JP3933519B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP3933519B2
JP3933519B2 JP2002140690A JP2002140690A JP3933519B2 JP 3933519 B2 JP3933519 B2 JP 3933519B2 JP 2002140690 A JP2002140690 A JP 2002140690A JP 2002140690 A JP2002140690 A JP 2002140690A JP 3933519 B2 JP3933519 B2 JP 3933519B2
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
solder resist
substrate
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002140690A
Other languages
Japanese (ja)
Other versions
JP2003332717A (en
Inventor
桑原直樹
金子竜次
田中淳介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002140690A priority Critical patent/JP3933519B2/en
Publication of JP2003332717A publication Critical patent/JP2003332717A/en
Application granted granted Critical
Publication of JP3933519B2 publication Critical patent/JP3933519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品を搭載・実装するためのプリント配線板の製造方法に関し、さらに詳しくは、半導体集積回路を実装するためのプリント配線板の製造方法に関する。
【0002】
【従来の技術】
抵抗素子や半導体部品などの電子部品の端子間を電気的に接続し、また、固着・保持するためにプリント配線板が使用される。プリント配線板には少なくとも1層以上の配線パターンがあり、電子部品の端子と接続すべきパッドなどを除き、ソルダーレジストと呼ばれる樹脂皮膜で被覆されている。ソルダーレジストには、熱硬化性樹脂のものと感光性樹脂のものがあるが、開口部の精度を上げるために、感光性樹脂が多く用いられている。
【0003】
ソルダーレジストを塗工する前に、基板の表面に回路配線を形成する。絶縁樹脂基板の両面に銅箔を貼り付けた銅張り積層板を用意し、絶縁樹脂基板両面の銅箔間で電気的な接続を取りたい場所で絶縁樹脂基板にドリルなどで穴をあけ、穴の中に銅メッキを施す。その後、基板の両面に感光性ドライフィルムを貼り付け、露光・現像によりエッチングレジストを形成する。この基板をエッチング液に浸すことにより、回路配線が形成される。エッチングレジストを剥離し、水洗・乾燥したのち、ソルダーレジスト形成工程へ移動する。
【0004】
感光性ソルダーレジストを形成する工程は、基板表面のほぼ全体にスクリーン印刷機によりレジストインクを塗工したのち、マスクフィルムを用いて露光する。その後、炭酸Na水溶液等の現像液により現像し、露光されていないパッド部の樹脂皮膜を除去する。さらに、加熱・硬化させることにより、ソルダーレジスト皮膜を形成する。ソルダーレジストを形成する際に使用する露光機には、マスクフィルムとプリント配線板の位置合わせを行う機構が備わっている。位置合わせ精度は、ワークサイズや露光機の性能に依存するが、通常、数十ミクロン程度である。この理由で、最近では、ほとんどのプリント配線板に感光性ソルダーレジストが使用されている。
【0005】
従来、半導体集積回路はリードフレームにワイヤボンディング工法で電気接続され、樹脂により封止されていた。半導体集積回路の小型化・多端子化に伴い、リードのピッチが狭小化し、マザーボードへの実装が困難になってきている。そこで、プリント配線板に半導体集積回路をワイヤボンディング工法で接続し、他方の面にはハンダボールを格子状に配置するボール・グリッド・アレイが普及している。
【0006】
最近では、さらに、多端子化をすすめるため、ワイヤボンディング工法に代わり、フリップチップ工法が増加している。フリップチップ工法では、半導体集積回路とプリント配線板に格子状に配置された端子間で電気接続をとるため、端子ピッチが同じでもワイヤボンディング工法よりも多くの端子を配置することができる。
【0007】
半導体集積回路を搭載する基板においては、半導体集積回路の集積度の増加にあわせて、回路の配線密度が上がり、特に、上記の様なフリップチップ工法になると、さらに、基板の配線密度が増加する。配線密度を増加するにつれて、配線間のスペースが狭くなり、配線間の耐湿絶縁信頼性が低下する危険性が高くなるという問題がある。耐湿絶縁信頼性は、例えば、温度130℃、湿度85%RHの高温高湿下にて、直流5Vの印可電圧を印可して評価する(HAST試験)。この時、配線材料である銅がマイグレーションを起こし、電気的に短絡する場合がある。
【0008】
【発明が解決しようとする課題】
本発明はこのような不具合の発生を防ぎ、配線間のスペースが狭くなっても耐湿絶縁が劣化しないプリント配線板を提供することを目的とする。
【0009】
【課題を解決するための手段】
発明者らは、耐湿絶縁信頼性の低下原因が主に、感光性樹脂であるソルダーレジストであることを見出し、かつ、その原因がソルダーレジスト中に含まれる塩素であることを見出した。従って、配線密度が高くなり、配線間のスペースが狭くなったとしても、ソルダーレジスト中に含まれる加水分解性塩素量を低下させることにより、耐湿絶縁信頼性の高い基板を得ることができる。すなわち、配線パターン上に感光性樹脂による保護皮膜(ソルダーレジスト)が形成されているプリント配線板を純水中で煮沸し、該保護皮膜中に含まれる加水分解性塩素量30μg/g以下とすることを特徴とするプリント配線板の製造方法である。
【0010】
また、感光性樹脂による保護皮膜で覆われている配線層の配線間の最小スペースが10μm以上、50μm以下である基板に対して有効である。配線間の最小スペースがこの範囲にあることで耐湿絶縁信頼性の効果が特に顕著となる。最小スペースが大きくなると、ソルダーレジストの加水分解性塩素量を低下させなくても、特に問題は発生しない。最小スペースが小さくなると、耐湿絶縁信頼性の問題が発生する可能性がある。
【0011】
また本発明は、配線パターン上に感光性樹脂による保護皮膜が形成されているプリント配線板を純水中で煮沸することを特徴とするプリント配線板の製造方法である。
煮沸後の加水分解性塩素量が30μg/g以下であることが好ましい。
【0012】
感光性樹脂による保護皮膜の厚さが薄いとピンホール等が発生しやすくなり、保護皮膜中に含まれる加水分解性塩素量を低下させても、耐湿絶縁信頼性が低くなる可能性が高い。また、保護皮膜の厚さが厚くなると、保護膜中の残存溶媒が残りやすくなり、作業性に問題が出る。これらの点から感光性樹脂による保護皮膜の厚さは10μm以上、80μm以下であることが好ましい。
【0013】
プリント配線坂を製造する際に加水分解性塩素を除去するための煮沸洗浄の温度は80℃〜100℃が好ましく、煮沸時間は適宜設定すればよいが、30分〜2時間で効果が認められる。
【0014】
本発明で加水分解性塩素とは、純水中で煮沸したときに純水中に抽出する塩素をいう。
具体的にはソルダーレジストの主成分であるエポキシ樹脂の製造時に生成される反応副生物(例えば構造:Ph-O-C・CC・OCl,Ph:ベンゼン環)に含まれる塩素が該当する。ソルダーレジストの成分中で強固に化学結合して純水中に抽出しないもの、たとえばソルダーレジスト色素中の塩素は加水分解性塩素ではない。
【0015】
【発明の実施の形態】
本発明の効果を実証するために、プリント配線板として櫛形電極基板を用いた。これは配線パターンを櫛形電極としたものである。図1の平面図と図2の断面図を用いて説明する。絶縁樹脂板13の両面に厚さ18μmの銅箔14が形成された銅張り積層板15(三菱ガス化学製 BT832)の銅箔14を櫛形形状にエッチングすることにより、配線幅/スペースが、30μm/30μmの櫛形電極配線2を形成した。このとき外部との導通をとるために外部電源接続端子3を同時に設けている。そしてこの櫛形電極配線上に、ソルダーレジスト12(太陽インキ製造社製 PSR4000 AUS5)をスクリーン印刷により、印刷し、乾燥、露光、現像、熱硬化させた。硬化後のソルダーレジストの膜厚は、25μmであった。
なお、乾燥、露光、現像、熱硬化の条件は以下の通りである。
【0016】

Figure 0003933519
本方法で作製したソルダーレジスト付き櫛形電極基板を、純水中で煮沸洗浄を行った。煮沸洗浄温度は95℃で煮沸洗浄時間は、10分、20分、30分、60分である。
上記の様に、煮沸洗浄を行った基板、行っていない基板をテストサンプルとして、耐湿絶縁信頼性の試験を行った。
耐湿絶縁信頼性の試験条件は以下の通りである。
【0017】
温度:130℃
湿度:85%
印可電圧:5VDC
試験時間:100時間
試験終了後、絶縁抵抗を測定し、10MΩ以下を不合格判定した。
【0018】
また、試験基板のソルダーレジストに含まれる加水分解性塩素量を以下のようにして測定した。
ソルダーレジスト付き基板を30mm×30mmの大きさにし、その基板5枚を20mlの純水のはいったテフロン(登録商標)製耐圧密閉容器中におさめ、純水中で95℃で24時間煮沸した。95℃から室温まで温度勾配-70℃/時間で冷却後、抽出した純水中に含まれる塩素量をイオンクロマトグラフにより測定し、ソルダーレジストの単位重量当たりに含まれる加水分解性塩素量に換算した。
【0019】
以上のように作製した基板の耐湿絶縁信頼性および加水分解性塩素量を測定した結果を表1に示す。
【0020】
【表1】
L/S=30/30μm 櫛形電極試験結果
Figure 0003933519
【0021】
表1に示すように、配線回路幅(L)/スペース(S)=30/30μmの櫛形電極基板の耐湿絶縁信頼性は、ソルダーレジスト中に含まれる加水分解性塩素量が低下するにつれて耐湿絶縁信頼性が増加し、加水分解性塩素量が30μg/g以下になると不良が発生していない。
【0022】
【発明の効果】
配線回路を保護する感光性樹脂からなる保護被膜(ソルダーレジスト)中に含まれる加水分解性塩素量を低下させることにより、耐湿絶縁信頼性の高いプリント配線板を得ることができ、特に、半導体集積回路を搭載するプリント配線板に有用である。
【図面の簡単な説明】
【図1】 本実施例において使用した櫛形電極基板の一例を示す平面図である。
【図2】 櫛形電極基板の構成の一部を示す断面図である。
【符号の説明】
1---プリント配線板
2---櫛形電極配線
3---外部電源接続端子
12---ソルダーレジスト
13---絶縁樹脂板
14---銅箔
15---銅張り積層板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a printed wiring board for mounting and mounting electronic components, and more particularly to a method for manufacturing a printed wiring board for mounting a semiconductor integrated circuit.
[0002]
[Prior art]
A printed wiring board is used to electrically connect terminals of electronic components such as resistance elements and semiconductor components, and to fix and hold them. A printed wiring board has at least one wiring pattern and is covered with a resin film called a solder resist except for pads to be connected to terminals of electronic components. The solder resist includes a thermosetting resin and a photosensitive resin, and a photosensitive resin is often used to increase the accuracy of the opening.
[0003]
Before coating the solder resist, circuit wiring is formed on the surface of the substrate. Prepare a copper-clad laminate with copper foil pasted on both sides of the insulating resin board, drill holes in the insulating resin board at locations where you want to make electrical connections between the copper foils on both sides of the insulating resin board, Apply copper plating inside. Thereafter, a photosensitive dry film is attached to both surfaces of the substrate, and an etching resist is formed by exposure and development. Circuit wiring is formed by immersing the substrate in an etching solution. After the etching resist is peeled off, washed with water and dried, the process proceeds to a solder resist forming process.
[0004]
In the step of forming the photosensitive solder resist, a resist ink is applied to almost the entire surface of the substrate by a screen printer, and then exposed using a mask film. Then, it develops with developing solutions, such as Na carbonate aqueous solution, and removes the resin film of the pad part which is not exposed. Furthermore, a solder resist film is formed by heating and curing. The exposure machine used when forming the solder resist has a mechanism for aligning the mask film and the printed wiring board. The alignment accuracy depends on the work size and the performance of the exposure machine, but is usually about several tens of microns. For this reason, a photosensitive solder resist is recently used for most printed wiring boards.
[0005]
Conventionally, a semiconductor integrated circuit is electrically connected to a lead frame by a wire bonding method and sealed with resin. As semiconductor integrated circuits become smaller and more terminals are used, the pitch of leads has become narrower, making it difficult to mount on a motherboard. Therefore, a ball grid array is widely used in which a semiconductor integrated circuit is connected to a printed wiring board by a wire bonding method, and solder balls are arranged in a lattice pattern on the other surface.
[0006]
Recently, in order to further increase the number of terminals, the flip chip method is increasing instead of the wire bonding method. In the flip chip method, electrical connection is made between terminals arranged in a grid pattern on the semiconductor integrated circuit and the printed wiring board. Therefore, more terminals can be arranged than in the wire bonding method even if the terminal pitch is the same.
[0007]
In a substrate on which a semiconductor integrated circuit is mounted, the circuit wiring density increases as the degree of integration of the semiconductor integrated circuit increases. In particular, when the flip-chip method as described above is used, the wiring density of the substrate further increases. . As the wiring density is increased, the space between the wirings is narrowed, and there is a problem that the risk of lowering the moisture-proof insulation reliability between the wirings increases. Moisture resistance insulation reliability is evaluated by applying a DC 5 V applied voltage at a high temperature and high humidity of, for example, a temperature of 130 ° C. and a humidity of 85% RH (HAST test). At this time, copper, which is a wiring material, may migrate and be electrically short-circuited.
[0008]
[Problems to be solved by the invention]
It is an object of the present invention to provide a printed wiring board which prevents the occurrence of such problems and does not deteriorate the moisture-resistant insulation even when the space between the wirings is narrowed.
[0009]
[Means for Solving the Problems]
The inventors have found that the cause of the decrease in moisture-resistant insulation reliability is mainly a solder resist that is a photosensitive resin, and that the cause is chlorine contained in the solder resist. Therefore, even if the wiring density is increased and the space between the wirings is narrowed, a substrate with high moisture resistance and insulation reliability can be obtained by reducing the amount of hydrolyzable chlorine contained in the solder resist. That is, a printed wiring board in which a protective film (solder resist) made of a photosensitive resin is formed on the wiring pattern is boiled in pure water, and the amount of hydrolyzable chlorine contained in the protective film is 30 μg / g or less . The printed wiring board manufacturing method is characterized in that:
[0010]
Further, it is effective for a substrate in which the minimum space between wirings in the wiring layer covered with a protective film made of a photosensitive resin is 10 μm or more and 50 μm or less. When the minimum space between the wirings is within this range, the effect of moisture-resistant insulation reliability becomes particularly remarkable. When the minimum space is increased, no particular problem occurs even if the amount of hydrolyzable chlorine in the solder resist is not reduced. If the minimum space is reduced, problems with moisture-resistant insulation reliability may occur.
[0011]
According to another aspect of the present invention, there is provided a printed wiring board manufacturing method comprising boiling a printed wiring board having a protective film made of a photosensitive resin on a wiring pattern in pure water.
The amount of hydrolyzable chlorine after boiling is preferably 30 μg / g or less.
[0012]
If the thickness of the protective film made of the photosensitive resin is thin, pinholes and the like are likely to occur, and even if the amount of hydrolyzable chlorine contained in the protective film is reduced, the moisture-resistant insulation reliability is likely to be lowered. Further, when the thickness of the protective film is increased, the residual solvent in the protective film tends to remain, which causes a problem in workability. From these points, the thickness of the protective film made of a photosensitive resin is preferably 10 μm or more and 80 μm or less.
[0013]
The temperature of boiling washing for removing hydrolyzable chlorine when manufacturing a printed wiring slope is preferably 80 ° C. to 100 ° C., and the boiling time may be set appropriately, but the effect is recognized in 30 minutes to 2 hours. .
[0014]
In the present invention, hydrolyzable chlorine means chlorine extracted into pure water when boiled in pure water.
Specifically, the chlorine contained in the reaction by-product (for example, structure: Ph-OC * CC * OCl, Ph: benzene ring) produced at the time of manufacture of the epoxy resin which is the main component of the solder resist is applicable. Among the components of the solder resist, those that are strongly chemically bonded and not extracted into pure water, for example, chlorine in the solder resist dye is not hydrolyzable chlorine.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In order to demonstrate the effect of the present invention, a comb-shaped electrode substrate was used as a printed wiring board. In this case, the wiring pattern is a comb-shaped electrode. This will be described with reference to the plan view of FIG. 1 and the cross-sectional view of FIG. By etching the copper foil 14 of the copper-clad laminate 15 (BT832 manufactured by Mitsubishi Gas Chemical Co., Ltd.) on which the copper foil 14 having a thickness of 18 μm is formed on both surfaces of the insulating resin plate 13, the wiring width / space is 30 μm. A comb-shaped electrode wiring 2 of / 30 μm was formed. At this time, an external power connection terminal 3 is provided at the same time in order to establish electrical connection with the outside. A solder resist 12 (PSR4000 AUS5 manufactured by Taiyo Ink Manufacturing Co., Ltd.) was printed on the comb-shaped electrode wiring by screen printing, dried, exposed, developed, and thermally cured. The film thickness of the solder resist after curing was 25 μm.
The conditions for drying, exposure, development, and thermosetting are as follows.
[0016]
Figure 0003933519
The comb-shaped electrode substrate with solder resist produced by this method was washed by boiling in pure water. The boiling cleaning temperature is 95 ° C., and the boiling cleaning time is 10, 20, 30, 60 minutes.
As described above, the moisture resistance insulation reliability test was performed using the substrate that had been boiled and washed as the test sample.
The test conditions for moisture resistance insulation reliability are as follows.
[0017]
Temperature: 130 ° C
Humidity: 85%
Applied voltage: 5VDC
Test time: After the test was completed for 100 hours, the insulation resistance was measured, and a failure of 10 MΩ or less was determined.
[0018]
Further, the amount of hydrolyzable chlorine contained in the solder resist of the test substrate was measured as follows.
The board | substrate with a soldering resist was made into a 30 mm x 30 mm magnitude | size, 5 board | substrates were put in the pressure-resistant airtight container made from Teflon (trademark) containing 20 ml of pure water, and it boiled at 95 degreeC for 24 hours in the pure water. After cooling from 95 ° C to room temperature with a temperature gradient of -70 ° C / hour, the amount of chlorine contained in the extracted pure water is measured by ion chromatography and converted to the amount of hydrolyzable chlorine contained in the unit weight of the solder resist. did.
[0019]
Table 1 shows the results of measuring the moisture-proof insulation reliability and the amount of hydrolyzable chlorine of the substrate produced as described above.
[0020]
[Table 1]
L / S = 30 / 30μm Comb electrode test result
Figure 0003933519
[0021]
As shown in Table 1, the moisture resistance insulation reliability of the wiring electrode width (L) / space (S) = 30/30 μm is the moisture resistance insulation as the amount of hydrolyzable chlorine contained in the solder resist decreases. When the reliability is increased and the hydrolyzable chlorine content is 30 μg / g or less, no defect occurs.
[0022]
【The invention's effect】
By reducing the amount of hydrolyzable chlorine contained in the protective coating (solder resist) made of a photosensitive resin that protects the wiring circuit, a printed wiring board with high moisture resistance and insulation reliability can be obtained. This is useful for printed wiring boards with circuits.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a comb-shaped electrode substrate used in this example.
FIG. 2 is a cross-sectional view showing a part of the configuration of a comb-shaped electrode substrate.
[Explanation of symbols]
1 --- Printed wiring board 2 --- Comb electrode wiring 3 --- External power connection terminal 12 --- Solder resist 13 --- Insulating resin board 14 --- Copper foil 15 --- Copper-clad laminate

Claims (3)

配線パターン上に感光性樹脂による保護皮膜が形成されているプリント配線板を純水中で煮沸し、該保護皮膜中に含まれる加水分解性塩素量30μg/g以下とすることを特徴とするプリント配線板の製造方法。 The printed circuit board on a wiring pattern protective coating by a photosensitive resin is formed by boiling in pure water, characterized in that the hydrolyzable chlorine content in the protective film less 30 [mu] g / g A method for producing a printed wiring board. 前記プリント配線基板の感光性樹脂による保護皮膜で覆われている配線層の配線間の最小スペースが10μmから50μmの範囲であることを特徴とする請求項1に記載のプリント配線板の製造方法。 2. The method for producing a printed wiring board according to claim 1, wherein a minimum space between wirings in a wiring layer covered with a protective film made of a photosensitive resin on the printed wiring board is in a range of 10 μm to 50 μm . 煮沸を80〜100℃の温度で、30分から2時間の範囲内で行う事を特徴とする請求項1または2記載のプリント配線板の製造方法。The method for producing a printed wiring board according to claim 1 or 2, wherein boiling is performed at a temperature of 80 to 100 ° C within a range of 30 minutes to 2 hours.
JP2002140690A 2002-05-15 2002-05-15 Method for manufacturing printed wiring board Expired - Fee Related JP3933519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002140690A JP3933519B2 (en) 2002-05-15 2002-05-15 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002140690A JP3933519B2 (en) 2002-05-15 2002-05-15 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2003332717A JP2003332717A (en) 2003-11-21
JP3933519B2 true JP3933519B2 (en) 2007-06-20

Family

ID=29701508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002140690A Expired - Fee Related JP3933519B2 (en) 2002-05-15 2002-05-15 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP3933519B2 (en)

Also Published As

Publication number Publication date
JP2003332717A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
JPH11233678A (en) Manufacture of ic package
JP2008085089A (en) Resin wiring board and semiconductor device
JP3934104B2 (en) Method for producing ball grid array substrate
JP4282777B2 (en) Semiconductor device substrate and semiconductor device manufacturing method
US8546922B2 (en) Wiring board
KR100709158B1 (en) A semiconductor apparatus and a manufacturing method thereof
JP3933519B2 (en) Method for manufacturing printed wiring board
JPH11354591A (en) Semiconductor carrier and its manufacture
JP2002043723A (en) Wiring board and electronic parts module using the same
JP4589519B2 (en) Manufacturing method of semiconductor circuit components
JPH0955597A (en) Semiconductor device
KR100374075B1 (en) Film carrier tape for mounting electronic parts and method for manufacturing the same
JP2004343122A (en) Metal chip scale semiconductor package and manufacturing method thereof
JPH09116045A (en) Resin-sealed semiconductor device of bga type using lead frame and its manufacture
JP2004047666A (en) Multilayer wiring board, its manufacturing method, and method for manufacturing resin-sealed semiconductor device
JP3827407B2 (en) Semiconductor mounting substrate
JPH0883971A (en) Filling ink for printed-wiring board
JP3582111B2 (en) Manufacturing method of printed wiring board
JP2011119655A (en) Printed circuit board and method of manufacturing the same
JPS6153852B2 (en)
JP3037603B2 (en) Printed circuit board for semiconductor package
JP2002232104A (en) Wiring module
KR100330557B1 (en) Method of manufacturing flexible substrate circuit film
KR100424324B1 (en) method for manufacturing tbga semiconductor package
JPH1051110A (en) Printed-wiring board and semiconductor device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees