JP3934697B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP3934697B2
JP3934697B2 JP31658695A JP31658695A JP3934697B2 JP 3934697 B2 JP3934697 B2 JP 3934697B2 JP 31658695 A JP31658695 A JP 31658695A JP 31658695 A JP31658695 A JP 31658695A JP 3934697 B2 JP3934697 B2 JP 3934697B2
Authority
JP
Japan
Prior art keywords
film
protective film
nitrogen
gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31658695A
Other languages
Japanese (ja)
Other versions
JPH08212533A (en
Inventor
雄一 瀬田
裕二 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP31658695A priority Critical patent/JP3934697B2/en
Publication of JPH08212533A publication Critical patent/JPH08212533A/en
Application granted granted Critical
Publication of JP3934697B2 publication Critical patent/JP3934697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は磁気記録媒体に係り、特に、通常の使用条件下のみならず、高温高湿度条件下においても優れた耐久性を示す薄膜型磁気記録媒体に関するものである。
【0002】
【従来の技術】
薄膜型磁気記録媒体は、通常、磁性金属又はそれらの合金をメッキ、蒸着又はスパッタリング法等により、非磁性基板上に被着することにより磁性層を形成して製造される。
【0003】
ところで、磁気記録媒体は、実使用時においては、磁気ヘッドと磁気記録媒体との摺動によって摩耗損傷を受け、この結果、摩擦係数の上昇や磁気特性上の劣化を起こす。この欠点を解決する方法として、磁性層上に保護膜や潤滑膜を設けることが提案され、既に実用化されている。
【0004】
従来、保護膜としては炭素膜、酸化物膜、炭化物膜、窒化物膜又はほう化物膜などが用いられている。また、潤滑膜を形成する潤滑剤としては、液体潤滑剤と固体潤滑剤があるが、一般には、例えば、パーフルオロポリエーテルや高級脂肪酸又はその金属塩などが用いられている。
【0005】
【発明が解決しようとする課題】
磁気記録媒体の実使用時において、ディスク媒体は停止状態から急速に回転加速され、これに伴い、浮上ヘッドスライダに浮力が与えられてヘッドは浮上する。使用後に電源が切断されると、ディスク媒体を回転させているモータが停止し、ヘッドと媒体とが物理的に接触を起こす。このような動作を繰り返し起こさせて耐久性を調べる試験をコンタクト・スタート・ストップテスト(以下「CSSテスト」と略す。)と呼ぶ。このCSSテストにおいて、従来の磁気記録媒体では、CSSの回数を重ねるにつれて摩擦係数が増加し、摩耗により表面に損傷を与えたり、なんらかの原因でヘッドスライダーに浮力が働かず、高速回転中でも摺動し、ヘッド及び媒体が破壊するヘッドクラッシュという現象を生ずるという問題がある。
【0006】
また、最近では、高温高湿状態でCSSテストを行い、その特性を評価することが行われている。一般に、高温高湿状態のCSSは、通常の室温、常湿環境での評価より厳しく、例えば、ヘッドがディスク媒体にはりつく、いわゆる吸着状態が発生したり、摩耗の発生が通常の環境より早いCSS回数で生じたりする。この摩耗を抑えるために潤滑膜の厚さを厚くすることが考えられるが、この場合には、ヘッドとディクス媒体との間にメニスカスが形成され、吸着が発生しやすくなるという不具合がある。
【0007】
本発明は上記の問題点を解決するためになされたものであり、通常の使用条件下のみならず、高温高湿度条件下においても、摩擦係数の大幅な増加を防ぎ、使用環境にかかわらず長年月の使用に耐える磁気記録媒体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の磁気記録媒体は、非磁性基板上に強磁性金属薄膜が形成されると共に、該強磁性金属薄膜上に保護膜が形成されてなる磁気記録媒体において、該保護膜は、窒素を含有するカーボン膜であり、かつ、該保護膜中の窒素濃度が保護膜の厚さ方向に異なり、基板側の層の窒素濃度よりも表面側の層の窒素濃度が高いことを特徴とする。
【0009】
窒素をカーボン保護膜中に混入させることによる効果は耐久性の改善、特に高温高湿の状況下でのCSSライフの改善にある。
【0010】
現在、保護膜として一般に使用されるのは、水素化カーボン膜である。この膜は、通常の環境下でのCSS耐久性には優れているが、高温高湿下では、その原因は不明であるが性能が落ちる。しかし、カーボン中に窒素を含有させる、或いは、水素化カーボン中に窒素を含有させると、高温高湿下でのCSS耐久性が向上する。この原因の詳細は明らかではないが、保護膜表面の窒素と潤滑層との相互作用が強まることによるものと推定される。
【0011】
しかしながら、保護膜の全膜厚に均等に窒素を混合させた場合、CSS耐久性の向上に最も効果のある窒素濃度の範囲では、膜全体の強度が不足する。これは窒素の濃度を増すに従って、膜の弾性率が低下するためと推定される。このため、かえってCSS耐久性が低下する結果となる。
【0012】
本発明においては、窒素化保護膜のCSS耐久性を最も効率的に発揮させるべく、保護膜の表面側の層のみに窒素を、そのCSS耐久性の向上に有効な範囲内で存在させ、保護膜の基板側の層では、膜強度の低下を引き起こす窒素濃度を少なく或いはゼロとする。
【0013】
これにより、保護膜の強度を高く維持した上で、通常の使用条件下のみならず、高温高湿度条件下においても優れたCSS耐久性を示す磁気記録媒体が提供される。
【0014】
本発明の磁気記録媒体においては、CSS耐久性の面から、保護膜の表面側の層の窒素濃度が4〜30原子%であり、基板側の層の窒素濃度が0〜4原子%であることが好ましい。また、膜特性の面から保護膜の表面側の層の酸素濃度が5原子%以下であることが好ましい。
【0015】
【発明の実施の形態】
以下に、本発明につき更に詳細に説明する。
【0016】
まず、本発明における保護膜の形成方法について説明する。
【0017】
本発明において、カーボン質保護膜中に窒素を混入させる方法としては、保護膜をスパッタリングにより形成するに当り、スパッタガス(通常はArのような不活性ガスを用いる。)中に窒素ガス、一酸化窒素ガス、二酸化窒素ガス、アンモニアガス等の窒素含有ガスを導入する方法、或いは、空気のような窒素ガス含有の混合ガスを導入する方法が挙げられる。また、予め窒素を含有させたカーボンターゲットを用いることもできる。これらのうち安価で毒性がなく、可燃性もない窒素ガスを用いる方法が工業上有利である。
【0018】
なお、窒素化カーボン膜の形成に当っては、スパッタガス中に水素ガスや炭化水素ガスを同時に混入させることにより、水素化かつ窒素化したカーボン膜を形成することもできる。また、窒素ガス含有の混合ガスとして空気を用いることで、窒素化かつ酸化したカーボン膜を、更に水素ガスを混入することで窒素化、水素化かつ酸化したカーボン膜を形成することができる。
【0019】
これらの場合、スパッタガス中の空気の濃度が高くなると形成されるカーボン膜中の酸素濃度も高くなるが、膜中の酸素濃度が高くなりすぎると膜の特性が劣化する。よって、スパッタガス中の空気濃度は、形成されるカーボン膜の表面側の層の酸素濃度が1〜7原子%程度、好ましくは5原子%以下となるように定めるのが望ましい。
【0020】
本発明においては、保護膜としてこのような窒素化カーボン膜を形成するに当り、保護膜の厚さ方向で窒素濃度が異なり、保護膜の表面側の層の窒素濃度が、保護膜の基板側の層(磁性層上に直接保護膜を形成する場合には、磁性層との界面側の層)の窒素濃度よりも高い窒素化カーボン膜を形成する。
【0021】
このように窒素濃度を保護膜の表面側と基板側とで変化させる方法としては、カーボン膜をスパッタリング法で形成するに当り、スパッタガスの雰囲気を分離可能な2つ以上のチャンバーにそれぞれカーボンターゲットを設置し、各チャンバー内のスパッタガスの窒素含有量を変え、窒素濃度の低いスパッタガス雰囲気でスパッタした後、窒素濃度の高いスパッタガス雰囲気でスパッタするように、基板を順次の次のチャンバーに移動させる。
【0022】
この場合、真空状態を破らない連続真空状態で、低濃度窒素化カーボン膜と高濃度窒素化カーボン膜とを積層形成することが2層間付着性を良好に保つ上で好ましい。また、2つのチャンバー間の分離は完全でなくとも良く、この場合には、窒素濃度が膜の厚さ方向に連続的に変化する窒素化カーボン膜が形成される。
【0023】
なお、チャンバー間を移動させる他、バルブの切り換えにより、一つのチャンバー内において、窒素濃度の低いスパッタガスを送給した後、窒素濃度の高いスパッタガスを送給することによっても、本発明に係る保護膜を形成することができる。
【0024】
このようにして形成される保護膜の表面側の層の窒素濃度は、Auger電子分光装置による表面窒素濃度の測定値で4〜30原子%の範囲、特に5〜20原子%の範囲であることが好ましい。この窒素濃度が4原子%未満であると、窒素混入による耐久性改善の効果が顕著ではなく、また、30原子%より多い場合は保護膜が脆くなり、耐久性がかえって低下する。
【0025】
一方、保護膜の基板側の層の窒素濃度は、保護膜の強度の面から0〜4原子%であることが好ましい。
【0026】
本発明においては、特に、保護膜は、窒素濃度0〜4原子%の窒素化カーボン膜を厚さ100〜200Åに形成した後、窒素濃度4〜30原子%の窒素化カーボン膜を厚さ50〜150Åに形成し、合計で150〜300Å程度の保護膜を形成するのが好ましい。
【0027】
なお、本発明において、非磁性基板としては特に制限はなく、通常、無電解めっき法により形成したニッケル−リン層を設けたアルミニウム合金板が用いられるが、その他、銅、チタン等の金属基板、ガラス基板、セラミック基板、炭素質基板又は樹脂基板を用いることもできる。
【0028】
このような非磁性基板の表面には、下地層として通常の場合、クロムをスパッタリングにより形成する。このCr下地層の膜厚は通常50〜2000Åの範囲とされる。
【0029】
基板のCr下地層上に形成する強磁性金属薄膜よりなる磁性層は、無電解めっき、スパッタリング、蒸着等の方法によって形成される。この磁性層としては、Co−P,Co−Ni−P,Co−Ni−Cr,Co−Cr−Ta,Co−Ni−Pt,Co−Cr−Pt,Co−Cr−Pt−Ta系合金等の強磁性金属薄膜が形成され、その膜厚は通常300〜700Å程度とされる。
【0030】
本発明においては、この磁性層上に上述の方法に従って、保護膜を形成した後は、通常の場合、パーフルオロポリエーテル等の潤滑剤を用いて、厚さ10〜30Å程度の潤滑膜を形成する。
【0031】
【実施例】
以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えなり限り以下の実施例により限定されるものではない。
【0032】
実施例1〜8
表面の平均粗さが50〜60Åの直径3.5インチのアルミニウム合金製基板上に、スパッタリング法によりクロム下地層(厚さ400Å)、コバルト合金磁性層(厚さ500Å)を形成し、次に保護膜として、水素化カーボン膜を150Åの厚さに形成し、引き続き隣接した別チャンバー内で、水素化窒素化カーボン膜を50Åの厚さに形成した。水素化カーボン膜は5μbarのスパッタ圧力で、Arガスに表1に示す割合で水素ガスを混合させた混合ガスをスパッタガスとして、カーボンターゲットを用いてスパッタリングすることにより形成した。窒素化水素化カーボンは同じく5μbarのスパッタ圧力で、Arガスに表1に示す割合で水素ガス及び窒素ガスを混合した混合ガスをスパッタガスとして、カーボンターゲットを用いてスパッタリングすることにより形成した。
【0033】
なお、実施例7,8においては、この窒素化水素化カーボン膜の形成に当り、表1に示す酸素ガス分率となるように更に空気を混合して、窒素化水素化酸化カーボン膜を形成した。
【0034】
この窒素化水素化カーボン膜上(或いは窒素化水素化酸化カーボン膜)に、パーフルオロポリエーテルの液体潤滑剤の膜厚を20Åの厚さに形成した。
【0035】
得られたディスクについて、保護膜中の窒素量をAuger電子分光装置を用いて求めた。その結果、保護膜表面にはカーボンと窒素のみが検出され、感度を考慮して求めた窒素濃度は表1に示す通りであった。そのまま表面をArイオンでたたきながらエッチングし、深さ方向のプロファイルを求めた。窒素原子は磁性層界面側では検出されなかった。
【0036】
なお、実施例7,8のディスクについて、保護膜表面の酸素濃度をAuger電子分光装置により測定したところ、表1に示す値であった。
【0037】
また、得られたディスクを用いてCSS試験を行った。ヘッドには、押し付け荷重5gのAl23 ・TiCスライダの薄膜ヘッドを用いた。ディスクを4500rpmで5秒間回転させた後、電源を切って25秒間放置するのをCSS1サイクルとした。試験中の環境は常温常湿(25℃、40%)で開始し、CSS2000サイクル後、昇温、昇湿して、60℃、80%の雰囲気でCSSを更に2000サイクル行った。その後、降温、降湿し、常温常湿に戻して試験を継続して行った。以降、CSSサイクル2000回ごとに、試験環境を25℃、40%と60℃、80%とで交互に変化させた。試験サイクルはCSS20000回とし、CSS20000回後の摩擦係数を測定した。また、試験後にディスク表面の傷、汚れの有無を表面観察した。
【0038】
結果を表1に示す。
【0039】
比較例1〜3
実施例1と同様の方法により下地層及び磁性層を作製した後、Arガスに表1に示す割合で窒素ガス及び水素ガスを混合した混合ガスをスパッタガスとして、膜の厚さ方向で均一な窒素濃度を持つ水素化窒素化カーボン膜の保護膜を厚さ200Åに形成した。その後、実施例1と同様にパーフルオロポリエーテルの潤滑膜を形成した。
【0040】
得られたディスクについて、実施例1と同様にして保護膜中の窒素濃度の測定及びCSS試験を行い、結果を表1に示した。
【0041】
比較例4,5
実施例1と同様の方法により下地層及び磁性層を作製した後、Arガスに表1に示す割合で水素ガスを混合した混合ガスをスパッタガスとして、水素化カーボン膜の保護膜を厚さ200Åに形成した。その後、実施例1と同様にパーフルオロポリエーテルの潤滑膜を形成した。
【0042】
得られたディスクについて、実施例1と同様にして保護膜中の窒素濃度の測定及びCSS試験を行い、結果を表1に示した。
【0043】
【表1】

Figure 0003934697
【0044】
表1より、本発明によれば、通常の使用条件下のみならず、高温高湿条件下においても摩擦係数の大幅な増加を防ぎ、使用環境にかかわらず長年月の使用に耐える磁気記録媒体が得られることが明らかである。
【0045】
【発明の効果】
以上詳述した通り、本発明の磁気記録媒体によれば、通常の使用条件下のみならず、高温高湿度条件下においても優れた耐久性を示す磁気記録媒体が提供される。
【0046】
また本発明によれば、より一層耐久性に優れた磁気記録媒体を得ることができる。
【0047】
また本発明によれば、高特性の磁気記録媒体を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic recording medium, and more particularly to a thin film type magnetic recording medium exhibiting excellent durability not only under normal use conditions but also under high temperature and high humidity conditions.
[0002]
[Prior art]
A thin-film magnetic recording medium is usually manufactured by forming a magnetic layer by depositing a magnetic metal or an alloy thereof on a nonmagnetic substrate by plating, vapor deposition, sputtering, or the like.
[0003]
Incidentally, in actual use, the magnetic recording medium is worn and damaged by sliding between the magnetic head and the magnetic recording medium. As a result, the friction coefficient is increased and the magnetic characteristics are deteriorated. As a method for solving this drawback, it has been proposed to provide a protective film or a lubricating film on the magnetic layer, which has already been put into practical use.
[0004]
Conventionally, as a protective film, a carbon film, an oxide film, a carbide film, a nitride film, a boride film, or the like is used. The lubricant that forms the lubricating film includes a liquid lubricant and a solid lubricant. For example, perfluoropolyether, higher fatty acid, or a metal salt thereof is generally used.
[0005]
[Problems to be solved by the invention]
During actual use of the magnetic recording medium, the disk medium is rapidly rotated and accelerated from the stopped state, and accordingly, the flying head slider is given buoyancy and the head floats. When the power is turned off after use, the motor that rotates the disk medium stops and the head and the medium are brought into physical contact. A test in which such an operation is repeated to check durability is referred to as a contact start / stop test (hereinafter abbreviated as “CSS test”). In this CSS test, with conventional magnetic recording media, the friction coefficient increases as the number of CSS is increased, the surface is damaged due to wear, the buoyancy does not act on the head slider for some reason, and it slides even during high-speed rotation. There is a problem in that the phenomenon of a head crash that destroys the head and the medium occurs.
[0006]
Recently, a CSS test is performed in a high temperature and high humidity state to evaluate the characteristics. In general, a CSS in a high temperature and high humidity state is more strict than an evaluation in a normal room temperature and normal humidity environment. For example, the head sticks to a disk medium, a so-called adsorption state occurs, or wear occurs faster than a normal environment. It may occur at times. In order to suppress this wear, it is conceivable to increase the thickness of the lubricating film, but in this case, a meniscus is formed between the head and the disk medium, and there is a problem that adsorption is likely to occur.
[0007]
The present invention has been made to solve the above-mentioned problems, and prevents a significant increase in the coefficient of friction not only under normal use conditions but also under high temperature and high humidity conditions. An object of the present invention is to provide a magnetic recording medium that can withstand the use of the moon.
[0008]
[Means for Solving the Problems]
The magnetic recording medium of the present invention is a magnetic recording medium in which a ferromagnetic metal thin film is formed on a nonmagnetic substrate and a protective film is formed on the ferromagnetic metal thin film. The protective film contains nitrogen. Further, the nitrogen concentration in the protective film is different in the thickness direction of the protective film, and the nitrogen concentration in the surface side layer is higher than the nitrogen concentration in the substrate side layer.
[0009]
The effect obtained by mixing nitrogen into the carbon protective film is to improve durability, in particular, to improve the CSS life under high temperature and high humidity conditions.
[0010]
Currently, hydrogenated carbon films are commonly used as protective films. This film is excellent in CSS durability under a normal environment, but under high temperature and high humidity, the cause is unknown, but the performance is lowered. However, when nitrogen is contained in carbon or nitrogen is contained in hydrogenated carbon, CSS durability under high temperature and high humidity is improved. Although the details of the cause are not clear, it is presumed that the interaction between nitrogen on the surface of the protective film and the lubricating layer is strengthened.
[0011]
However, when nitrogen is evenly mixed with the entire thickness of the protective film, the strength of the entire film is insufficient in the range of nitrogen concentration that is most effective in improving CSS durability. This is presumably because the elastic modulus of the film decreases as the concentration of nitrogen increases. For this reason, the CSS durability is rather lowered.
[0012]
In the present invention, in order to exhibit the CSS durability of the nitrogenated protective film most effectively, nitrogen is present only in the surface layer of the protective film within a range effective for improving the CSS durability, In the layer on the substrate side of the film, the nitrogen concentration causing a decrease in film strength is reduced or made zero.
[0013]
This provides a magnetic recording medium that exhibits excellent CSS durability not only under normal use conditions but also under high temperature and high humidity conditions while maintaining the strength of the protective film high.
[0014]
In the magnetic recording medium of the present invention, from the viewpoint of CSS durability, the nitrogen concentration of the layer on the surface side of the protective film is 4 to 30 atomic%, and the nitrogen concentration of the layer on the substrate side is 0 to 4 atomic%. It is preferable. Moreover, it is preferable that the oxygen concentration of the layer of the surface side of a protective film is 5 atomic% or less from the surface of a film | membrane characteristic.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0016]
First, a method for forming a protective film in the present invention will be described.
[0017]
In the present invention, as a method of mixing nitrogen into the carbonaceous protective film, when forming the protective film by sputtering, nitrogen gas is used in the sputtering gas (usually an inert gas such as Ar). Examples thereof include a method of introducing a nitrogen-containing gas such as nitrogen oxide gas, nitrogen dioxide gas, and ammonia gas, or a method of introducing a mixed gas containing nitrogen gas such as air. In addition, a carbon target containing nitrogen in advance can also be used. Of these, a method using nitrogen gas which is inexpensive, non-toxic and non-flammable is industrially advantageous.
[0018]
In forming the nitrogenated carbon film, a hydrogenated and nitrogenated carbon film can be formed by simultaneously mixing hydrogen gas or hydrocarbon gas into the sputtering gas. In addition, by using air as a mixed gas containing nitrogen gas, a carbon film that has been nitrogenated and oxidized can be formed by mixing a hydrogen gas with a nitrogen film that has been nitrogenated, oxidized, and oxidized.
[0019]
In these cases, when the concentration of air in the sputtering gas increases, the oxygen concentration in the formed carbon film also increases. However, if the oxygen concentration in the film becomes too high, the characteristics of the film deteriorate. Therefore, the air concentration in the sputtering gas is desirably determined so that the oxygen concentration in the layer on the surface side of the carbon film to be formed is about 1 to 7 atomic%, preferably 5 atomic% or less.
[0020]
In the present invention, in forming such a nitrogenated carbon film as a protective film, the nitrogen concentration differs in the thickness direction of the protective film, and the nitrogen concentration of the surface side layer of the protective film is the substrate side of the protective film. A nitrogenated carbon film having a nitrogen concentration higher than the nitrogen concentration of the above layer (in the case of forming a protective film directly on the magnetic layer) is formed.
[0021]
As described above, as a method of changing the nitrogen concentration between the surface side of the protective film and the substrate side, when forming the carbon film by the sputtering method, each of the carbon targets is placed in two or more chambers that can separate the atmosphere of the sputtering gas. After changing the nitrogen content of the sputtering gas in each chamber and sputtering in a sputtering gas atmosphere with a low nitrogen concentration, the substrate is sequentially transferred to the next chamber so that sputtering is performed in a sputtering gas atmosphere with a high nitrogen concentration. Move.
[0022]
In this case, in order to maintain good adhesion between the two layers, it is preferable to form a low-concentration nitrogenated carbon film and a high-concentration nitrogenated carbon film in a continuous vacuum state that does not break the vacuum state. Further, the separation between the two chambers may not be complete, and in this case, a nitrogenated carbon film in which the nitrogen concentration continuously changes in the film thickness direction is formed.
[0023]
In addition to moving between chambers, by switching a valve, a sputtering gas having a low nitrogen concentration is supplied in a single chamber and then a sputtering gas having a high nitrogen concentration is supplied to the present invention. A protective film can be formed.
[0024]
The nitrogen concentration of the layer on the surface side of the protective film formed in this way is in the range of 4 to 30 atomic%, particularly in the range of 5 to 20 atomic%, as measured by the Auger electron spectrometer. Is preferred. If the nitrogen concentration is less than 4 atomic%, the effect of improving durability due to nitrogen incorporation is not remarkable, and if it is more than 30 atomic%, the protective film becomes brittle and the durability is lowered.
[0025]
On the other hand, the nitrogen concentration of the substrate side layer of the protective film is preferably 0 to 4 atomic% from the viewpoint of the strength of the protective film.
[0026]
In the present invention, in particular, the protective film is formed by forming a nitrogenated carbon film having a nitrogen concentration of 0 to 4 atomic% to a thickness of 100 to 200 mm, and then forming a nitrogenated carbon film having a nitrogen concentration of 4 to 30 atomic% to a thickness of 50. It is preferable to form a protective film of about 150 to 300 mm in total.
[0027]
In the present invention, the non-magnetic substrate is not particularly limited, and an aluminum alloy plate provided with a nickel-phosphorous layer formed by an electroless plating method is usually used, but other metal substrates such as copper and titanium, A glass substrate, a ceramic substrate, a carbonaceous substrate, or a resin substrate can also be used.
[0028]
On the surface of such a nonmagnetic substrate, chromium is usually formed by sputtering as an underlayer. The thickness of this Cr underlayer is usually in the range of 50 to 2000 mm.
[0029]
The magnetic layer made of a ferromagnetic metal thin film formed on the Cr underlayer of the substrate is formed by a method such as electroless plating, sputtering, or vapor deposition. Examples of the magnetic layer include Co-P, Co-Ni-P, Co-Ni-Cr, Co-Cr-Ta, Co-Ni-Pt, Co-Cr-Pt, and Co-Cr-Pt-Ta alloys. The ferromagnetic metal thin film is formed, and the film thickness is usually about 300 to 700 mm.
[0030]
In the present invention, after the protective film is formed on the magnetic layer according to the above-described method, a lubricating film having a thickness of about 10 to 30 mm is usually formed using a lubricant such as perfluoropolyether. To do.
[0031]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited by a following example as long as the summary is exceeded.
[0032]
Examples 1-8
A chromium underlayer (thickness: 400 mm) and a cobalt alloy magnetic layer (thickness: 500 mm) are formed by sputtering on a 3.5 inch diameter aluminum alloy substrate having an average surface roughness of 50-60 mm. As a protective film, a hydrogenated carbon film was formed to a thickness of 150 mm, and a hydrogenated nitrogenated carbon film was subsequently formed to a thickness of 50 mm in a separate adjacent chamber. The hydrogenated carbon film was formed by sputtering using a carbon target at a sputtering pressure of 5 μbar, using a mixed gas in which hydrogen gas was mixed with Ar gas at a ratio shown in Table 1 as a sputtering gas. The hydrogenated hydrogenated carbon was also formed by sputtering using a carbon target at a sputtering pressure of 5 μbar, using as a sputtering gas a mixed gas in which hydrogen gas and nitrogen gas were mixed with Ar gas at the ratio shown in Table 1.
[0033]
In Examples 7 and 8, when forming the nitrogenated hydrogenated carbon film, air was further mixed so as to have the oxygen gas fraction shown in Table 1 to form a nitrogenated hydrogenated carbon oxide film. did.
[0034]
The film thickness of the perfluoropolyether liquid lubricant was formed on the nitrogenated hydrogenated carbon film (or the nitrogenated hydrogenated oxidized carbon film) to a thickness of 20 mm.
[0035]
About the obtained disk, the amount of nitrogen in the protective film was determined using an Auger electron spectrometer. As a result, only carbon and nitrogen were detected on the surface of the protective film, and the nitrogen concentration determined in consideration of sensitivity was as shown in Table 1. The surface was etched as it was hit with Ar ions, and the profile in the depth direction was obtained. Nitrogen atoms were not detected on the magnetic layer interface side.
[0036]
For the disks of Examples 7 and 8, when the oxygen concentration on the surface of the protective film was measured with an Auger electron spectrometer, the values shown in Table 1 were obtained.
[0037]
Moreover, the CSS test was done using the obtained disk. As the head, a thin film head of an Al 2 O 3 .TiC slider having a pressing load of 5 g was used. After rotating the disk at 4500 rpm for 5 seconds, turning off the power and leaving it for 25 seconds was defined as a CSS1 cycle. The environment during the test was started at normal temperature and normal humidity (25 ° C., 40%), and after the CSS2000 cycle, the temperature was increased and the humidity was increased, and the CSS was further subjected to 2000 cycles in an atmosphere of 60 ° C. and 80%. Thereafter, the temperature was lowered and the humidity was lowered, and the test was continued by returning to room temperature and normal humidity. Thereafter, the test environment was alternately changed at 25 ° C., 40%, 60 ° C., and 80% every 2000 CSS cycles. The test cycle was CSS20000 times, and the coefficient of friction after CSS20000 times was measured. Further, after the test, the surface of the disk was observed for scratches and dirt.
[0038]
The results are shown in Table 1.
[0039]
Comparative Examples 1-3
After the underlayer and the magnetic layer were produced by the same method as in Example 1, the mixed gas in which nitrogen gas and hydrogen gas were mixed with Ar gas at the ratio shown in Table 1 was used as the sputtering gas, and the film was uniform in the film thickness direction. A protective film of a hydrogenated nitrogenated carbon film having a nitrogen concentration was formed to a thickness of 200 mm. Thereafter, a perfluoropolyether lubricating film was formed in the same manner as in Example 1.
[0040]
The obtained disk was subjected to measurement of the nitrogen concentration in the protective film and CSS test in the same manner as in Example 1, and the results are shown in Table 1.
[0041]
Comparative Examples 4 and 5
After preparing the underlayer and the magnetic layer by the same method as in Example 1, the protective film for the hydrogenated carbon film was formed to a thickness of 200 mm using a mixed gas obtained by mixing hydrogen gas in the ratio shown in Table 1 with Ar gas as the sputtering gas. Formed. Thereafter, a perfluoropolyether lubricating film was formed in the same manner as in Example 1.
[0042]
The obtained disk was subjected to measurement of the nitrogen concentration in the protective film and CSS test in the same manner as in Example 1, and the results are shown in Table 1.
[0043]
[Table 1]
Figure 0003934697
[0044]
From Table 1, according to the present invention, there is provided a magnetic recording medium that prevents a significant increase in the coefficient of friction not only under normal use conditions but also under high-temperature and high-humidity conditions and can withstand long-term use regardless of the use environment. It is clear that it is obtained.
[0045]
【The invention's effect】
As described in detail above, according to the magnetic recording medium of the present invention, a magnetic recording medium exhibiting excellent durability not only under normal use conditions but also under high temperature and high humidity conditions is provided.
[0046]
Further , according to the present invention , a magnetic recording medium having further excellent durability can be obtained.
[0047]
Further , according to the present invention , a high-performance magnetic recording medium can be obtained.

Claims (1)

非磁性基板上に強磁性金属薄膜が形成されると共に、該強磁性金属薄膜上に保護膜が形成されてなる磁気記録媒体において、該保護膜は、窒素および酸素を含有するカーボン膜であり、保護膜中の窒素濃度は保護膜の厚さ方向に異なり、基板側の層の窒素濃度よりも表面側の層の窒素濃度が高く、保護膜の表面側の層の窒素濃度が4〜30原子%であり、基板側の層の窒素濃度が0〜4原子%(0原子%を除く)で、保護膜中の酸素を表面側の層のみに含めその酸素濃度1〜5原子%としたことを特徴とする磁気記録媒体。In a magnetic recording medium in which a ferromagnetic metal thin film is formed on a nonmagnetic substrate and a protective film is formed on the ferromagnetic metal thin film, the protective film is a carbon film containing nitrogen and oxygen, The nitrogen concentration in the protective film differs in the thickness direction of the protective film, the nitrogen concentration in the surface side layer is higher than the nitrogen concentration in the layer on the substrate side, and the nitrogen concentration in the layer on the surface side of the protective film is 4 to 30 atoms. The nitrogen concentration of the layer on the substrate side is 0 to 4 atomic% (excluding 0 atomic%), oxygen in the protective film is included only in the layer on the surface side, and the oxygen concentration is 1 to 5 atomic% . A magnetic recording medium characterized by the above.
JP31658695A 1994-12-06 1995-12-05 Magnetic recording medium Expired - Lifetime JP3934697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31658695A JP3934697B2 (en) 1994-12-06 1995-12-05 Magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-301989 1994-12-06
JP30198994 1994-12-06
JP31658695A JP3934697B2 (en) 1994-12-06 1995-12-05 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH08212533A JPH08212533A (en) 1996-08-20
JP3934697B2 true JP3934697B2 (en) 2007-06-20

Family

ID=26562954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31658695A Expired - Lifetime JP3934697B2 (en) 1994-12-06 1995-12-05 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP3934697B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086730A (en) * 1999-04-22 2000-07-11 Komag, Incorporated Method of sputtering a carbon protective film on a magnetic disk with high sp3 content
US6974642B2 (en) 2000-03-15 2005-12-13 Fujitsu Limited Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
US6565719B1 (en) 2000-06-27 2003-05-20 Komag, Inc. Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content

Also Published As

Publication number Publication date
JPH08212533A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
JP2973409B2 (en) Magnetic recording medium and method of manufacturing the same
JPH06195691A (en) Magnetic recording medium and its production
US6136421A (en) Magneto-resistance recording media comprising multilayered protective overcoats
US4786553A (en) Magnetic recording medium
US5118564A (en) Longitudinal magnetic recording media with fine grain crystal magnetic layer
JP3934697B2 (en) Magnetic recording medium
US6572958B1 (en) Magnetic recording media comprising a silicon carbide corrosion barrier layer and a c-overcoat
US6537686B1 (en) Magneto-resistance recording media comprising a silicon nitride corrosion barrier layer and a C-overcoat
US4680218A (en) Magnetic recording medium
JPH05143972A (en) Metal thin film magnetic recording medium and its production
US6517956B1 (en) Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat
JPS62103823A (en) Magnetic disk
US6322880B1 (en) Magneto-resistance recording media comprising a foundation layer and a C-overcoat
JPH10143836A (en) Magnetic recording medium and its production
JPH08161736A (en) Manufacture of magnetic recording medium
US6576328B2 (en) Magnetic thin film media with a protective layer of CNx having a plurality of compositions
JPH0684168A (en) Magnetic recording medium
JPS63104215A (en) Magnetic recording medium
JPH0793738A (en) Magnetic recording medium
JPH0620263A (en) Magnetic recording medium
JP2761878B2 (en) Magnetic recording media
JPH0836744A (en) Magnetic recording medium
JPS62159331A (en) Magnetic recording medium and its production
JPH04109427A (en) Magnetic recording medium
JPH08273139A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041130

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160330

Year of fee payment: 9

EXPY Cancellation because of completion of term