 36 in the axial direction. That is, the bearings 38, 40, 42, and 44 receive a force larger than the thrust Fkg of the bearing calculated in advance based on the machining capability of the machine. The force exceeding the predetermined value received by the main shaft 36 includes an inner ring 38a of the bearing 38, a bearing stopper 46, an inner ring 40a of the bearing 40, a bearing stopper 50, an inner ring 42a of the bearing 42, a bearing stopper 54, and a bearing 44. To the inner ring 44a. A force greater than or equal to a predetermined value transmitted to the inner ring 38 a of the bearing 38 is transmitted to the rolling elements 38 c of the bearing 38 and transmitted to the outer ring 38 b of the bearing 38. A force greater than or equal to a predetermined value transmitted to the inner ring 40 a of the bearing 40 is transmitted to the rolling element 40 c of the bearing 40 and transmitted to the outer ring 40 b of the bearing 40. A force greater than or equal to a predetermined value transmitted to the inner ring 42a of the bearing 42 is transmitted to the rolling elements 42c of the bearing 42 and transmitted to the outer ring 42b of the bearing 42. A force greater than a predetermined value transmitted to the inner ring 44a of the bearing 44 is transmitted to the rolling element 44c of the bearing 44 and transmitted to the outer ring 44b of the bearing 44. The force transmitted to the outer ring 38 b of the bearing 38 is transmitted to the outer ring 40 b of the bearing 40 via the bearing stopper 48. The force transmitted to the outer ring 40 b of the bearing 40 is transmitted to the outer ring 42 b of the bearing 42 via the bearing stopper 52. The force transmitted to the outer ring 42 b of the bearing 42 is transmitted to the outer ring 44 b of the bearing 44 through the bearing stopper 56. For this reason, the bearing 38 moves in the direction Y in the axial direction of the main shaft 36. The bearing stopper 48 moves in the direction Y in the axial direction of the main shaft 36. The bearing 40 moves in the direction Y in the axial direction of the main shaft 36. The bearing stopper 52 moves in the direction Y in the axial direction of the main shaft 36. The bearing 42 moves in the direction Y in the axial direction of the main shaft 36. The bearing stopper 56 moves in the direction Y in the axial direction of the main shaft 36. The bearing 44 moves in the direction Y in the axial direction of the main shaft 36. Here, the buffer means 60 and 62 are in contact with the outer ring 44b of the bearing 44 with a predetermined pressure applied. Therefore, the force received by the bearing 38 includes the inner ring 38a of the bearing 38, the rolling element 38c of the bearing 38, the outer ring 38b of the bearing 38, the bearing stopper 48, the outer ring 40b of the bearing 40, the bearing stopper 52, and the bearing. 42 is absorbed by the buffer means 60 and 62 via the outer ring 42 b of the bearing 42, the bearing stopper 56, and the outer ring 44 b of the bearing 44. For this reason, damage to the bearing 38 is prevented. The force received by the bearing 40 includes the inner ring 40a of the bearing 40, the rolling element 40c of the bearing 40, the outer ring 40b of the bearing 40, the bearing stopper 52, the outer ring 42b of the bearing 42, the bearing stopper 56, and the outer ring of the bearing 44. It is absorbed by the buffer means 60 and 62 through 44b. For this reason, damage to the bearing 40 is prevented. The force received by the bearing 42 is absorbed by the buffer means 60 and 62 via the inner ring 42 a of the bearing 42, the rolling element 42 c of the bearing 42, the outer ring 42 b of the bearing 42, the bearing stopper 56, and the outer ring 44 b of the bearing 44. Is done. For this reason, damage to the bearing 42 is prevented. The force received by the bearing 44 is absorbed by the buffer means 60 and 62 via the inner ring 44 a of the bearing 44, the rolling element 44 c of the bearing 44, and the outer ring 44 b of the bearing 44. For this reason, damage to the bearing 44 is prevented. That is, when the bearings 38, 40, 42, 44 receive a force greater than a predetermined value, the disc springs 60b, 60c, 60d of the buffer means 60 and the disc springs 62b, 62c, 62d of the buffer means 62 serve as a damper. The bearing 38, 40, 42, 44 and the main shaft 36 are protected by absorbing the received force without destroying the bearings 38, 40, 42, 44. Since the buffer means 60 and 62 are in contact with the outer ring 44b of the bearing 44 with a predetermined pressure applied, the bearings 38, 40, 42, Damage to 44 is prevented.
[0018]
【The invention's effect】
According to the present invention, the bearing even under the force of such sudden load or impact in the axial direction of the main shaft, the force thereof, and the like load or impact is absorbed by the plurality of buffer means (disc spring) , Bearing damage is prevented and the bearing is protected.
[Brief description of the drawings]
FIG. 1 is a schematic view of a bearing protection structure according to a preferred embodiment of the present invention.
[2] a partial enlarged view of the spindle head of a machine tool shown in FIG.
[Explanation of symbols]
34 Bearing housing 38, 40, 42, 44 Bearing 60, 62 Shock absorber 30 Main shaft head 36 Main shaft 38a, 40a, 42a, 44a Inner ring 38b, 40b, 42b, 44b Outer ring 38c, 40c, 42c, 44c Rolling elements 60a, 62a Member 60b, 60c, 60d, 62b, 62c, 62d Belleville spring

Claims (1)

軸受ハウジングの中に軸受を備え、軸受で、軸受の内輪に固定した主軸を回転支持し、軸受ハウジングに対して軸受の外輪が緩衝手段を介して所定の圧力をかけられた状態で設けられ、軸受の外輪が主軸の軸心方向に所定値以上の力を受けると、軸受の外輪が受けた力を緩衝手段によって吸収する構成にし、
軸受ハウジング(34)の内周面には、複数の軸受(38、40、42、44)が軸心方向に並べて配置されており、それらの軸受(38、40、42、44)の内輪(38a、40a、42a、44a)および外輪(38b、40b、42b、44b)の間にそれぞれ1つずつ内輪用および外輪用の軸受止め(46、48、50、52、54、56)が配置されており、
軸受(38、40、42、44)の内輪(38a、40a、42a、44a)とそれらの間に配置された内輪用の軸受止め(46、50、54)は、主軸に対して固定されており、軸受(38、40、42、44)の外輪(38b、40b、42b、44b)とそれらの間に配置された外輪用の軸受止め(48、52、56)は、そのような軸受(38、40、42、44)の内輪(38a、40a、42a、44a)とそれらの間に配置された内輪用の軸受止め(46、50、54)に対して、軸心方向に相対的に移動可能になっており、
さらに、軸受ハウジング(34)の内周面には、凸部(58)が形成されており、その凸部(58)と軸受(44)との間に第1及び第2緩衝手段(60、62)が配置されており、
第1緩衝手段(60)は、第1受け部材(60a)と、第1、第2及び第3皿バネ(60b、60c、60d)を有し、その第1受け部材(60a)は、第1皿バネ(60b)に取り付け、その第1皿バネ(60b)は、第2皿バネ(60c)に取り付け、その第2皿バネ(60c)は、第3皿バネ(60d)に取り付け、その第3皿バネ(60d)は、凸部(58)に取り付け、第1受け部材(60a)は、軸受(44)の外輪(44b)に一定圧力をかけた状態で接触して配置されており、第1受け部材(60a)が力を受けると、その第1受け部材(60a)が受けた力は、第1、第2及び第3皿バネ(60b、60c、60d)に伝わり、第1受け部材(60a)が受けた力は、第1、第2及び第3皿バネ(60b、60c、60d)により吸収され、
第2緩衝手段(62)は、第2受け部材(62a)と、第1、第2及び第3皿バネ(62b、62c、62d)を有し、第2受け部材(62a)は、第4皿バネ(62b)に取り付け、その第4皿バネ(62b)は、第5皿バネ(62c)に取り付け、その第5皿バネ(62c)は、第6皿バネ(62d)に取り付け、その第6皿バネ(62d)は、凸部(58)に取り付け、第2受け部材(62a)は、軸受(44)の外輪(44b)に一定圧力をかけた状態で接触して配置されており、第2受け部材(62a)が力を受けると、その第2受け部材(62a)が受けた力は、第4、第5及び第6皿バネ(62b、62c、62d)に伝わり、第2受け部材(62a)が受けた力は、第4、第5及び第6皿バネ(62b、62c、62d)により吸収されることを特徴とする軸受保護構造。
A bearing is provided in the bearing housing, the main shaft fixed to the inner ring of the bearing is rotatably supported by the bearing, and the outer ring of the bearing is provided with a predetermined pressure applied to the bearing housing via the buffering means, When the outer ring of the bearing receives a force of a predetermined value or more in the axial direction of the main shaft, the force received by the outer ring of the bearing is absorbed by the buffer means,
A plurality of bearings (38, 40, 42, 44) are arranged in the axial direction on the inner peripheral surface of the bearing housing (34), and inner rings ( 38, 40, 42, 44) of these bearings (38, 40, 42, 44) are arranged. 38a, 40a, 42a, 44a) and outer ring (38b, 40b, 42b, 44b) , one inner ring and one outer ring bearing stop ( 46, 48, 50, 52, 54, 56) are arranged respectively. And
The inner rings (38a, 40a, 42a, 44a) of the bearings (38, 40, 42, 44) and the bearing stops (46, 50, 54) for the inner rings arranged between them are fixed to the main shaft. And the outer ring (38b, 40b, 42b, 44b) of the bearing (38, 40, 42, 44) and the bearing stop (48, 52, 56) for the outer ring arranged between them are such bearings ( 38, 40, 42, 44) relative to the inner ring (38a, 40a, 42a, 44a) and the inner ring bearing stopper (46, 50, 54) disposed between them. It ’s movable,
Further, a convex portion (58) is formed on the inner peripheral surface of the bearing housing (34), and the first and second buffering means (60, 60) are provided between the convex portion (58) and the bearing (44). 62) is arranged,
The first buffer means (60) has a first receiving member (60a) and first, second and third disc springs (60b, 60c, 60d), and the first receiving member (60a) The first disc spring (60b) is attached to the second disc spring (60c), and the second disc spring (60c) is attached to the third disc spring (60d). The third disc spring (60d) is attached to the convex portion (58), and the first receiving member (60a) is arranged in contact with the outer ring (44b) of the bearing (44) in a state where a constant pressure is applied. When the first receiving member (60a) receives a force, the force received by the first receiving member (60a) is transmitted to the first, second and third disc springs (60b, 60c, 60d), and the first The force received by the receiving member (60a) is the first, second and third disc springs (60b, 60c, 60d). Is absorbed by,
The second buffer means (62) has a second receiving member (62a) and first, second and third disc springs (62b, 62c, 62d), and the second receiving member (62a) is a fourth receiving member (62a). It is attached to the disc spring (62b), its fourth disc spring (62b) is attached to the fifth disc spring (62c), its fifth disc spring (62c) is attached to the sixth disc spring (62d), and its The 6 disc spring (62d) is attached to the convex portion (58), and the second receiving member (62a) is arranged in contact with the outer ring (44b) of the bearing (44) in a state where a constant pressure is applied, When the second receiving member (62a) receives a force, the force received by the second receiving member (62a) is transmitted to the fourth, fifth and sixth disc springs (62b, 62c, 62d), and the second receiving member. The force received by the member (62a) is applied to the fourth, fifth and sixth disc springs (62b, 62c, 62d). Bearing protective structure, characterized in that it is absorbed Ri.
JP2000058135A 2000-03-03 2000-03-03 Bearing protection structure Expired - Fee Related JP3935302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058135A JP3935302B2 (en) 2000-03-03 2000-03-03 Bearing protection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058135A JP3935302B2 (en) 2000-03-03 2000-03-03 Bearing protection structure

Publications (2)

Publication Number Publication Date
JP2001246525A JP2001246525A (en) 2001-09-11
JP3935302B2 true JP3935302B2 (en) 2007-06-20

Family

ID=18578776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058135A Expired - Fee Related JP3935302B2 (en) 2000-03-03 2000-03-03 Bearing protection structure

Country Status (1)

Country Link
JP (1) JP3935302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960346B1 (en) * 2011-12-13 2019-03-21 두산공작기계 주식회사 A high speed spindle assembly for a machining center

Also Published As

Publication number Publication date
JP2001246525A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
US7024740B2 (en) Rotating table apparatus
US8132991B2 (en) Protection device for a motor spindle
KR101713202B1 (en) Grinding machine
US9682452B2 (en) Damping apparatus
JP5493167B2 (en) Spindle device and machine tool equipped with the same
KR102013100B1 (en) Grinder holder for shock absorption of nc machining center
JP3935302B2 (en) Bearing protection structure
US5820272A (en) Bearing structure for a rotating shaft
WO2017022798A1 (en) Combined ball bearing, main spindle device, and machine tool
JP5581885B2 (en) Spindle device and machine tool equipped with the same
US3733940A (en) Lathes
JP2014050958A (en) Main spindle device, and machine tool provided with the same
JP5233517B2 (en) Spindle device and machine tool equipped with the same
JP5569605B2 (en) Spindle device and machine tool equipped with the same
JP2526152Y2 (en) Relief structure of processing machine
CN110405511A (en) A kind of pre-stretching structure eliminating screw rod thermal stretching and influencing
JP4206880B2 (en) Rotating shaft headstock module device and rotating shaft headstock
JPH0544707A (en) Main spindle clamp mechanism for machine tool
JP3757604B2 (en) Spindle device
JPS61252044A (en) Rotary body having vibration insulating effect
JP2000308923A (en) Gear polishing device
JP2010052099A (en) Main spindle device and machine tool equipped with the same
JPH1177459A (en) Main spindle head moving type machine tool
JP4788132B2 (en) Grinding wheel apparatus and grinding machine equipped with the same
KR20040063437A (en) Bearing protection structure of high-speed principal axis of automatic tool exchange type

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees