JP3932743B2 - Manufacturing method of pressure contact type semiconductor device - Google Patents

Manufacturing method of pressure contact type semiconductor device Download PDF

Info

Publication number
JP3932743B2
JP3932743B2 JP31733099A JP31733099A JP3932743B2 JP 3932743 B2 JP3932743 B2 JP 3932743B2 JP 31733099 A JP31733099 A JP 31733099A JP 31733099 A JP31733099 A JP 31733099A JP 3932743 B2 JP3932743 B2 JP 3932743B2
Authority
JP
Japan
Prior art keywords
insulating substrate
electrode
semiconductor device
semiconductor
contact type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31733099A
Other languages
Japanese (ja)
Other versions
JP2001135654A (en
Inventor
豊 福田
和仁 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31733099A priority Critical patent/JP3932743B2/en
Publication of JP2001135654A publication Critical patent/JP2001135654A/en
Application granted granted Critical
Publication of JP3932743B2 publication Critical patent/JP3932743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Die Bonding (AREA)
  • Dicing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大電力を制御する半導体素子を圧接した状態で使用する圧接型半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
パワーMOSFETやIGBT等の半導体素子(半導体チップ)は、大電流を制御する素子であるため、自己発熱が大きい。このため、このような半導体素子を有する半導体装置では、一般に、半導体素子の両面より放熱させる構造となっており、半導体素子の両側面から絶縁基板で挟んで、これをヒートシンク(放熱板)で両側から圧接するように構成されている。このような圧接構造においては、半導体素子を挟む2枚の絶縁基板は互いに平行になるようにする必要がある。
【0003】
【発明が解決しようとする課題】
しかしながら、半導体ウェハから予め分割形成された半導体素子(10mm角前後)と絶縁基板とをはんだ付けによって接合する場合を考えると、はんだ付け時のはんだ高さがばらつくことにより、半導体素子を挟む2枚の絶縁基板の両端面の平行を確保することは容易ではない。
【0004】
これら2枚の絶縁基板が傾いて接合された場合には、圧接時に機械的応力が局部に集中することとなり、圧接荷重(約100kg/cm2程度)が局部的に集中し、その結果半導体素子が破壊されてしまうことが考えられる。また、放熱性についても、絶縁基板とヒートシンクとが面接触しないことにより局部放熱となる。その結果、圧接による面放熱の効果を生かすことができず、熱抵抗が増加して半導体素子が温度上昇してしまうという問題がある。
【0005】
本発明は上記問題点に鑑み、圧接型半導体装置の製造方法において、半導体素子を挟む2枚の絶縁基板の平行度を確保できる製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、複数の半導体素子の電極パターンが表面に形成された半導体ウェハ(200)と、2枚の絶縁基板(300)とを用意する工程と、半導体ウェハ(200)の両面に絶縁基板(300)を接合する工程と、接合工程の後、半導体ウェハ(200)と絶縁基板(300)とを半導体素子単位に切断する工程とを備えることを特徴としている。
【0007】
このように、半導体ウェハ(200)とこれに対応する絶縁基板(300)とを接合した後、個々の半導体素子の大きさに切断することにより、半導体ウェハを個々の半導体素子に切断した後に半導体素子と絶縁基板とを接合する場合に比較して大きな平面同士を接合することになるので、容易に絶縁基板の両端面の平行度を確保することが可能となる。
【0008】
また、請求項2に記載の発明では、絶縁基板(300)には、電極パターンに対応するように電極部材(4〜6)が形成されており、接合工程において、電極パターンと電極部材との位置を合わせて、半導体ウェハ(200)の両面に絶縁基板(300)を接合することを特徴としている。
【0009】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0010】
【発明の実施の形態】
本発明を適用した実施形態を図に基づいて説明する。図1は本実施形態の圧接型半導体装置1の断面図である。
【0011】
本実施形態における圧接型半導体装置1は、IGBT(絶縁ゲート型バイポーラトランジスタ)やパワーMOSFET等の大電流を制御する半導体素子2と、半導体素子2の両面に配置された絶縁性材料からなる絶縁基板3とから構成される。本実施形態では半導体素子2としてIGBTチップ、絶縁基板3として窒化アルミニウム(AlN)を用いている。また、図1中破線で示すように、半導体装置1はヒートシンク(放熱板)10によって両面から圧接されるように構成されている。
【0012】
半導体素子2の表裏面は、Al/Ti/Ni/Au等からなる電極パターン(図示せず)が形成された主電極面として構成されている。本実施形態におけるIGBTチップ2の等価回路は、例えば図2に示すようにコレクタC、エミッタE、ゲートG、電流検出用端子Is、感温のためのダイオード端子であるアノードAおよびカソードKからなる。本実施形態では、半導体素子2の表面側(図1中上側)にエミッタ、ゲート、電流検出用端子、アノードおよびカソードといった電極パターンが形成されており、裏面側(図1中下側)にはコレクタが形成されている。これら電極パターン上には、はんだ付けのためにTi等のバリヤメタルが電極パターンに合わせて形成されている。
【0013】
図3は、半導体素子2の表面側に接合される絶縁基板3の接合面側を示している。図3に示すように、絶縁基板3には、半導体素子2上のエミッタ電極、ゲート電極等に対応するように、Cu等の導体がパターニングされ、電極部材4、5を形成しており、同様に半導体素子2の裏面側に接合される絶縁基板3にはコレクタ電極に対応する電極部材6が形成されている。半導体素子2上の電極パターンおよび絶縁基板3上の電極部材4〜6とは、はんだによって接合されている。
【0014】
以下、上記構成の圧接型半導体装置1の製造方法を図4〜図6に基づいて説明する。図4は接合前の半導体ウェハの平面図であり、図5(a)は接合前の絶縁基板の平面図であり、図5(b)は表面側の絶縁部材300の拡大図であり、図6は半導体装置1の製造工程を示す工程図である。なお、図4、図5(a)では、電極の図示を省略している。
【0015】
まず、複数の半導体素子2の電極パターンが各チップ領域に形成された例えば4〜6インチの半導体ウェハ200(図4)と、ウェハ200上の電極パターンに対応するように電極部材4〜6が各チップ領域に対応するように配置された2枚の絶縁基板300(図5(a))を用意する(図6(a))。図4、図5(a)に示すように、半導体ウェハ200および絶縁基板300には図中上下左右方向にスクライブライン(ダイシングライン)領域7が設定されている。
【0016】
表面側(図6中上側)に配置する絶縁基板300は、図3に示したパターンで電極部材4、5が形成されており(図5(b))、裏面側(図6中下側)に配置する絶縁基板300は、全面に電極部材6が形成されている。図5(b)において、表面側の絶縁基板300では、複数の電極部材4はそれぞれ図中左隣の電極部材5と図中上下方向のスクライブライン領域7で予め分離して形成されている。絶縁基板300上の電極部材4〜6上には、予めはんだを印刷法等により形成しておく。
【0017】
次に、半導体ウェハ200に形成された電極パターンおよび絶縁基板300に形成された電極部材4〜6の位置合わせを行い、半導体ウェハ200と絶縁基板300を接合する(図6(b))。半導体ウェハ200に形成された電極パターンおよび絶縁基板200に形成された電極部材4〜6の位置合わせは、半透明であるAlN基板300の電極部材が形成されていない部分から、半導体ウェハ200に形成されているスクライブライン領域7等を照明した状態で確認しながら行う。
【0018】
次に、水素リフロー又は窒素リフローを行い、例えば380℃程度の温度で15分間加熱し、はんだ接合にて所定の接合領域を確保する。
【0019】
次に、半導体ウェハ200と絶縁基板300を、ブレード11、12、13を用いて個々の半導体装置1の大きさに切断する。まず、第1のスクライブにより、表面側(図6中上側)および裏面側(図6中下側)からブレード11、12により絶縁基板300を切断除去する(図6(c))。第1スクライブで絶縁基板300を除去することにより、表面側では隣り合う半導体装置1のエミッタ電極4やゲート電極5等を露出させ、裏面側ではコレクタ電極6を露出させることになる。
【0020】
次に第2のスクライブを行い、半導体ウェハ200をブレード13によってスクライブライン7に従い半導体素子2の大きさに切断する(図6(d))。このとき、上記のように表面側では、各電極部材4はそれぞれ図中左隣の電極部材5と予め分離されているので、切断時のブレード13の負担を軽減することができる。また、裏面側の電極部材6は半導体ウェハ200と同時にブレード13によって切断される。なお、本実施形態では、第2スクライブのみ、図4、図5中上下左右方向の2方向に行うようにしている。
【0021】
以上の工程によって、複数の半導体装置1を得ることができる。
【0022】
上記第1スクライブによって除去する絶縁基板の幅は、外部電極を接続するために必要な幅であり、本実施形態では端から電極部材4〜6が0.2〜0.3mm程度露出するように構成している。コクレタ電極およびエミッタ電極には100A程度の電流を流すので、これらの電極にはIGBT素子の1辺(10mm前後)を使用する。
【0023】
図7は本実施形態の外部電極に接続された半導体装置1の概略構成を示す断面図であり、図8は図7の半導体装置1を表面側からみた概略構成を示す平面図である。外部電極8と電極部材4〜6との接合は、溶接、溶着あるいははんだ付けによって行う。外部電極8のうち、エミッタ電極とコレクタ電極に接続されるものはIGBTモジュール等の電極取り出し用のバスバー9にネジ止め等にて固定する。このとき、これらの外部電極8には、応力緩和のための曲げ部を形成し、ネジ止め等の力が局部集中しないように構成されている。
【0024】
以上、本実施形態のように、圧接型半導体装置1を製造する際に、ウェハの状態の半導体200とこれに対応する絶縁基板300とを接合し、その後個々の半導体装置1の大きさに切断することにより、半導体素子2の両側に接合された絶縁基板3の両端面の平行度を容易に確保することが可能となる。これにより、絶縁基板3の両端面が、ヒートシンク10に密接した構造となり、ヒートシンク10によって両側から圧接されても機械的応力が局部に集中することなく、また、良好な熱拡散性も確保される。
【0025】
(第2実施形態)
次に本発明の第2実施形態を図9〜図11に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して圧接型半導体装置1の電極の構成が異なるものである。第1実施形態と同様の部分については同一の符号を付けてその説明を省略する。
【0026】
図9は本第2実施形態の圧接型半導体装置1の概略構成を示す断面図を示しており、半導体装置1は図9中右側にエミッタ電極等が、図9中左側にコレクタ電極が突出するように構成されている。
【0027】
図10は半導体素子1の表面側(図9中上側)の絶縁基板3の接合面における電極配置側を示しており、絶縁基板3には、半導体素子2上のエミッタ電極、ゲート電極に対応するように、Cu等の導体がパターニングされ、電極部材4、5を形成している。本第2実施形態では感温のためのダイオード素子であるアノードA等は省略されている。
【0028】
以下、図11に基づいて第2実施形態の圧接型半導体装置1の製造工程を説明する。
【0029】
上記第1実施形態と同様に、複数の半導体素子2の電極パターンが各チップ領域に形成された例えば4〜6インチの半導体ウェハ200と、ウェハ200上の電極パターンに対応するように電極部材4〜6が各チップ領域に対応するように配置された2枚の絶縁基板300を用意し(図11(a))、半導体ウェハ200および絶縁基板300の位置合わせを行い、半導体ウェハ200と絶縁基板300を接合する(図11(b))。次に、水素リフロー又は窒素リフローを行い、はんだ接合にて所定の接合領域を確保する。
【0030】
次に、半導体ウェハ200と絶縁基板300を、ブレード11〜14を用いて個々の半導体装置1の大きさに切断する。まず、第1のスクライブにより、表面側(図11中上側)および裏面側(図11中下側)からブレード11、12により半導体ウェハ200および絶縁基板300を個々の半導体装置1の大きさに切断する(図11(c))。次に第2のスクライブを行い、半導体ウェハ200をブレード13、14によって表面側および裏面側から絶縁基板3を切断除去し電極4〜6を露出させる(図11(d))。
【0031】
以上の工程によって、複数の半導体装置1を得ることができる。
【0032】
以上の第2実施形態の構成によっても上記第1実施形態と同様の効果を得ることができる。
【0033】
(他の実施形態)
なお、本発明を適用した圧接型半導体装置におけるエミッタ、コレクタ等の電極の構成は、上記実施形態で説明したものに限られず、任意に構成することができる。この場合、個々の半導体装置に切断する工程におけるスクライブ方法も、電極の構成に応じて適宜選択することができる。
【0034】
また、上記実施形態では、表面側の絶縁基板300は、各電極部材4がそれぞれ図5(b)中左隣の電極部材5とスクライブライン7で予め分離して形成されるように構成したが、電極部材4と左隣の電極部材5とが一体となるように形成して、上記切断工程(図6(d)、図11(c))で、ブレード13により半導体ウェハ200と同時に切断するように構成してもよい。
【0035】
また、上記実施形態では、裏面側(図6中下側)の絶縁基板300には全面に電極部材6を形成するように構成したが、絶縁基板300の全面ではなく各チップの大きさに対応するように電極部材6を形成するように、すなわち、予めスクライブライン7にあたる部分には電極部材6を形成しないように構成することで、上記切断工程(図6(d)、図11(c))においてブレード13の負担を軽減することができる。
【0036】
また、上記実施形態では、絶縁基板として窒化アルミニウム基板を用いたが、これに限らず、例えばSOI(シリコン・オン・インシュレータ)構造のシリコン基板を用いてもよい。
【図面の簡単な説明】
【図1】本発明を適用した第1実施形態の圧接型半導体装置の概略構成を示す断面図である。
【図2】図1の半導体装置の回路図である。
【図3】図1の半導体装置の絶縁基板の平面図である。
【図4】接合前の半導体ウェハ平面図である。
【図5】接合前の絶縁基板の平面図である。
【図6】半導体装置の製造工程を示す工程図である。
【図7】半導体装置を外部電極に接続した状態を示す断面図である。
【図8】半導体装置を外部電極に接続した状態を示す平面図である。
【図9】第2実施形態の圧接型半導体装置の概略構成を示す断面図である。
【図10】図9の半導体装置の絶縁基板の平面図である。
【図11】第2実施形態の圧接型半導体装置の製造工程を示す工程図である。
【符号の説明】
1…圧接型半導体装置、2…半導体素子、3…絶縁基板、4〜6…電極部材、200…半導体ウェハ、300…絶縁基板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a pressure contact type semiconductor device that uses a semiconductor element that controls high power in a pressure contact state.
[0002]
[Prior art]
Semiconductor elements (semiconductor chips) such as power MOSFETs and IGBTs are elements that control a large current, and thus generate large amounts of self. For this reason, a semiconductor device having such a semiconductor element generally has a structure in which heat is radiated from both sides of the semiconductor element. It is comprised so that it may press-contact from. In such a pressure contact structure, the two insulating substrates sandwiching the semiconductor element must be parallel to each other.
[0003]
[Problems to be solved by the invention]
However, when considering a case where a semiconductor element (about 10 mm square) formed in advance from a semiconductor wafer is joined to an insulating substrate by soldering, two pieces sandwiching the semiconductor element due to variations in solder height during soldering It is not easy to ensure the parallelism of both end faces of the insulating substrate.
[0004]
When these two insulating substrates are joined at an angle, the mechanical stress is concentrated locally during pressure welding, and the pressure load (about 100 kg / cm 2 ) is concentrated locally. As a result, the semiconductor element May be destroyed. Moreover, also about heat dissipation, it becomes local heat dissipation because an insulating substrate and a heat sink do not carry out surface contact. As a result, there is a problem in that the effect of surface heat dissipation by pressure welding cannot be utilized, and the thermal resistance increases and the temperature of the semiconductor element rises.
[0005]
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a manufacturing method capable of ensuring the parallelism of two insulating substrates sandwiching a semiconductor element in a manufacturing method of a pressure contact type semiconductor device.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a step of preparing a semiconductor wafer (200) having electrode patterns of a plurality of semiconductor elements formed on the surface and two insulating substrates (300); A step of bonding the insulating substrate (300) to both surfaces of the semiconductor wafer (200), and a step of cutting the semiconductor wafer (200) and the insulating substrate (300) into semiconductor element units after the bonding step. It is a feature.
[0007]
As described above, after joining the semiconductor wafer (200) and the corresponding insulating substrate (300), the semiconductor wafer is cut into individual semiconductor elements by cutting the semiconductor wafer into individual semiconductor elements. Since large planes are bonded as compared with the case where the element and the insulating substrate are bonded, it is possible to easily ensure the parallelism of both end surfaces of the insulating substrate.
[0008]
Moreover, in invention of Claim 2, the electrode member (4-6) is formed in the insulated substrate (300) so as to correspond to an electrode pattern, and an electrode pattern and an electrode member are formed in a joining process. The insulating substrate (300) is bonded to both surfaces of the semiconductor wafer (200) in alignment.
[0009]
In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a pressure-contact type semiconductor device 1 according to this embodiment.
[0011]
A press-contact type semiconductor device 1 according to this embodiment includes a semiconductor element 2 that controls a large current, such as an IGBT (insulated gate bipolar transistor) and a power MOSFET, and an insulating substrate made of an insulating material disposed on both surfaces of the semiconductor element 2. 3. In the present embodiment, an IGBT chip is used as the semiconductor element 2, and aluminum nitride (AlN) is used as the insulating substrate 3. Further, as shown by a broken line in FIG. 1, the semiconductor device 1 is configured to be pressed from both sides by a heat sink (heat radiating plate) 10.
[0012]
The front and back surfaces of the semiconductor element 2 are configured as main electrode surfaces on which electrode patterns (not shown) made of Al / Ti / Ni / Au or the like are formed. The equivalent circuit of the IGBT chip 2 in this embodiment includes, for example, a collector C, an emitter E, a gate G, a current detection terminal Is, an anode A which is a diode terminal for temperature sensing, and a cathode K as shown in FIG. . In the present embodiment, electrode patterns such as an emitter, a gate, a current detection terminal, an anode and a cathode are formed on the front surface side (upper side in FIG. 1) of the semiconductor element 2, and on the rear surface side (lower side in FIG. 1). A collector is formed. On these electrode patterns, a barrier metal such as Ti is formed in accordance with the electrode patterns for soldering.
[0013]
FIG. 3 shows the bonding surface side of the insulating substrate 3 bonded to the surface side of the semiconductor element 2. As shown in FIG. 3, a conductor such as Cu is patterned on the insulating substrate 3 so as to correspond to the emitter electrode, the gate electrode, and the like on the semiconductor element 2 to form electrode members 4 and 5. An electrode member 6 corresponding to the collector electrode is formed on the insulating substrate 3 bonded to the back side of the semiconductor element 2. The electrode pattern on the semiconductor element 2 and the electrode members 4 to 6 on the insulating substrate 3 are joined by solder.
[0014]
Hereinafter, a method for manufacturing the press contact type semiconductor device 1 having the above-described configuration will be described with reference to FIGS. 4 is a plan view of the semiconductor wafer before bonding, FIG. 5A is a plan view of the insulating substrate before bonding, and FIG. 5B is an enlarged view of the insulating member 300 on the front side. FIG. 6 is a process diagram showing a manufacturing process of the semiconductor device 1. 4 and 5A, illustration of electrodes is omitted.
[0015]
First, for example, a 4 to 6 inch semiconductor wafer 200 (FIG. 4) in which electrode patterns of a plurality of semiconductor elements 2 are formed in each chip region, and electrode members 4 to 6 correspond to the electrode patterns on the wafer 200. Two insulating substrates 300 (FIG. 5A) arranged so as to correspond to the respective chip regions are prepared (FIG. 6A). As shown in FIGS. 4 and 5A, scribe line (dicing line) regions 7 are set in the semiconductor wafer 200 and the insulating substrate 300 in the vertical and horizontal directions in the drawing.
[0016]
The insulating substrate 300 arranged on the front surface side (upper side in FIG. 6) has the electrode members 4 and 5 formed in the pattern shown in FIG. 3 (FIG. 5B), and the back surface side (lower side in FIG. 6). The electrode member 6 is formed on the entire surface of the insulating substrate 300 disposed on the substrate. 5B, in the insulating substrate 300 on the front surface side, the plurality of electrode members 4 are separately formed in advance by the electrode member 5 on the left side in the drawing and the scribe line region 7 in the vertical direction in the drawing. Solder is previously formed on the electrode members 4 to 6 on the insulating substrate 300 by a printing method or the like.
[0017]
Next, the electrode pattern formed on the semiconductor wafer 200 and the electrode members 4 to 6 formed on the insulating substrate 300 are aligned to join the semiconductor wafer 200 and the insulating substrate 300 (FIG. 6B). The electrode pattern formed on the semiconductor wafer 200 and the alignment of the electrode members 4 to 6 formed on the insulating substrate 200 are formed on the semiconductor wafer 200 from a portion of the AlN substrate 300 that is translucent where the electrode member is not formed. This is performed while confirming the illuminated scribe line area 7 and the like.
[0018]
Next, hydrogen reflow or nitrogen reflow is performed, and for example, heating is performed at a temperature of about 380 ° C. for 15 minutes to secure a predetermined bonding region by solder bonding.
[0019]
Next, the semiconductor wafer 200 and the insulating substrate 300 are cut into the size of each semiconductor device 1 using the blades 11, 12, and 13. First, by the first scribe, the insulating substrate 300 is cut and removed by the blades 11 and 12 from the front surface side (upper side in FIG. 6) and the rear surface side (lower side in FIG. 6) (FIG. 6C). By removing the insulating substrate 300 by the first scribe, the emitter electrode 4 and the gate electrode 5 of the adjacent semiconductor device 1 are exposed on the front surface side, and the collector electrode 6 is exposed on the back surface side.
[0020]
Next, a second scribe is performed, and the semiconductor wafer 200 is cut into the size of the semiconductor element 2 by the blade 13 according to the scribe line 7 (FIG. 6D). At this time, as described above, since each electrode member 4 is separated from the electrode member 5 on the left side in the drawing in advance as described above, the burden on the blade 13 at the time of cutting can be reduced. Further, the electrode member 6 on the back surface side is cut by the blade 13 simultaneously with the semiconductor wafer 200. In the present embodiment, only the second scribe is performed in two directions of up, down, left and right directions in FIGS.
[0021]
Through the above steps, a plurality of semiconductor devices 1 can be obtained.
[0022]
The width of the insulating substrate removed by the first scribe is a width necessary for connecting the external electrode, and in this embodiment, the electrode members 4 to 6 are exposed from the end by about 0.2 to 0.3 mm. It is composed. Since a current of about 100 A flows through the collector electrode and the emitter electrode, one side (around 10 mm) of the IGBT element is used for these electrodes.
[0023]
FIG. 7 is a cross-sectional view showing a schematic configuration of the semiconductor device 1 connected to the external electrode of the present embodiment, and FIG. 8 is a plan view showing a schematic configuration of the semiconductor device 1 of FIG. The external electrode 8 and the electrode members 4 to 6 are joined by welding, welding, or soldering. Of the external electrodes 8, the one connected to the emitter electrode and the collector electrode is fixed to the bus bar 9 for taking out an electrode such as an IGBT module by screwing or the like. At this time, the external electrodes 8 are formed with bent portions for stress relaxation so that the force such as screwing is not concentrated locally.
[0024]
As described above, when manufacturing the press-contact type semiconductor device 1 as in the present embodiment, the semiconductor 200 in a wafer state and the insulating substrate 300 corresponding to the wafer 200 are bonded, and then cut into the size of each semiconductor device 1. By doing so, it becomes possible to easily ensure the parallelism of both end faces of the insulating substrate 3 bonded to both sides of the semiconductor element 2. As a result, both end surfaces of the insulating substrate 3 are in close contact with the heat sink 10, and mechanical stress is not concentrated locally even when pressed by both sides of the heat sink 10, and good thermal diffusivity is ensured. .
[0025]
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is different from the first embodiment in the configuration of the electrodes of the pressure contact type semiconductor device 1. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0026]
FIG. 9 is a cross-sectional view showing a schematic configuration of the pressure-contact type semiconductor device 1 of the second embodiment. The semiconductor device 1 has an emitter electrode or the like protruding on the right side in FIG. 9 and a collector electrode protruding on the left side in FIG. It is configured as follows.
[0027]
FIG. 10 shows the electrode arrangement side on the bonding surface of the insulating substrate 3 on the front surface side (upper side in FIG. 9) of the semiconductor element 1, and the insulating substrate 3 corresponds to the emitter electrode and the gate electrode on the semiconductor element 2. Thus, a conductor such as Cu is patterned to form the electrode members 4 and 5. In the second embodiment, the anode A, which is a diode element for temperature sensing, is omitted.
[0028]
Hereinafter, the manufacturing process of the press-contact type semiconductor device 1 according to the second embodiment will be described with reference to FIG.
[0029]
Similar to the first embodiment, for example, a 4 to 6 inch semiconductor wafer 200 in which the electrode patterns of the plurality of semiconductor elements 2 are formed in each chip region, and the electrode member 4 so as to correspond to the electrode patterns on the wafer 200. 2 to 6 are prepared so as to correspond to each chip region (FIG. 11A), the semiconductor wafer 200 and the insulating substrate 300 are aligned, and the semiconductor wafer 200 and the insulating substrate are aligned. 300 are joined (FIG. 11B). Next, hydrogen reflow or nitrogen reflow is performed, and a predetermined bonding region is secured by solder bonding.
[0030]
Next, the semiconductor wafer 200 and the insulating substrate 300 are cut into the size of each semiconductor device 1 using the blades 11 to 14. First, the semiconductor wafer 200 and the insulating substrate 300 are cut into the size of each semiconductor device 1 by the blades 11 and 12 from the front surface side (upper side in FIG. 11) and the rear surface side (lower side in FIG. 11) by the first scribe. (FIG. 11C). Next, second scribing is performed, and the semiconductor substrate 200 is cut and removed from the front and back sides of the semiconductor wafer 200 by the blades 13 and 14 to expose the electrodes 4 to 6 (FIG. 11D).
[0031]
Through the above steps, a plurality of semiconductor devices 1 can be obtained.
[0032]
The effect similar to the said 1st Embodiment can be acquired also by the structure of the above 2nd Embodiment.
[0033]
(Other embodiments)
Note that the configuration of the electrodes such as the emitter and the collector in the pressure contact type semiconductor device to which the present invention is applied is not limited to that described in the above embodiment, and can be arbitrarily configured. In this case, the scribing method in the step of cutting into individual semiconductor devices can also be appropriately selected according to the configuration of the electrodes.
[0034]
Moreover, in the said embodiment, although the insulating substrate 300 of the surface side was comprised so that each electrode member 4 might be previously isolate | separated by the electrode member 5 and the scribe line 7 of the left adjacent in FIG.5 (b), respectively. The electrode member 4 and the electrode member 5 on the left are formed so as to be integrated with each other and cut simultaneously with the semiconductor wafer 200 by the blade 13 in the cutting step (FIGS. 6D and 11C). You may comprise as follows.
[0035]
In the above embodiment, the electrode member 6 is formed on the entire surface of the insulating substrate 300 on the back side (the lower side in FIG. 6). However, it corresponds to the size of each chip, not the entire surface of the insulating substrate 300. The electrode member 6 is formed as described above, that is, the electrode member 6 is not formed in the portion corresponding to the scribe line 7 in advance, so that the cutting step (FIG. 6D, FIG. 11C) is performed. ), The burden on the blade 13 can be reduced.
[0036]
In the above-described embodiment, the aluminum nitride substrate is used as the insulating substrate. However, the present invention is not limited to this. For example, a silicon substrate having an SOI (silicon on insulator) structure may be used.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of a pressure-contact type semiconductor device according to a first embodiment to which the present invention is applied.
2 is a circuit diagram of the semiconductor device of FIG. 1. FIG.
3 is a plan view of an insulating substrate of the semiconductor device of FIG. 1. FIG.
FIG. 4 is a plan view of a semiconductor wafer before bonding.
FIG. 5 is a plan view of an insulating substrate before bonding.
FIG. 6 is a process diagram showing a manufacturing process of a semiconductor device.
FIG. 7 is a cross-sectional view showing a state in which a semiconductor device is connected to an external electrode.
FIG. 8 is a plan view showing a state in which a semiconductor device is connected to an external electrode.
FIG. 9 is a cross-sectional view showing a schematic configuration of a pressure-contact type semiconductor device according to a second embodiment.
10 is a plan view of an insulating substrate of the semiconductor device of FIG. 9;
FIG. 11 is a process diagram showing a manufacturing process of the pressure-contact type semiconductor device of the second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pressure-contact type semiconductor device, 2 ... Semiconductor element, 3 ... Insulating substrate, 4-6 ... Electrode member, 200 ... Semiconductor wafer, 300 ... Insulating substrate.

Claims (2)

圧接した状態で使用される圧接型半導体の製造方法であって、
複数の半導体素子(2)の電極パターンが表面に形成された半導体ウェハ(200)と、2枚の絶縁基板(300)とを用意する工程と、
前記半導体ウェハ(200)の両面に前記絶縁基板(300)を接合する工程と、
前記接合工程の後、前記半導体ウェハ(200)と前記絶縁基板(300)とを前記半導体素子単位に切断する工程とを備えることを特徴とする圧接型半導体装置の製造方法。
A method of manufacturing a pressure contact type semiconductor used in a pressure contact state,
Preparing a semiconductor wafer (200) having electrode patterns of a plurality of semiconductor elements (2) formed on a surface thereof and two insulating substrates (300);
Bonding the insulating substrate (300) to both sides of the semiconductor wafer (200);
A method of manufacturing a press-contact type semiconductor device, comprising: a step of cutting the semiconductor wafer (200) and the insulating substrate (300) into the semiconductor element unit after the bonding step.
前記絶縁基板(300)には、前記電極パターンに対応するように電極部材(4〜6)が形成されており、
前記接合工程において、前記電極パターンと前記電極部材との位置を合わせて、前記半導体ウェハ(200)の両面に前記絶縁基板(300)を接合することを特徴とする請求項1に記載の圧接型半導体装置の製造方法。
On the insulating substrate (300), electrode members (4 to 6) are formed so as to correspond to the electrode pattern,
2. The press contact type according to claim 1, wherein in the bonding step, the insulating substrate is bonded to both surfaces of the semiconductor wafer by aligning the positions of the electrode pattern and the electrode member. A method for manufacturing a semiconductor device.
JP31733099A 1999-11-08 1999-11-08 Manufacturing method of pressure contact type semiconductor device Expired - Fee Related JP3932743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31733099A JP3932743B2 (en) 1999-11-08 1999-11-08 Manufacturing method of pressure contact type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31733099A JP3932743B2 (en) 1999-11-08 1999-11-08 Manufacturing method of pressure contact type semiconductor device

Publications (2)

Publication Number Publication Date
JP2001135654A JP2001135654A (en) 2001-05-18
JP3932743B2 true JP3932743B2 (en) 2007-06-20

Family

ID=18087017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31733099A Expired - Fee Related JP3932743B2 (en) 1999-11-08 1999-11-08 Manufacturing method of pressure contact type semiconductor device

Country Status (1)

Country Link
JP (1) JP3932743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507352B2 (en) 2008-12-10 2013-08-13 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (en) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 Laser processing method and semiconductor chip manufacturing method
EP1635390B1 (en) * 2002-03-12 2011-07-27 Hamamatsu Photonics K. K. Substrate dividing method
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
EP2272618B1 (en) 2002-03-12 2015-10-07 Hamamatsu Photonics K.K. Method of cutting object to be processed
TWI520269B (en) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (en) 2003-03-11 2009-07-24 Jean Luc Jouvin PROTECTIVE SHEATH FOR CANNULA, AN INJECTION KIT COMPRISING SUCH ANKLE AND NEEDLE EQUIPPED WITH SUCH ANKLE
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
JP5141076B2 (en) 2006-06-05 2013-02-13 株式会社デンソー Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507352B2 (en) 2008-12-10 2013-08-13 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode
US8609502B1 (en) 2008-12-10 2013-12-17 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode

Also Published As

Publication number Publication date
JP2001135654A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
US9716054B2 (en) Semiconductor device
KR100735852B1 (en) Semiconductor device
US9905494B2 (en) Semiconductor device
US11721612B2 (en) Semiconductor device with connecting member for electrode and method of manufacturing
US20080054425A1 (en) Power electronic package having two substrates with multiple electronic components
US20080054439A1 (en) Power electronic package having two substrates with multiple semiconductor chips and electronic components
US9468087B1 (en) Power module with improved cooling and method for making
CN104103611B (en) Pressure-heat bonding structure and pressure-heat bonding method
JP3129020B2 (en) Semiconductor device
JP3932743B2 (en) Manufacturing method of pressure contact type semiconductor device
JP6230238B2 (en) Semiconductor device and manufacturing method thereof
GB2485087A (en) Power electronic package
US11244889B2 (en) Semiconductor device
JP2013539919A (en) Semiconductor module and method of manufacturing semiconductor module
JP2017123360A (en) Semiconductor module
JP2020013933A (en) Semiconductor device and method for manufacturing semiconductor device
JP5899952B2 (en) Semiconductor module
JP7319295B2 (en) semiconductor equipment
JP4586508B2 (en) Semiconductor device and manufacturing method thereof
GB2444978A (en) Interconnections between two substrates in power electronic package for chips and components.
JP2019091850A (en) Power semiconductor device
JP5682511B2 (en) Semiconductor module
JP4649948B2 (en) Semiconductor device
JPS61139051A (en) Semiconductor device
JP2020107685A (en) Semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees